1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31
32 #include <asm/io.h>
33 #include <asm/dma.h>
34 #include <asm/scatterlist.h>
35
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/iommu-helper.h>
39
40 #define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
42
43 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
44
45 /*
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
49 */
50 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
51
52 /*
53 * Enumeration for sync targets
54 */
55 enum dma_sync_target {
56 SYNC_FOR_CPU = 0,
57 SYNC_FOR_DEVICE = 1,
58 };
59
60 int swiotlb_force;
61
62 /*
63 * Used to do a quick range check in swiotlb_unmap_single and
64 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
65 * API.
66 */
67 static char *io_tlb_start, *io_tlb_end;
68
69 /*
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 */
73 static unsigned long io_tlb_nslabs;
74
75 /*
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 */
78 static unsigned long io_tlb_overflow = 32*1024;
79
80 void *io_tlb_overflow_buffer;
81
82 /*
83 * This is a free list describing the number of free entries available from
84 * each index
85 */
86 static unsigned int *io_tlb_list;
87 static unsigned int io_tlb_index;
88
89 /*
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
92 */
93 static phys_addr_t *io_tlb_orig_addr;
94
95 /*
96 * Protect the above data structures in the map and unmap calls
97 */
98 static DEFINE_SPINLOCK(io_tlb_lock);
99
100 static int __init
setup_io_tlb_npages(char * str)101 setup_io_tlb_npages(char *str)
102 {
103 if (isdigit(*str)) {
104 io_tlb_nslabs = simple_strtoul(str, &str, 0);
105 /* avoid tail segment of size < IO_TLB_SEGSIZE */
106 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
107 }
108 if (*str == ',')
109 ++str;
110 if (!strcmp(str, "force"))
111 swiotlb_force = 1;
112 return 1;
113 }
114 __setup("swiotlb=", setup_io_tlb_npages);
115 /* make io_tlb_overflow tunable too? */
116
swiotlb_alloc_boot(size_t size,unsigned long nslabs)117 void * __weak __init swiotlb_alloc_boot(size_t size, unsigned long nslabs)
118 {
119 return alloc_bootmem_low_pages(size);
120 }
121
swiotlb_alloc(unsigned order,unsigned long nslabs)122 void * __weak swiotlb_alloc(unsigned order, unsigned long nslabs)
123 {
124 return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order);
125 }
126
swiotlb_phys_to_bus(struct device * hwdev,phys_addr_t paddr)127 dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
128 {
129 return paddr;
130 }
131
swiotlb_bus_to_phys(dma_addr_t baddr)132 phys_addr_t __weak swiotlb_bus_to_phys(dma_addr_t baddr)
133 {
134 return baddr;
135 }
136
swiotlb_virt_to_bus(struct device * hwdev,volatile void * address)137 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
138 volatile void *address)
139 {
140 return swiotlb_phys_to_bus(hwdev, virt_to_phys(address));
141 }
142
swiotlb_bus_to_virt(dma_addr_t address)143 static void *swiotlb_bus_to_virt(dma_addr_t address)
144 {
145 return phys_to_virt(swiotlb_bus_to_phys(address));
146 }
147
swiotlb_arch_range_needs_mapping(void * ptr,size_t size)148 int __weak swiotlb_arch_range_needs_mapping(void *ptr, size_t size)
149 {
150 return 0;
151 }
152
swiotlb_print_info(unsigned long bytes)153 static void swiotlb_print_info(unsigned long bytes)
154 {
155 phys_addr_t pstart, pend;
156
157 pstart = virt_to_phys(io_tlb_start);
158 pend = virt_to_phys(io_tlb_end);
159
160 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
161 bytes >> 20, io_tlb_start, io_tlb_end);
162 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
163 (unsigned long long)pstart,
164 (unsigned long long)pend);
165 }
166
167 /*
168 * Statically reserve bounce buffer space and initialize bounce buffer data
169 * structures for the software IO TLB used to implement the DMA API.
170 */
171 void __init
swiotlb_init_with_default_size(size_t default_size)172 swiotlb_init_with_default_size(size_t default_size)
173 {
174 unsigned long i, bytes;
175
176 if (!io_tlb_nslabs) {
177 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
178 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
179 }
180
181 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
182
183 /*
184 * Get IO TLB memory from the low pages
185 */
186 io_tlb_start = swiotlb_alloc_boot(bytes, io_tlb_nslabs);
187 if (!io_tlb_start)
188 panic("Cannot allocate SWIOTLB buffer");
189 io_tlb_end = io_tlb_start + bytes;
190
191 /*
192 * Allocate and initialize the free list array. This array is used
193 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
194 * between io_tlb_start and io_tlb_end.
