• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
relay_file_mmap_close(struct vm_area_struct * vma)33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
relay_buf_fault(struct vm_area_struct * vma,struct vm_fault * vmf)42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
relay_alloc_page_array(unsigned int n_pages)71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	struct page **array;
74 	size_t pa_size = n_pages * sizeof(struct page *);
75 
76 	if (pa_size > PAGE_SIZE) {
77 		array = vmalloc(pa_size);
78 		if (array)
79 			memset(array, 0, pa_size);
80 	} else {
81 		array = kzalloc(pa_size, GFP_KERNEL);
82 	}
83 	return array;
84 }
85 
86 /*
87  * free an array of pointers of struct page
88  */
relay_free_page_array(struct page ** array)89 static void relay_free_page_array(struct page **array)
90 {
91 	if (is_vmalloc_addr(array))
92 		vfree(array);
93 	else
94 		kfree(array);
95 }
96 
97 /**
98  *	relay_mmap_buf: - mmap channel buffer to process address space
99  *	@buf: relay channel buffer
100  *	@vma: vm_area_struct describing memory to be mapped
101  *
102  *	Returns 0 if ok, negative on error
103  *
104  *	Caller should already have grabbed mmap_sem.
105  */
relay_mmap_buf(struct rchan_buf * buf,struct vm_area_struct * vma)106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
107 {
108 	unsigned long length = vma->vm_end - vma->vm_start;
109 	struct file *filp = vma->vm_file;
110 
111 	if (!buf)
112 		return -EBADF;
113 
114 	if (length != (unsigned long)buf->chan->alloc_size)
115 		return -EINVAL;
116 
117 	vma->vm_ops = &relay_file_mmap_ops;
118 	vma->vm_flags |= VM_DONTEXPAND;
119 	vma->vm_private_data = buf;
120 	buf->chan->cb->buf_mapped(buf, filp);
121 
122 	return 0;
123 }
124 
125 /**
126  *	relay_alloc_buf - allocate a channel buffer
127  *	@buf: the buffer struct
128  *	@size: total size of the buffer
129  *
130  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131  *	passed in size will get page aligned, if it isn't already.
132  */
relay_alloc_buf(struct rchan_buf * buf,size_t * size)133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
134 {
135 	void *mem;
136 	unsigned int i, j, n_pages;
137 
138 	*size = PAGE_ALIGN(*size);
139 	n_pages = *size >> PAGE_SHIFT;
140 
141 	buf->page_array = relay_alloc_page_array(n_pages);
142 	if (!buf->page_array)
143 		return NULL;
144 
145 	for (i = 0; i < n_pages; i++) {
146 		buf->page_array[i] = alloc_page(GFP_KERNEL);
147 		if (unlikely(!buf->page_array[i]))
148 			goto depopulate;
149 		set_page_private(buf->page_array[i], (unsigned long)buf);
150 	}
151 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152 	if (!mem)
153 		goto depopulate;
154 
155 	memset(mem, 0, *size);
156 	buf->page_count = n_pages;
157 	return mem;
158 
159 depopulate:
160 	for (j = 0; j < i; j++)
161 		__free_page(buf->page_array[j]);
162 	relay_free_page_array(buf->page_array);
163 	return NULL;
164 }
165 
166 /**
167  *	relay_create_buf - allocate and initialize a channel buffer
168  *	@chan: the relay channel
169  *
170  *	Returns channel buffer if successful, %NULL otherwise.
171  */
relay_create_buf(struct rchan * chan)172 static struct rchan_buf *relay_create_buf(struct rchan *chan)
173 {
174 	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175 	if (!buf)
176 		return NULL;
177 
178 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179 	if (!buf->padding)
180 		goto free_buf;
181 
182 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183 	if (!buf->start)
184 		goto free_buf;
185 
186 	buf->chan = chan;
187 	kref_get(&buf->chan->kref);
188 	return buf;
189 
190 free_buf:
191 	kfree(buf->padding);
192 	kfree(buf);
193 	return NULL;
194 }
195 
196 /**
197  *	relay_destroy_channel - free the channel struct
198  *	@kref: target kernel reference that contains the relay channel
199  *
200  *	Should only be called from kref_put().
201  */
relay_destroy_channel(struct kref * kref)202 static void relay_destroy_channel(struct kref *kref)
203 {
204 	struct rchan *chan = container_of(kref, struct rchan, kref);
205 	kfree(chan);
206 }
207 
208 /**
209  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210  *	@buf: the buffer struct
211  */
relay_destroy_buf(struct rchan_buf * buf)212 static void relay_destroy_buf(struct rchan_buf *buf)
213 {
214 	struct rchan *chan = buf->chan;
215 	unsigned int i;
216 
217 	if (likely(buf->start)) {
218 		vunmap(buf->start);
219 		for (i = 0; i < buf->page_count; i++)
220 			__free_page(buf->page_array[i]);
221 		relay_free_page_array(buf->page_array);
222 	}
223 	chan->buf[buf->cpu] = NULL;
224 	kfree(buf->padding);
225 	kfree(buf);
226 	kref_put(&chan->kref, relay_destroy_channel);
227 }
228 
229 /**
230  *	relay_remove_buf - remove a channel buffer
231  *	@kref: target kernel reference that contains the relay buffer
232  *
233  *	Removes the file from the fileystem, which also frees the
234  *	rchan_buf_struct and the channel buffer.  Should only be called from
235  *	kref_put().
