1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * close() vm_op implementation for relay file mapping.
32 */
relay_file_mmap_close(struct vm_area_struct * vma)33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40 * fault() vm_op implementation for relay file mapping.
41 */
relay_buf_fault(struct vm_area_struct * vma,struct vm_fault * vmf)42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
47
48 if (!buf)
49 return VM_FAULT_OOM;
50
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
56
57 return 0;
58 }
59
60 /*
61 * vm_ops for relay file mappings.
62 */
63 static struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
66 };
67
68 /*
69 * allocate an array of pointers of struct page
70 */
relay_alloc_page_array(unsigned int n_pages)71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 struct page **array;
74 size_t pa_size = n_pages * sizeof(struct page *);
75
76 if (pa_size > PAGE_SIZE) {
77 array = vmalloc(pa_size);
78 if (array)
79 memset(array, 0, pa_size);
80 } else {
81 array = kzalloc(pa_size, GFP_KERNEL);
82 }
83 return array;
84 }
85
86 /*
87 * free an array of pointers of struct page
88 */
relay_free_page_array(struct page ** array)89 static void relay_free_page_array(struct page **array)
90 {
91 if (is_vmalloc_addr(array))
92 vfree(array);
93 else
94 kfree(array);
95 }
96
97 /**
98 * relay_mmap_buf: - mmap channel buffer to process address space
99 * @buf: relay channel buffer
100 * @vma: vm_area_struct describing memory to be mapped
101 *
102 * Returns 0 if ok, negative on error
103 *
104 * Caller should already have grabbed mmap_sem.
105 */
relay_mmap_buf(struct rchan_buf * buf,struct vm_area_struct * vma)106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
107 {
108 unsigned long length = vma->vm_end - vma->vm_start;
109 struct file *filp = vma->vm_file;
110
111 if (!buf)
112 return -EBADF;
113
114 if (length != (unsigned long)buf->chan->alloc_size)
115 return -EINVAL;
116
117 vma->vm_ops = &relay_file_mmap_ops;
118 vma->vm_flags |= VM_DONTEXPAND;
119 vma->vm_private_data = buf;
120 buf->chan->cb->buf_mapped(buf, filp);
121
122 return 0;
123 }
124
125 /**
126 * relay_alloc_buf - allocate a channel buffer
127 * @buf: the buffer struct
128 * @size: total size of the buffer
129 *
130 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131 * passed in size will get page aligned, if it isn't already.
132 */
relay_alloc_buf(struct rchan_buf * buf,size_t * size)133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
134 {
135 void *mem;
136 unsigned int i, j, n_pages;
137
138 *size = PAGE_ALIGN(*size);
139 n_pages = *size >> PAGE_SHIFT;
140
141 buf->page_array = relay_alloc_page_array(n_pages);
142 if (!buf->page_array)
143 return NULL;
144
145 for (i = 0; i < n_pages; i++) {
146 buf->page_array[i] = alloc_page(GFP_KERNEL);
147 if (unlikely(!buf->page_array[i]))
148 goto depopulate;
149 set_page_private(buf->page_array[i], (unsigned long)buf);
150 }
151 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152 if (!mem)
153 goto depopulate;
154
155 memset(mem, 0, *size);
156 buf->page_count = n_pages;
157 return mem;
158
159 depopulate:
160 for (j = 0; j < i; j++)
161 __free_page(buf->page_array[j]);
162 relay_free_page_array(buf->page_array);
163 return NULL;
164 }
165
166 /**
167 * relay_create_buf - allocate and initialize a channel buffer
168 * @chan: the relay channel
169 *
170 * Returns channel buffer if successful, %NULL otherwise.
171 */
relay_create_buf(struct rchan * chan)172 static struct rchan_buf *relay_create_buf(struct rchan *chan)
173 {
174 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175 if (!buf)
176 return NULL;
177
178 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179 if (!buf->padding)
180 goto free_buf;
181
182 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183 if (!buf->start)
184 goto free_buf;
185
186 buf->chan = chan;
187 kref_get(&buf->chan->kref);
188 return buf;
189
190 free_buf:
191 kfree(buf->padding);
192 kfree(buf);
193 return NULL;
194 }
195
196 /**
197 * relay_destroy_channel - free the channel struct
198 * @kref: target kernel reference that contains the relay channel
199 *
200 * Should only be called from kref_put().
201 */
relay_destroy_channel(struct kref * kref)202 static void relay_destroy_channel(struct kref *kref)
203 {
204 struct rchan *chan = container_of(kref, struct rchan, kref);
205 kfree(chan);
206 }
207
208 /**
209 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210 * @buf: the buffer struct
211 */
relay_destroy_buf(struct rchan_buf * buf)212 static void relay_destroy_buf(struct rchan_buf *buf)
213 {
214 struct rchan *chan = buf->chan;
215 unsigned int i;
216
217 if (likely(buf->start)) {
218 vunmap(buf->start);
219 for (i = 0; i < buf->page_count; i++)
220 __free_page(buf->page_array[i]);
221 relay_free_page_array(buf->page_array);
222 }
223 chan->buf[buf->cpu] = NULL;
224 kfree(buf->padding);
225 kfree(buf);
226 kref_put(&chan->kref, relay_destroy_channel);
227 }
228
229 /**
230 * relay_remove_buf - remove a channel buffer
231 * @kref: target kernel reference that contains the relay buffer
232 *
233 * Removes the file from the fileystem, which also frees the
234 * rchan_buf_struct and the channel buffer. Should only be called from
235 * kref_put().