195 */
196 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
197 for (i = 0; i < io_tlb_nslabs; i++)
198 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
199 io_tlb_index = 0;
200 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
201
202 /*
203 * Get the overflow emergency buffer
204 */
205 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
206 if (!io_tlb_overflow_buffer)
207 panic("Cannot allocate SWIOTLB overflow buffer!\n");
208
209 swiotlb_print_info(bytes);
210 }
211
212 void __init
swiotlb_init(void)213 swiotlb_init(void)
214 {
215 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
216 }
217
218 /*
219 * Systems with larger DMA zones (those that don't support ISA) can
220 * initialize the swiotlb later using the slab allocator if needed.
221 * This should be just like above, but with some error catching.
222 */
223 int
swiotlb_late_init_with_default_size(size_t default_size)224 swiotlb_late_init_with_default_size(size_t default_size)
225 {
226 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
227 unsigned int order;
228
229 if (!io_tlb_nslabs) {
230 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
231 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
232 }
233
234 /*
235 * Get IO TLB memory from the low pages
236 */
237 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
238 io_tlb_nslabs = SLABS_PER_PAGE << order;
239 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
240
241 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
242 io_tlb_start = swiotlb_alloc(order, io_tlb_nslabs);
243 if (io_tlb_start)
244 break;
245 order--;
246 }
247
248 if (!io_tlb_start)
249 goto cleanup1;
250
251 if (order != get_order(bytes)) {
252 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
253 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
254 io_tlb_nslabs = SLABS_PER_PAGE << order;
255 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
256 }
257 io_tlb_end = io_tlb_start + bytes;
258 memset(io_tlb_start, 0, bytes);
259
260 /*
261 * Allocate and initialize the free list array. This array is used
262 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
263 * between io_tlb_start and io_tlb_end.
264 */
265 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
266 get_order(io_tlb_nslabs * sizeof(int)));
267 if (!io_tlb_list)
268 goto cleanup2;
269
270 for (i = 0; i < io_tlb_nslabs; i++)
271 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
272 io_tlb_index = 0;
273
274 io_tlb_orig_addr = (phys_addr_t *)
275 __get_free_pages(GFP_KERNEL,
276 get_order(io_tlb_nslabs *
277 sizeof(phys_addr_t)));
278 if (!io_tlb_orig_addr)
279 goto cleanup3;
280
281 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
282
283 /*
284 * Get the overflow emergency buffer
285 */
286 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
287 get_order(io_tlb_overflow));
288 if (!io_tlb_overflow_buffer)
289 goto cleanup4;
290
291 swiotlb_print_info(bytes);
292
293 return 0;
294
295 cleanup4:
296 free_pages((unsigned long)io_tlb_orig_addr,
297 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
298 io_tlb_orig_addr = NULL;
299 cleanup3:
300 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
301 sizeof(int)));
302 io_tlb_list = NULL;
303 cleanup2:
304 io_tlb_end = NULL;
305 free_pages((unsigned long)io_tlb_start, order);
306 io_tlb_start = NULL;
307 cleanup1:
308 io_tlb_nslabs = req_nslabs;
309 return -ENOMEM;
310 }
311
312 static int
address_needs_mapping(struct device * hwdev,dma_addr_t addr,size_t size)313 address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
314 {
315 return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
316 }
317
range_needs_mapping(void * ptr,size_t size)318 static inline int range_needs_mapping(void *ptr, size_t size)
319 {
320 return swiotlb_force || swiotlb_arch_range_needs_mapping(ptr, size);
321 }
322
is_swiotlb_buffer(char * addr)323 static int is_swiotlb_buffer(char *addr)
324 {
325 return addr >= io_tlb_start && addr < io_tlb_end;
326 }
327
328 /*
329 * Bounce: copy the swiotlb buffer back to the original dma location
330 */
swiotlb_bounce(phys_addr_t phys,char * dma_addr,size_t size,enum dma_data_direction dir)331 static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
332 enum dma_data_direction dir)
333 {
334 unsigned long pfn = PFN_DOWN(phys);
335
336 if (PageHighMem(pfn_to_page(pfn))) {
337 /* The buffer does not have a mapping. Map it in and copy */
338 unsigned int offset = phys & ~PAGE_MASK;
339 char *buffer;
340 unsigned int sz = 0;
341 unsigned long flags;
342
343 while (size) {
344 sz = min(PAGE_SIZE - offset, size);
345
346 local_irq_save(flags);
347 buffer = kmap_atomic(pfn_to_page(pfn),
348 KM_BOUNCE_READ);
349 if (dir == DMA_TO_DEVICE)
350 memcpy(dma_addr, buffer + offset, sz);
351 else
352 memcpy(buffer + offset, dma_addr, sz);
353 kunmap_atomic(buffer, KM_BOUNCE_READ);
354 local_irq_restore(flags);
355
356 size -= sz;
357 pfn++;
358 dma_addr += sz;
359 offset = 0;
360 }
361 } else {
362 if (dir == DMA_TO_DEVICE)
363 memcpy(dma_addr, phys_to_virt(phys), size);
364 else
365 memcpy(phys_to_virt(phys), dma_addr, size);
366 }
367 }
368
369 /*
370 * Allocates bounce buffer and returns its kernel virtual address.