236  */
relay_remove_buf(struct kref * kref)237 static void relay_remove_buf(struct kref *kref)
238 {
239 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240 	buf->chan->cb->remove_buf_file(buf->dentry);
241 	relay_destroy_buf(buf);
242 }
243 
244 /**
245  *	relay_buf_empty - boolean, is the channel buffer empty?
246  *	@buf: channel buffer
247  *
248  *	Returns 1 if the buffer is empty, 0 otherwise.
249  */
relay_buf_empty(struct rchan_buf * buf)250 static int relay_buf_empty(struct rchan_buf *buf)
251 {
252 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
253 }
254 
255 /**
256  *	relay_buf_full - boolean, is the channel buffer full?
257  *	@buf: channel buffer
258  *
259  *	Returns 1 if the buffer is full, 0 otherwise.
260  */
relay_buf_full(struct rchan_buf * buf)261 int relay_buf_full(struct rchan_buf *buf)
262 {
263 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
265 }
266 EXPORT_SYMBOL_GPL(relay_buf_full);
267 
268 /*
269  * High-level relay kernel API and associated functions.
270  */
271 
272 /*
273  * rchan_callback implementations defining default channel behavior.  Used
274  * in place of corresponding NULL values in client callback struct.
275  */
276 
277 /*
278  * subbuf_start() default callback.  Does nothing.
279  */
subbuf_start_default_callback(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)280 static int subbuf_start_default_callback (struct rchan_buf *buf,
281 					  void *subbuf,
282 					  void *prev_subbuf,
283 					  size_t prev_padding)
284 {
285 	if (relay_buf_full(buf))
286 		return 0;
287 
288 	return 1;
289 }
290 
291 /*
292  * buf_mapped() default callback.  Does nothing.
293  */
buf_mapped_default_callback(struct rchan_buf * buf,struct file * filp)294 static void buf_mapped_default_callback(struct rchan_buf *buf,
295 					struct file *filp)
296 {
297 }
298 
299 /*
300  * buf_unmapped() default callback.  Does nothing.
301  */
buf_unmapped_default_callback(struct rchan_buf * buf,struct file * filp)302 static void buf_unmapped_default_callback(struct rchan_buf *buf,
303 					  struct file *filp)
304 {
305 }
306 
307 /*
308  * create_buf_file_create() default callback.  Does nothing.
309  */
create_buf_file_default_callback(const char * filename,struct dentry * parent,int mode,struct rchan_buf * buf,int * is_global)310 static struct dentry *create_buf_file_default_callback(const char *filename,
311 						       struct dentry *parent,
312 						       int mode,
313 						       struct rchan_buf *buf,
314 						       int *is_global)
315 {
316 	return NULL;
317 }
318 
319 /*
320  * remove_buf_file() default callback.  Does nothing.
321  */
remove_buf_file_default_callback(struct dentry * dentry)322 static int remove_buf_file_default_callback(struct dentry *dentry)
323 {
324 	return -EINVAL;
325 }
326 
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks = {
329 	.subbuf_start = subbuf_start_default_callback,
330 	.buf_mapped = buf_mapped_default_callback,
331 	.buf_unmapped = buf_unmapped_default_callback,
332 	.create_buf_file = create_buf_file_default_callback,
333 	.remove_buf_file = remove_buf_file_default_callback,
334 };
335 
336 /**
337  *	wakeup_readers - wake up readers waiting on a channel
338  *	@data: contains the channel buffer
339  *
340  *	This is the timer function used to defer reader waking.
341  */
wakeup_readers(unsigned long data)342 static void wakeup_readers(unsigned long data)
343 {
344 	struct rchan_buf *buf = (struct rchan_buf *)data;
345 	wake_up_interruptible(&buf->read_wait);
346 }
347 
348 /**
349  *	__relay_reset - reset a channel buffer
350  *	@buf: the channel buffer
351  *	@init: 1 if this is a first-time initialization
352  *
353  *	See relay_reset() for description of effect.
354  */
__relay_reset(struct rchan_buf * buf,unsigned int init)355 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
356 {
357 	size_t i;
358 
359 	if (init) {
360 		init_waitqueue_head(&buf->read_wait);
361 		kref_init(&buf->kref);
362 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363 	} else
364 		del_timer_sync(&buf->timer);
365 
366 	buf->subbufs_produced = 0;
367 	buf->subbufs_consumed = 0;
368 	buf->bytes_consumed = 0;
369 	buf->finalized = 0;
370 	buf->data = buf->start;
371 	buf->offset = 0;
372 
373 	for (i = 0; i < buf->chan->n_subbufs; i++)
374 		buf->padding[i] = 0;
375 
376 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
377 }
378 
379 /**
380  *	relay_reset - reset the channel
381  *	@chan: the channel
382  *
383  *	This has the effect of erasing all data from all channel buffers
384  *	and restarting the channel in its initial state.  The buffers
385  *	are not freed, so any mappings are still in effect.
386  *
387  *	NOTE. Care should be taken that the channel isn't actually
388  *	being used by anything when this call is made.
