• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
49 
50 /*
51  * Management arrays for POSIX timers.	 Timers are kept in slab memory
52  * Timer ids are allocated by an external routine that keeps track of the
53  * id and the timer.  The external interface is:
54  *
55  * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
56  * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
57  *                                                    related it to <ptr>
58  * void idr_remove(struct idr *idp, int id);          to release <id>
59  * void idr_init(struct idr *idp);                    to initialize <idp>
60  *                                                    which we supply.
61  * The idr_get_new *may* call slab for more memory so it must not be
62  * called under a spin lock.  Likewise idr_remore may release memory
63  * (but it may be ok to do this under a lock...).
64  * idr_find is just a memory look up and is quite fast.  A -1 return
65  * indicates that the requested id does not exist.
66  */
67 
68 /*
69  * Lets keep our timers in a slab cache :-)
70  */
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
74 
75 /*
76  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77  * SIGEV values.  Here we put out an error if this assumption fails.
78  */
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
83 
84 
85 /*
86  * The timer ID is turned into a timer address by idr_find().
87  * Verifying a valid ID consists of:
88  *
89  * a) checking that idr_find() returns other than -1.
90  * b) checking that the timer id matches the one in the timer itself.
91  * c) that the timer owner is in the callers thread group.
92  */
93 
94 /*
95  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96  *	    to implement others.  This structure defines the various
97  *	    clocks and allows the possibility of adding others.	 We
98  *	    provide an interface to add clocks to the table and expect
99  *	    the "arch" code to add at least one clock that is high
100  *	    resolution.	 Here we define the standard CLOCK_REALTIME as a
101  *	    1/HZ resolution clock.
102  *
103  * RESOLUTION: Clock resolution is used to round up timer and interval
104  *	    times, NOT to report clock times, which are reported with as
105  *	    much resolution as the system can muster.  In some cases this
106  *	    resolution may depend on the underlying clock hardware and
107  *	    may not be quantifiable until run time, and only then is the
108  *	    necessary code is written.	The standard says we should say
109  *	    something about this issue in the documentation...
110  *
111  * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112  *	    various clock functions.  For clocks that use the standard
113  *	    system timer code these entries should be NULL.  This will
114  *	    allow dispatch without the overhead of indirect function
115  *	    calls.  CLOCKS that depend on other sources (e.g. WWV or GPS)
116  *	    must supply functions here, even if the function just returns
117  *	    ENOSYS.  The standard POSIX timer management code assumes the
118  *	    following: 1.) The k_itimer struct (sched.h) is used for the
119  *	    timer.  2.) The list, it_lock, it_clock, it_id and it_pid
120  *	    fields are not modified by timer code.
121  *
122  *          At this time all functions EXCEPT clock_nanosleep can be
123  *          redirected by the CLOCKS structure.  Clock_nanosleep is in
124  *          there, but the code ignores it.
125  *
126  * Permissions: It is assumed that the clock_settime() function defined
127  *	    for each clock will take care of permission checks.	 Some
128  *	    clocks may be set able by any user (i.e. local process
129  *	    clocks) others not.	 Currently the only set able clock we
130  *	    have is CLOCK_REALTIME and its high res counter part, both of
131  *	    which we beg off on and pass to do_sys_settimeofday().
132  */
133 
134 static struct k_clock posix_clocks[MAX_CLOCKS];
135 
136 /*
137  * These ones are defined below.
138  */
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 			 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 			    struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
145 
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
147 
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149 
unlock_timer(struct k_itimer * timr,unsigned long flags)150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151 {
152 	spin_unlock_irqrestore(&timr->it_lock, flags);
153 }
154 
155 /*
156  * Call the k_clock hook function if non-null, or the default function.
157  */
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159  	((clock) < 0 ? posix_cpu_##call arglist : \
160  	 (posix_clocks[clock].call != NULL \
161  	  ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162 
163 /*
164  * Default clock hook functions when the struct k_clock passed
165  * to register_posix_clock leaves a function pointer null.
