• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  * 	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <asm/atomic.h>
39 #include <linux/bitops.h>
40 #include <linux/module.h>
41 #include <linux/completion.h>
42 #include <linux/moduleparam.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/time.h>
48 
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 static struct lock_class_key rcu_lock_key;
51 struct lockdep_map rcu_lock_map =
52 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
53 EXPORT_SYMBOL_GPL(rcu_lock_map);
54 #endif
55 
56 /* Data structures. */
57 
58 #define RCU_STATE_INITIALIZER(name) { \
59 	.level = { &name.node[0] }, \
60 	.levelcnt = { \
61 		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
62 		NUM_RCU_LVL_1, \
63 		NUM_RCU_LVL_2, \
64 		NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
65 	}, \
66 	.signaled = RCU_SIGNAL_INIT, \
67 	.gpnum = -300, \
68 	.completed = -300, \
69 	.onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 	.fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
71 	.n_force_qs = 0, \
72 	.n_force_qs_ngp = 0, \
73 }
74 
75 struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state);
76 DEFINE_PER_CPU(struct rcu_data, rcu_data);
77 
78 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
80 
81 #ifdef CONFIG_NO_HZ
82 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
83 	.dynticks_nesting = 1,
84 	.dynticks = 1,
85 };
86 #endif /* #ifdef CONFIG_NO_HZ */
87 
88 static int blimit = 10;		/* Maximum callbacks per softirq. */
89 static int qhimark = 10000;	/* If this many pending, ignore blimit. */
90 static int qlowmark = 100;	/* Once only this many pending, use blimit. */
91 
92 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
93 
94 /*
95  * Return the number of RCU batches processed thus far for debug & stats.
96  */
rcu_batches_completed(void)97 long rcu_batches_completed(void)
98 {
99 	return rcu_state.completed;
100 }
101 EXPORT_SYMBOL_GPL(rcu_batches_completed);
102 
103 /*
104  * Return the number of RCU BH batches processed thus far for debug & stats.
105  */
rcu_batches_completed_bh(void)106 long rcu_batches_completed_bh(void)
107 {
108 	return rcu_bh_state.completed;
109 }
110 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
111 
112 /*
113  * Does the CPU have callbacks ready to be invoked?
114  */
115 static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data * rdp)116 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
117 {
118 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
119 }
120 
121 /*
122  * Does the current CPU require a yet-as-unscheduled grace period?
123  */
124 static int
cpu_needs_another_gp(struct rcu_state * rsp,struct rcu_data * rdp)125 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
126 {
127 	/* ACCESS_ONCE() because we are accessing outside of lock. */
128 	return *rdp->nxttail[RCU_DONE_TAIL] &&
129 	       ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
130 }
131 
132 /*
133  * Return the root node of the specified rcu_state structure.
134  */
rcu_get_root(struct rcu_state * rsp)135 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
136 {
137 	return &rsp->node[0];
138 }
139 
140 #ifdef CONFIG_SMP
141 
142 /*
143  * If the specified CPU is offline, tell the caller that it is in
144  * a quiescent state.  Otherwise, whack it with a reschedule IPI.
145  * Grace periods can end up waiting on an offline CPU when that
146  * CPU is in the process of coming online -- it will be added to the
147  * rcu_node bitmasks before it actually makes it online.  The same thing
148  * can happen while a CPU is in the process of coming online.  Because this
149  * race is quite rare, we check for it after detecting that the grace
150  * period has been delayed rather than checking each and every CPU
151  * each and every time we start a new grace period.
152  */
rcu_implicit_offline_qs(struct rcu_data * rdp)153 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
154 {
155 	/*
156 	 * If the CPU is offline, it is in a quiescent state.  We can
157 	 * trust its state not to change because interrupts are disabled.
158 	 */
159 	if (cpu_is_offline(rdp->cpu)) {
160 		rdp->offline_fqs++;
161 		return 1;
162 	}
163 
164 	/* The CPU is online, so send it a reschedule IPI. */
165 	if (rdp->cpu != smp_processor_id())
166 		smp_send_reschedule(rdp->cpu);
167 	else
168 		set_need_resched();
169 	rdp->resched_ipi++;
170 	return 0;
171 }
172 
173 #endif /* #ifdef CONFIG_SMP */
174 
175 #ifdef CONFIG_NO_HZ
176 static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
177 
178 /**
179  * rcu_enter_nohz - inform RCU that current CPU is entering nohz
180  *
181  * Enter nohz mode, in other words, -leave- the mode in which RCU
182  * read-side critical sections can occur.  (Though RCU read-side
183  * critical sections can occur in irq handlers in nohz mode, a possibility
184  * handled by rcu_irq_enter() and rcu_irq_exit()).
185  */
rcu_enter_nohz(void)186 void rcu_enter_nohz(void)
187 {
188 	unsigned long flags;
189 	struct rcu_dynticks *rdtp;
190 
191 	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
192 	local_irq_save(flags);
193 	rdtp = &__get_cpu_var(rcu_dynticks);
194 	rdtp->dynticks++;
195 	rdtp->dynticks_nesting--;
196 	WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
197 	local_irq_restore(flags);
198 }
199 
200 /*
201  * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
202  *
203  * Exit nohz mode, in other words, -enter- the mode in which RCU
204  * read-side critical sections normally occur.
205  */
rcu_exit_nohz(void)206 void rcu_exit_nohz(void)
207 {
208 	unsigned long flags;
209 	struct rcu_dynticks *rdtp;
210 
211 	local_irq_save(flags);
212 	rdtp = &__get_cpu_var(rcu_dynticks);
213 	rdtp->dynticks++;
214 	rdtp->dynticks_nesting++;
215 	WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
216 	local_irq_restore(flags);
217 	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
218 }
219 
220 /**
221  * rcu_nmi_enter - inform RCU of entry to NMI context
222  *
223  * If the CPU was idle with dynamic ticks active, and there is no
224  * irq handler running, this updates rdtp->dynticks_nmi to let the
225  * RCU grace-period handling know that the CPU is active.
226  */
rcu_nmi_enter(void)227 void rcu_nmi_enter(void)
228 {
229 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
230 
231 	if (rdtp->dynticks & 0x1)
232 		return;
233 	rdtp->dynticks_nmi++;
234 	WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
235 	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
236 }
237 
238 /**
239  * rcu_nmi_exit - inform RCU of exit from NMI context
240  *
241  * If the CPU was idle with dynamic ticks active, and there is no
242  * irq handler running, this updates rdtp->dynticks_nmi to let the
243  * RCU grace-period handling know that the CPU is no longer active.