389  */
relay_reset(struct rchan * chan)390 void relay_reset(struct rchan *chan)
391 {
392 	unsigned int i;
393 
394 	if (!chan)
395 		return;
396 
397 	if (chan->is_global && chan->buf[0]) {
398 		__relay_reset(chan->buf[0], 0);
399 		return;
400 	}
401 
402 	mutex_lock(&relay_channels_mutex);
403 	for_each_possible_cpu(i)
404 		if (chan->buf[i])
405 			__relay_reset(chan->buf[i], 0);
406 	mutex_unlock(&relay_channels_mutex);
407 }
408 EXPORT_SYMBOL_GPL(relay_reset);
409 
relay_set_buf_dentry(struct rchan_buf * buf,struct dentry * dentry)410 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
411 					struct dentry *dentry)
412 {
413 	buf->dentry = dentry;
414 	buf->dentry->d_inode->i_size = buf->early_bytes;
415 }
416 
relay_create_buf_file(struct rchan * chan,struct rchan_buf * buf,unsigned int cpu)417 static struct dentry *relay_create_buf_file(struct rchan *chan,
418 					    struct rchan_buf *buf,
419 					    unsigned int cpu)
420 {
421 	struct dentry *dentry;
422 	char *tmpname;
423 
424 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
425 	if (!tmpname)
426 		return NULL;
427 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
428 
429 	/* Create file in fs */
430 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
431 					   S_IRUSR, buf,
432 					   &chan->is_global);
433 
434 	kfree(tmpname);
435 
436 	return dentry;
437 }
438 
439 /*
440  *	relay_open_buf - create a new relay channel buffer
441  *
442  *	used by relay_open() and CPU hotplug.
443  */
relay_open_buf(struct rchan * chan,unsigned int cpu)444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
445 {
446  	struct rchan_buf *buf = NULL;
447 	struct dentry *dentry;
448 
449  	if (chan->is_global)
450 		return chan->buf[0];
451 
452 	buf = relay_create_buf(chan);
453 	if (!buf)
454 		return NULL;
455 
456 	if (chan->has_base_filename) {
457 		dentry = relay_create_buf_file(chan, buf, cpu);
458 		if (!dentry)
459 			goto free_buf;
460 		relay_set_buf_dentry(buf, dentry);
461 	}
462 
463  	buf->cpu = cpu;
464  	__relay_reset(buf, 1);
465 
466  	if(chan->is_global) {
467  		chan->buf[0] = buf;
468  		buf->cpu = 0;
469   	}
470 
471 	return buf;
472 
473 free_buf:
474  	relay_destroy_buf(buf);
475 	return NULL;
476 }
477 
478 /**
479  *	relay_close_buf - close a channel buffer
480  *	@buf: channel buffer
481  *
482  *	Marks the buffer finalized and restores the default callbacks.
483  *	The channel buffer and channel buffer data structure are then freed
484  *	automatically when the last reference is given up.
485  */
relay_close_buf(struct rchan_buf * buf)486 static void relay_close_buf(struct rchan_buf *buf)
487 {
488 	buf->finalized = 1;
489 	del_timer_sync(&buf->timer);
490 	kref_put(&buf->kref, relay_remove_buf);
491 }
492 
setup_callbacks(struct rchan * chan,struct rchan_callbacks * cb)493 static void setup_callbacks(struct rchan *chan,
494 				   struct rchan_callbacks *cb)
495 {
496 	if (!cb) {
497 		chan->cb = &default_channel_callbacks;
498 		return;
499 	}
500 
501 	if (!cb->subbuf_start)
502 		cb->subbuf_start = subbuf_start_default_callback;
503 	if (!cb->buf_mapped)
504 		cb->buf_mapped = buf_mapped_default_callback;
505 	if (!cb->buf_unmapped)
506 		cb->buf_unmapped = buf_unmapped_default_callback;
507 	if (!cb->create_buf_file)
508 		cb->create_buf_file = create_buf_file_default_callback;
509 	if (!cb->remove_buf_file)
510 		cb->remove_buf_file = remove_buf_file_default_callback;
511 	chan->cb = cb;
512 }
513 
514 /**
515  * 	relay_hotcpu_callback - CPU hotplug callback
516  * 	@nb: notifier block
517  * 	@action: hotplug action to take
518  * 	@hcpu: CPU number
519  *
520  * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
521  */
relay_hotcpu_callback(struct notifier_block * nb,unsigned long action,void * hcpu)522 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
523 				unsigned long action,
524 				void *hcpu)
525 {
526 	unsigned int hotcpu = (unsigned long)hcpu;
527 	struct rchan *chan;
528 
529 	switch(action) {
530 	case CPU_UP_PREPARE:
531 	case CPU_UP_PREPARE_FROZEN:
532 		mutex_lock(&relay_channels_mutex);
533 		list_for_each_entry(chan, &relay_channels, list) {
534 			if (chan->buf[hotcpu])
535 				continue;
536 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
537 			if(!chan->buf[hotcpu]) {
538 				printk(KERN_ERR
539 					"relay_hotcpu_callback: cpu %d buffer "
540 					"creation failed\n", hotcpu);
541 				mutex_unlock(&relay_channels_mutex);
542 				return NOTIFY_BAD;
543 			}
544 		}
545 		mutex_unlock(&relay_channels_mutex);
546 		break;
547 	case CPU_DEAD:
548 	case CPU_DEAD_FROZEN:
549 		/* No need to flush the cpu : will be flushed upon
550 		 * final relay_flush() call. */
551 		break;
552 	}
553 	return NOTIFY_OK;
554 }
555 
556 /**
557  *	relay_open - create a new relay channel
558  *	@base_filename: base name of files to create, %NULL for buffering only
559  *	@parent: dentry of parent directory, %NULL for root directory or buffer
560  *	@subbuf_size: size of sub-buffers
561  *	@n_subbufs: number of sub-buffers
562  *	@cb: client callback functions
563  *	@private_data: user-defined data
564  *
565  *	Returns channel pointer if successful, %NULL otherwise.