166  *
167  * The function common_CALL is the default implementation for
168  * the function pointer CALL in struct k_clock.
169  */
170 
common_clock_getres(const clockid_t which_clock,struct timespec * tp)171 static inline int common_clock_getres(const clockid_t which_clock,
172 				      struct timespec *tp)
173 {
174 	tp->tv_sec = 0;
175 	tp->tv_nsec = posix_clocks[which_clock].res;
176 	return 0;
177 }
178 
179 /*
180  * Get real time for posix timers
181  */
common_clock_get(clockid_t which_clock,struct timespec * tp)182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
183 {
184 	ktime_get_real_ts(tp);
185 	return 0;
186 }
187 
common_clock_set(const clockid_t which_clock,struct timespec * tp)188 static inline int common_clock_set(const clockid_t which_clock,
189 				   struct timespec *tp)
190 {
191 	return do_sys_settimeofday(tp, NULL);
192 }
193 
common_timer_create(struct k_itimer * new_timer)194 static int common_timer_create(struct k_itimer *new_timer)
195 {
196 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 	return 0;
198 }
199 
no_timer_create(struct k_itimer * new_timer)200 static int no_timer_create(struct k_itimer *new_timer)
201 {
202 	return -EOPNOTSUPP;
203 }
204 
205 /*
206  * Return nonzero if we know a priori this clockid_t value is bogus.
207  */
invalid_clockid(const clockid_t which_clock)208 static inline int invalid_clockid(const clockid_t which_clock)
209 {
210 	if (which_clock < 0)	/* CPU clock, posix_cpu_* will check it */
211 		return 0;
212 	if ((unsigned) which_clock >= MAX_CLOCKS)
213 		return 1;
214 	if (posix_clocks[which_clock].clock_getres != NULL)
215 		return 0;
216 	if (posix_clocks[which_clock].res != 0)
217 		return 0;
218 	return 1;
219 }
220 
221 /*
222  * Get monotonic time for posix timers
223  */
posix_ktime_get_ts(clockid_t which_clock,struct timespec * tp)224 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
225 {
226 	ktime_get_ts(tp);
227 	return 0;
228 }
229 
230 /*
231  * Get monotonic time for posix timers
232  */
posix_get_monotonic_raw(clockid_t which_clock,struct timespec * tp)233 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
234 {
235 	getrawmonotonic(tp);
236 	return 0;
237 }
238 
239 /*
240  * Initialize everything, well, just everything in Posix clocks/timers ;)
241  */
init_posix_timers(void)242 static __init int init_posix_timers(void)
243 {
244 	struct k_clock clock_realtime = {
245 		.clock_getres = hrtimer_get_res,
246 	};
247 	struct k_clock clock_monotonic = {
248 		.clock_getres = hrtimer_get_res,
249 		.clock_get = posix_ktime_get_ts,
250 		.clock_set = do_posix_clock_nosettime,
251 	};
252 	struct k_clock clock_monotonic_raw = {
253 		.clock_getres = hrtimer_get_res,
254 		.clock_get = posix_get_monotonic_raw,
255 		.clock_set = do_posix_clock_nosettime,
256 		.timer_create = no_timer_create,
257 	};
258 
259 	register_posix_clock(CLOCK_REALTIME, &clock_realtime);
260 	register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
261 	register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
262 
263 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
264 					sizeof (struct k_itimer), 0, SLAB_PANIC,
265 					NULL);
266 	idr_init(&posix_timers_id);
267 	return 0;
268 }
269 
270 __initcall(init_posix_timers);
271 
schedule_next_timer(struct k_itimer * timr)272 static void schedule_next_timer(struct k_itimer *timr)
273 {
274 	struct hrtimer *timer = &timr->it.real.timer;
275 
276 	if (timr->it.real.interval.tv64 == 0)
277 		return;
278 
279 	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
280 						timer->base->get_time(),
281 						timr->it.real.interval);
282 
283 	timr->it_overrun_last = timr->it_overrun;
284 	timr->it_overrun = -1;
285 	++timr->it_requeue_pending;
286 	hrtimer_restart(timer);
287 }
288 
289 /*
290  * This function is exported for use by the signal deliver code.  It is
291  * called just prior to the info block being released and passes that
292  * block to us.  It's function is to update the overrun entry AND to
293  * restart the timer.  It should only be called if the timer is to be
294  * restarted (i.e. we have flagged this in the sys_private entry of the
295  * info block).
