• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/slab.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 
45 #include "timeconst.h"
46 
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52 
53 EXPORT_SYMBOL(sys_tz);
54 
55 #ifdef __ARCH_WANT_SYS_TIME
56 
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
SYSCALL_DEFINE1(time,time_t __user *,tloc)63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 	time_t i = get_seconds();
66 
67 	if (tloc) {
68 		if (put_user(i,tloc))
69 			return -EFAULT;
70 	}
71 	force_successful_syscall_return();
72 	return i;
73 }
74 
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81 
SYSCALL_DEFINE1(stime,time_t __user *,tptr)82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 	struct timespec tv;
85 	int err;
86 
87 	if (get_user(tv.tv_sec, tptr))
88 		return -EFAULT;
89 
90 	tv.tv_nsec = 0;
91 
92 	err = security_settime(&tv, NULL);
93 	if (err)
94 		return err;
95 
96 	do_settimeofday(&tv);
97 	return 0;
98 }
99 
100 #endif /* __ARCH_WANT_SYS_TIME */
101 
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 		struct timezone __user *, tz)
104 {
105 	if (likely(tv != NULL)) {
106 		struct timeval ktv;
107 		do_gettimeofday(&ktv);
108 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 			return -EFAULT;
110 	}
111 	if (unlikely(tz != NULL)) {
112 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Adjust the time obtained from the CMOS to be UTC time instead of
120  * local time.
121  *
122  * This is ugly, but preferable to the alternatives.  Otherwise we
123  * would either need to write a program to do it in /etc/rc (and risk
124  * confusion if the program gets run more than once; it would also be
125  * hard to make the program warp the clock precisely n hours)  or
126  * compile in the timezone information into the kernel.  Bad, bad....
127  *
128  *						- TYT, 1992-01-01
129  *
130  * The best thing to do is to keep the CMOS clock in universal time (UTC)
131  * as real UNIX machines always do it. This avoids all headaches about
132  * daylight saving times and warping kernel clocks.
133  */
warp_clock(void)134 static inline void warp_clock(void)
135 {
136 	write_seqlock_irq(&xtime_lock);
137 	wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
138 	xtime.tv_sec += sys_tz.tz_minuteswest * 60;
139 	update_xtime_cache(0);
140 	write_sequnlock_irq(&xtime_lock);
141 	clock_was_set();
142 }
143 
144 /*
145  * In case for some reason the CMOS clock has not already been running
146  * in UTC, but in some local time: The first time we set the timezone,
147  * we will warp the clock so that it is ticking UTC time instead of
148  * local time. Presumably, if someone is setting the timezone then we
149  * are running in an environment where the programs understand about
150  * timezones. This should be done at boot time in the /etc/rc script,
151  * as soon as possible, so that the clock can be set right. Otherwise,
152  * various programs will get confused when the clock gets warped.
153  */
154 
do_sys_settimeofday(struct timespec * tv,struct timezone * tz)155 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
156 {
157 	static int firsttime = 1;
158 	int error = 0;
159 
160 	if (tv && !timespec_valid(tv))
161 		return -EINVAL;
162 
163 	error = security_settime(tv, tz);
164 	if (error)
165 		return error;
166 
167 	if (tz) {
168 		/* SMP safe, global irq locking makes it work. */
169 		sys_tz = *tz;
170 		update_vsyscall_tz();
171 		if (firsttime) {
172 			firsttime = 0;
173 			if (!tv)
174 				warp_clock();
175 		}
176 	}
177 	if (tv)
178 	{
179 		/* SMP safe, again the code in arch/foo/time.c should
180 		 * globally block out interrupts when it runs.