244  */
rcu_nmi_exit(void)245 void rcu_nmi_exit(void)
246 {
247 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
248 
249 	if (rdtp->dynticks & 0x1)
250 		return;
251 	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
252 	rdtp->dynticks_nmi++;
253 	WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
254 }
255 
256 /**
257  * rcu_irq_enter - inform RCU of entry to hard irq context
258  *
259  * If the CPU was idle with dynamic ticks active, this updates the
260  * rdtp->dynticks to let the RCU handling know that the CPU is active.
261  */
rcu_irq_enter(void)262 void rcu_irq_enter(void)
263 {
264 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
265 
266 	if (rdtp->dynticks_nesting++)
267 		return;
268 	rdtp->dynticks++;
269 	WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
270 	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
271 }
272 
273 /**
274  * rcu_irq_exit - inform RCU of exit from hard irq context
275  *
276  * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
277  * to put let the RCU handling be aware that the CPU is going back to idle
278  * with no ticks.
279  */
rcu_irq_exit(void)280 void rcu_irq_exit(void)
281 {
282 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
283 
284 	if (--rdtp->dynticks_nesting)
285 		return;
286 	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
287 	rdtp->dynticks++;
288 	WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
289 
290 	/* If the interrupt queued a callback, get out of dyntick mode. */
291 	if (__get_cpu_var(rcu_data).nxtlist ||
292 	    __get_cpu_var(rcu_bh_data).nxtlist)
293 		set_need_resched();
294 }
295 
296 /*
297  * Record the specified "completed" value, which is later used to validate
298  * dynticks counter manipulations.  Specify "rsp->completed - 1" to
299  * unconditionally invalidate any future dynticks manipulations (which is
300  * useful at the beginning of a grace period).
301  */
dyntick_record_completed(struct rcu_state * rsp,long comp)302 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
303 {
304 	rsp->dynticks_completed = comp;
305 }
306 
307 #ifdef CONFIG_SMP
308 
309 /*
310  * Recall the previously recorded value of the completion for dynticks.
311  */
dyntick_recall_completed(struct rcu_state * rsp)312 static long dyntick_recall_completed(struct rcu_state *rsp)
313 {
314 	return rsp->dynticks_completed;
315 }
316 
317 /*
318  * Snapshot the specified CPU's dynticks counter so that we can later
319  * credit them with an implicit quiescent state.  Return 1 if this CPU
320  * is already in a quiescent state courtesy of dynticks idle mode.
321  */
dyntick_save_progress_counter(struct rcu_data * rdp)322 static int dyntick_save_progress_counter(struct rcu_data *rdp)
323 {
324 	int ret;
325 	int snap;
326 	int snap_nmi;
327 
328 	snap = rdp->dynticks->dynticks;
329 	snap_nmi = rdp->dynticks->dynticks_nmi;
330 	smp_mb();	/* Order sampling of snap with end of grace period. */
331 	rdp->dynticks_snap = snap;
332 	rdp->dynticks_nmi_snap = snap_nmi;
333 	ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
334 	if (ret)
335 		rdp->dynticks_fqs++;
336 	return ret;
337 }
338 
339 /*
340  * Return true if the specified CPU has passed through a quiescent
341  * state by virtue of being in or having passed through an dynticks
342  * idle state since the last call to dyntick_save_progress_counter()
343  * for this same CPU.
344  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)345 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
346 {
347 	long curr;
348 	long curr_nmi;
349 	long snap;
350 	long snap_nmi;
351 
352 	curr = rdp->dynticks->dynticks;
353 	snap = rdp->dynticks_snap;
354 	curr_nmi = rdp->dynticks->dynticks_nmi;
355 	snap_nmi = rdp->dynticks_nmi_snap;
356 	smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
357 
358 	/*
359 	 * If the CPU passed through or entered a dynticks idle phase with
360 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
361 	 * already acknowledged the request to pass through a quiescent
362 	 * state.  Either way, that CPU cannot possibly be in an RCU
363 	 * read-side critical section that started before the beginning
364 	 * of the current RCU grace period.
365 	 */
366 	if ((curr != snap || (curr & 0x1) == 0) &&
367 	    (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
368 		rdp->dynticks_fqs++;
369 		return 1;
370 	}
371 
372 	/* Go check for the CPU being offline. */
373 	return rcu_implicit_offline_qs(rdp);
374 }
375 
376 #endif /* #ifdef CONFIG_SMP */
377 
378 #else /* #ifdef CONFIG_NO_HZ */
379 
dyntick_record_completed(struct rcu_state * rsp,long comp)380 static void dyntick_record_completed(struct rcu_state *rsp, long comp)
381 {
382 }
383 
384 #ifdef CONFIG_SMP
385 
386 /*
387  * If there are no dynticks, then the only way that a CPU can passively
388  * be in a quiescent state is to be offline.  Unlike dynticks idle, which
389  * is a point in time during the prior (already finished) grace period,
390  * an offline CPU is always in a quiescent state, and thus can be
391  * unconditionally applied.  So just return the current value of completed.
