• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * lib/prio_tree.c - priority search tree
3  *
4  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5  *
6  * This file is released under the GPL v2.
7  *
8  * Based on the radix priority search tree proposed by Edward M. McCreight
9  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10  *
11  * 02Feb2004	Initial version
12  */
13 
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/prio_tree.h>
17 
18 /*
19  * A clever mix of heap and radix trees forms a radix priority search tree (PST)
20  * which is useful for storing intervals, e.g, we can consider a vma as a closed
21  * interval of file pages [offset_begin, offset_end], and store all vmas that
22  * map a file in a PST. Then, using the PST, we can answer a stabbing query,
23  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
24  * given input interval X (a set of consecutive file pages), in "O(log n + m)"
25  * time where 'log n' is the height of the PST, and 'm' is the number of stored
26  * intervals (vmas) that overlap (map) with the input interval X (the set of
27  * consecutive file pages).
28  *
29  * In our implementation, we store closed intervals of the form [radix_index,
30  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
31  * is designed for storing intervals with unique radix indices, i.e., each
32  * interval have different radix_index. However, this limitation can be easily
33  * overcome by using the size, i.e., heap_index - radix_index, as part of the
34  * index, so we index the tree using [(radix_index,size), heap_index].
35  *
36  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
37  * machine, the maximum height of a PST can be 64. We can use a balanced version
38  * of the priority search tree to optimize the tree height, but the balanced
39  * tree proposed by McCreight is too complex and memory-hungry for our purpose.
40  */
41 
42 /*
43  * The following macros are used for implementing prio_tree for i_mmap
44  */
45 
46 #define RADIX_INDEX(vma)  ((vma)->vm_pgoff)
47 #define VMA_SIZE(vma)	  (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
48 /* avoid overflow */
49 #define HEAP_INDEX(vma)	  ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
50 
51 
get_index(const struct prio_tree_root * root,const struct prio_tree_node * node,unsigned long * radix,unsigned long * heap)52 static void get_index(const struct prio_tree_root *root,
53     const struct prio_tree_node *node,
54     unsigned long *radix, unsigned long *heap)
55 {
56 	if (root->raw) {
57 		struct vm_area_struct *vma = prio_tree_entry(
58 		    node, struct vm_area_struct, shared.prio_tree_node);
59 
60 		*radix = RADIX_INDEX(vma);
61 		*heap = HEAP_INDEX(vma);
62 	}
63 	else {
64 		*radix = node->start;
65 		*heap = node->last;
66 	}
67 }
68 
69 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
70 
prio_tree_init(void)71 void __init prio_tree_init(void)
72 {
73 	unsigned int i;
74 
75 	for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
76 		index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
77 	index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
78 }
79 
80 /*
81  * Maximum heap_index that can be stored in a PST with index_bits bits
82  */
prio_tree_maxindex(unsigned int bits)83 static inline unsigned long prio_tree_maxindex(unsigned int bits)
84 {
85 	return index_bits_to_maxindex[bits - 1];
86 }
87 
88 /*
89  * Extend a priority search tree so that it can store a node with heap_index
90  * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
91  * However, this function is used rarely and the common case performance is
92  * not bad.