181 		 */
182 		return do_settimeofday(tv);
183 	}
184 	return 0;
185 }
186 
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)187 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
188 		struct timezone __user *, tz)
189 {
190 	struct timeval user_tv;
191 	struct timespec	new_ts;
192 	struct timezone new_tz;
193 
194 	if (tv) {
195 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
196 			return -EFAULT;
197 		new_ts.tv_sec = user_tv.tv_sec;
198 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
199 	}
200 	if (tz) {
201 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
202 			return -EFAULT;
203 	}
204 
205 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
206 }
207 
SYSCALL_DEFINE1(adjtimex,struct timex __user *,txc_p)208 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
209 {
210 	struct timex txc;		/* Local copy of parameter */
211 	int ret;
212 
213 	/* Copy the user data space into the kernel copy
214 	 * structure. But bear in mind that the structures
215 	 * may change
216 	 */
217 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
218 		return -EFAULT;
219 	ret = do_adjtimex(&txc);
220 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
221 }
222 
223 /**
224  * current_fs_time - Return FS time
225  * @sb: Superblock.
226  *
227  * Return the current time truncated to the time granularity supported by
228  * the fs.
229  */
current_fs_time(struct super_block * sb)230 struct timespec current_fs_time(struct super_block *sb)
231 {
232 	struct timespec now = current_kernel_time();
233 	return timespec_trunc(now, sb->s_time_gran);
234 }
235 EXPORT_SYMBOL(current_fs_time);
236 
237 /*
238  * Convert jiffies to milliseconds and back.
239  *
240  * Avoid unnecessary multiplications/divisions in the
241  * two most common HZ cases:
242  */
jiffies_to_msecs(const unsigned long j)243 unsigned int inline jiffies_to_msecs(const unsigned long j)
244 {
245 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
246 	return (MSEC_PER_SEC / HZ) * j;
247 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
248 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
249 #else
250 # if BITS_PER_LONG == 32
251 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
252 # else
253 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
254 # endif
255 #endif
256 }
257 EXPORT_SYMBOL(jiffies_to_msecs);
258 
jiffies_to_usecs(const unsigned long j)259 unsigned int inline jiffies_to_usecs(const unsigned long j)
260 {
261 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
262 	return (USEC_PER_SEC / HZ) * j;
263 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
264 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
265 #else
266 # if BITS_PER_LONG == 32
267 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
268 # else
269 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
270 # endif
271 #endif
272 }
273 EXPORT_SYMBOL(jiffies_to_usecs);
274 
275 /**
276  * timespec_trunc - Truncate timespec to a granularity
277  * @t: Timespec
278  * @gran: Granularity in ns.
279  *
280  * Truncate a timespec to a granularity. gran must be smaller than a second.
281  * Always rounds down.
282  *
283  * This function should be only used for timestamps returned by
284  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
285  * it doesn't handle the better resolution of the latter.
286  */
timespec_trunc(struct timespec t,unsigned gran)287 struct timespec timespec_trunc(struct timespec t, unsigned gran)
288 {
289 	/*
290 	 * Division is pretty slow so avoid it for common cases.
291 	 * Currently current_kernel_time() never returns better than
292 	 * jiffies resolution. Exploit that.
293 	 */
294 	if (gran <= jiffies_to_usecs(1) * 1000) {
295 		/* nothing */
296 	} else if (gran == 1000000000) {
297 		t.tv_nsec = 0;
298 	} else {
299 		t.tv_nsec -= t.tv_nsec % gran;
300 	}
301 	return t;
302 }
303 EXPORT_SYMBOL(timespec_trunc);
304 
305 #ifndef CONFIG_GENERIC_TIME
306 /*
307  * Simulate gettimeofday using do_gettimeofday which only allows a timeval
308  * and therefore only yields usec accuracy
309  */
getnstimeofday(struct timespec * tv)310 void getnstimeofday(struct timespec *tv)
311 {
312 	struct timeval x;
313 
314 	do_gettimeofday(&x);
315 	tv->tv_sec = x.tv_sec;
316 	tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
317 }
318 EXPORT_SYMBOL_GPL(getnstimeofday);
319 #endif
320 
321 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
322  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
323  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
324  *
325  * [For the Julian calendar (which was used in Russia before 1917,
326  * Britain & colonies before 1752, anywhere else before 1582,
327  * and is still in use by some communities) leave out the
328  * -year/100+year/400 terms, and add 10.]