566  *
567  *	Creates a channel buffer for each cpu using the sizes and
568  *	attributes specified.  The created channel buffer files
569  *	will be named base_filename0...base_filenameN-1.  File
570  *	permissions will be %S_IRUSR.
571  */
relay_open(const char * base_filename,struct dentry * parent,size_t subbuf_size,size_t n_subbufs,struct rchan_callbacks * cb,void * private_data)572 struct rchan *relay_open(const char *base_filename,
573 			 struct dentry *parent,
574 			 size_t subbuf_size,
575 			 size_t n_subbufs,
576 			 struct rchan_callbacks *cb,
577 			 void *private_data)
578 {
579 	unsigned int i;
580 	struct rchan *chan;
581 
582 	if (!(subbuf_size && n_subbufs))
583 		return NULL;
584 
585 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
586 	if (!chan)
587 		return NULL;
588 
589 	chan->version = RELAYFS_CHANNEL_VERSION;
590 	chan->n_subbufs = n_subbufs;
591 	chan->subbuf_size = subbuf_size;
592 	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
593 	chan->parent = parent;
594 	chan->private_data = private_data;
595 	if (base_filename) {
596 		chan->has_base_filename = 1;
597 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
598 	}
599 	setup_callbacks(chan, cb);
600 	kref_init(&chan->kref);
601 
602 	mutex_lock(&relay_channels_mutex);
603 	for_each_online_cpu(i) {
604 		chan->buf[i] = relay_open_buf(chan, i);
605 		if (!chan->buf[i])
606 			goto free_bufs;
607 	}
608 	list_add(&chan->list, &relay_channels);
609 	mutex_unlock(&relay_channels_mutex);
610 
611 	return chan;
612 
613 free_bufs:
614 	for_each_possible_cpu(i) {
615 		if (chan->buf[i])
616 			relay_close_buf(chan->buf[i]);
617 	}
618 
619 	kref_put(&chan->kref, relay_destroy_channel);
620 	mutex_unlock(&relay_channels_mutex);
621 	return NULL;
622 }
623 EXPORT_SYMBOL_GPL(relay_open);
624 
625 struct rchan_percpu_buf_dispatcher {
626 	struct rchan_buf *buf;
627 	struct dentry *dentry;
628 };
629 
630 /* Called in atomic context. */
__relay_set_buf_dentry(void * info)631 static void __relay_set_buf_dentry(void *info)
632 {
633 	struct rchan_percpu_buf_dispatcher *p = info;
634 
635 	relay_set_buf_dentry(p->buf, p->dentry);
636 }
637 
638 /**
639  *	relay_late_setup_files - triggers file creation
640  *	@chan: channel to operate on
641  *	@base_filename: base name of files to create
642  *	@parent: dentry of parent directory, %NULL for root directory
643  *
644  *	Returns 0 if successful, non-zero otherwise.
645  *
646  *	Use to setup files for a previously buffer-only channel.
647  *	Useful to do early tracing in kernel, before VFS is up, for example.
648  */
relay_late_setup_files(struct rchan * chan,const char * base_filename,struct dentry * parent)649 int relay_late_setup_files(struct rchan *chan,
650 			   const char *base_filename,
651 			   struct dentry *parent)
652 {
653 	int err = 0;
654 	unsigned int i, curr_cpu;
655 	unsigned long flags;
656 	struct dentry *dentry;
657 	struct rchan_percpu_buf_dispatcher disp;
658 
659 	if (!chan || !base_filename)
660 		return -EINVAL;
661 
662 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
663 
664 	mutex_lock(&relay_channels_mutex);
665 	/* Is chan already set up? */
666 	if (unlikely(chan->has_base_filename)) {
667 		mutex_unlock(&relay_channels_mutex);
668 		return -EEXIST;
669 	}
670 	chan->has_base_filename = 1;
671 	chan->parent = parent;
672 	curr_cpu = get_cpu();
673 	/*
674 	 * The CPU hotplug notifier ran before us and created buffers with
675 	 * no files associated. So it's safe to call relay_setup_buf_file()
676 	 * on all currently online CPUs.
677 	 */
678 	for_each_online_cpu(i) {
679 		if (unlikely(!chan->buf[i])) {
680 			printk(KERN_ERR "relay_late_setup_files: CPU %u "
681 					"has no buffer, it must have!\n", i);
682 			BUG();
683 			err = -EINVAL;
684 			break;
685 		}
686 
687 		dentry = relay_create_buf_file(chan, chan->buf[i], i);
688 		if (unlikely(!dentry)) {
689 			err = -EINVAL;
690 			break;
691 		}
692 
693 		if (curr_cpu == i) {
694 			local_irq_save(flags);
695 			relay_set_buf_dentry(chan->buf[i], dentry);
696 			local_irq_restore(flags);
697 		} else {
698 			disp.buf = chan->buf[i];
699 			disp.dentry = dentry;
700 			smp_mb();
701 			/* relay_channels_mutex must be held, so wait. */
702 			err = smp_call_function_single(i,
703 						       __relay_set_buf_dentry,
704 						       &disp, 1);
705 		}
706 		if (unlikely(err))
707 			break;
708 	}
709 	put_cpu();
710 	mutex_unlock(&relay_channels_mutex);
711 
712 	return err;
713 }
714 
715 /**
716  *	relay_switch_subbuf - switch to a new sub-buffer
717  *	@buf: channel buffer
718  *	@length: size of current event
719  *
720  *	Returns either the length passed in or 0 if full.