236 */
relay_remove_buf(struct kref * kref)237 static void relay_remove_buf(struct kref *kref)
238 {
239 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240 buf->chan->cb->remove_buf_file(buf->dentry);
241 relay_destroy_buf(buf);
242 }
243
244 /**
245 * relay_buf_empty - boolean, is the channel buffer empty?
246 * @buf: channel buffer
247 *
248 * Returns 1 if the buffer is empty, 0 otherwise.
249 */
relay_buf_empty(struct rchan_buf * buf)250 static int relay_buf_empty(struct rchan_buf *buf)
251 {
252 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
253 }
254
255 /**
256 * relay_buf_full - boolean, is the channel buffer full?
257 * @buf: channel buffer
258 *
259 * Returns 1 if the buffer is full, 0 otherwise.
260 */
relay_buf_full(struct rchan_buf * buf)261 int relay_buf_full(struct rchan_buf *buf)
262 {
263 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
265 }
266 EXPORT_SYMBOL_GPL(relay_buf_full);
267
268 /*
269 * High-level relay kernel API and associated functions.
270 */
271
272 /*
273 * rchan_callback implementations defining default channel behavior. Used
274 * in place of corresponding NULL values in client callback struct.
275 */
276
277 /*
278 * subbuf_start() default callback. Does nothing.
279 */
subbuf_start_default_callback(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)280 static int subbuf_start_default_callback (struct rchan_buf *buf,
281 void *subbuf,
282 void *prev_subbuf,
283 size_t prev_padding)
284 {
285 if (relay_buf_full(buf))
286 return 0;
287
288 return 1;
289 }
290
291 /*
292 * buf_mapped() default callback. Does nothing.
293 */
buf_mapped_default_callback(struct rchan_buf * buf,struct file * filp)294 static void buf_mapped_default_callback(struct rchan_buf *buf,
295 struct file *filp)
296 {
297 }
298
299 /*
300 * buf_unmapped() default callback. Does nothing.
301 */
buf_unmapped_default_callback(struct rchan_buf * buf,struct file * filp)302 static void buf_unmapped_default_callback(struct rchan_buf *buf,
303 struct file *filp)
304 {
305 }
306
307 /*
308 * create_buf_file_create() default callback. Does nothing.
309 */
create_buf_file_default_callback(const char * filename,struct dentry * parent,int mode,struct rchan_buf * buf,int * is_global)310 static struct dentry *create_buf_file_default_callback(const char *filename,
311 struct dentry *parent,
312 int mode,
313 struct rchan_buf *buf,
314 int *is_global)
315 {
316 return NULL;
317 }
318
319 /*
320 * remove_buf_file() default callback. Does nothing.
321 */
remove_buf_file_default_callback(struct dentry * dentry)322 static int remove_buf_file_default_callback(struct dentry *dentry)
323 {
324 return -EINVAL;
325 }
326
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks = {
329 .subbuf_start = subbuf_start_default_callback,
330 .buf_mapped = buf_mapped_default_callback,
331 .buf_unmapped = buf_unmapped_default_callback,
332 .create_buf_file = create_buf_file_default_callback,
333 .remove_buf_file = remove_buf_file_default_callback,
334 };
335
336 /**
337 * wakeup_readers - wake up readers waiting on a channel
338 * @data: contains the channel buffer
339 *
340 * This is the timer function used to defer reader waking.
341 */
wakeup_readers(unsigned long data)342 static void wakeup_readers(unsigned long data)
343 {
344 struct rchan_buf *buf = (struct rchan_buf *)data;
345 wake_up_interruptible(&buf->read_wait);
346 }
347
348 /**
349 * __relay_reset - reset a channel buffer
350 * @buf: the channel buffer
351 * @init: 1 if this is a first-time initialization
352 *
353 * See relay_reset() for description of effect.
354 */
__relay_reset(struct rchan_buf * buf,unsigned int init)355 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
356 {
357 size_t i;
358
359 if (init) {
360 init_waitqueue_head(&buf->read_wait);
361 kref_init(&buf->kref);
362 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363 } else
364 del_timer_sync(&buf->timer);
365
366 buf->subbufs_produced = 0;
367 buf->subbufs_consumed = 0;
368 buf->bytes_consumed = 0;
369 buf->finalized = 0;
370 buf->data = buf->start;
371 buf->offset = 0;
372
373 for (i = 0; i < buf->chan->n_subbufs; i++)
374 buf->padding[i] = 0;
375
376 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
377 }
378
379 /**
380 * relay_reset - reset the channel
381 * @chan: the channel
382 *
383 * This has the effect of erasing all data from all channel buffers
384 * and restarting the channel in its initial state. The buffers
385 * are not freed, so any mappings are still in effect.
386 *
387 * NOTE. Care should be taken that the channel isn't actually
388 * being used by anything when this call is made.