329  *
330  * This algorithm was first published by Gauss (I think).
331  *
332  * WARNING: this function will overflow on 2106-02-07 06:28:16 on
333  * machines where long is 32-bit! (However, as time_t is signed, we
334  * will already get problems at other places on 2038-01-19 03:14:08)
335  */
336 unsigned long
mktime(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)337 mktime(const unsigned int year0, const unsigned int mon0,
338        const unsigned int day, const unsigned int hour,
339        const unsigned int min, const unsigned int sec)
340 {
341 	unsigned int mon = mon0, year = year0;
342 
343 	/* 1..12 -> 11,12,1..10 */
344 	if (0 >= (int) (mon -= 2)) {
345 		mon += 12;	/* Puts Feb last since it has leap day */
346 		year -= 1;
347 	}
348 
349 	return ((((unsigned long)
350 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
351 		  year*365 - 719499
352 	    )*24 + hour /* now have hours */
353 	  )*60 + min /* now have minutes */
354 	)*60 + sec; /* finally seconds */
355 }
356 
357 EXPORT_SYMBOL(mktime);
358 
359 /**
360  * set_normalized_timespec - set timespec sec and nsec parts and normalize
361  *
362  * @ts:		pointer to timespec variable to be set
363  * @sec:	seconds to set
364  * @nsec:	nanoseconds to set
365  *
366  * Set seconds and nanoseconds field of a timespec variable and
367  * normalize to the timespec storage format
368  *
369  * Note: The tv_nsec part is always in the range of
370  *	0 <= tv_nsec < NSEC_PER_SEC
371  * For negative values only the tv_sec field is negative !
372  */
set_normalized_timespec(struct timespec * ts,time_t sec,long nsec)373 void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
374 {
375 	while (nsec >= NSEC_PER_SEC) {
376 		nsec -= NSEC_PER_SEC;
377 		++sec;
378 	}
379 	while (nsec < 0) {
380 		nsec += NSEC_PER_SEC;
381 		--sec;
382 	}
383 	ts->tv_sec = sec;
384 	ts->tv_nsec = nsec;
385 }
386 EXPORT_SYMBOL(set_normalized_timespec);
387 
388 /**
389  * ns_to_timespec - Convert nanoseconds to timespec
390  * @nsec:       the nanoseconds value to be converted
391  *
392  * Returns the timespec representation of the nsec parameter.
393  */
ns_to_timespec(const s64 nsec)394 struct timespec ns_to_timespec(const s64 nsec)
395 {
396 	struct timespec ts;
397 	s32 rem;
398 
399 	if (!nsec)
400 		return (struct timespec) {0, 0};
401 
402 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
403 	if (unlikely(rem < 0)) {
404 		ts.tv_sec--;
405 		rem += NSEC_PER_SEC;
406 	}
407 	ts.tv_nsec = rem;
408 
409 	return ts;
410 }
411 EXPORT_SYMBOL(ns_to_timespec);
412 
413 /**
414  * ns_to_timeval - Convert nanoseconds to timeval
415  * @nsec:       the nanoseconds value to be converted
416  *
417  * Returns the timeval representation of the nsec parameter.
418  */
ns_to_timeval(const s64 nsec)419 struct timeval ns_to_timeval(const s64 nsec)
420 {
421 	struct timespec ts = ns_to_timespec(nsec);
422 	struct timeval tv;
423 
424 	tv.tv_sec = ts.tv_sec;
425 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
426 
427 	return tv;
428 }
429 EXPORT_SYMBOL(ns_to_timeval);
430 
431 /*
432  * When we convert to jiffies then we interpret incoming values
433  * the following way:
434  *
435  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
436  *
437  * - 'too large' values [that would result in larger than
438  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
439  *
440  * - all other values are converted to jiffies by either multiplying
441  *   the input value by a factor or dividing it with a factor
442  *
443  * We must also be careful about 32-bit overflows.