296  *
297  * To protect aginst the timer going away while the interrupt is queued,
298  * we require that the it_requeue_pending flag be set.
299  */
do_schedule_next_timer(struct siginfo * info)300 void do_schedule_next_timer(struct siginfo *info)
301 {
302 	struct k_itimer *timr;
303 	unsigned long flags;
304 
305 	timr = lock_timer(info->si_tid, &flags);
306 
307 	if (timr && timr->it_requeue_pending == info->si_sys_private) {
308 		if (timr->it_clock < 0)
309 			posix_cpu_timer_schedule(timr);
310 		else
311 			schedule_next_timer(timr);
312 
313 		info->si_overrun += timr->it_overrun_last;
314 	}
315 
316 	if (timr)
317 		unlock_timer(timr, flags);
318 }
319 
posix_timer_event(struct k_itimer * timr,int si_private)320 int posix_timer_event(struct k_itimer *timr, int si_private)
321 {
322 	struct task_struct *task;
323 	int shared, ret = -1;
324 	/*
325 	 * FIXME: if ->sigq is queued we can race with
326 	 * dequeue_signal()->do_schedule_next_timer().
327 	 *
328 	 * If dequeue_signal() sees the "right" value of
329 	 * si_sys_private it calls do_schedule_next_timer().
330 	 * We re-queue ->sigq and drop ->it_lock().
331 	 * do_schedule_next_timer() locks the timer
332 	 * and re-schedules it while ->sigq is pending.
333 	 * Not really bad, but not that we want.
334 	 */
335 	timr->sigq->info.si_sys_private = si_private;
336 
337 	rcu_read_lock();
338 	task = pid_task(timr->it_pid, PIDTYPE_PID);
339 	if (task) {
340 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
341 		ret = send_sigqueue(timr->sigq, task, shared);
342 	}
343 	rcu_read_unlock();
344 	/* If we failed to send the signal the timer stops. */
345 	return ret > 0;
346 }
347 EXPORT_SYMBOL_GPL(posix_timer_event);
348 
349 /*
350  * This function gets called when a POSIX.1b interval timer expires.  It
351  * is used as a callback from the kernel internal timer.  The
352  * run_timer_list code ALWAYS calls with interrupts on.
353 
354  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
355  */
posix_timer_fn(struct hrtimer * timer)356 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
357 {
358 	struct k_itimer *timr;
359 	unsigned long flags;
360 	int si_private = 0;
361 	enum hrtimer_restart ret = HRTIMER_NORESTART;
362 
363 	timr = container_of(timer, struct k_itimer, it.real.timer);
364 	spin_lock_irqsave(&timr->it_lock, flags);
365 
366 	if (timr->it.real.interval.tv64 != 0)
367 		si_private = ++timr->it_requeue_pending;
368 
369 	if (posix_timer_event(timr, si_private)) {
370 		/*
371 		 * signal was not sent because of sig_ignor
372 		 * we will not get a call back to restart it AND
373 		 * it should be restarted.
374 		 */
375 		if (timr->it.real.interval.tv64 != 0) {
376 			ktime_t now = hrtimer_cb_get_time(timer);
377 
378 			/*
379 			 * FIXME: What we really want, is to stop this
380 			 * timer completely and restart it in case the
381 			 * SIG_IGN is removed. This is a non trivial
382 			 * change which involves sighand locking
383 			 * (sigh !), which we don't want to do late in
384 			 * the release cycle.