389 */
relay_reset(struct rchan * chan)390 void relay_reset(struct rchan *chan)
391 {
392 unsigned int i;
393
394 if (!chan)
395 return;
396
397 if (chan->is_global && chan->buf[0]) {
398 __relay_reset(chan->buf[0], 0);
399 return;
400 }
401
402 mutex_lock(&relay_channels_mutex);
403 for_each_possible_cpu(i)
404 if (chan->buf[i])
405 __relay_reset(chan->buf[i], 0);
406 mutex_unlock(&relay_channels_mutex);
407 }
408 EXPORT_SYMBOL_GPL(relay_reset);
409
relay_set_buf_dentry(struct rchan_buf * buf,struct dentry * dentry)410 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
411 struct dentry *dentry)
412 {
413 buf->dentry = dentry;
414 buf->dentry->d_inode->i_size = buf->early_bytes;
415 }
416
relay_create_buf_file(struct rchan * chan,struct rchan_buf * buf,unsigned int cpu)417 static struct dentry *relay_create_buf_file(struct rchan *chan,
418 struct rchan_buf *buf,
419 unsigned int cpu)
420 {
421 struct dentry *dentry;
422 char *tmpname;
423
424 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
425 if (!tmpname)
426 return NULL;
427 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
428
429 /* Create file in fs */
430 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
431 S_IRUSR, buf,
432 &chan->is_global);
433
434 kfree(tmpname);
435
436 return dentry;
437 }
438
439 /*
440 * relay_open_buf - create a new relay channel buffer
441 *
442 * used by relay_open() and CPU hotplug.
443 */
relay_open_buf(struct rchan * chan,unsigned int cpu)444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
445 {
446 struct rchan_buf *buf = NULL;
447 struct dentry *dentry;
448
449 if (chan->is_global)
450 return chan->buf[0];
451
452 buf = relay_create_buf(chan);
453 if (!buf)
454 return NULL;
455
456 if (chan->has_base_filename) {
457 dentry = relay_create_buf_file(chan, buf, cpu);
458 if (!dentry)
459 goto free_buf;
460 relay_set_buf_dentry(buf, dentry);
461 }
462
463 buf->cpu = cpu;
464 __relay_reset(buf, 1);
465
466 if(chan->is_global) {
467 chan->buf[0] = buf;
468 buf->cpu = 0;
469 }
470
471 return buf;
472
473 free_buf:
474 relay_destroy_buf(buf);
475 return NULL;
476 }
477
478 /**
479 * relay_close_buf - close a channel buffer
480 * @buf: channel buffer
481 *
482 * Marks the buffer finalized and restores the default callbacks.
483 * The channel buffer and channel buffer data structure are then freed
484 * automatically when the last reference is given up.
485 */
relay_close_buf(struct rchan_buf * buf)486 static void relay_close_buf(struct rchan_buf *buf)
487 {
488 buf->finalized = 1;
489 del_timer_sync(&buf->timer);
490 kref_put(&buf->kref, relay_remove_buf);
491 }
492
setup_callbacks(struct rchan * chan,struct rchan_callbacks * cb)493 static void setup_callbacks(struct rchan *chan,
494 struct rchan_callbacks *cb)
495 {
496 if (!cb) {
497 chan->cb = &default_channel_callbacks;
498 return;
499 }
500
501 if (!cb->subbuf_start)
502 cb->subbuf_start = subbuf_start_default_callback;
503 if (!cb->buf_mapped)
504 cb->buf_mapped = buf_mapped_default_callback;
505 if (!cb->buf_unmapped)
506 cb->buf_unmapped = buf_unmapped_default_callback;
507 if (!cb->create_buf_file)
508 cb->create_buf_file = create_buf_file_default_callback;
509 if (!cb->remove_buf_file)
510 cb->remove_buf_file = remove_buf_file_default_callback;
511 chan->cb = cb;
512 }
513
514 /**
515 * relay_hotcpu_callback - CPU hotplug callback
516 * @nb: notifier block
517 * @action: hotplug action to take
518 * @hcpu: CPU number
519 *
520 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
521 */
relay_hotcpu_callback(struct notifier_block * nb,unsigned long action,void * hcpu)522 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
523 unsigned long action,
524 void *hcpu)
525 {
526 unsigned int hotcpu = (unsigned long)hcpu;
527 struct rchan *chan;
528
529 switch(action) {
530 case CPU_UP_PREPARE:
531 case CPU_UP_PREPARE_FROZEN:
532 mutex_lock(&relay_channels_mutex);
533 list_for_each_entry(chan, &relay_channels, list) {
534 if (chan->buf[hotcpu])
535 continue;
536 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
537 if(!chan->buf[hotcpu]) {
538 printk(KERN_ERR
539 "relay_hotcpu_callback: cpu %d buffer "
540 "creation failed\n", hotcpu);
541 mutex_unlock(&relay_channels_mutex);
542 return NOTIFY_BAD;
543 }
544 }
545 mutex_unlock(&relay_channels_mutex);
546 break;
547 case CPU_DEAD:
548 case CPU_DEAD_FROZEN:
549 /* No need to flush the cpu : will be flushed upon
550 * final relay_flush() call. */
551 break;
552 }
553 return NOTIFY_OK;
554 }
555
556 /**
557 * relay_open - create a new relay channel
558 * @base_filename: base name of files to create, %NULL for buffering only
559 * @parent: dentry of parent directory, %NULL for root directory or buffer
560 * @subbuf_size: size of sub-buffers
561 * @n_subbufs: number of sub-buffers
562 * @cb: client callback functions
563 * @private_data: user-defined data
564 *
565 * Returns channel pointer if successful, %NULL otherwise.