371 */
372 static void *
map_single(struct device * hwdev,phys_addr_t phys,size_t size,int dir)373 map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
374 {
375 unsigned long flags;
376 char *dma_addr;
377 unsigned int nslots, stride, index, wrap;
378 int i;
379 unsigned long start_dma_addr;
380 unsigned long mask;
381 unsigned long offset_slots;
382 unsigned long max_slots;
383
384 mask = dma_get_seg_boundary(hwdev);
385 start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
386
387 offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
388
389 /*
390 * Carefully handle integer overflow which can occur when mask == ~0UL.
391 */
392 max_slots = mask + 1
393 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
394 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
395
396 /*
397 * For mappings greater than a page, we limit the stride (and
398 * hence alignment) to a page size.
399 */
400 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
401 if (size > PAGE_SIZE)
402 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
403 else
404 stride = 1;
405
406 BUG_ON(!nslots);
407
408 /*
409 * Find suitable number of IO TLB entries size that will fit this
410 * request and allocate a buffer from that IO TLB pool.
411 */
412 spin_lock_irqsave(&io_tlb_lock, flags);
413 index = ALIGN(io_tlb_index, stride);
414 if (index >= io_tlb_nslabs)
415 index = 0;
416 wrap = index;
417
418 do {
419 while (iommu_is_span_boundary(index, nslots, offset_slots,
420 max_slots)) {
421 index += stride;
422 if (index >= io_tlb_nslabs)
423 index = 0;
424 if (index == wrap)
425 goto not_found;
426 }
427
428 /*
429 * If we find a slot that indicates we have 'nslots' number of
430 * contiguous buffers, we allocate the buffers from that slot
431 * and mark the entries as '0' indicating unavailable.
432 */
433 if (io_tlb_list[index] >= nslots) {
434 int count = 0;
435
436 for (i = index; i < (int) (index + nslots); i++)
437 io_tlb_list[i] = 0;
438 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
439 io_tlb_list[i] = ++count;
440 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
441
442 /*
443 * Update the indices to avoid searching in the next
444 * round.
445 */
446 io_tlb_index = ((index + nslots) < io_tlb_nslabs
447 ? (index + nslots) : 0);
448
449 goto found;
450 }
451 index += stride;
452 if (index >= io_tlb_nslabs)
453 index = 0;
454 } while (index != wrap);
455
456 not_found:
457 spin_unlock_irqrestore(&io_tlb_lock, flags);
458 return NULL;
459 found:
460 spin_unlock_irqrestore(&io_tlb_lock, flags);
461
462 /*
463 * Save away the mapping from the original address to the DMA address.
464 * This is needed when we sync the memory. Then we sync the buffer if
465 * needed.
466 */
467 for (i = 0; i < nslots; i++)
468 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
469 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
470 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
471
472 return dma_addr;
473 }
474
475 /*
476 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
477 */
478 static void
unmap_single(struct device * hwdev,char * dma_addr,size_t size,int dir)479 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
480 {
481 unsigned long flags;
482 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
483 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
484 phys_addr_t phys = io_tlb_orig_addr[index];
485
486 /*
487 * First, sync the memory before unmapping the entry
488 */
489 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
490 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
491
492 /*
493 * Return the buffer to the free list by setting the corresponding
494 * entries to indicate the number of contigous entries available.