385 			 *
386 			 * For now we just let timers with an interval
387 			 * less than a jiffie expire every jiffie to
388 			 * avoid softirq starvation in case of SIG_IGN
389 			 * and a very small interval, which would put
390 			 * the timer right back on the softirq pending
391 			 * list. By moving now ahead of time we trick
392 			 * hrtimer_forward() to expire the timer
393 			 * later, while we still maintain the overrun
394 			 * accuracy, but have some inconsistency in
395 			 * the timer_gettime() case. This is at least
396 			 * better than a starved softirq. A more
397 			 * complex fix which solves also another related
398 			 * inconsistency is already in the pipeline.
399 			 */
400 #ifdef CONFIG_HIGH_RES_TIMERS
401 			{
402 				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
403 
404 				if (timr->it.real.interval.tv64 < kj.tv64)
405 					now = ktime_add(now, kj);
406 			}
407 #endif
408 			timr->it_overrun += (unsigned int)
409 				hrtimer_forward(timer, now,
410 						timr->it.real.interval);
411 			ret = HRTIMER_RESTART;
412 			++timr->it_requeue_pending;
413 		}
414 	}
415 
416 	unlock_timer(timr, flags);
417 	return ret;
418 }
419 
good_sigevent(sigevent_t * event)420 static struct pid *good_sigevent(sigevent_t * event)
421 {
422 	struct task_struct *rtn = current->group_leader;
423 
424 	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
425 		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
426 		 !same_thread_group(rtn, current) ||
427 		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
428 		return NULL;
429 
430 	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
431 	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
432 		return NULL;
433 
434 	return task_pid(rtn);
435 }
436 
register_posix_clock(const clockid_t clock_id,struct k_clock * new_clock)437 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
438 {
439 	if ((unsigned) clock_id >= MAX_CLOCKS) {
440 		printk("POSIX clock register failed for clock_id %d\n",
441 		       clock_id);
442 		return;
443 	}
444 
445 	posix_clocks[clock_id] = *new_clock;
446 }
447 EXPORT_SYMBOL_GPL(register_posix_clock);
448 
alloc_posix_timer(void)449 static struct k_itimer * alloc_posix_timer(void)
450 {
451 	struct k_itimer *tmr;
452 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
453 	if (!tmr)
454 		return tmr;
455 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
456 		kmem_cache_free(posix_timers_cache, tmr);
457 		return NULL;
458 	}
459 	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
460 	return tmr;
461 }
462 
463 #define IT_ID_SET	1
464 #define IT_ID_NOT_SET	0
release_posix_timer(struct k_itimer * tmr,int it_id_set)465 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
466 {
467 	if (it_id_set) {
468 		unsigned long flags;
469 		spin_lock_irqsave(&idr_lock, flags);
470 		idr_remove(&posix_timers_id, tmr->it_id);
471 		spin_unlock_irqrestore(&idr_lock, flags);
472 	}
473 	put_pid(tmr->it_pid);
474 	sigqueue_free(tmr->sigq);
475 	kmem_cache_free(posix_timers_cache, tmr);
476 }
477 
478 /* Create a POSIX.1b interval timer. */
479 
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)480 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
481 		struct sigevent __user *, timer_event_spec,
482 		timer_t __user *, created_timer_id)
483 {
484 	struct k_itimer *new_timer;
485 	int error, new_timer_id;
486 	sigevent_t event;
487 	int it_id_set = IT_ID_NOT_SET;
488 
489 	if (invalid_clockid(which_clock))
490 		return -EINVAL;
491 
492 	new_timer = alloc_posix_timer();
493 	if (unlikely(!new_timer))
494 		return -EAGAIN;
495 
496 	spin_lock_init(&new_timer->it_lock);
497  retry:
498 	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
499 		error = -EAGAIN;
500 		goto out;
501 	}
502 	spin_lock_irq(&idr_lock);
503 	error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
504 	spin_unlock_irq(&idr_lock);
505 	if (error) {
506 		if (error == -EAGAIN)
507 			goto retry;
508 		/*
509 		 * Weird looking, but we return EAGAIN if the IDR is
510 		 * full (proper POSIX return value for this)
511 		 */
512 		error = -EAGAIN;
513 		goto out;
514 	}
515 
516 	it_id_set = IT_ID_SET;
517 	new_timer->it_id = (timer_t) new_timer_id;
518 	new_timer->it_clock = which_clock;
519 	new_timer->it_overrun = -1;
520 	error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
521 	if (error)
522 		goto out;
523 
524 	/*
525 	 * return the timer_id now.  The next step is hard to
526 	 * back out if there is an error.