721  *
722  *	Performs sub-buffer-switch tasks such as invoking callbacks,
723  *	updating padding counts, waking up readers, etc.
724  */
relay_switch_subbuf(struct rchan_buf * buf,size_t length)725 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
726 {
727 	void *old, *new;
728 	size_t old_subbuf, new_subbuf;
729 
730 	if (unlikely(length > buf->chan->subbuf_size))
731 		goto toobig;
732 
733 	if (buf->offset != buf->chan->subbuf_size + 1) {
734 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
735 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
736 		buf->padding[old_subbuf] = buf->prev_padding;
737 		buf->subbufs_produced++;
738 		if (buf->dentry)
739 			buf->dentry->d_inode->i_size +=
740 				buf->chan->subbuf_size -
741 				buf->padding[old_subbuf];
742 		else
743 			buf->early_bytes += buf->chan->subbuf_size -
744 					    buf->padding[old_subbuf];
745 		smp_mb();
746 		if (waitqueue_active(&buf->read_wait))
747 			/*
748 			 * Calling wake_up_interruptible() from here
749 			 * will deadlock if we happen to be logging
750 			 * from the scheduler (trying to re-grab
751 			 * rq->lock), so defer it.
752 			 */
753 			__mod_timer(&buf->timer, jiffies + 1);
754 	}
755 
756 	old = buf->data;
757 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
758 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
759 	buf->offset = 0;
760 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
761 		buf->offset = buf->chan->subbuf_size + 1;
762 		return 0;
763 	}
764 	buf->data = new;
765 	buf->padding[new_subbuf] = 0;
766 
767 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
768 		goto toobig;
769 
770 	return length;
771 
772 toobig:
773 	buf->chan->last_toobig = length;
774 	return 0;
775 }
776 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
777 
778 /**
779  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
780  *	@chan: the channel
781  *	@cpu: the cpu associated with the channel buffer to update
782  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
783  *
784  *	Adds to the channel buffer's consumed sub-buffer count.
785  *	subbufs_consumed should be the number of sub-buffers newly consumed,
786  *	not the total consumed.
787  *
788  *	NOTE. Kernel clients don't need to call this function if the channel
789  *	mode is 'overwrite'.
790  */
relay_subbufs_consumed(struct rchan * chan,unsigned int cpu,size_t subbufs_consumed)791 void relay_subbufs_consumed(struct rchan *chan,
792 			    unsigned int cpu,
793 			    size_t subbufs_consumed)
794 {
795 	struct rchan_buf *buf;
796 
797 	if (!chan)
798 		return;
799 
800 	if (cpu >= NR_CPUS || !chan->buf[cpu])
801 		return;
802 
803 	buf = chan->buf[cpu];
804 	buf->subbufs_consumed += subbufs_consumed;
805 	if (buf->subbufs_consumed > buf->subbufs_produced)
806 		buf->subbufs_consumed = buf->subbufs_produced;
807 }
808 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
809 
810 /**
811  *	relay_close - close the channel
812  *	@chan: the channel
813  *
814  *	Closes all channel buffers and frees the channel.
815  */
relay_close(struct rchan * chan)816 void relay_close(struct rchan *chan)
817 {
818 	unsigned int i;
819 
820 	if (!chan)
821 		return;
822 
823 	mutex_lock(&relay_channels_mutex);
824 	if (chan->is_global && chan->buf[0])
825 		relay_close_buf(chan->buf[0]);
826 	else
827 		for_each_possible_cpu(i)
828 			if (chan->buf[i])
829 				relay_close_buf(chan->buf[i]);
830 
831 	if (chan->last_toobig)
832 		printk(KERN_WARNING "relay: one or more items not logged "
833 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
834 		       chan->last_toobig, chan->subbuf_size);
835 
836 	list_del(&chan->list);
837 	kref_put(&chan->kref, relay_destroy_channel);
838 	mutex_unlock(&relay_channels_mutex);
839 }
840 EXPORT_SYMBOL_GPL(relay_close);
841 
842 /**
843  *	relay_flush - close the channel
844  *	@chan: the channel
845  *
846  *	Flushes all channel buffers, i.e. forces buffer switch.
847  */
relay_flush(struct rchan * chan)848 void relay_flush(struct rchan *chan)
849 {
850 	unsigned int i;
851 
852 	if (!chan)
853 		return;
854 
855 	if (chan->is_global && chan->buf[0]) {
856 		relay_switch_subbuf(chan->buf[0], 0);
857 		return;
858 	}
859 
860 	mutex_lock(&relay_channels_mutex);
861 	for_each_possible_cpu(i)
862 		if (chan->buf[i])
863 			relay_switch_subbuf(chan->buf[i], 0);
864 	mutex_unlock(&relay_channels_mutex);
865 }
866 EXPORT_SYMBOL_GPL(relay_flush);
867 
868 /**
869  *	relay_file_open - open file op for relay files
870  *	@inode: the inode
871  *	@filp: the file
872  *
873  *	Increments the channel buffer refcount.