495 * While returning the entries to the free list, we merge the entries
496 * with slots below and above the pool being returned.
497 */
498 spin_lock_irqsave(&io_tlb_lock, flags);
499 {
500 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
501 io_tlb_list[index + nslots] : 0);
502 /*
503 * Step 1: return the slots to the free list, merging the
504 * slots with superceeding slots
505 */
506 for (i = index + nslots - 1; i >= index; i--)
507 io_tlb_list[i] = ++count;
508 /*
509 * Step 2: merge the returned slots with the preceding slots,
510 * if available (non zero)
511 */
512 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
513 io_tlb_list[i] = ++count;
514 }
515 spin_unlock_irqrestore(&io_tlb_lock, flags);
516 }
517
518 static void
sync_single(struct device * hwdev,char * dma_addr,size_t size,int dir,int target)519 sync_single(struct device *hwdev, char *dma_addr, size_t size,
520 int dir, int target)
521 {
522 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
523 phys_addr_t phys = io_tlb_orig_addr[index];
524
525 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
526
527 switch (target) {
528 case SYNC_FOR_CPU:
529 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
530 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
531 else
532 BUG_ON(dir != DMA_TO_DEVICE);
533 break;
534 case SYNC_FOR_DEVICE:
535 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
536 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
537 else
538 BUG_ON(dir != DMA_FROM_DEVICE);
539 break;
540 default:
541 BUG();
542 }
543 }
544
545 void *
swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags)546 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
547 dma_addr_t *dma_handle, gfp_t flags)
548 {
549 dma_addr_t dev_addr;
550 void *ret;
551 int order = get_order(size);
552 u64 dma_mask = DMA_32BIT_MASK;
553
554 if (hwdev && hwdev->coherent_dma_mask)
555 dma_mask = hwdev->coherent_dma_mask;
556
557 ret = (void *)__get_free_pages(flags, order);
558 if (ret &&
559 !is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(hwdev, ret),
560 size)) {
561 /*
562 * The allocated memory isn't reachable by the device.
563 * Fall back on swiotlb_map_single().
564 */
565 free_pages((unsigned long) ret, order);
566 ret = NULL;
567 }
568 if (!ret) {
569 /*
570 * We are either out of memory or the device can't DMA
571 * to GFP_DMA memory; fall back on
572 * swiotlb_map_single(), which will grab memory from
573 * the lowest available address range.
574 */
575 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
576 if (!ret)
577 return NULL;
578 }
579
580 memset(ret, 0, size);
581 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
582
583 /* Confirm address can be DMA'd by device */
584 if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
585 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
586 (unsigned long long)dma_mask,
587 (unsigned long long)dev_addr);
588
589 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
590 unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
591 return NULL;
592 }
593 *dma_handle = dev_addr;
594 return ret;
595 }
596 EXPORT_SYMBOL(swiotlb_alloc_coherent);
597
598 void
swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dma_handle)599 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
600 dma_addr_t dma_handle)
601 {
602 WARN_ON(irqs_disabled());
603 if (!is_swiotlb_buffer(vaddr))
604 free_pages((unsigned long) vaddr, get_order(size));
605 else
606 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
607 unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
608 }
609 EXPORT_SYMBOL(swiotlb_free_coherent);
610
611 static void
swiotlb_full(struct device * dev,size_t size,int dir,int do_panic)612 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
613 {
614 /*
615 * Ran out of IOMMU space for this operation. This is very bad.
616 * Unfortunately the drivers cannot handle this operation properly.
617 * unless they check for dma_mapping_error (most don't)
618 * When the mapping is small enough return a static buffer to limit
619 * the damage, or panic when the transfer is too big.
620 */
621 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
622 "device %s\n", size, dev ? dev_name(dev) : "?");
623
624 if (size > io_tlb_overflow && do_panic) {
625 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
626 panic("DMA: Memory would be corrupted\n");
627 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
628 panic("DMA: Random memory would be DMAed\n");
629 }
630 }
631
632 /*
633 * Map a single buffer of the indicated size for DMA in streaming mode. The
634 * physical address to use is returned.