527 	 */
528 	if (copy_to_user(created_timer_id,
529 			 &new_timer_id, sizeof (new_timer_id))) {
530 		error = -EFAULT;
531 		goto out;
532 	}
533 	if (timer_event_spec) {
534 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
535 			error = -EFAULT;
536 			goto out;
537 		}
538 		rcu_read_lock();
539 		new_timer->it_pid = get_pid(good_sigevent(&event));
540 		rcu_read_unlock();
541 		if (!new_timer->it_pid) {
542 			error = -EINVAL;
543 			goto out;
544 		}
545 	} else {
546 		event.sigev_notify = SIGEV_SIGNAL;
547 		event.sigev_signo = SIGALRM;
548 		event.sigev_value.sival_int = new_timer->it_id;
549 		new_timer->it_pid = get_pid(task_tgid(current));
550 	}
551 
552 	new_timer->it_sigev_notify     = event.sigev_notify;
553 	new_timer->sigq->info.si_signo = event.sigev_signo;
554 	new_timer->sigq->info.si_value = event.sigev_value;
555 	new_timer->sigq->info.si_tid   = new_timer->it_id;
556 	new_timer->sigq->info.si_code  = SI_TIMER;
557 
558 	spin_lock_irq(&current->sighand->siglock);
559 	new_timer->it_signal = current->signal;
560 	list_add(&new_timer->list, &current->signal->posix_timers);
561 	spin_unlock_irq(&current->sighand->siglock);
562 
563 	return 0;
564  	/*
565 	 * In the case of the timer belonging to another task, after
566 	 * the task is unlocked, the timer is owned by the other task
567 	 * and may cease to exist at any time.  Don't use or modify
568 	 * new_timer after the unlock call.
569 	 */
570 out:
571 	release_posix_timer(new_timer, it_id_set);
572 	return error;
573 }
574 
575 /*
576  * Locking issues: We need to protect the result of the id look up until
577  * we get the timer locked down so it is not deleted under us.  The
578  * removal is done under the idr spinlock so we use that here to bridge
579  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
580  * be release with out holding the timer lock.
581  */
lock_timer(timer_t timer_id,unsigned long * flags)582 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
583 {
584 	struct k_itimer *timr;
585 	/*
586 	 * Watch out here.  We do a irqsave on the idr_lock and pass the
587 	 * flags part over to the timer lock.  Must not let interrupts in
588 	 * while we are moving the lock.
589 	 */
590 	spin_lock_irqsave(&idr_lock, *flags);
591 	timr = idr_find(&posix_timers_id, (int)timer_id);
592 	if (timr) {
593 		spin_lock(&timr->it_lock);
594 		if (timr->it_signal == current->signal) {
595 			spin_unlock(&idr_lock);
596 			return timr;
597 		}
598 		spin_unlock(&timr->it_lock);
599 	}
600 	spin_unlock_irqrestore(&idr_lock, *flags);
601 
602 	return NULL;
603 }
604 
605 /*
606  * Get the time remaining on a POSIX.1b interval timer.  This function
607  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
608  * mess with irq.
609  *
610  * We have a couple of messes to clean up here.  First there is the case
611  * of a timer that has a requeue pending.  These timers should appear to
612  * be in the timer list with an expiry as if we were to requeue them
613  * now.
614  *
615  * The second issue is the SIGEV_NONE timer which may be active but is
616  * not really ever put in the timer list (to save system resources).