566 *
567 * Creates a channel buffer for each cpu using the sizes and
568 * attributes specified. The created channel buffer files
569 * will be named base_filename0...base_filenameN-1. File
570 * permissions will be %S_IRUSR.
571 */
relay_open(const char * base_filename,struct dentry * parent,size_t subbuf_size,size_t n_subbufs,struct rchan_callbacks * cb,void * private_data)572 struct rchan *relay_open(const char *base_filename,
573 struct dentry *parent,
574 size_t subbuf_size,
575 size_t n_subbufs,
576 struct rchan_callbacks *cb,
577 void *private_data)
578 {
579 unsigned int i;
580 struct rchan *chan;
581
582 if (!(subbuf_size && n_subbufs))
583 return NULL;
584
585 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
586 if (!chan)
587 return NULL;
588
589 chan->version = RELAYFS_CHANNEL_VERSION;
590 chan->n_subbufs = n_subbufs;
591 chan->subbuf_size = subbuf_size;
592 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
593 chan->parent = parent;
594 chan->private_data = private_data;
595 if (base_filename) {
596 chan->has_base_filename = 1;
597 strlcpy(chan->base_filename, base_filename, NAME_MAX);
598 }
599 setup_callbacks(chan, cb);
600 kref_init(&chan->kref);
601
602 mutex_lock(&relay_channels_mutex);
603 for_each_online_cpu(i) {
604 chan->buf[i] = relay_open_buf(chan, i);
605 if (!chan->buf[i])
606 goto free_bufs;
607 }
608 list_add(&chan->list, &relay_channels);
609 mutex_unlock(&relay_channels_mutex);
610
611 return chan;
612
613 free_bufs:
614 for_each_possible_cpu(i) {
615 if (chan->buf[i])
616 relay_close_buf(chan->buf[i]);
617 }
618
619 kref_put(&chan->kref, relay_destroy_channel);
620 mutex_unlock(&relay_channels_mutex);
621 return NULL;
622 }
623 EXPORT_SYMBOL_GPL(relay_open);
624
625 struct rchan_percpu_buf_dispatcher {
626 struct rchan_buf *buf;
627 struct dentry *dentry;
628 };
629
630 /* Called in atomic context. */
__relay_set_buf_dentry(void * info)631 static void __relay_set_buf_dentry(void *info)
632 {
633 struct rchan_percpu_buf_dispatcher *p = info;
634
635 relay_set_buf_dentry(p->buf, p->dentry);
636 }
637
638 /**
639 * relay_late_setup_files - triggers file creation
640 * @chan: channel to operate on
641 * @base_filename: base name of files to create
642 * @parent: dentry of parent directory, %NULL for root directory
643 *
644 * Returns 0 if successful, non-zero otherwise.
645 *
646 * Use to setup files for a previously buffer-only channel.
647 * Useful to do early tracing in kernel, before VFS is up, for example.
648 */
relay_late_setup_files(struct rchan * chan,const char * base_filename,struct dentry * parent)649 int relay_late_setup_files(struct rchan *chan,
650 const char *base_filename,
651 struct dentry *parent)
652 {
653 int err = 0;
654 unsigned int i, curr_cpu;
655 unsigned long flags;
656 struct dentry *dentry;
657 struct rchan_percpu_buf_dispatcher disp;
658
659 if (!chan || !base_filename)
660 return -EINVAL;
661
662 strlcpy(chan->base_filename, base_filename, NAME_MAX);
663
664 mutex_lock(&relay_channels_mutex);
665 /* Is chan already set up? */
666 if (unlikely(chan->has_base_filename)) {
667 mutex_unlock(&relay_channels_mutex);
668 return -EEXIST;
669 }
670 chan->has_base_filename = 1;
671 chan->parent = parent;
672 curr_cpu = get_cpu();
673 /*
674 * The CPU hotplug notifier ran before us and created buffers with
675 * no files associated. So it's safe to call relay_setup_buf_file()
676 * on all currently online CPUs.
677 */
678 for_each_online_cpu(i) {
679 if (unlikely(!chan->buf[i])) {
680 printk(KERN_ERR "relay_late_setup_files: CPU %u "
681 "has no buffer, it must have!\n", i);
682 BUG();
683 err = -EINVAL;
684 break;
685 }
686
687 dentry = relay_create_buf_file(chan, chan->buf[i], i);
688 if (unlikely(!dentry)) {
689 err = -EINVAL;
690 break;
691 }
692
693 if (curr_cpu == i) {
694 local_irq_save(flags);
695 relay_set_buf_dentry(chan->buf[i], dentry);
696 local_irq_restore(flags);
697 } else {
698 disp.buf = chan->buf[i];
699 disp.dentry = dentry;
700 smp_mb();
701 /* relay_channels_mutex must be held, so wait. */
702 err = smp_call_function_single(i,
703 __relay_set_buf_dentry,
704 &disp, 1);
705 }
706 if (unlikely(err))
707 break;
708 }
709 put_cpu();
710 mutex_unlock(&relay_channels_mutex);
711
712 return err;
713 }
714
715 /**
716 * relay_switch_subbuf - switch to a new sub-buffer
717 * @buf: channel buffer
718 * @length: size of current event
719 *
720 * Returns either the length passed in or 0 if full.