444  */
msecs_to_jiffies(const unsigned int m)445 unsigned long msecs_to_jiffies(const unsigned int m)
446 {
447 	/*
448 	 * Negative value, means infinite timeout:
449 	 */
450 	if ((int)m < 0)
451 		return MAX_JIFFY_OFFSET;
452 
453 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
454 	/*
455 	 * HZ is equal to or smaller than 1000, and 1000 is a nice
456 	 * round multiple of HZ, divide with the factor between them,
457 	 * but round upwards:
458 	 */
459 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
460 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
461 	/*
462 	 * HZ is larger than 1000, and HZ is a nice round multiple of
463 	 * 1000 - simply multiply with the factor between them.
464 	 *
465 	 * But first make sure the multiplication result cannot
466 	 * overflow:
467 	 */
468 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
469 		return MAX_JIFFY_OFFSET;
470 
471 	return m * (HZ / MSEC_PER_SEC);
472 #else
473 	/*
474 	 * Generic case - multiply, round and divide. But first
475 	 * check that if we are doing a net multiplication, that
476 	 * we wouldn't overflow:
477 	 */
478 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
479 		return MAX_JIFFY_OFFSET;
480 
481 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
482 		>> MSEC_TO_HZ_SHR32;
483 #endif
484 }
485 EXPORT_SYMBOL(msecs_to_jiffies);
486 
usecs_to_jiffies(const unsigned int u)487 unsigned long usecs_to_jiffies(const unsigned int u)
488 {
489 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
490 		return MAX_JIFFY_OFFSET;
491 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
492 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
493 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
494 	return u * (HZ / USEC_PER_SEC);
495 #else
496 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
497 		>> USEC_TO_HZ_SHR32;
498 #endif
499 }
500 EXPORT_SYMBOL(usecs_to_jiffies);
501 
502 /*
503  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
504  * that a remainder subtract here would not do the right thing as the
505  * resolution values don't fall on second boundries.  I.e. the line:
506  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
507  *
508  * Rather, we just shift the bits off the right.
509  *
510  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
511  * value to a scaled second value.
512  */
513 unsigned long
timespec_to_jiffies(const struct timespec * value)514 timespec_to_jiffies(const struct timespec *value)
515 {
516 	unsigned long sec = value->tv_sec;
517 	long nsec = value->tv_nsec + TICK_NSEC - 1;
518 
519 	if (sec >= MAX_SEC_IN_JIFFIES){
520 		sec = MAX_SEC_IN_JIFFIES;
521 		nsec = 0;
522 	}
523 	return (((u64)sec * SEC_CONVERSION) +
524 		(((u64)nsec * NSEC_CONVERSION) >>
525 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
526 
527 }
528 EXPORT_SYMBOL(timespec_to_jiffies);
529 
530 void
jiffies_to_timespec(const unsigned long jiffies,struct timespec * value)531 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
532 {
533 	/*
534 	 * Convert jiffies to nanoseconds and separate with
535 	 * one divide.
536 	 */
537 	u32 rem;
538 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
539 				    NSEC_PER_SEC, &rem);
540 	value->tv_nsec = rem;
541 }
542 EXPORT_SYMBOL(jiffies_to_timespec);
543 
544 /* Same for "timeval"
545  *
546  * Well, almost.  The problem here is that the real system resolution is
547  * in nanoseconds and the value being converted is in micro seconds.
548  * Also for some machines (those that use HZ = 1024, in-particular),
549  * there is a LARGE error in the tick size in microseconds.
550 
551  * The solution we use is to do the rounding AFTER we convert the
552  * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
553  * Instruction wise, this should cost only an additional add with carry
554  * instruction above the way it was done above.
555  */
556 unsigned long
timeval_to_jiffies(const struct timeval * value)557 timeval_to_jiffies(const struct timeval *value)
558 {
559 	unsigned long sec = value->tv_sec;
560 	long usec = value->tv_usec;
561 
562 	if (sec >= MAX_SEC_IN_JIFFIES){
563 		sec = MAX_SEC_IN_JIFFIES;
564 		usec = 0;
565 	}
566 	return (((u64)sec * SEC_CONVERSION) +
567 		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
568 		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
569 }
570 EXPORT_SYMBOL(timeval_to_jiffies);
571 
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)572 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
573 {
574 	/*
575 	 * Convert jiffies to nanoseconds and separate with
576 	 * one divide.