392  */
dyntick_recall_completed(struct rcu_state * rsp)393 static long dyntick_recall_completed(struct rcu_state *rsp)
394 {
395 	return rsp->completed;
396 }
397 
dyntick_save_progress_counter(struct rcu_data * rdp)398 static int dyntick_save_progress_counter(struct rcu_data *rdp)
399 {
400 	return 0;
401 }
402 
rcu_implicit_dynticks_qs(struct rcu_data * rdp)403 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
404 {
405 	return rcu_implicit_offline_qs(rdp);
406 }
407 
408 #endif /* #ifdef CONFIG_SMP */
409 
410 #endif /* #else #ifdef CONFIG_NO_HZ */
411 
412 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
413 
record_gp_stall_check_time(struct rcu_state * rsp)414 static void record_gp_stall_check_time(struct rcu_state *rsp)
415 {
416 	rsp->gp_start = jiffies;
417 	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
418 }
419 
print_other_cpu_stall(struct rcu_state * rsp)420 static void print_other_cpu_stall(struct rcu_state *rsp)
421 {
422 	int cpu;
423 	long delta;
424 	unsigned long flags;
425 	struct rcu_node *rnp = rcu_get_root(rsp);
426 	struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
427 	struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
428 
429 	/* Only let one CPU complain about others per time interval. */
430 
431 	spin_lock_irqsave(&rnp->lock, flags);
432 	delta = jiffies - rsp->jiffies_stall;
433 	if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
434 		spin_unlock_irqrestore(&rnp->lock, flags);
435 		return;
436 	}
437 	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
438 	spin_unlock_irqrestore(&rnp->lock, flags);
439 
440 	/* OK, time to rat on our buddy... */
441 
442 	printk(KERN_ERR "INFO: RCU detected CPU stalls:");
443 	for (; rnp_cur < rnp_end; rnp_cur++) {
444 		if (rnp_cur->qsmask == 0)
445 			continue;
446 		for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
447 			if (rnp_cur->qsmask & (1UL << cpu))
448 				printk(" %d", rnp_cur->grplo + cpu);
449 	}
450 	printk(" (detected by %d, t=%ld jiffies)\n",
451 	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
452 	force_quiescent_state(rsp, 0);  /* Kick them all. */
453 }
454 
print_cpu_stall(struct rcu_state * rsp)455 static void print_cpu_stall(struct rcu_state *rsp)
456 {
457 	unsigned long flags;
458 	struct rcu_node *rnp = rcu_get_root(rsp);
459 
460 	printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
461 			smp_processor_id(), jiffies - rsp->gp_start);
462 	dump_stack();
463 	spin_lock_irqsave(&rnp->lock, flags);
464 	if ((long)(jiffies - rsp->jiffies_stall) >= 0)
465 		rsp->jiffies_stall =
466 			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
467 	spin_unlock_irqrestore(&rnp->lock, flags);
468 	set_need_resched();  /* kick ourselves to get things going. */
469 }
470 
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)471 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
472 {
473 	long delta;
474 	struct rcu_node *rnp;
475 
476 	delta = jiffies - rsp->jiffies_stall;
477 	rnp = rdp->mynode;
478 	if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
479 
480 		/* We haven't checked in, so go dump stack. */
481 		print_cpu_stall(rsp);
482 
483 	} else if (rsp->gpnum != rsp->completed &&
484 		   delta >= RCU_STALL_RAT_DELAY) {
485 
486 		/* They had two time units to dump stack, so complain. */
487 		print_other_cpu_stall(rsp);
488 	}
489 }
490 
491 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
492 
record_gp_stall_check_time(struct rcu_state * rsp)493 static void record_gp_stall_check_time(struct rcu_state *rsp)
494 {
495 }
496 
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)497 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
498 {
499 }
500 
501 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
502 
503 /*
504  * Update CPU-local rcu_data state to record the newly noticed grace period.
505  * This is used both when we started the grace period and when we notice
506  * that someone else started the grace period.
507  */
note_new_gpnum(struct rcu_state * rsp,struct rcu_data * rdp)508 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
509 {
510 	rdp->qs_pending = 1;
511 	rdp->passed_quiesc = 0;
512 	rdp->gpnum = rsp->gpnum;
513 	rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
514 				      RCU_JIFFIES_TILL_FORCE_QS;
515 }
516 
517 /*
518  * Did someone else start a new RCU grace period start since we last
519  * checked?  Update local state appropriately if so.  Must be called
520  * on the CPU corresponding to rdp.
521  */
522 static int
check_for_new_grace_period(struct rcu_state * rsp,struct rcu_data * rdp)523 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
524 {
525 	unsigned long flags;
526 	int ret = 0;
527 
528 	local_irq_save(flags);
529 	if (rdp->gpnum != rsp->gpnum) {
530 		note_new_gpnum(rsp, rdp);
531 		ret = 1;
532 	}
533 	local_irq_restore(flags);
534 	return ret;
535 }
536 
537 /*
538  * Start a new RCU grace period if warranted, re-initializing the hierarchy
539  * in preparation for detecting the next grace period.  The caller must hold
540  * the root node's ->lock, which is released before return.  Hard irqs must
541  * be disabled.
542  */
543 static void
rcu_start_gp(struct rcu_state * rsp,unsigned long flags)544 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
545 	__releases(rcu_get_root(rsp)->lock)
546 {
547 	struct rcu_data *rdp = rsp->rda[smp_processor_id()];
548 	struct rcu_node *rnp = rcu_get_root(rsp);
549 	struct rcu_node *rnp_cur;
550 	struct rcu_node *rnp_end;
551 
552 	if (!cpu_needs_another_gp(rsp, rdp)) {
553 		spin_unlock_irqrestore(&rnp->lock, flags);
554 		return;
555 	}
556 
557 	/* Advance to a new grace period and initialize state. */
558 	rsp->gpnum++;
559 	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
560 	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
561 	rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
562 				      RCU_JIFFIES_TILL_FORCE_QS;
563 	record_gp_stall_check_time(rsp);
564 	dyntick_record_completed(rsp, rsp->completed - 1);
565 	note_new_gpnum(rsp, rdp);
566 
567 	/*
568 	 * Because we are first, we know that all our callbacks will
569 	 * be covered by this upcoming grace period, even the ones
570 	 * that were registered arbitrarily recently.
571 	 */
572 	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
573 	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
574 
575 	/* Special-case the common single-level case. */
576 	if (NUM_RCU_NODES == 1) {
577 		rnp->qsmask = rnp->qsmaskinit;
578 		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
579 		spin_unlock_irqrestore(&rnp->lock, flags);
580 		return;
581 	}
582 
583 	spin_unlock(&rnp->lock);  /* leave irqs disabled. */
584 
585 
586 	/* Exclude any concurrent CPU-hotplug operations. */
587 	spin_lock(&rsp->onofflock);  /* irqs already disabled. */
588 
589 	/*
590 	 * Set the quiescent-state-needed bits in all the non-leaf RCU
591 	 * nodes for all currently online CPUs.  This operation relies
592 	 * on the layout of the hierarchy within the rsp->node[] array.
593 	 * Note that other CPUs will access only the leaves of the
594 	 * hierarchy, which still indicate that no grace period is in
595 	 * progress.  In addition, we have excluded CPU-hotplug operations.
596 	 *
597 	 * We therefore do not need to hold any locks.  Any required
598 	 * memory barriers will be supplied by the locks guarding the
599 	 * leaf rcu_nodes in the hierarchy.
600 	 */
601 
602 	rnp_end = rsp->level[NUM_RCU_LVLS - 1];
603 	for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
604 		rnp_cur->qsmask = rnp_cur->qsmaskinit;
605 
606 	/*
607 	 * Now set up the leaf nodes.  Here we must be careful.  First,
608 	 * we need to hold the lock in order to exclude other CPUs, which
609 	 * might be contending for the leaf nodes' locks.  Second, as
610 	 * soon as we initialize a given leaf node, its CPUs might run
611 	 * up the rest of the hierarchy.  We must therefore acquire locks
612 	 * for each node that we touch during this stage.  (But we still
613 	 * are excluding CPU-hotplug operations.)
614 	 *
615 	 * Note that the grace period cannot complete until we finish
616 	 * the initialization process, as there will be at least one
617 	 * qsmask bit set in the root node until that time, namely the
618 	 * one corresponding to this CPU.