721 *
722 * Performs sub-buffer-switch tasks such as invoking callbacks,
723 * updating padding counts, waking up readers, etc.
724 */
relay_switch_subbuf(struct rchan_buf * buf,size_t length)725 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
726 {
727 void *old, *new;
728 size_t old_subbuf, new_subbuf;
729
730 if (unlikely(length > buf->chan->subbuf_size))
731 goto toobig;
732
733 if (buf->offset != buf->chan->subbuf_size + 1) {
734 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
735 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
736 buf->padding[old_subbuf] = buf->prev_padding;
737 buf->subbufs_produced++;
738 if (buf->dentry)
739 buf->dentry->d_inode->i_size +=
740 buf->chan->subbuf_size -
741 buf->padding[old_subbuf];
742 else
743 buf->early_bytes += buf->chan->subbuf_size -
744 buf->padding[old_subbuf];
745 smp_mb();
746 if (waitqueue_active(&buf->read_wait))
747 /*
748 * Calling wake_up_interruptible() from here
749 * will deadlock if we happen to be logging
750 * from the scheduler (trying to re-grab
751 * rq->lock), so defer it.
752 */
753 __mod_timer(&buf->timer, jiffies + 1);
754 }
755
756 old = buf->data;
757 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
758 new = buf->start + new_subbuf * buf->chan->subbuf_size;
759 buf->offset = 0;
760 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
761 buf->offset = buf->chan->subbuf_size + 1;
762 return 0;
763 }
764 buf->data = new;
765 buf->padding[new_subbuf] = 0;
766
767 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
768 goto toobig;
769
770 return length;
771
772 toobig:
773 buf->chan->last_toobig = length;
774 return 0;
775 }
776 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
777
778 /**
779 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
780 * @chan: the channel
781 * @cpu: the cpu associated with the channel buffer to update
782 * @subbufs_consumed: number of sub-buffers to add to current buf's count
783 *
784 * Adds to the channel buffer's consumed sub-buffer count.
785 * subbufs_consumed should be the number of sub-buffers newly consumed,
786 * not the total consumed.
787 *
788 * NOTE. Kernel clients don't need to call this function if the channel
789 * mode is 'overwrite'.
790 */
relay_subbufs_consumed(struct rchan * chan,unsigned int cpu,size_t subbufs_consumed)791 void relay_subbufs_consumed(struct rchan *chan,
792 unsigned int cpu,
793 size_t subbufs_consumed)
794 {
795 struct rchan_buf *buf;
796
797 if (!chan)
798 return;
799
800 if (cpu >= NR_CPUS || !chan->buf[cpu])
801 return;
802
803 buf = chan->buf[cpu];
804 buf->subbufs_consumed += subbufs_consumed;
805 if (buf->subbufs_consumed > buf->subbufs_produced)
806 buf->subbufs_consumed = buf->subbufs_produced;
807 }
808 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
809
810 /**
811 * relay_close - close the channel
812 * @chan: the channel
813 *
814 * Closes all channel buffers and frees the channel.
815 */
relay_close(struct rchan * chan)816 void relay_close(struct rchan *chan)
817 {
818 unsigned int i;
819
820 if (!chan)
821 return;
822
823 mutex_lock(&relay_channels_mutex);
824 if (chan->is_global && chan->buf[0])
825 relay_close_buf(chan->buf[0]);
826 else
827 for_each_possible_cpu(i)
828 if (chan->buf[i])
829 relay_close_buf(chan->buf[i]);
830
831 if (chan->last_toobig)
832 printk(KERN_WARNING "relay: one or more items not logged "
833 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
834 chan->last_toobig, chan->subbuf_size);
835
836 list_del(&chan->list);
837 kref_put(&chan->kref, relay_destroy_channel);
838 mutex_unlock(&relay_channels_mutex);
839 }
840 EXPORT_SYMBOL_GPL(relay_close);
841
842 /**
843 * relay_flush - close the channel
844 * @chan: the channel
845 *
846 * Flushes all channel buffers, i.e. forces buffer switch.
847 */
relay_flush(struct rchan * chan)848 void relay_flush(struct rchan *chan)
849 {
850 unsigned int i;
851
852 if (!chan)
853 return;
854
855 if (chan->is_global && chan->buf[0]) {
856 relay_switch_subbuf(chan->buf[0], 0);
857 return;
858 }
859
860 mutex_lock(&relay_channels_mutex);
861 for_each_possible_cpu(i)
862 if (chan->buf[i])
863 relay_switch_subbuf(chan->buf[i], 0);
864 mutex_unlock(&relay_channels_mutex);
865 }
866 EXPORT_SYMBOL_GPL(relay_flush);
867
868 /**
869 * relay_file_open - open file op for relay files
870 * @inode: the inode
871 * @filp: the file
872 *
873 * Increments the channel buffer refcount.