617  * This timer may be expired, and if so, we will do it here.  Otherwise
618  * it is the same as a requeue pending timer WRT to what we should
619  * report.
620  */
621 static void
common_timer_get(struct k_itimer * timr,struct itimerspec * cur_setting)622 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
623 {
624 	ktime_t now, remaining, iv;
625 	struct hrtimer *timer = &timr->it.real.timer;
626 
627 	memset(cur_setting, 0, sizeof(struct itimerspec));
628 
629 	iv = timr->it.real.interval;
630 
631 	/* interval timer ? */
632 	if (iv.tv64)
633 		cur_setting->it_interval = ktime_to_timespec(iv);
634 	else if (!hrtimer_active(timer) &&
635 		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
636 		return;
637 
638 	now = timer->base->get_time();
639 
640 	/*
641 	 * When a requeue is pending or this is a SIGEV_NONE
642 	 * timer move the expiry time forward by intervals, so
643 	 * expiry is > now.
644 	 */
645 	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
646 	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
647 		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
648 
649 	remaining = ktime_sub(hrtimer_get_expires(timer), now);
650 	/* Return 0 only, when the timer is expired and not pending */
651 	if (remaining.tv64 <= 0) {
652 		/*
653 		 * A single shot SIGEV_NONE timer must return 0, when
654 		 * it is expired !
655 		 */
656 		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
657 			cur_setting->it_value.tv_nsec = 1;
658 	} else
659 		cur_setting->it_value = ktime_to_timespec(remaining);
660 }
661 
662 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct itimerspec __user *,setting)663 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
664 		struct itimerspec __user *, setting)
665 {
666 	struct k_itimer *timr;
667 	struct itimerspec cur_setting;
668 	unsigned long flags;
669 
670 	timr = lock_timer(timer_id, &flags);
671 	if (!timr)
672 		return -EINVAL;
673 
674 	CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
675 
676 	unlock_timer(timr, flags);
677 
678 	if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
679 		return -EFAULT;
680 
681 	return 0;
682 }
683 
684 /*
685  * Get the number of overruns of a POSIX.1b interval timer.  This is to
686  * be the overrun of the timer last delivered.  At the same time we are
687  * accumulating overruns on the next timer.  The overrun is frozen when
688  * the signal is delivered, either at the notify time (if the info block
689  * is not queued) or at the actual delivery time (as we are informed by
690  * the call back to do_schedule_next_timer().  So all we need to do is
691  * to pick up the frozen overrun.
692  */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)693 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
694 {
695 	struct k_itimer *timr;
696 	int overrun;
697 	unsigned long flags;
698 
699 	timr = lock_timer(timer_id, &flags);
700 	if (!timr)
701 		return -EINVAL;
702 
703 	overrun = timr->it_overrun_last;
704 	unlock_timer(timr, flags);
705 
706 	return overrun;
707 }
708 
709 /* Set a POSIX.1b interval timer. */
710 /* timr->it_lock is taken. */
711 static int
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec * new_setting,struct itimerspec * old_setting)712 common_timer_set(struct k_itimer *timr, int flags,
713 		 struct itimerspec *new_setting, struct itimerspec *old_setting)
714 {
715 	struct hrtimer *timer = &timr->it.real.timer;
716 	enum hrtimer_mode mode;
717 
718 	if (old_setting)
719 		common_timer_get(timr, old_setting);
720 
721 	/* disable the timer */
722 	timr->it.real.interval.tv64 = 0;
723 	/*
724 	 * careful here.  If smp we could be in the "fire" routine which will
725 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
726 	 */
727 	if (hrtimer_try_to_cancel(timer) < 0)
728 		return TIMER_RETRY;
729 
730 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
731 		~REQUEUE_PENDING;
732 	timr->it_overrun_last = 0;
733 
734 	/* switch off the timer when it_value is zero */
735 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
