1 /*
2 * kernel/time/sched_debug.c
3 *
4 * Print the CFS rbtree
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18
19 /*
20 * This allows printing both to /proc/sched_debug and
21 * to the console
22 */
23 #define SEQ_printf(m, x...) \
24 do { \
25 if (m) \
26 seq_printf(m, x); \
27 else \
28 printk(x); \
29 } while (0)
30
31 /*
32 * Ease the printing of nsec fields:
33 */
nsec_high(unsigned long long nsec)34 static long long nsec_high(unsigned long long nsec)
35 {
36 if ((long long)nsec < 0) {
37 nsec = -nsec;
38 do_div(nsec, 1000000);
39 return -nsec;
40 }
41 do_div(nsec, 1000000);
42
43 return nsec;
44 }
45
nsec_low(unsigned long long nsec)46 static unsigned long nsec_low(unsigned long long nsec)
47 {
48 if ((long long)nsec < 0)
49 nsec = -nsec;
50
51 return do_div(nsec, 1000000);
52 }
53
54 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
55
56 #ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(struct seq_file * m,int cpu,struct task_group * tg)57 static void print_cfs_group_stats(struct seq_file *m, int cpu,
58 struct task_group *tg)
59 {
60 struct sched_entity *se = tg->se[cpu];
61 if (!se)
62 return;
63
64 #define P(F) \
65 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
66 #define PN(F) \
67 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
68
69 PN(se->exec_start);
70 PN(se->vruntime);
71 PN(se->sum_exec_runtime);
72 #ifdef CONFIG_SCHEDSTATS
73 PN(se->wait_start);
74 PN(se->sleep_start);
75 PN(se->block_start);
76 PN(se->sleep_max);
77 PN(se->block_max);
78 PN(se->exec_max);
79 PN(se->slice_max);
80 PN(se->wait_max);
81 PN(se->wait_sum);
82 P(se->wait_count);
83 #endif
84 P(se->load.weight);
85 #undef PN
86 #undef P
87 }
88 #endif
89
90 static void
print_task(struct seq_file * m,struct rq * rq,struct task_struct * p)91 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
92 {
93 if (rq->curr == p)
94 SEQ_printf(m, "R");
95 else
96 SEQ_printf(m, " ");
97
98 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
99 p->comm, p->pid,
100 SPLIT_NS(p->se.vruntime),
101 (long long)(p->nvcsw + p->nivcsw),
102 p->prio);
103 #ifdef CONFIG_SCHEDSTATS
104 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
105 SPLIT_NS(p->se.vruntime),
106 SPLIT_NS(p->se.sum_exec_runtime),
107 SPLIT_NS(p->se.sum_sleep_runtime));
108 #else
109 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
110 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
111 #endif
112
113 #ifdef CONFIG_CGROUP_SCHED
114 {
115 char path[64];
116
117 cgroup_path(task_group(p)->css.cgroup, path, sizeof(path));
118 SEQ_printf(m, " %s", path);
119 }
120 #endif
121 SEQ_printf(m, "\n");
122 }
123
print_rq(struct seq_file * m,struct rq * rq,int rq_cpu)124 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
125 {
126 struct task_struct *g, *p;
127 unsigned long flags;
128
129 SEQ_printf(m,
130 "\nrunnable tasks:\n"
131 " task PID tree-key switches prio"
132 " exec-runtime sum-exec sum-sleep\n"
133 "------------------------------------------------------"
134 "----------------------------------------------------\n");
135
136 read_lock_irqsave(&tasklist_lock, flags);
137
138 do_each_thread(g, p) {
139 if (!p->se.on_rq || task_cpu(p) != rq_cpu)
140 continue;
141
142 print_task(m, rq, p);
143 } while_each_thread(g, p);
144
145 read_unlock_irqrestore(&tasklist_lock, flags);
146 }
147
148 #if defined(CONFIG_CGROUP_SCHED) && \
149 (defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED))
task_group_path(struct task_group * tg,char * buf,int buflen)150 static void task_group_path(struct task_group *tg, char *buf, int buflen)
151 {
152 /* may be NULL if the underlying cgroup isn't fully-created yet */
153 if (!tg->css.cgroup) {
154 buf[0] = '\0';
155 return;
156 }
157 cgroup_path(tg->css.cgroup, buf, buflen);
158 }
159 #endif
160
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)161 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
162 {
163 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
164 spread, rq0_min_vruntime, spread0;
165 struct rq *rq = &per_cpu(runqueues, cpu);
166 struct sched_entity *last;
167 unsigned long flags;
168
169 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
170 char path[128];
171 struct task_group *tg = cfs_rq->tg;
172
173 task_group_path(tg, path, sizeof(path));
174
175 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
176 #elif defined(CONFIG_USER_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
177 {
178 uid_t uid = cfs_rq->tg->uid;
179 SEQ_printf(m, "\ncfs_rq[%d] for UID: %u\n", cpu, uid);