874 */
relay_file_open(struct inode * inode,struct file * filp)875 static int relay_file_open(struct inode *inode, struct file *filp)
876 {
877 struct rchan_buf *buf = inode->i_private;
878 kref_get(&buf->kref);
879 filp->private_data = buf;
880
881 return nonseekable_open(inode, filp);
882 }
883
884 /**
885 * relay_file_mmap - mmap file op for relay files
886 * @filp: the file
887 * @vma: the vma describing what to map
888 *
889 * Calls upon relay_mmap_buf() to map the file into user space.
890 */
relay_file_mmap(struct file * filp,struct vm_area_struct * vma)891 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
892 {
893 struct rchan_buf *buf = filp->private_data;
894 return relay_mmap_buf(buf, vma);
895 }
896
897 /**
898 * relay_file_poll - poll file op for relay files
899 * @filp: the file
900 * @wait: poll table
901 *
902 * Poll implemention.
903 */
relay_file_poll(struct file * filp,poll_table * wait)904 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
905 {
906 unsigned int mask = 0;
907 struct rchan_buf *buf = filp->private_data;
908
909 if (buf->finalized)
910 return POLLERR;
911
912 if (filp->f_mode & FMODE_READ) {
913 poll_wait(filp, &buf->read_wait, wait);
914 if (!relay_buf_empty(buf))
915 mask |= POLLIN | POLLRDNORM;
916 }
917
918 return mask;
919 }
920
921 /**
922 * relay_file_release - release file op for relay files
923 * @inode: the inode
924 * @filp: the file
925 *
926 * Decrements the channel refcount, as the filesystem is
927 * no longer using it.
928 */
relay_file_release(struct inode * inode,struct file * filp)929 static int relay_file_release(struct inode *inode, struct file *filp)
930 {
931 struct rchan_buf *buf = filp->private_data;
932 kref_put(&buf->kref, relay_remove_buf);
933
934 return 0;
935 }
936
937 /*
938 * relay_file_read_consume - update the consumed count for the buffer
939 */
relay_file_read_consume(struct rchan_buf * buf,size_t read_pos,size_t bytes_consumed)940 static void relay_file_read_consume(struct rchan_buf *buf,
941 size_t read_pos,
942 size_t bytes_consumed)
943 {
944 size_t subbuf_size = buf->chan->subbuf_size;
945 size_t n_subbufs = buf->chan->n_subbufs;
946 size_t read_subbuf;
947
948 if (buf->subbufs_produced == buf->subbufs_consumed &&
949 buf->offset == buf->bytes_consumed)
950 return;
951
952 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
953 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
954 buf->bytes_consumed = 0;
955 }
956
957 buf->bytes_consumed += bytes_consumed;
958 if (!read_pos)
959 read_subbuf = buf->subbufs_consumed % n_subbufs;
960 else
961 read_subbuf = read_pos / buf->chan->subbuf_size;
962 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
963 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
964 (buf->offset == subbuf_size))
965 return;
966 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
967 buf->bytes_consumed = 0;
968 }
969 }
970
971 /*
972 * relay_file_read_avail - boolean, are there unconsumed bytes available?
973 */
relay_file_read_avail(struct rchan_buf * buf,size_t read_pos)974 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
975 {
976 size_t subbuf_size = buf->chan->subbuf_size;
977 size_t n_subbufs = buf->chan->n_subbufs;
978 size_t produced = buf->subbufs_produced;
979 size_t consumed = buf->subbufs_consumed;
980
981 relay_file_read_consume(buf, read_pos, 0);
982
983 consumed = buf->subbufs_consumed;
984
985 if (unlikely(buf->offset > subbuf_size)) {
986 if (produced == consumed)
987 return 0;
988 return 1;
989 }
990
991 if (unlikely(produced - consumed >= n_subbufs)) {
992 consumed = produced - n_subbufs + 1;
993 buf->subbufs_consumed = consumed;
994 buf->bytes_consumed = 0;
995 }
996
997 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
998 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
999
1000 if (consumed > produced)
1001 produced += n_subbufs * subbuf_size;
1002
1003 if (consumed == produced) {
1004 if (buf->offset == subbuf_size &&
1005 buf->subbufs_produced > buf->subbufs_consumed)
1006 return 1;
1007 return 0;
1008 }
1009
1010 return 1;
1011 }
1012
1013 /**
1014 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1015 * @read_pos: file read position
1016 * @buf: relay channel buffer
1017 */
relay_file_read_subbuf_avail(size_t read_pos,struct rchan_buf * buf)1018 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1019 struct rchan_buf *buf)
1020 {
1021 size_t padding, avail = 0;
1022 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1023 size_t subbuf_size = buf->chan->subbuf_size;
1024
1025 write_subbuf = (buf->data - buf->start) / subbuf_size;
1026 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1027 read_subbuf = read_pos / subbuf_size;
1028 read_offset = read_pos % subbuf_size;
1029 padding = buf->padding[read_subbuf];
1030
1031 if (read_subbuf == write_subbuf) {
1032 if (read_offset + padding < write_offset)
1033 avail = write_offset - (read_offset + padding);
1034 } else
1035 avail = (subbuf_size - padding) - read_offset;
1036
1037 return avail;
1038 }
1039
1040 /**
1041 * relay_file_read_start_pos - find the first available byte to read
1042 * @read_pos: file read position
1043 * @buf: relay channel buffer
1044 *
1045 * If the @read_pos is in the middle of padding, return the
1046 * position of the first actually available byte, otherwise
1047 * return the original value.