736 		return 0;
737 
738 	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
739 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
740 	timr->it.real.timer.function = posix_timer_fn;
741 
742 	hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
743 
744 	/* Convert interval */
745 	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
746 
747 	/* SIGEV_NONE timers are not queued ! See common_timer_get */
748 	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
749 		/* Setup correct expiry time for relative timers */
750 		if (mode == HRTIMER_MODE_REL) {
751 			hrtimer_add_expires(timer, timer->base->get_time());
752 		}
753 		return 0;
754 	}
755 
756 	hrtimer_start_expires(timer, mode);
757 	return 0;
758 }
759 
760 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct itimerspec __user *,new_setting,struct itimerspec __user *,old_setting)761 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
762 		const struct itimerspec __user *, new_setting,
763 		struct itimerspec __user *, old_setting)
764 {
765 	struct k_itimer *timr;
766 	struct itimerspec new_spec, old_spec;
767 	int error = 0;
768 	unsigned long flag;
769 	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
770 
771 	if (!new_setting)
772 		return -EINVAL;
773 
774 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
775 		return -EFAULT;
776 
777 	if (!timespec_valid(&new_spec.it_interval) ||
778 	    !timespec_valid(&new_spec.it_value))
779 		return -EINVAL;
780 retry:
781 	timr = lock_timer(timer_id, &flag);
782 	if (!timr)
783 		return -EINVAL;
784 
785 	error = CLOCK_DISPATCH(timr->it_clock, timer_set,
786 			       (timr, flags, &new_spec, rtn));
787 
788 	unlock_timer(timr, flag);
789 	if (error == TIMER_RETRY) {
790 		rtn = NULL;	// We already got the old time...
791 		goto retry;
792 	}
793 
794 	if (old_setting && !error &&
795 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
796 		error = -EFAULT;
797 
798 	return error;
799 }
800 
common_timer_del(struct k_itimer * timer)801 static inline int common_timer_del(struct k_itimer *timer)
802 {
803 	timer->it.real.interval.tv64 = 0;
804 
805 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
806 		return TIMER_RETRY;
807 	return 0;
808 }
809 
timer_delete_hook(struct k_itimer * timer)810 static inline int timer_delete_hook(struct k_itimer *timer)
811 {
812 	return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
813 }
814 
815 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)816 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
817 {
818 	struct k_itimer *timer;
819 	unsigned long flags;
820 
821 retry_delete:
822 	timer = lock_timer(timer_id, &flags);
823 	if (!timer)
824 		return -EINVAL;
825 
826 	if (timer_delete_hook(timer) == TIMER_RETRY) {
827 		unlock_timer(timer, flags);
828 		goto retry_delete;
829 	}
830 
831 	spin_lock(&current->sighand->siglock);
832 	list_del(&timer->list);
833 	spin_unlock(&current->sighand->siglock);
834 	/*
835 	 * This keeps any tasks waiting on the spin lock from thinking
836 	 * they got something (see the lock code above).
837 	 */
838 	timer->it_signal = NULL;
839 
840 	unlock_timer(timer, flags);
841 	release_posix_timer(timer, IT_ID_SET);
842 	return 0;
843 }
844 
845 /*
846  * return timer owned by the process, used by exit_itimers
847  */
itimer_delete(struct k_itimer * timer)848 static void itimer_delete(struct k_itimer *timer)
849 {
850 	unsigned long flags;
851 
852 retry_delete:
853 	spin_lock_irqsave(&timer->it_lock, flags);
854 
855 	if (timer_delete_hook(timer) == TIMER_RETRY) {
856 		unlock_timer(timer, flags);
857 		goto retry_delete;
858 	}
859 	list_del(&timer->list);
860 	/*
861 	 * This keeps any tasks waiting on the spin lock from thinking
862 	 * they got something (see the lock code above).
863 	 */
864 	timer->it_signal = NULL;
865 
866 	unlock_timer(timer, flags);
867 	release_posix_timer(timer, IT_ID_SET);
868 }
869 
870 /*
871  * This is called by do_exit or de_thread, only when there are no more
872  * references to the shared signal_struct.