874  */
relay_file_open(struct inode * inode,struct file * filp)875 static int relay_file_open(struct inode *inode, struct file *filp)
876 {
877 	struct rchan_buf *buf = inode->i_private;
878 	kref_get(&buf->kref);
879 	filp->private_data = buf;
880 
881 	return nonseekable_open(inode, filp);
882 }
883 
884 /**
885  *	relay_file_mmap - mmap file op for relay files
886  *	@filp: the file
887  *	@vma: the vma describing what to map
888  *
889  *	Calls upon relay_mmap_buf() to map the file into user space.
890  */
relay_file_mmap(struct file * filp,struct vm_area_struct * vma)891 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
892 {
893 	struct rchan_buf *buf = filp->private_data;
894 	return relay_mmap_buf(buf, vma);
895 }
896 
897 /**
898  *	relay_file_poll - poll file op for relay files
899  *	@filp: the file
900  *	@wait: poll table
901  *
902  *	Poll implemention.
903  */
relay_file_poll(struct file * filp,poll_table * wait)904 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
905 {
906 	unsigned int mask = 0;
907 	struct rchan_buf *buf = filp->private_data;
908 
909 	if (buf->finalized)
910 		return POLLERR;
911 
912 	if (filp->f_mode & FMODE_READ) {
913 		poll_wait(filp, &buf->read_wait, wait);
914 		if (!relay_buf_empty(buf))
915 			mask |= POLLIN | POLLRDNORM;
916 	}
917 
918 	return mask;
919 }
920 
921 /**
922  *	relay_file_release - release file op for relay files
923  *	@inode: the inode
924  *	@filp: the file
925  *
926  *	Decrements the channel refcount, as the filesystem is
927  *	no longer using it.
928  */
relay_file_release(struct inode * inode,struct file * filp)929 static int relay_file_release(struct inode *inode, struct file *filp)
930 {
931 	struct rchan_buf *buf = filp->private_data;
932 	kref_put(&buf->kref, relay_remove_buf);
933 
934 	return 0;
935 }
936 
937 /*
938  *	relay_file_read_consume - update the consumed count for the buffer
939  */
relay_file_read_consume(struct rchan_buf * buf,size_t read_pos,size_t bytes_consumed)940 static void relay_file_read_consume(struct rchan_buf *buf,
941 				    size_t read_pos,
942 				    size_t bytes_consumed)
943 {
944 	size_t subbuf_size = buf->chan->subbuf_size;
945 	size_t n_subbufs = buf->chan->n_subbufs;
946 	size_t read_subbuf;
947 
948 	if (buf->subbufs_produced == buf->subbufs_consumed &&
949 	    buf->offset == buf->bytes_consumed)
950 		return;
951 
952 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
953 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
954 		buf->bytes_consumed = 0;
955 	}
956 
957 	buf->bytes_consumed += bytes_consumed;
958 	if (!read_pos)
959 		read_subbuf = buf->subbufs_consumed % n_subbufs;
960 	else
961 		read_subbuf = read_pos / buf->chan->subbuf_size;
962 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
963 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
964 		    (buf->offset == subbuf_size))
965 			return;
966 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
967 		buf->bytes_consumed = 0;
968 	}
969 }
970 
971 /*
972  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
973  */
relay_file_read_avail(struct rchan_buf * buf,size_t read_pos)974 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
975 {
976 	size_t subbuf_size = buf->chan->subbuf_size;
977 	size_t n_subbufs = buf->chan->n_subbufs;
978 	size_t produced = buf->subbufs_produced;
979 	size_t consumed = buf->subbufs_consumed;
980 
981 	relay_file_read_consume(buf, read_pos, 0);
982 
983 	consumed = buf->subbufs_consumed;
984 
985 	if (unlikely(buf->offset > subbuf_size)) {
986 		if (produced == consumed)
987 			return 0;
988 		return 1;
989 	}
990 
991 	if (unlikely(produced - consumed >= n_subbufs)) {
992 		consumed = produced - n_subbufs + 1;
993 		buf->subbufs_consumed = consumed;
994 		buf->bytes_consumed = 0;
995 	}
996 
997 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
998 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
999 
1000 	if (consumed > produced)
1001 		produced += n_subbufs * subbuf_size;
1002 
1003 	if (consumed == produced) {
1004 		if (buf->offset == subbuf_size &&
1005 		    buf->subbufs_produced > buf->subbufs_consumed)
1006 			return 1;
1007 		return 0;
1008 	}
1009 
1010 	return 1;
1011 }
1012 
1013 /**
1014  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1015  *	@read_pos: file read position
1016  *	@buf: relay channel buffer
1017  */
relay_file_read_subbuf_avail(size_t read_pos,struct rchan_buf * buf)1018 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1019 					   struct rchan_buf *buf)
1020 {
1021 	size_t padding, avail = 0;
1022 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1023 	size_t subbuf_size = buf->chan->subbuf_size;
1024 
1025 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1026 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1027 	read_subbuf = read_pos / subbuf_size;
1028 	read_offset = read_pos % subbuf_size;
1029 	padding = buf->padding[read_subbuf];
1030 
1031 	if (read_subbuf == write_subbuf) {
1032 		if (read_offset + padding < write_offset)
1033 			avail = write_offset - (read_offset + padding);
1034 	} else
1035 		avail = (subbuf_size - padding) - read_offset;
1036 
1037 	return avail;
1038 }
1039 
1040 /**
1041  *	relay_file_read_start_pos - find the first available byte to read
1042  *	@read_pos: file read position
1043  *	@buf: relay channel buffer
1044  *
1045  *	If the @read_pos is in the middle of padding, return the
1046  *	position of the first actually available byte, otherwise
1047  *	return the original value.