180 }
181 #else
182 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
183 #endif
184 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
185 SPLIT_NS(cfs_rq->exec_clock));
186
187 spin_lock_irqsave(&rq->lock, flags);
188 if (cfs_rq->rb_leftmost)
189 MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
190 last = __pick_last_entity(cfs_rq);
191 if (last)
192 max_vruntime = last->vruntime;
193 min_vruntime = cfs_rq->min_vruntime;
194 rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime;
195 spin_unlock_irqrestore(&rq->lock, flags);
196 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
197 SPLIT_NS(MIN_vruntime));
198 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
199 SPLIT_NS(min_vruntime));
200 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
201 SPLIT_NS(max_vruntime));
202 spread = max_vruntime - MIN_vruntime;
203 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
204 SPLIT_NS(spread));
205 spread0 = min_vruntime - rq0_min_vruntime;
206 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
207 SPLIT_NS(spread0));
208 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
209 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
210
211 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
212 cfs_rq->nr_spread_over);
213 #ifdef CONFIG_FAIR_GROUP_SCHED
214 #ifdef CONFIG_SMP
215 SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
216 #endif
217 print_cfs_group_stats(m, cpu, cfs_rq->tg);
218 #endif
219 }
220
print_rt_rq(struct seq_file * m,int cpu,struct rt_rq * rt_rq)221 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
222 {
223 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_RT_GROUP_SCHED)
224 char path[128];
225 struct task_group *tg = rt_rq->tg;
226
227 task_group_path(tg, path, sizeof(path));
228
229 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, path);
230 #else
231 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
232 #endif
233
234
235 #define P(x) \
236 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
237 #define PN(x) \
238 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
239
240 P(rt_nr_running);
241 P(rt_throttled);
242 PN(rt_time);
243 PN(rt_runtime);
244
245 #undef PN
246 #undef P
247 }
248
print_cpu(struct seq_file * m,int cpu)249 static void print_cpu(struct seq_file *m, int cpu)
250 {
251 struct rq *rq = &per_cpu(runqueues, cpu);
252
253 #ifdef CONFIG_X86
254 {
255 unsigned int freq = cpu_khz ? : 1;
256
257 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
258 cpu, freq / 1000, (freq % 1000));
259 }
260 #else
261 SEQ_printf(m, "\ncpu#%d\n", cpu);
262 #endif
263
264 #define P(x) \
265 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
266 #define PN(x) \
267 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
268
269 P(nr_running);
270 SEQ_printf(m, " .%-30s: %lu\n", "load",
271 rq->load.weight);
272 P(nr_switches);
273 P(nr_load_updates);
274 P(nr_uninterruptible);
275 SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
276 PN(next_balance);
277 P(curr->pid);
278 PN(clock);
279 P(cpu_load[0]);
280 P(cpu_load[1]);
281 P(cpu_load[2]);
282 P(cpu_load[3]);
283 P(cpu_load[4]);
284 #undef P
285 #undef PN
286
287 #ifdef CONFIG_SCHEDSTATS
288 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
289
290 P(yld_exp_empty);
291 P(yld_act_empty);
292 P(yld_both_empty);
293 P(yld_count);
294
295 P(sched_switch);
296 P(sched_count);
297 P(sched_goidle);
298
299 P(ttwu_count);
300 P(ttwu_local);
301
302 P(bkl_count);
303
304 #undef P
305 #endif
306 print_cfs_stats(m, cpu);
307 print_rt_stats(m, cpu);
308
309 print_rq(m, rq, cpu);
310 }
311
sched_debug_show(struct seq_file * m,void * v)312 static int sched_debug_show(struct seq_file *m, void *v)
313 {
314 u64 now = ktime_to_ns(ktime_get());
315 int cpu;
316
317 SEQ_printf(m, "Sched Debug Version: v0.08, %s %.*s\n",
318 init_utsname()->release,
319 (int)strcspn(init_utsname()->version, " "),
320 init_utsname()->version);
321
322 SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
323
324 #define P(x) \
325 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
326 #define PN(x) \
327 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
328 PN(sysctl_sched_latency);
329 PN(sysctl_sched_min_granularity);
330 PN(sysctl_sched_wakeup_granularity);
331 PN(sysctl_sched_child_runs_first);
332 P(sysctl_sched_features);
333 #undef PN
334 #undef P
335
336 for_each_online_cpu(cpu)
337 print_cpu(m, cpu);
338
339 SEQ_printf(m, "\n");
340
341 return 0;
342 }
343