93  */
prio_tree_expand(struct prio_tree_root * root,struct prio_tree_node * node,unsigned long max_heap_index)94 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
95 		struct prio_tree_node *node, unsigned long max_heap_index)
96 {
97 	struct prio_tree_node *first = NULL, *prev, *last = NULL;
98 
99 	if (max_heap_index > prio_tree_maxindex(root->index_bits))
100 		root->index_bits++;
101 
102 	while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
103 		root->index_bits++;
104 
105 		if (prio_tree_empty(root))
106 			continue;
107 
108 		if (first == NULL) {
109 			first = root->prio_tree_node;
110 			prio_tree_remove(root, root->prio_tree_node);
111 			INIT_PRIO_TREE_NODE(first);
112 			last = first;
113 		} else {
114 			prev = last;
115 			last = root->prio_tree_node;
116 			prio_tree_remove(root, root->prio_tree_node);
117 			INIT_PRIO_TREE_NODE(last);
118 			prev->left = last;
119 			last->parent = prev;
120 		}
121 	}
122 
123 	INIT_PRIO_TREE_NODE(node);
124 
125 	if (first) {
126 		node->left = first;
127 		first->parent = node;
128 	} else
129 		last = node;
130 
131 	if (!prio_tree_empty(root)) {
132 		last->left = root->prio_tree_node;
133 		last->left->parent = last;
134 	}
135 
136 	root->prio_tree_node = node;
137 	return node;
138 }
139 
140 /*
141  * Replace a prio_tree_node with a new node and return the old node
142  */
prio_tree_replace(struct prio_tree_root * root,struct prio_tree_node * old,struct prio_tree_node * node)143 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
144 		struct prio_tree_node *old, struct prio_tree_node *node)
145 {
146 	INIT_PRIO_TREE_NODE(node);
147 
148 	if (prio_tree_root(old)) {
149 		BUG_ON(root->prio_tree_node != old);
150 		/*
151 		 * We can reduce root->index_bits here. However, it is complex
152 		 * and does not help much to improve performance (IMO).
153 		 */
154 		node->parent = node;
155 		root->prio_tree_node = node;
156 	} else {
157 		node->parent = old->parent;
158 		if (old->parent->left == old)
159 			old->parent->left = node;
160 		else
161 			old->parent->right = node;
162 	}
163 
164 	if (!prio_tree_left_empty(old)) {
165 		node->left = old->left;
166 		old->left->parent = node;
167 	}
168 
169 	if (!prio_tree_right_empty(old)) {
170 		node->right = old->right;
171 		old->right->parent = node;
172 	}
173 
174 	return old;
175 }
176 
177 /*
178  * Insert a prio_tree_node @node into a radix priority search tree @root. The
179  * algorithm typically takes O(log n) time where 'log n' is the number of bits
180  * required to represent the maximum heap_index. In the worst case, the algo
181  * can take O((log n)^2) - check prio_tree_expand.
182  *
183  * If a prior node with same radix_index and heap_index is already found in
184  * the tree, then returns the address of the prior node. Otherwise, inserts
185  * @node into the tree and returns @node.
186  */
prio_tree_insert(struct prio_tree_root * root,struct prio_tree_node * node)187 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
188 		struct prio_tree_node *node)
189 {
190 	struct prio_tree_node *cur, *res = node;
191 	unsigned long radix_index, heap_index;
192 	unsigned long r_index, h_index, index, mask;
193 	int size_flag = 0;
194 
195 	get_index(root, node, &radix_index, &heap_index);
196 
197 	if (prio_tree_empty(root) ||
198 			heap_index > prio_tree_maxindex(root->index_bits))
199 		return prio_tree_expand(root, node, heap_index);
200 
201 	cur = root->prio_tree_node;
202 	mask = 1UL << (root->index_bits - 1);
203 
204 	while (mask) {
205 		get_index(root, cur, &r_index, &h_index);
206 
207 		if (r_index == radix_index && h_index == heap_index)
208 			return cur;
209 
210                 if (h_index < heap_index ||
211 		    (h_index == heap_index && r_index > radix_index)) {
212 			struct prio_tree_node *tmp = node;
213 			node = prio_tree_replace(root, cur, node);
214 			cur = tmp;
215 			/* swap indices */
216 			index = r_index;
217 			r_index = radix_index;
218 			radix_index = index;
219 			index = h_index;
220 			h_index = heap_index;
221 			heap_index = index;
222 		}
223 
224 		if (size_flag)
225 			index = heap_index - radix_index;
226 		else
227 			index = radix_index;
228 
229 		if (index & mask) {
230 			if (prio_tree_right_empty(cur)) {
231 				INIT_PRIO_TREE_NODE(node);
232 				cur->right = node;
233 				node->parent = cur;
234 				return res;
235 			} else
236 				cur = cur->right;
237 		} else {
238 			if (prio_tree_left_empty(cur)) {
239 				INIT_PRIO_TREE_NODE(node);
240 				cur->left = node;
241 				node->parent = cur;
242 				return res;
243 			} else
244 				cur = cur->left;
245 		}
246 
247 		mask >>= 1;
248 
249 		if (!mask) {
250 			mask = 1UL << (BITS_PER_LONG - 1);
251 			size_flag = 1;
252 		}
253 	}
254 	/* Should not reach here */
255 	BUG();
256 	return NULL;
257 }
258 
259 /*
260  * Remove a prio_tree_node @node from a radix priority search tree @root. The
261  * algorithm takes O(log n) time where 'log n' is the number of bits required
262  * to represent the maximum heap_index.