1048 */
relay_file_read_start_pos(size_t read_pos,struct rchan_buf * buf)1049 static size_t relay_file_read_start_pos(size_t read_pos,
1050 struct rchan_buf *buf)
1051 {
1052 size_t read_subbuf, padding, padding_start, padding_end;
1053 size_t subbuf_size = buf->chan->subbuf_size;
1054 size_t n_subbufs = buf->chan->n_subbufs;
1055 size_t consumed = buf->subbufs_consumed % n_subbufs;
1056
1057 if (!read_pos)
1058 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1059 read_subbuf = read_pos / subbuf_size;
1060 padding = buf->padding[read_subbuf];
1061 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1062 padding_end = (read_subbuf + 1) * subbuf_size;
1063 if (read_pos >= padding_start && read_pos < padding_end) {
1064 read_subbuf = (read_subbuf + 1) % n_subbufs;
1065 read_pos = read_subbuf * subbuf_size;
1066 }
1067
1068 return read_pos;
1069 }
1070
1071 /**
1072 * relay_file_read_end_pos - return the new read position
1073 * @read_pos: file read position
1074 * @buf: relay channel buffer
1075 * @count: number of bytes to be read
1076 */
relay_file_read_end_pos(struct rchan_buf * buf,size_t read_pos,size_t count)1077 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1078 size_t read_pos,
1079 size_t count)
1080 {
1081 size_t read_subbuf, padding, end_pos;
1082 size_t subbuf_size = buf->chan->subbuf_size;
1083 size_t n_subbufs = buf->chan->n_subbufs;
1084
1085 read_subbuf = read_pos / subbuf_size;
1086 padding = buf->padding[read_subbuf];
1087 if (read_pos % subbuf_size + count + padding == subbuf_size)
1088 end_pos = (read_subbuf + 1) * subbuf_size;
1089 else
1090 end_pos = read_pos + count;
1091 if (end_pos >= subbuf_size * n_subbufs)
1092 end_pos = 0;
1093
1094 return end_pos;
1095 }
1096
1097 /*
1098 * subbuf_read_actor - read up to one subbuf's worth of data
1099 */
subbuf_read_actor(size_t read_start,struct rchan_buf * buf,size_t avail,read_descriptor_t * desc,read_actor_t actor)1100 static int subbuf_read_actor(size_t read_start,
1101 struct rchan_buf *buf,
1102 size_t avail,
1103 read_descriptor_t *desc,
1104 read_actor_t actor)
1105 {
1106 void *from;
1107 int ret = 0;
1108
1109 from = buf->start + read_start;
1110 ret = avail;
1111 if (copy_to_user(desc->arg.buf, from, avail)) {
1112 desc->error = -EFAULT;
1113 ret = 0;
1114 }
1115 desc->arg.data += ret;
1116 desc->written += ret;
1117 desc->count -= ret;
1118
1119 return ret;
1120 }
1121
1122 typedef int (*subbuf_actor_t) (size_t read_start,
1123 struct rchan_buf *buf,
1124 size_t avail,
1125 read_descriptor_t *desc,
1126 read_actor_t actor);
1127
1128 /*
1129 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1130 */
relay_file_read_subbufs(struct file * filp,loff_t * ppos,subbuf_actor_t subbuf_actor,read_actor_t actor,read_descriptor_t * desc)1131 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1132 subbuf_actor_t subbuf_actor,
1133 read_actor_t actor,
1134 read_descriptor_t *desc)
1135 {
1136 struct rchan_buf *buf = filp->private_data;
1137 size_t read_start, avail;
1138 int ret;
1139
1140 if (!desc->count)
1141 return 0;
1142
1143 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1144 do {
1145 if (!relay_file_read_avail(buf, *ppos))
1146 break;
1147
1148 read_start = relay_file_read_start_pos(*ppos, buf);
1149 avail = relay_file_read_subbuf_avail(read_start, buf);
1150 if (!avail)
1151 break;
1152
1153 avail = min(desc->count, avail);
1154 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1155 if (desc->error < 0)
1156 break;
1157
1158 if (ret) {
1159 relay_file_read_consume(buf, read_start, ret);
1160 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1161 }
1162 } while (desc->count && ret);
1163 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1164
1165 return desc->written;
1166 }
1167
relay_file_read(struct file * filp,char __user * buffer,size_t count,loff_t * ppos)1168 static ssize_t relay_file_read(struct file *filp,
1169 char __user *buffer,
1170 size_t count,
1171 loff_t *ppos)
1172 {
1173 read_descriptor_t desc;
1174 desc.written = 0;
1175 desc.count = count;
1176 desc.arg.buf = buffer;
1177 desc.error = 0;
1178 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1179 NULL, &desc);
1180 }
1181
relay_consume_bytes(struct rchan_buf * rbuf,int bytes_consumed)1182 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1183 {
1184 rbuf->bytes_consumed += bytes_consumed;
1185
1186 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1187 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1188 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1189 }
1190 }
1191
relay_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)1192 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1193 struct pipe_buffer *buf)