619 	 */
620 	rnp_end = &rsp->node[NUM_RCU_NODES];
621 	rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
622 	for (; rnp_cur < rnp_end; rnp_cur++) {
623 		spin_lock(&rnp_cur->lock);	/* irqs already disabled. */
624 		rnp_cur->qsmask = rnp_cur->qsmaskinit;
625 		spin_unlock(&rnp_cur->lock);	/* irqs already disabled. */
626 	}
627 
628 	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
629 	spin_unlock_irqrestore(&rsp->onofflock, flags);
630 }
631 
632 /*
633  * Advance this CPU's callbacks, but only if the current grace period
634  * has ended.  This may be called only from the CPU to whom the rdp
635  * belongs.
636  */
637 static void
rcu_process_gp_end(struct rcu_state * rsp,struct rcu_data * rdp)638 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
639 {
640 	long completed_snap;
641 	unsigned long flags;
642 
643 	local_irq_save(flags);
644 	completed_snap = ACCESS_ONCE(rsp->completed);  /* outside of lock. */
645 
646 	/* Did another grace period end? */
647 	if (rdp->completed != completed_snap) {
648 
649 		/* Advance callbacks.  No harm if list empty. */
650 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
651 		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
652 		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
653 
654 		/* Remember that we saw this grace-period completion. */
655 		rdp->completed = completed_snap;
656 	}
657 	local_irq_restore(flags);
658 }
659 
660 /*
661  * Similar to cpu_quiet(), for which it is a helper function.  Allows
662  * a group of CPUs to be quieted at one go, though all the CPUs in the
663  * group must be represented by the same leaf rcu_node structure.
664  * That structure's lock must be held upon entry, and it is released
665  * before return.
666  */
667 static void
cpu_quiet_msk(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)668 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
669 	      unsigned long flags)
670 	__releases(rnp->lock)
671 {
672 	/* Walk up the rcu_node hierarchy. */
673 	for (;;) {
674 		if (!(rnp->qsmask & mask)) {
675 
676 			/* Our bit has already been cleared, so done. */
677 			spin_unlock_irqrestore(&rnp->lock, flags);
678 			return;
679 		}
680 		rnp->qsmask &= ~mask;
681 		if (rnp->qsmask != 0) {
682 
683 			/* Other bits still set at this level, so done. */
684 			spin_unlock_irqrestore(&rnp->lock, flags);
685 			return;
686 		}
687 		mask = rnp->grpmask;
688 		if (rnp->parent == NULL) {
689 
690 			/* No more levels.  Exit loop holding root lock. */
691 
692 			break;
693 		}
694 		spin_unlock_irqrestore(&rnp->lock, flags);
695 		rnp = rnp->parent;
696 		spin_lock_irqsave(&rnp->lock, flags);
697 	}
698 
699 	/*
700 	 * Get here if we are the last CPU to pass through a quiescent
701 	 * state for this grace period.  Clean up and let rcu_start_gp()
702 	 * start up the next grace period if one is needed.  Note that
703 	 * we still hold rnp->lock, as required by rcu_start_gp(), which
704 	 * will release it.
705 	 */
706 	rsp->completed = rsp->gpnum;
707 	rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
708 	rcu_start_gp(rsp, flags);  /* releases rnp->lock. */
709 }
710 
711 /*
712  * Record a quiescent state for the specified CPU, which must either be
713  * the current CPU or an offline CPU.  The lastcomp argument is used to
714  * make sure we are still in the grace period of interest.  We don't want
715  * to end the current grace period based on quiescent states detected in
716  * an earlier grace period!
717  */
718 static void
cpu_quiet(int cpu,struct rcu_state * rsp,struct rcu_data * rdp,long lastcomp)719 cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
720 {
721 	unsigned long flags;
722 	unsigned long mask;
723 	struct rcu_node *rnp;
724 
725 	rnp = rdp->mynode;
726 	spin_lock_irqsave(&rnp->lock, flags);
727 	if (lastcomp != ACCESS_ONCE(rsp->completed)) {
728 
729 		/*
730 		 * Someone beat us to it for this grace period, so leave.
731 		 * The race with GP start is resolved by the fact that we
732 		 * hold the leaf rcu_node lock, so that the per-CPU bits
733 		 * cannot yet be initialized -- so we would simply find our
734 		 * CPU's bit already cleared in cpu_quiet_msk() if this race
735 		 * occurred.
736 		 */
737 		rdp->passed_quiesc = 0;	/* try again later! */
738 		spin_unlock_irqrestore(&rnp->lock, flags);
739 		return;
740 	}
741 	mask = rdp->grpmask;
742 	if ((rnp->qsmask & mask) == 0) {
743 		spin_unlock_irqrestore(&rnp->lock, flags);
744 	} else {
745 		rdp->qs_pending = 0;
746 
747 		/*
748 		 * This GP can't end until cpu checks in, so all of our
749 		 * callbacks can be processed during the next GP.
750 		 */
751 		rdp = rsp->rda[smp_processor_id()];
752 		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
753 
754 		cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
755 	}
756 }
757 
758 /*
759  * Check to see if there is a new grace period of which this CPU
760  * is not yet aware, and if so, set up local rcu_data state for it.
761  * Otherwise, see if this CPU has just passed through its first
762  * quiescent state for this grace period, and record that fact if so.
763  */
764 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)765 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
766 {
767 	/* If there is now a new grace period, record and return. */
768 	if (check_for_new_grace_period(rsp, rdp))
769 		return;
770 
771 	/*
772 	 * Does this CPU still need to do its part for current grace period?
773 	 * If no, return and let the other CPUs do their part as well.
774 	 */
775 	if (!rdp->qs_pending)
776 		return;
777 
778 	/*
779 	 * Was there a quiescent state since the beginning of the grace
780 	 * period? If no, then exit and wait for the next call.
781 	 */
782 	if (!rdp->passed_quiesc)
783 		return;
784 
785 	/* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
786 	cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
787 }
788 
789 #ifdef CONFIG_HOTPLUG_CPU
790 
791 /*
792  * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
793  * and move all callbacks from the outgoing CPU to the current one.