1048  */
relay_file_read_start_pos(size_t read_pos,struct rchan_buf * buf)1049 static size_t relay_file_read_start_pos(size_t read_pos,
1050 					struct rchan_buf *buf)
1051 {
1052 	size_t read_subbuf, padding, padding_start, padding_end;
1053 	size_t subbuf_size = buf->chan->subbuf_size;
1054 	size_t n_subbufs = buf->chan->n_subbufs;
1055 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1056 
1057 	if (!read_pos)
1058 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1059 	read_subbuf = read_pos / subbuf_size;
1060 	padding = buf->padding[read_subbuf];
1061 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1062 	padding_end = (read_subbuf + 1) * subbuf_size;
1063 	if (read_pos >= padding_start && read_pos < padding_end) {
1064 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1065 		read_pos = read_subbuf * subbuf_size;
1066 	}
1067 
1068 	return read_pos;
1069 }
1070 
1071 /**
1072  *	relay_file_read_end_pos - return the new read position
1073  *	@read_pos: file read position
1074  *	@buf: relay channel buffer
1075  *	@count: number of bytes to be read
1076  */
relay_file_read_end_pos(struct rchan_buf * buf,size_t read_pos,size_t count)1077 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1078 				      size_t read_pos,
1079 				      size_t count)
1080 {
1081 	size_t read_subbuf, padding, end_pos;
1082 	size_t subbuf_size = buf->chan->subbuf_size;
1083 	size_t n_subbufs = buf->chan->n_subbufs;
1084 
1085 	read_subbuf = read_pos / subbuf_size;
1086 	padding = buf->padding[read_subbuf];
1087 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1088 		end_pos = (read_subbuf + 1) * subbuf_size;
1089 	else
1090 		end_pos = read_pos + count;
1091 	if (end_pos >= subbuf_size * n_subbufs)
1092 		end_pos = 0;
1093 
1094 	return end_pos;
1095 }
1096 
1097 /*
1098  *	subbuf_read_actor - read up to one subbuf's worth of data
1099  */
subbuf_read_actor(size_t read_start,struct rchan_buf * buf,size_t avail,read_descriptor_t * desc,read_actor_t actor)1100 static int subbuf_read_actor(size_t read_start,
1101 			     struct rchan_buf *buf,
1102 			     size_t avail,
1103 			     read_descriptor_t *desc,
1104 			     read_actor_t actor)
1105 {
1106 	void *from;
1107 	int ret = 0;
1108 
1109 	from = buf->start + read_start;
1110 	ret = avail;
1111 	if (copy_to_user(desc->arg.buf, from, avail)) {
1112 		desc->error = -EFAULT;
1113 		ret = 0;
1114 	}
1115 	desc->arg.data += ret;
1116 	desc->written += ret;
1117 	desc->count -= ret;
1118 
1119 	return ret;
1120 }
1121 
1122 typedef int (*subbuf_actor_t) (size_t read_start,
1123 			       struct rchan_buf *buf,
1124 			       size_t avail,
1125 			       read_descriptor_t *desc,
1126 			       read_actor_t actor);
1127 
1128 /*
1129  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1130  */
relay_file_read_subbufs(struct file * filp,loff_t * ppos,subbuf_actor_t subbuf_actor,read_actor_t actor,read_descriptor_t * desc)1131 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1132 					subbuf_actor_t subbuf_actor,
1133 					read_actor_t actor,
1134 					read_descriptor_t *desc)
1135 {
1136 	struct rchan_buf *buf = filp->private_data;
1137 	size_t read_start, avail;
1138 	int ret;
1139 
1140 	if (!desc->count)
1141 		return 0;
1142 
1143 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1144 	do {
1145 		if (!relay_file_read_avail(buf, *ppos))
1146 			break;
1147 
1148 		read_start = relay_file_read_start_pos(*ppos, buf);
1149 		avail = relay_file_read_subbuf_avail(read_start, buf);
1150 		if (!avail)
1151 			break;
1152 
1153 		avail = min(desc->count, avail);
1154 		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1155 		if (desc->error < 0)
1156 			break;
1157 
1158 		if (ret) {
1159 			relay_file_read_consume(buf, read_start, ret);
1160 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1161 		}
1162 	} while (desc->count && ret);
1163 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1164 
1165 	return desc->written;
1166 }
1167 
relay_file_read(struct file * filp,char __user * buffer,size_t count,loff_t * ppos)1168 static ssize_t relay_file_read(struct file *filp,
1169 			       char __user *buffer,
1170 			       size_t count,
1171 			       loff_t *ppos)
1172 {
1173 	read_descriptor_t desc;
1174 	desc.written = 0;
1175 	desc.count = count;
1176 	desc.arg.buf = buffer;
1177 	desc.error = 0;
1178 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1179 				       NULL, &desc);
1180 }
1181 
relay_consume_bytes(struct rchan_buf * rbuf,int bytes_consumed)1182 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1183 {
1184 	rbuf->bytes_consumed += bytes_consumed;
1185 
1186 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1187 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1188 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1189 	}
1190 }
1191 
relay_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)1192 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1193 				   struct pipe_buffer *buf)