873  */
exit_itimers(struct signal_struct * sig)874 void exit_itimers(struct signal_struct *sig)
875 {
876 	struct k_itimer *tmr;
877 
878 	while (!list_empty(&sig->posix_timers)) {
879 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
880 		itimer_delete(tmr);
881 	}
882 }
883 
884 /* Not available / possible... functions */
do_posix_clock_nosettime(const clockid_t clockid,struct timespec * tp)885 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
886 {
887 	return -EINVAL;
888 }
889 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
890 
do_posix_clock_nonanosleep(const clockid_t clock,int flags,struct timespec * t,struct timespec __user * r)891 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
892 			       struct timespec *t, struct timespec __user *r)
893 {
894 #ifndef ENOTSUP
895 	return -EOPNOTSUPP;	/* aka ENOTSUP in userland for POSIX */
896 #else  /*  parisc does define it separately.  */
897 	return -ENOTSUP;
898 #endif
899 }
900 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
901 
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct timespec __user *,tp)902 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
903 		const struct timespec __user *, tp)
904 {
905 	struct timespec new_tp;
906 
907 	if (invalid_clockid(which_clock))
908 		return -EINVAL;
909 	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
910 		return -EFAULT;
911 
912 	return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
913 }
914 
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct timespec __user *,tp)915 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
916 		struct timespec __user *,tp)
917 {
918 	struct timespec kernel_tp;
919 	int error;
920 
921 	if (invalid_clockid(which_clock))
922 		return -EINVAL;
923 	error = CLOCK_DISPATCH(which_clock, clock_get,
924 			       (which_clock, &kernel_tp));
925 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
926 		error = -EFAULT;
927 
928 	return error;
929 
930 }
931 
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct timespec __user *,tp)932 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
933 		struct timespec __user *, tp)
934 {
935 	struct timespec rtn_tp;
936 	int error;
937 
938 	if (invalid_clockid(which_clock))
939 		return -EINVAL;
940 
941 	error = CLOCK_DISPATCH(which_clock, clock_getres,
942 			       (which_clock, &rtn_tp));
943 
944 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
945 		error = -EFAULT;
946 	}
947 
948 	return error;
949 }
950 
951 /*
952  * nanosleep for monotonic and realtime clocks
953  */
common_nsleep(const clockid_t which_clock,int flags,struct timespec * tsave,struct timespec __user * rmtp)954 static int common_nsleep(const clockid_t which_clock, int flags,
955 			 struct timespec *tsave, struct timespec __user *rmtp)
956 {
957 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
958 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
959 				 which_clock);
960 }
961 
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct timespec __user *,rqtp,struct timespec __user *,rmtp)962 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
963 		const struct timespec __user *, rqtp,
964 		struct timespec __user *, rmtp)
965 {
966 	struct timespec t;
967 
968 	if (invalid_clockid(which_clock))
969 		return -EINVAL;
970 
971 	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
972 		return -EFAULT;
973 
974 	if (!timespec_valid(&t))
975 		return -EINVAL;
976 
977 	return CLOCK_DISPATCH(which_clock, nsleep,
978 			      (which_clock, flags, &t, rmtp));
979 }
980 
981 /*
982  * nanosleep_restart for monotonic and realtime clocks
983  */
common_nsleep_restart(struct restart_block * restart_block)984 static int common_nsleep_restart(struct restart_block *restart_block)
985 {
986 	return hrtimer_nanosleep_restart(restart_block);
987 }
988 
989 /*
990  * This will restart clock_nanosleep. This is required only by
991  * compat_clock_nanosleep_restart for now.
992  */
993 long
clock_nanosleep_restart(struct restart_block * restart_block)994 clock_nanosleep_restart(struct restart_block *restart_block)
995 {
996 	clockid_t which_clock = restart_block->arg0;
997 
998 	return CLOCK_DISPATCH(which_clock, nsleep_restart,
999 			      (restart_block));
1000 }
1001