794  */
__rcu_offline_cpu(int cpu,struct rcu_state * rsp)795 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
796 {
797 	int i;
798 	unsigned long flags;
799 	long lastcomp;
800 	unsigned long mask;
801 	struct rcu_data *rdp = rsp->rda[cpu];
802 	struct rcu_data *rdp_me;
803 	struct rcu_node *rnp;
804 
805 	/* Exclude any attempts to start a new grace period. */
806 	spin_lock_irqsave(&rsp->onofflock, flags);
807 
808 	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
809 	rnp = rdp->mynode;
810 	mask = rdp->grpmask;	/* rnp->grplo is constant. */
811 	do {
812 		spin_lock(&rnp->lock);		/* irqs already disabled. */
813 		rnp->qsmaskinit &= ~mask;
814 		if (rnp->qsmaskinit != 0) {
815 			spin_unlock(&rnp->lock); /* irqs already disabled. */
816 			break;
817 		}
818 		mask = rnp->grpmask;
819 		spin_unlock(&rnp->lock);	/* irqs already disabled. */
820 		rnp = rnp->parent;
821 	} while (rnp != NULL);
822 	lastcomp = rsp->completed;
823 
824 	spin_unlock(&rsp->onofflock);		/* irqs remain disabled. */
825 
826 	/* Being offline is a quiescent state, so go record it. */
827 	cpu_quiet(cpu, rsp, rdp, lastcomp);
828 
829 	/*
830 	 * Move callbacks from the outgoing CPU to the running CPU.
831 	 * Note that the outgoing CPU is now quiscent, so it is now
832 	 * (uncharacteristically) safe to access it rcu_data structure.
833 	 * Note also that we must carefully retain the order of the
834 	 * outgoing CPU's callbacks in order for rcu_barrier() to work
835 	 * correctly.  Finally, note that we start all the callbacks
836 	 * afresh, even those that have passed through a grace period
837 	 * and are therefore ready to invoke.  The theory is that hotplug
838 	 * events are rare, and that if they are frequent enough to
839 	 * indefinitely delay callbacks, you have far worse things to
840 	 * be worrying about.
841 	 */
842 	rdp_me = rsp->rda[smp_processor_id()];
843 	if (rdp->nxtlist != NULL) {
844 		*rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
845 		rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
846 		rdp->nxtlist = NULL;
847 		for (i = 0; i < RCU_NEXT_SIZE; i++)
848 			rdp->nxttail[i] = &rdp->nxtlist;
849 		rdp_me->qlen += rdp->qlen;
850 		rdp->qlen = 0;
851 	}
852 	local_irq_restore(flags);
853 }
854 
855 /*
856  * Remove the specified CPU from the RCU hierarchy and move any pending
857  * callbacks that it might have to the current CPU.  This code assumes
858  * that at least one CPU in the system will remain running at all times.
859  * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
860  */
rcu_offline_cpu(int cpu)861 static void rcu_offline_cpu(int cpu)
862 {
863 	__rcu_offline_cpu(cpu, &rcu_state);
864 	__rcu_offline_cpu(cpu, &rcu_bh_state);
865 }
866 
867 #else /* #ifdef CONFIG_HOTPLUG_CPU */
868 
rcu_offline_cpu(int cpu)869 static void rcu_offline_cpu(int cpu)
870 {
871 }
872 
873 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
874 
875 /*
876  * Invoke any RCU callbacks that have made it to the end of their grace
877  * period.  Thottle as specified by rdp->blimit.
878  */
rcu_do_batch(struct rcu_data * rdp)879 static void rcu_do_batch(struct rcu_data *rdp)
880 {
881 	unsigned long flags;
882 	struct rcu_head *next, *list, **tail;
883 	int count;
884 
885 	/* If no callbacks are ready, just return.*/
886 	if (!cpu_has_callbacks_ready_to_invoke(rdp))
887 		return;
888 
889 	/*
890 	 * Extract the list of ready callbacks, disabling to prevent
891 	 * races with call_rcu() from interrupt handlers.
892 	 */
893 	local_irq_save(flags);
894 	list = rdp->nxtlist;
895 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
896 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
897 	tail = rdp->nxttail[RCU_DONE_TAIL];
898 	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
899 		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
900 			rdp->nxttail[count] = &rdp->nxtlist;
901 	local_irq_restore(flags);
902 
903 	/* Invoke callbacks. */
904 	count = 0;
905 	while (list) {
906 		next = list->next;
907 		prefetch(next);
908 		list->func(list);
909 		list = next;
910 		if (++count >= rdp->blimit)
911 			break;
912 	}
913 
914 	local_irq_save(flags);
915 
916 	/* Update count, and requeue any remaining callbacks. */
917 	rdp->qlen -= count;
918 	if (list != NULL) {
919 		*tail = rdp->nxtlist;
920 		rdp->nxtlist = list;
921 		for (count = 0; count < RCU_NEXT_SIZE; count++)
922 			if (&rdp->nxtlist == rdp->nxttail[count])
923 				rdp->nxttail[count] = tail;
924 			else
925 				break;
926 	}
927 
928 	/* Reinstate batch limit if we have worked down the excess. */
929 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
930 		rdp->blimit = blimit;
931 
932 	local_irq_restore(flags);
933 
934 	/* Re-raise the RCU softirq if there are callbacks remaining. */
935 	if (cpu_has_callbacks_ready_to_invoke(rdp))
936 		raise_softirq(RCU_SOFTIRQ);
937 }
938 
939 /*
940  * Check to see if this CPU is in a non-context-switch quiescent state
941  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
942  * Also schedule the RCU softirq handler.
943  *
944  * This function must be called with hardirqs disabled.  It is normally
945  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
946  * false, there is no point in invoking rcu_check_callbacks().
947  */
rcu_check_callbacks(int cpu,int user)948 void rcu_check_callbacks(int cpu, int user)
949 {
950 	if (user ||
951 	    (idle_cpu(cpu) && rcu_scheduler_active &&
952 	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
953 
954 		/*
955 		 * Get here if this CPU took its interrupt from user
956 		 * mode or from the idle loop, and if this is not a
957 		 * nested interrupt.  In this case, the CPU is in
958 		 * a quiescent state, so count it.
959 		 *
960 		 * No memory barrier is required here because both
961 		 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference
962 		 * only CPU-local variables that other CPUs neither
963 		 * access nor modify, at least not while the corresponding
964 		 * CPU is online.
965 		 */
966 
967 		rcu_qsctr_inc(cpu);
968 		rcu_bh_qsctr_inc(cpu);
969 
970 	} else if (!in_softirq()) {
971 
972 		/*
973 		 * Get here if this CPU did not take its interrupt from
974 		 * softirq, in other words, if it is not interrupting
975 		 * a rcu_bh read-side critical section.  This is an _bh
976 		 * critical section, so count it.
977 		 */
978 
979 		rcu_bh_qsctr_inc(cpu);
980 	}
981 	raise_softirq(RCU_SOFTIRQ);
982 }
983 
984 #ifdef CONFIG_SMP
985 
986 /*
987  * Scan the leaf rcu_node structures, processing dyntick state for any that
988  * have not yet encountered a quiescent state, using the function specified.
989  * Returns 1 if the current grace period ends while scanning (possibly
990  * because we made it end).