1194 {
1195 	struct rchan_buf *rbuf;
1196 
1197 	rbuf = (struct rchan_buf *)page_private(buf->page);
1198 	relay_consume_bytes(rbuf, buf->private);
1199 }
1200 
1201 static struct pipe_buf_operations relay_pipe_buf_ops = {
1202 	.can_merge = 0,
1203 	.map = generic_pipe_buf_map,
1204 	.unmap = generic_pipe_buf_unmap,
1205 	.confirm = generic_pipe_buf_confirm,
1206 	.release = relay_pipe_buf_release,
1207 	.steal = generic_pipe_buf_steal,
1208 	.get = generic_pipe_buf_get,
1209 };
1210 
relay_page_release(struct splice_pipe_desc * spd,unsigned int i)1211 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1212 {
1213 }
1214 
1215 /*
1216  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1217  */
subbuf_splice_actor(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags,int * nonpad_ret)1218 static int subbuf_splice_actor(struct file *in,
1219 			       loff_t *ppos,
1220 			       struct pipe_inode_info *pipe,
1221 			       size_t len,
1222 			       unsigned int flags,
1223 			       int *nonpad_ret)
1224 {
1225 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
1226 	struct rchan_buf *rbuf = in->private_data;
1227 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1228 	uint64_t pos = (uint64_t) *ppos;
1229 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1230 	size_t read_start = (size_t) do_div(pos, alloc_size);
1231 	size_t read_subbuf = read_start / subbuf_size;
1232 	size_t padding = rbuf->padding[read_subbuf];
1233 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1234 	struct page *pages[PIPE_BUFFERS];
1235 	struct partial_page partial[PIPE_BUFFERS];
1236 	struct splice_pipe_desc spd = {
1237 		.pages = pages,
1238 		.nr_pages = 0,
1239 		.partial = partial,
1240 		.flags = flags,
1241 		.ops = &relay_pipe_buf_ops,
1242 		.spd_release = relay_page_release,
1243 	};
1244 
1245 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1246 		return 0;
1247 
1248 	/*
1249 	 * Adjust read len, if longer than what is available
1250 	 */
1251 	if (len > (subbuf_size - read_start % subbuf_size))
1252 		len = subbuf_size - read_start % subbuf_size;
1253 
1254 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1255 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1256 	poff = read_start & ~PAGE_MASK;
1257 	nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1258 
1259 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1260 		unsigned int this_len, this_end, private;
1261 		unsigned int cur_pos = read_start + total_len;
1262 
1263 		if (!len)
1264 			break;
1265 
1266 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1267 		private = this_len;
1268 
1269 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1270 		spd.partial[spd.nr_pages].offset = poff;
1271 
1272 		this_end = cur_pos + this_len;
1273 		if (this_end >= nonpad_end) {
1274 			this_len = nonpad_end - cur_pos;
1275 			private = this_len + padding;
1276 		}
1277 		spd.partial[spd.nr_pages].len = this_len;
1278 		spd.partial[spd.nr_pages].private = private;
1279 
1280 		len -= this_len;
1281 		total_len += this_len;
1282 		poff = 0;
1283 		pidx = (pidx + 1) % subbuf_pages;
1284 
1285 		if (this_end >= nonpad_end) {
1286 			spd.nr_pages++;
1287 			break;
1288 		}
1289 	}
1290 
1291 	if (!spd.nr_pages)
1292 		return 0;
1293 
1294 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1295 	if (ret < 0 || ret < total_len)
1296 		return ret;
1297 
1298         if (read_start + ret == nonpad_end)
1299                 ret += padding;
1300 
1301         return ret;
1302 }
1303 
relay_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1304 static ssize_t relay_file_splice_read(struct file *in,
1305 				      loff_t *ppos,
1306 				      struct pipe_inode_info *pipe,
1307 				      size_t len,
1308 				      unsigned int flags)
1309 {
1310 	ssize_t spliced;
1311 	int ret;
1312 	int nonpad_ret = 0;
1313 
1314 	ret = 0;
1315 	spliced = 0;
1316 
1317 	while (len && !spliced) {
1318 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1319 		if (ret < 0)
1320 			break;
1321 		else if (!ret) {
1322 			if (flags & SPLICE_F_NONBLOCK)
1323 				ret = -EAGAIN;
1324 			break;
1325 		}
1326 
1327 		*ppos += ret;
1328 		if (ret > len)
1329 			len = 0;
1330 		else
1331 			len -= ret;
1332 		spliced += nonpad_ret;
1333 		nonpad_ret = 0;
1334 	}
1335 
1336 	if (spliced)
1337 		return spliced;
1338 
1339 	return ret;
1340 }
1341 
1342 const struct file_operations relay_file_operations = {
1343 	.open		= relay_file_open,
1344 	.poll		= relay_file_poll,
1345 	.mmap		= relay_file_mmap,
1346 	.read		= relay_file_read,
1347 	.llseek		= no_llseek,
1348 	.release	= relay_file_release,
1349 	.splice_read	= relay_file_splice_read,
1350 };
1351 EXPORT_SYMBOL_GPL(relay_file_operations);
1352 
relay_init(void)1353 static __init int relay_init(void)
1354 {
1355 
1356 	hotcpu_notifier(relay_hotcpu_callback, 0);
1357 	return 0;
1358 }
1359 
1360 early_initcall(relay_init);
1361