263  */
prio_tree_remove(struct prio_tree_root * root,struct prio_tree_node * node)264 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
265 {
266 	struct prio_tree_node *cur;
267 	unsigned long r_index, h_index_right, h_index_left;
268 
269 	cur = node;
270 
271 	while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
272 		if (!prio_tree_left_empty(cur))
273 			get_index(root, cur->left, &r_index, &h_index_left);
274 		else {
275 			cur = cur->right;
276 			continue;
277 		}
278 
279 		if (!prio_tree_right_empty(cur))
280 			get_index(root, cur->right, &r_index, &h_index_right);
281 		else {
282 			cur = cur->left;
283 			continue;
284 		}
285 
286 		/* both h_index_left and h_index_right cannot be 0 */
287 		if (h_index_left >= h_index_right)
288 			cur = cur->left;
289 		else
290 			cur = cur->right;
291 	}
292 
293 	if (prio_tree_root(cur)) {
294 		BUG_ON(root->prio_tree_node != cur);
295 		__INIT_PRIO_TREE_ROOT(root, root->raw);
296 		return;
297 	}
298 
299 	if (cur->parent->right == cur)
300 		cur->parent->right = cur->parent;
301 	else
302 		cur->parent->left = cur->parent;
303 
304 	while (cur != node)
305 		cur = prio_tree_replace(root, cur->parent, cur);
306 }
307 
308 /*
309  * Following functions help to enumerate all prio_tree_nodes in the tree that
310  * overlap with the input interval X [radix_index, heap_index]. The enumeration
311  * takes O(log n + m) time where 'log n' is the height of the tree (which is
312  * proportional to # of bits required to represent the maximum heap_index) and
313  * 'm' is the number of prio_tree_nodes that overlap the interval X.
314  */
315 
prio_tree_left(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)316 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
317 		unsigned long *r_index, unsigned long *h_index)
318 {
319 	if (prio_tree_left_empty(iter->cur))
320 		return NULL;
321 
322 	get_index(iter->root, iter->cur->left, r_index, h_index);
323 
324 	if (iter->r_index <= *h_index) {
325 		iter->cur = iter->cur->left;
326 		iter->mask >>= 1;
327 		if (iter->mask) {
328 			if (iter->size_level)
329 				iter->size_level++;
330 		} else {
331 			if (iter->size_level) {
332 				BUG_ON(!prio_tree_left_empty(iter->cur));
333 				BUG_ON(!prio_tree_right_empty(iter->cur));
334 				iter->size_level++;
335 				iter->mask = ULONG_MAX;
336 			} else {
337 				iter->size_level = 1;
338 				iter->mask = 1UL << (BITS_PER_LONG - 1);
339 			}
340 		}
341 		return iter->cur;
342 	}
343 
344 	return NULL;
345 }
346 
prio_tree_right(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)347 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
348 		unsigned long *r_index, unsigned long *h_index)
349 {
350 	unsigned long value;
351 
352 	if (prio_tree_right_empty(iter->cur))
353 		return NULL;
354 
355 	if (iter->size_level)
356 		value = iter->value;
357 	else
358 		value = iter->value | iter->mask;
359 
360 	if (iter->h_index < value)
361 		return NULL;
362 
363 	get_index(iter->root, iter->cur->right, r_index, h_index);
364 
365 	if (iter->r_index <= *h_index) {
366 		iter->cur = iter->cur->right;
367 		iter->mask >>= 1;