991  */
rcu_process_dyntick(struct rcu_state * rsp,long lastcomp,int (* f)(struct rcu_data *))992 static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
993 			       int (*f)(struct rcu_data *))
994 {
995 	unsigned long bit;
996 	int cpu;
997 	unsigned long flags;
998 	unsigned long mask;
999 	struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1000 	struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1001 
1002 	for (; rnp_cur < rnp_end; rnp_cur++) {
1003 		mask = 0;
1004 		spin_lock_irqsave(&rnp_cur->lock, flags);
1005 		if (rsp->completed != lastcomp) {
1006 			spin_unlock_irqrestore(&rnp_cur->lock, flags);
1007 			return 1;
1008 		}
1009 		if (rnp_cur->qsmask == 0) {
1010 			spin_unlock_irqrestore(&rnp_cur->lock, flags);
1011 			continue;
1012 		}
1013 		cpu = rnp_cur->grplo;
1014 		bit = 1;
1015 		for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1016 			if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1017 				mask |= bit;
1018 		}
1019 		if (mask != 0 && rsp->completed == lastcomp) {
1020 
1021 			/* cpu_quiet_msk() releases rnp_cur->lock. */
1022 			cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1023 			continue;
1024 		}
1025 		spin_unlock_irqrestore(&rnp_cur->lock, flags);
1026 	}
1027 	return 0;
1028 }
1029 
1030 /*
1031  * Force quiescent states on reluctant CPUs, and also detect which
1032  * CPUs are in dyntick-idle mode.
1033  */
force_quiescent_state(struct rcu_state * rsp,int relaxed)1034 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1035 {
1036 	unsigned long flags;
1037 	long lastcomp;
1038 	struct rcu_data *rdp = rsp->rda[smp_processor_id()];
1039 	struct rcu_node *rnp = rcu_get_root(rsp);
1040 	u8 signaled;
1041 
1042 	if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1043 		return;  /* No grace period in progress, nothing to force. */
1044 	if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1045 		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1046 		return;	/* Someone else is already on the job. */
1047 	}
1048 	if (relaxed &&
1049 	    (long)(rsp->jiffies_force_qs - jiffies) >= 0 &&
1050 	    (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) >= 0)
1051 		goto unlock_ret; /* no emergency and done recently. */
1052 	rsp->n_force_qs++;
1053 	spin_lock(&rnp->lock);
1054 	lastcomp = rsp->completed;
1055 	signaled = rsp->signaled;
1056 	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1057 	rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
1058 				      RCU_JIFFIES_TILL_FORCE_QS;
1059 	if (lastcomp == rsp->gpnum) {
1060 		rsp->n_force_qs_ngp++;
1061 		spin_unlock(&rnp->lock);
1062 		goto unlock_ret;  /* no GP in progress, time updated. */
1063 	}
1064 	spin_unlock(&rnp->lock);
1065 	switch (signaled) {
1066 	case RCU_GP_INIT:
1067 
1068 		break; /* grace period still initializing, ignore. */
1069 
1070 	case RCU_SAVE_DYNTICK:
1071 
1072 		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1073 			break; /* So gcc recognizes the dead code. */
1074 
1075 		/* Record dyntick-idle state. */
1076 		if (rcu_process_dyntick(rsp, lastcomp,
1077 					dyntick_save_progress_counter))
1078 			goto unlock_ret;
1079 
1080 		/* Update state, record completion counter. */
1081 		spin_lock(&rnp->lock);
1082 		if (lastcomp == rsp->completed) {
1083 			rsp->signaled = RCU_FORCE_QS;
1084 			dyntick_record_completed(rsp, lastcomp);
1085 		}
1086 		spin_unlock(&rnp->lock);
1087 		break;
1088 
1089 	case RCU_FORCE_QS:
1090 
1091 		/* Check dyntick-idle state, send IPI to laggarts. */
1092 		if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1093 					rcu_implicit_dynticks_qs))
1094 			goto unlock_ret;
1095 
1096 		/* Leave state in case more forcing is required. */
1097 
1098 		break;
1099 	}
1100 unlock_ret:
1101 	spin_unlock_irqrestore(&rsp->fqslock, flags);
1102 }
1103 
1104 #else /* #ifdef CONFIG_SMP */
1105 
force_quiescent_state(struct rcu_state * rsp,int relaxed)1106 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1107 {
1108 	set_need_resched();
1109 }
1110 
1111 #endif /* #else #ifdef CONFIG_SMP */
1112 
1113 /*
1114  * This does the RCU processing work from softirq context for the
1115  * specified rcu_state and rcu_data structures.  This may be called
1116  * only from the CPU to whom the rdp belongs.
1117  */
1118 static void
__rcu_process_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)1119 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1120 {
1121 	unsigned long flags;
1122 
1123 	/*
1124 	 * If an RCU GP has gone long enough, go check for dyntick
1125 	 * idle CPUs and, if needed, send resched IPIs.
1126 	 */
1127 	if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1128 	    (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)
1129 		force_quiescent_state(rsp, 1);
1130 
1131 	/*
1132 	 * Advance callbacks in response to end of earlier grace
1133 	 * period that some other CPU ended.
1134 	 */
1135 	rcu_process_gp_end(rsp, rdp);
1136 
1137 	/* Update RCU state based on any recent quiescent states. */
1138 	rcu_check_quiescent_state(rsp, rdp);
1139 
1140 	/* Does this CPU require a not-yet-started grace period? */
1141 	if (cpu_needs_another_gp(rsp, rdp)) {
1142 		spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1143 		rcu_start_gp(rsp, flags);  /* releases above lock */
1144 	}
1145 
1146 	/* If there are callbacks ready, invoke them. */
1147 	rcu_do_batch(rdp);
1148 }
1149 
1150 /*
1151  * Do softirq processing for the current CPU.
1152  */
rcu_process_callbacks(struct softirq_action * unused)1153 static void rcu_process_callbacks(struct softirq_action *unused)
1154 {
1155 	/*
1156 	 * Memory references from any prior RCU read-side critical sections
1157 	 * executed by the interrupted code must be seen before any RCU
1158 	 * grace-period manipulations below.
1159 	 */
1160 	smp_mb(); /* See above block comment. */
1161 
1162 	__rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data));
1163 	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1164 
1165 	/*
1166 	 * Memory references from any later RCU read-side critical sections
1167 	 * executed by the interrupted code must be seen after any RCU
1168 	 * grace-period manipulations above.
1169 	 */
1170 	smp_mb(); /* See above block comment. */
1171 }
1172 
1173 static void
__call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu),struct rcu_state * rsp)1174 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1175 	   struct rcu_state *rsp)
1176 {
1177 	unsigned long flags;
1178 	struct rcu_data *rdp;
1179 
1180 	head->func = func;
1181 	head->next = NULL;
1182 
1183 	smp_mb(); /* Ensure RCU update seen before callback registry. */
1184 
1185 	/*
1186 	 * Opportunistically note grace-period endings and beginnings.