1194 {
1195 struct rchan_buf *rbuf;
1196
1197 rbuf = (struct rchan_buf *)page_private(buf->page);
1198 relay_consume_bytes(rbuf, buf->private);
1199 }
1200
1201 static struct pipe_buf_operations relay_pipe_buf_ops = {
1202 .can_merge = 0,
1203 .map = generic_pipe_buf_map,
1204 .unmap = generic_pipe_buf_unmap,
1205 .confirm = generic_pipe_buf_confirm,
1206 .release = relay_pipe_buf_release,
1207 .steal = generic_pipe_buf_steal,
1208 .get = generic_pipe_buf_get,
1209 };
1210
relay_page_release(struct splice_pipe_desc * spd,unsigned int i)1211 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1212 {
1213 }
1214
1215 /*
1216 * subbuf_splice_actor - splice up to one subbuf's worth of data
1217 */
subbuf_splice_actor(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags,int * nonpad_ret)1218 static int subbuf_splice_actor(struct file *in,
1219 loff_t *ppos,
1220 struct pipe_inode_info *pipe,
1221 size_t len,
1222 unsigned int flags,
1223 int *nonpad_ret)
1224 {
1225 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
1226 struct rchan_buf *rbuf = in->private_data;
1227 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1228 uint64_t pos = (uint64_t) *ppos;
1229 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1230 size_t read_start = (size_t) do_div(pos, alloc_size);
1231 size_t read_subbuf = read_start / subbuf_size;
1232 size_t padding = rbuf->padding[read_subbuf];
1233 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1234 struct page *pages[PIPE_BUFFERS];
1235 struct partial_page partial[PIPE_BUFFERS];
1236 struct splice_pipe_desc spd = {
1237 .pages = pages,
1238 .nr_pages = 0,
1239 .partial = partial,
1240 .flags = flags,
1241 .ops = &relay_pipe_buf_ops,
1242 .spd_release = relay_page_release,
1243 };
1244
1245 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1246 return 0;
1247
1248 /*
1249 * Adjust read len, if longer than what is available
1250 */
1251 if (len > (subbuf_size - read_start % subbuf_size))
1252 len = subbuf_size - read_start % subbuf_size;
1253
1254 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1255 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1256 poff = read_start & ~PAGE_MASK;
1257 nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1258
1259 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1260 unsigned int this_len, this_end, private;
1261 unsigned int cur_pos = read_start + total_len;
1262
1263 if (!len)
1264 break;
1265
1266 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1267 private = this_len;
1268
1269 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1270 spd.partial[spd.nr_pages].offset = poff;
1271
1272 this_end = cur_pos + this_len;
1273 if (this_end >= nonpad_end) {
1274 this_len = nonpad_end - cur_pos;
1275 private = this_len + padding;
1276 }
1277 spd.partial[spd.nr_pages].len = this_len;
1278 spd.partial[spd.nr_pages].private = private;
1279
1280 len -= this_len;
1281 total_len += this_len;
1282 poff = 0;
1283 pidx = (pidx + 1) % subbuf_pages;
1284
1285 if (this_end >= nonpad_end) {
1286 spd.nr_pages++;
1287 break;
1288 }
1289 }
1290
1291 if (!spd.nr_pages)
1292 return 0;
1293
1294 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1295 if (ret < 0 || ret < total_len)
1296 return ret;
1297
1298 if (read_start + ret == nonpad_end)
1299 ret += padding;
1300
1301 return ret;
1302 }
1303
relay_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1304 static ssize_t relay_file_splice_read(struct file *in,
1305 loff_t *ppos,
1306 struct pipe_inode_info *pipe,
1307 size_t len,
1308 unsigned int flags)
1309 {
1310 ssize_t spliced;
1311 int ret;
1312 int nonpad_ret = 0;
1313
1314 ret = 0;
1315 spliced = 0;
1316
1317 while (len && !spliced) {
1318 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1319 if (ret < 0)
1320 break;
1321 else if (!ret) {
1322 if (flags & SPLICE_F_NONBLOCK)
1323 ret = -EAGAIN;
1324 break;
1325 }
1326
1327 *ppos += ret;
1328 if (ret > len)
1329 len = 0;
1330 else
1331 len -= ret;
1332 spliced += nonpad_ret;
1333 nonpad_ret = 0;
1334 }
1335
1336 if (spliced)
1337 return spliced;
1338
1339 return ret;
1340 }
1341
1342 const struct file_operations relay_file_operations = {
1343 .open = relay_file_open,
1344 .poll = relay_file_poll,
1345 .mmap = relay_file_mmap,
1346 .read = relay_file_read,
1347 .llseek = no_llseek,
1348 .release = relay_file_release,
1349 .splice_read = relay_file_splice_read,
1350 };
1351 EXPORT_SYMBOL_GPL(relay_file_operations);
1352
relay_init(void)1353 static __init int relay_init(void)
1354 {
1355
1356 hotcpu_notifier(relay_hotcpu_callback, 0);
1357 return 0;
1358 }
1359
1360 early_initcall(relay_init);
1361