368 		iter->value = value;
369 		if (iter->mask) {
370 			if (iter->size_level)
371 				iter->size_level++;
372 		} else {
373 			if (iter->size_level) {
374 				BUG_ON(!prio_tree_left_empty(iter->cur));
375 				BUG_ON(!prio_tree_right_empty(iter->cur));
376 				iter->size_level++;
377 				iter->mask = ULONG_MAX;
378 			} else {
379 				iter->size_level = 1;
380 				iter->mask = 1UL << (BITS_PER_LONG - 1);
381 			}
382 		}
383 		return iter->cur;
384 	}
385 
386 	return NULL;
387 }
388 
prio_tree_parent(struct prio_tree_iter * iter)389 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
390 {
391 	iter->cur = iter->cur->parent;
392 	if (iter->mask == ULONG_MAX)
393 		iter->mask = 1UL;
394 	else if (iter->size_level == 1)
395 		iter->mask = 1UL;
396 	else
397 		iter->mask <<= 1;
398 	if (iter->size_level)
399 		iter->size_level--;
400 	if (!iter->size_level && (iter->value & iter->mask))
401 		iter->value ^= iter->mask;
402 	return iter->cur;
403 }
404 
overlap(struct prio_tree_iter * iter,unsigned long r_index,unsigned long h_index)405 static inline int overlap(struct prio_tree_iter *iter,
406 		unsigned long r_index, unsigned long h_index)
407 {
408 	return iter->h_index >= r_index && iter->r_index <= h_index;
409 }
410 
411 /*
412  * prio_tree_first:
413  *
414  * Get the first prio_tree_node that overlaps with the interval [radix_index,
415  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
416  * traversal of the tree.
417  */
prio_tree_first(struct prio_tree_iter * iter)418 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
419 {
420 	struct prio_tree_root *root;
421 	unsigned long r_index, h_index;
422 
423 	INIT_PRIO_TREE_ITER(iter);
424 
425 	root = iter->root;
426 	if (prio_tree_empty(root))
427 		return NULL;
428 
429 	get_index(root, root->prio_tree_node, &r_index, &h_index);
430 
431 	if (iter->r_index > h_index)
432 		return NULL;
433 
434 	iter->mask = 1UL << (root->index_bits - 1);
435 	iter->cur = root->prio_tree_node;
436 
437 	while (1) {
438 		if (overlap(iter, r_index, h_index))
439 			return iter->cur;
440 
441 		if (prio_tree_left(iter, &r_index, &h_index))
442 			continue;
443 
444 		if (prio_tree_right(iter, &r_index, &h_index))
445 			continue;
446 
447 		break;
448 	}
449 	return NULL;
450 }
451 
452 /*
453  * prio_tree_next:
454  *
455  * Get the next prio_tree_node that overlaps with the input interval in iter
456  */
prio_tree_next(struct prio_tree_iter * iter)457 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
458 {
459 	unsigned long r_index, h_index;
460 
461 	if (iter->cur == NULL)
462 		return prio_tree_first(iter);
463 
464 repeat:
465 	while (prio_tree_left(iter, &r_index, &h_index))
466 		if (overlap(iter, r_index, h_index))
467 			return iter->cur;
468 
469 	while (!prio_tree_right(iter, &r_index, &h_index)) {
470 	    	while (!prio_tree_root(iter->cur) &&
471 				iter->cur->parent->right == iter->cur)
472 			prio_tree_parent(iter);
473 
474 		if (prio_tree_root(iter->cur))
475 			return NULL;
476 
477 		prio_tree_parent(iter);
478 	}
479 
480 	if (overlap(iter, r_index, h_index))
481 		return iter->cur;
482 
483 	goto repeat;
484 }
485