1187 	 * Note that we might see a beginning right after we see an
1188 	 * end, but never vice versa, since this CPU has to pass through
1189 	 * a quiescent state betweentimes.
1190 	 */
1191 	local_irq_save(flags);
1192 	rdp = rsp->rda[smp_processor_id()];
1193 	rcu_process_gp_end(rsp, rdp);
1194 	check_for_new_grace_period(rsp, rdp);
1195 
1196 	/* Add the callback to our list. */
1197 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
1198 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1199 
1200 	/* Start a new grace period if one not already started. */
1201 	if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1202 		unsigned long nestflag;
1203 		struct rcu_node *rnp_root = rcu_get_root(rsp);
1204 
1205 		spin_lock_irqsave(&rnp_root->lock, nestflag);
1206 		rcu_start_gp(rsp, nestflag);  /* releases rnp_root->lock. */
1207 	}
1208 
1209 	/* Force the grace period if too many callbacks or too long waiting. */
1210 	if (unlikely(++rdp->qlen > qhimark)) {
1211 		rdp->blimit = LONG_MAX;
1212 		force_quiescent_state(rsp, 0);
1213 	} else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1214 		   (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)
1215 		force_quiescent_state(rsp, 1);
1216 	local_irq_restore(flags);
1217 }
1218 
1219 /*
1220  * Queue an RCU callback for invocation after a grace period.
1221  */
call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu))1222 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1223 {
1224 	__call_rcu(head, func, &rcu_state);
1225 }
1226 EXPORT_SYMBOL_GPL(call_rcu);
1227 
1228 /*
1229  * Queue an RCU for invocation after a quicker grace period.
1230  */
call_rcu_bh(struct rcu_head * head,void (* func)(struct rcu_head * rcu))1231 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1232 {
1233 	__call_rcu(head, func, &rcu_bh_state);
1234 }
1235 EXPORT_SYMBOL_GPL(call_rcu_bh);
1236 
1237 /*
1238  * Check to see if there is any immediate RCU-related work to be done
1239  * by the current CPU, for the specified type of RCU, returning 1 if so.
1240  * The checks are in order of increasing expense: checks that can be
1241  * carried out against CPU-local state are performed first.  However,
1242  * we must check for CPU stalls first, else we might not get a chance.
1243  */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)1244 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1245 {
1246 	rdp->n_rcu_pending++;
1247 
1248 	/* Check for CPU stalls, if enabled. */
1249 	check_cpu_stall(rsp, rdp);
1250 
1251 	/* Is the RCU core waiting for a quiescent state from this CPU? */
1252 	if (rdp->qs_pending)
1253 		return 1;
1254 
1255 	/* Does this CPU have callbacks ready to invoke? */
1256 	if (cpu_has_callbacks_ready_to_invoke(rdp))
1257 		return 1;
1258 
1259 	/* Has RCU gone idle with this CPU needing another grace period? */
1260 	if (cpu_needs_another_gp(rsp, rdp))
1261 		return 1;
1262 
1263 	/* Has another RCU grace period completed?  */
1264 	if (ACCESS_ONCE(rsp->completed) != rdp->completed) /* outside of lock */
1265 		return 1;
1266 
1267 	/* Has a new RCU grace period started? */
1268 	if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) /* outside of lock */
1269 		return 1;
1270 
1271 	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1272 	if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
1273 	    ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1274 	     (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0))
1275 		return 1;
1276 
1277 	/* nothing to do */
1278 	return 0;
1279 }
1280 
1281 /*
1282  * Check to see if there is any immediate RCU-related work to be done
1283  * by the current CPU, returning 1 if so.  This function is part of the
1284  * RCU implementation; it is -not- an exported member of the RCU API.
1285  */
rcu_pending(int cpu)1286 int rcu_pending(int cpu)
1287 {
1288 	return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) ||
1289 	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu));
1290 }
1291 
1292 /*
1293  * Check to see if any future RCU-related work will need to be done
1294  * by the current CPU, even if none need be done immediately, returning
1295  * 1 if so.  This function is part of the RCU implementation; it is -not-
1296  * an exported member of the RCU API.
1297  */
rcu_needs_cpu(int cpu)1298 int rcu_needs_cpu(int cpu)
1299 {
1300 	/* RCU callbacks either ready or pending? */
1301 	return per_cpu(rcu_data, cpu).nxtlist ||
1302 	       per_cpu(rcu_bh_data, cpu).nxtlist;
1303 }
1304 
1305 /*
1306  * Initialize a CPU's per-CPU RCU data.  We take this "scorched earth"
1307  * approach so that we don't have to worry about how long the CPU has
1308  * been gone, or whether it ever was online previously.  We do trust the
1309  * ->mynode field, as it is constant for a given struct rcu_data and
1310  * initialized during early boot.
1311  *
1312  * Note that only one online or offline event can be happening at a given
1313  * time.  Note also that we can accept some slop in the rsp->completed
1314  * access due to the fact that this CPU cannot possibly have any RCU
1315  * callbacks in flight yet.
1316  */
1317 static void __cpuinit
rcu_init_percpu_data(int cpu,struct rcu_state * rsp)1318 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1319 {
1320 	unsigned long flags;
1321 	int i;
1322 	long lastcomp;
1323 	unsigned long mask;
1324 	struct rcu_data *rdp = rsp->rda[cpu];
1325 	struct rcu_node *rnp = rcu_get_root(rsp);
1326 
1327 	/* Set up local state, ensuring consistent view of global state. */
1328 	spin_lock_irqsave(&rnp->lock, flags);
1329 	lastcomp = rsp->completed;
1330 	rdp->completed = lastcomp;
1331 	rdp->gpnum = lastcomp;
1332 	rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
1333 	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
1334 	rdp->beenonline = 1;	 /* We have now been online. */
1335 	rdp->passed_quiesc_completed = lastcomp - 1;
1336 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1337 	rdp->nxtlist = NULL;
1338 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1339 		rdp->nxttail[i] = &rdp->nxtlist;
1340 	rdp->qlen = 0;
1341 	rdp->blimit = blimit;
1342 #ifdef CONFIG_NO_HZ
1343 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1344 #endif /* #ifdef CONFIG_NO_HZ */
1345 	rdp->cpu = cpu;
1346 	spin_unlock(&rnp->lock);		/* irqs remain disabled. */
1347 
1348 	/*
1349 	 * A new grace period might start here.  If so, we won't be part
1350 	 * of it, but that is OK, as we are currently in a quiescent state.