577 	 */
578 	u32 rem;
579 
580 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
581 				    NSEC_PER_SEC, &rem);
582 	value->tv_usec = rem / NSEC_PER_USEC;
583 }
584 EXPORT_SYMBOL(jiffies_to_timeval);
585 
586 /*
587  * Convert jiffies/jiffies_64 to clock_t and back.
588  */
jiffies_to_clock_t(long x)589 clock_t jiffies_to_clock_t(long x)
590 {
591 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
592 # if HZ < USER_HZ
593 	return x * (USER_HZ / HZ);
594 # else
595 	return x / (HZ / USER_HZ);
596 # endif
597 #else
598 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
599 #endif
600 }
601 EXPORT_SYMBOL(jiffies_to_clock_t);
602 
clock_t_to_jiffies(unsigned long x)603 unsigned long clock_t_to_jiffies(unsigned long x)
604 {
605 #if (HZ % USER_HZ)==0
606 	if (x >= ~0UL / (HZ / USER_HZ))
607 		return ~0UL;
608 	return x * (HZ / USER_HZ);
609 #else
610 	/* Don't worry about loss of precision here .. */
611 	if (x >= ~0UL / HZ * USER_HZ)
612 		return ~0UL;
613 
614 	/* .. but do try to contain it here */
615 	return div_u64((u64)x * HZ, USER_HZ);
616 #endif
617 }
618 EXPORT_SYMBOL(clock_t_to_jiffies);
619 
jiffies_64_to_clock_t(u64 x)620 u64 jiffies_64_to_clock_t(u64 x)
621 {
622 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
623 # if HZ < USER_HZ
624 	x = div_u64(x * USER_HZ, HZ);
625 # elif HZ > USER_HZ
626 	x = div_u64(x, HZ / USER_HZ);
627 # else
628 	/* Nothing to do */
629 # endif
630 #else
631 	/*
632 	 * There are better ways that don't overflow early,
633 	 * but even this doesn't overflow in hundreds of years
634 	 * in 64 bits, so..
635 	 */
636 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
637 #endif
638 	return x;
639 }
640 EXPORT_SYMBOL(jiffies_64_to_clock_t);
641 
nsec_to_clock_t(u64 x)642 u64 nsec_to_clock_t(u64 x)
643 {
644 #if (NSEC_PER_SEC % USER_HZ) == 0
645 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
646 #elif (USER_HZ % 512) == 0
647 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
648 #else
649 	/*
650          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
651          * overflow after 64.99 years.
652          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
653          */
654 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
655 #endif
656 }
657 
658 #if (BITS_PER_LONG < 64)
get_jiffies_64(void)659 u64 get_jiffies_64(void)
660 {
661 	unsigned long seq;
662 	u64 ret;
663 
664 	do {
665 		seq = read_seqbegin(&xtime_lock);
666 		ret = jiffies_64;
667 	} while (read_seqretry(&xtime_lock, seq));
668 	return ret;
669 }
670 EXPORT_SYMBOL(get_jiffies_64);
671 #endif
672 
673 EXPORT_SYMBOL(jiffies);
674 
675 /*
676  * Add two timespec values and do a safety check for overflow.
677  * It's assumed that both values are valid (>= 0)
678  */
timespec_add_safe(const struct timespec lhs,const struct timespec rhs)679 struct timespec timespec_add_safe(const struct timespec lhs,
680 				  const struct timespec rhs)
681 {
682 	struct timespec res;
683 
684 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
685 				lhs.tv_nsec + rhs.tv_nsec);
686 
687 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
688 		res.tv_sec = TIME_T_MAX;
689 
690 	return res;
691 }
692