sysrq_sched_debug_show(void)344 static void sysrq_sched_debug_show(void)
345 {
346 sched_debug_show(NULL, NULL);
347 }
348
sched_debug_open(struct inode * inode,struct file * filp)349 static int sched_debug_open(struct inode *inode, struct file *filp)
350 {
351 return single_open(filp, sched_debug_show, NULL);
352 }
353
354 static const struct file_operations sched_debug_fops = {
355 .open = sched_debug_open,
356 .read = seq_read,
357 .llseek = seq_lseek,
358 .release = single_release,
359 };
360
init_sched_debug_procfs(void)361 static int __init init_sched_debug_procfs(void)
362 {
363 struct proc_dir_entry *pe;
364
365 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
366 if (!pe)
367 return -ENOMEM;
368 return 0;
369 }
370
371 __initcall(init_sched_debug_procfs);
372
proc_sched_show_task(struct task_struct * p,struct seq_file * m)373 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
374 {
375 unsigned long nr_switches;
376 unsigned long flags;
377 int num_threads = 1;
378
379 if (lock_task_sighand(p, &flags)) {
380 num_threads = atomic_read(&p->signal->count);
381 unlock_task_sighand(p, &flags);
382 }
383
384 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
385 SEQ_printf(m,
386 "---------------------------------------------------------\n");
387 #define __P(F) \
388 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
389 #define P(F) \
390 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
391 #define __PN(F) \
392 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
393 #define PN(F) \
394 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
395
396 PN(se.exec_start);
397 PN(se.vruntime);
398 PN(se.sum_exec_runtime);
399 PN(se.avg_overlap);
400
401 nr_switches = p->nvcsw + p->nivcsw;
402
403 #ifdef CONFIG_SCHEDSTATS
404 PN(se.wait_start);
405 PN(se.sleep_start);
406 PN(se.block_start);
407 PN(se.sleep_max);
408 PN(se.block_max);
409 PN(se.exec_max);
410 PN(se.slice_max);
411 PN(se.wait_max);
412 PN(se.wait_sum);
413 P(se.wait_count);
414 P(sched_info.bkl_count);
415 P(se.nr_migrations);
416 P(se.nr_migrations_cold);
417 P(se.nr_failed_migrations_affine);
418 P(se.nr_failed_migrations_running);
419 P(se.nr_failed_migrations_hot);
420 P(se.nr_forced_migrations);
421 P(se.nr_forced2_migrations);
422 P(se.nr_wakeups);
423 P(se.nr_wakeups_sync);
424 P(se.nr_wakeups_migrate);
425 P(se.nr_wakeups_local);
426 P(se.nr_wakeups_remote);
427 P(se.nr_wakeups_affine);
428 P(se.nr_wakeups_affine_attempts);
429 P(se.nr_wakeups_passive);
430 P(se.nr_wakeups_idle);
431
432 {
433 u64 avg_atom, avg_per_cpu;
434
435 avg_atom = p->se.sum_exec_runtime;
436 if (nr_switches)
437 do_div(avg_atom, nr_switches);
438 else
439 avg_atom = -1LL;
440
441 avg_per_cpu = p->se.sum_exec_runtime;
442 if (p->se.nr_migrations) {
443 avg_per_cpu = div64_u64(avg_per_cpu,
444 p->se.nr_migrations);
445 } else {
446 avg_per_cpu = -1LL;
447 }
448
449 __PN(avg_atom);
450 __PN(avg_per_cpu);
451 }
452 #endif
453 __P(nr_switches);
454 SEQ_printf(m, "%-35s:%21Ld\n",
455 "nr_voluntary_switches", (long long)p->nvcsw);
456 SEQ_printf(m, "%-35s:%21Ld\n",
457 "nr_involuntary_switches", (long long)p->nivcsw);
458
459 P(se.load.weight);
460 P(policy);
461 P(prio);
462 #undef PN
463 #undef __PN
464 #undef P
465 #undef __P
466
467 {
468 unsigned int this_cpu = raw_smp_processor_id();
469 u64 t0, t1;
470
471 t0 = cpu_clock(this_cpu);
472 t1 = cpu_clock(this_cpu);
473 SEQ_printf(m, "%-35s:%21Ld\n",
474 "clock-delta", (long long)(t1-t0));
475 }
476 }
477
proc_sched_set_task(struct task_struct * p)478 void proc_sched_set_task(struct task_struct *p)
479 {
480 #ifdef CONFIG_SCHEDSTATS
481 p->se.wait_max = 0;
482 p->se.wait_sum = 0;
483 p->se.wait_count = 0;
484 p->se.sleep_max = 0;
485 p->se.sum_sleep_runtime = 0;
486 p->se.block_max = 0;
487 p->se.exec_max = 0;
488 p->se.slice_max = 0;
489 p->se.nr_migrations = 0;
490 p->se.nr_migrations_cold = 0;
491 p->se.nr_failed_migrations_affine = 0;
492 p->se.nr_failed_migrations_running = 0;
493 p->se.nr_failed_migrations_hot = 0;
494 p->se.nr_forced_migrations = 0;
495 p->se.nr_forced2_migrations = 0;
496 p->se.nr_wakeups = 0;
497 p->se.nr_wakeups_sync = 0;
498 p->se.nr_wakeups_migrate = 0;
499 p->se.nr_wakeups_local = 0;
500 p->se.nr_wakeups_remote = 0;
501 p->se.nr_wakeups_affine = 0;
502 p->se.nr_wakeups_affine_attempts = 0;
503 p->se.nr_wakeups_passive = 0;
504 p->se.nr_wakeups_idle = 0;
505 p->sched_info.bkl_count = 0;
506 #endif
507 p->se.sum_exec_runtime = 0;
508 p->se.prev_sum_exec_runtime = 0;
509 p->nvcsw = 0;
510 p->nivcsw = 0;
511 }
512