1351 	 */
1352 
1353 	/* Exclude any attempts to start a new GP on large systems. */
1354 	spin_lock(&rsp->onofflock);		/* irqs already disabled. */
1355 
1356 	/* Add CPU to rcu_node bitmasks. */
1357 	rnp = rdp->mynode;
1358 	mask = rdp->grpmask;
1359 	do {
1360 		/* Exclude any attempts to start a new GP on small systems. */
1361 		spin_lock(&rnp->lock);	/* irqs already disabled. */
1362 		rnp->qsmaskinit |= mask;
1363 		mask = rnp->grpmask;
1364 		spin_unlock(&rnp->lock); /* irqs already disabled. */
1365 		rnp = rnp->parent;
1366 	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
1367 
1368 	spin_unlock(&rsp->onofflock);		/* irqs remain disabled. */
1369 
1370 	/*
1371 	 * A new grace period might start here.  If so, we will be part of
1372 	 * it, and its gpnum will be greater than ours, so we will
1373 	 * participate.  It is also possible for the gpnum to have been
1374 	 * incremented before this function was called, and the bitmasks
1375 	 * to not be filled out until now, in which case we will also
1376 	 * participate due to our gpnum being behind.
1377 	 */
1378 
1379 	/* Since it is coming online, the CPU is in a quiescent state. */
1380 	cpu_quiet(cpu, rsp, rdp, lastcomp);
1381 	local_irq_restore(flags);
1382 }
1383 
rcu_online_cpu(int cpu)1384 static void __cpuinit rcu_online_cpu(int cpu)
1385 {
1386 	rcu_init_percpu_data(cpu, &rcu_state);
1387 	rcu_init_percpu_data(cpu, &rcu_bh_state);
1388 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1389 }
1390 
1391 /*
1392  * Handle CPU online/offline notifcation events.
1393  */
rcu_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1394 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1395 				unsigned long action, void *hcpu)
1396 {
1397 	long cpu = (long)hcpu;
1398 
1399 	switch (action) {
1400 	case CPU_UP_PREPARE:
1401 	case CPU_UP_PREPARE_FROZEN:
1402 		rcu_online_cpu(cpu);
1403 		break;
1404 	case CPU_DEAD:
1405 	case CPU_DEAD_FROZEN:
1406 	case CPU_UP_CANCELED:
1407 	case CPU_UP_CANCELED_FROZEN:
1408 		rcu_offline_cpu(cpu);
1409 		break;
1410 	default:
1411 		break;
1412 	}
1413 	return NOTIFY_OK;
1414 }
1415 
1416 /*
1417  * Compute the per-level fanout, either using the exact fanout specified
1418  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1419  */
1420 #ifdef CONFIG_RCU_FANOUT_EXACT
rcu_init_levelspread(struct rcu_state * rsp)1421 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1422 {
1423 	int i;
1424 
1425 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1426 		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1427 }
1428 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
rcu_init_levelspread(struct rcu_state * rsp)1429 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1430 {
1431 	int ccur;
1432 	int cprv;
1433 	int i;
1434 
1435 	cprv = NR_CPUS;
1436 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1437 		ccur = rsp->levelcnt[i];
1438 		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1439 		cprv = ccur;
1440 	}
1441 }
1442 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1443 
1444 /*
1445  * Helper function for rcu_init() that initializes one rcu_state structure.
1446  */
rcu_init_one(struct rcu_state * rsp)1447 static void __init rcu_init_one(struct rcu_state *rsp)
1448 {
1449 	int cpustride = 1;
1450 	int i;
1451 	int j;
1452 	struct rcu_node *rnp;
1453 
1454 	/* Initialize the level-tracking arrays. */
1455 
1456 	for (i = 1; i < NUM_RCU_LVLS; i++)
1457 		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1458 	rcu_init_levelspread(rsp);
1459 
1460 	/* Initialize the elements themselves, starting from the leaves. */
1461 
1462 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1463 		cpustride *= rsp->levelspread[i];
1464 		rnp = rsp->level[i];
1465 		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1466 			spin_lock_init(&rnp->lock);
1467 			rnp->qsmask = 0;
1468 			rnp->qsmaskinit = 0;
1469 			rnp->grplo = j * cpustride;
1470 			rnp->grphi = (j + 1) * cpustride - 1;
1471 			if (rnp->grphi >= NR_CPUS)
1472 				rnp->grphi = NR_CPUS - 1;
1473 			if (i == 0) {
1474 				rnp->grpnum = 0;
1475 				rnp->grpmask = 0;
1476 				rnp->parent = NULL;
1477 			} else {
1478 				rnp->grpnum = j % rsp->levelspread[i - 1];
1479 				rnp->grpmask = 1UL << rnp->grpnum;
1480 				rnp->parent = rsp->level[i - 1] +
1481 					      j / rsp->levelspread[i - 1];
1482 			}
1483 			rnp->level = i;
1484 		}
1485 	}
1486 }
1487 
1488 /*
1489  * Helper macro for __rcu_init().  To be used nowhere else!
1490  * Assigns leaf node pointers into each CPU's rcu_data structure.
1491  */
1492 #define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1493 do { \
1494 	rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1495 	j = 0; \
1496 	for_each_possible_cpu(i) { \
1497 		if (i > rnp[j].grphi) \
1498 			j++; \
1499 		per_cpu(rcu_data, i).mynode = &rnp[j]; \
1500 		(rsp)->rda[i] = &per_cpu(rcu_data, i); \
1501 	} \
1502 } while (0)
1503 
1504 static struct notifier_block __cpuinitdata rcu_nb = {
1505 	.notifier_call	= rcu_cpu_notify,
1506 };
1507 
__rcu_init(void)1508 void __init __rcu_init(void)
1509 {
1510 	int i;			/* All used by RCU_DATA_PTR_INIT(). */
1511 	int j;
1512 	struct rcu_node *rnp;
1513 
1514 	printk(KERN_WARNING "Experimental hierarchical RCU implementation.\n");
1515 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1516 	printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1517 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1518 	rcu_init_one(&rcu_state);
1519 	RCU_DATA_PTR_INIT(&rcu_state, rcu_data);
1520 	rcu_init_one(&rcu_bh_state);
1521 	RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data);
1522 
1523 	for_each_online_cpu(i)
1524 		rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i);
1525 	/* Register notifier for non-boot CPUs */
1526 	register_cpu_notifier(&rcu_nb);
1527 	printk(KERN_WARNING "Experimental hierarchical RCU init done.\n");
1528 }
1529 
1530 module_param(blimit, int, 0);
1531 module_param(qhimark, int, 0);
1532 module_param(qlowmark, int, 0);
1533