635 *
636 * Once the device is given the dma address, the device owns this memory until
637 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
638 */
639 dma_addr_t
swiotlb_map_single_attrs(struct device * hwdev,void * ptr,size_t size,int dir,struct dma_attrs * attrs)640 swiotlb_map_single_attrs(struct device *hwdev, void *ptr, size_t size,
641 int dir, struct dma_attrs *attrs)
642 {
643 dma_addr_t dev_addr = swiotlb_virt_to_bus(hwdev, ptr);
644 void *map;
645
646 BUG_ON(dir == DMA_NONE);
647 /*
648 * If the pointer passed in happens to be in the device's DMA window,
649 * we can safely return the device addr and not worry about bounce
650 * buffering it.
651 */
652 if (!address_needs_mapping(hwdev, dev_addr, size) &&
653 !range_needs_mapping(ptr, size))
654 return dev_addr;
655
656 /*
657 * Oh well, have to allocate and map a bounce buffer.
658 */
659 map = map_single(hwdev, virt_to_phys(ptr), size, dir);
660 if (!map) {
661 swiotlb_full(hwdev, size, dir, 1);
662 map = io_tlb_overflow_buffer;
663 }
664
665 dev_addr = swiotlb_virt_to_bus(hwdev, map);
666
667 /*
668 * Ensure that the address returned is DMA'ble
669 */
670 if (address_needs_mapping(hwdev, dev_addr, size))
671 panic("map_single: bounce buffer is not DMA'ble");
672
673 return dev_addr;
674 }
675 EXPORT_SYMBOL(swiotlb_map_single_attrs);
676
677 dma_addr_t
swiotlb_map_single(struct device * hwdev,void * ptr,size_t size,int dir)678 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
679 {
680 return swiotlb_map_single_attrs(hwdev, ptr, size, dir, NULL);
681 }
682 EXPORT_SYMBOL(swiotlb_map_single);
683
684 /*
685 * Unmap a single streaming mode DMA translation. The dma_addr and size must
686 * match what was provided for in a previous swiotlb_map_single call. All
687 * other usages are undefined.
688 *
689 * After this call, reads by the cpu to the buffer are guaranteed to see
690 * whatever the device wrote there.
691 */
692 void
swiotlb_unmap_single_attrs(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir,struct dma_attrs * attrs)693 swiotlb_unmap_single_attrs(struct device *hwdev, dma_addr_t dev_addr,
694 size_t size, int dir, struct dma_attrs *attrs)
695 {
696 char *dma_addr = swiotlb_bus_to_virt(dev_addr);
697
698 BUG_ON(dir == DMA_NONE);
699 if (is_swiotlb_buffer(dma_addr))
700 unmap_single(hwdev, dma_addr, size, dir);
701 else if (dir == DMA_FROM_DEVICE)
702 dma_mark_clean(dma_addr, size);
703 }
704 EXPORT_SYMBOL(swiotlb_unmap_single_attrs);
705
706 void
swiotlb_unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir)707 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
708 int dir)
709 {
710 return swiotlb_unmap_single_attrs(hwdev, dev_addr, size, dir, NULL);
711 }
712 EXPORT_SYMBOL(swiotlb_unmap_single);
713
714 /*
715 * Make physical memory consistent for a single streaming mode DMA translation
716 * after a transfer.
717 *
718 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
719 * using the cpu, yet do not wish to teardown the dma mapping, you must
720 * call this function before doing so. At the next point you give the dma
721 * address back to the card, you must first perform a
722 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
723 */
724 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir,int target)725 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
726 size_t size, int dir, int target)
727 {
728 char *dma_addr = swiotlb_bus_to_virt(dev_addr);
729
730 BUG_ON(dir == DMA_NONE);
731 if (is_swiotlb_buffer(dma_addr))
732 sync_single(hwdev, dma_addr, size, dir, target);
733 else if (dir == DMA_FROM_DEVICE)
734 dma_mark_clean(dma_addr, size);
735 }
736
737 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir)738 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
739 size_t size, int dir)
740 {
741 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
742 }
743 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
744
745 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir)746 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
747 size_t size, int dir)
748 {
749 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
750 }
751 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
752
753 /*
754 * Same as above, but for a sub-range of the mapping.
755 */
756 static void
swiotlb_sync_single_range(struct device * hwdev,dma_addr_t dev_addr,unsigned long offset,size_t size,int dir,int target)757 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
758 unsigned long offset, size_t size,
759 int dir, int target)
760 {
761 char *dma_addr = swiotlb_bus_to_virt(dev_addr) + offset;
762
763 BUG_ON(dir == DMA_NONE);
764 if (is_swiotlb_buffer(dma_addr))
765 sync_single(hwdev, dma_addr, size, dir, target);
766 else if (dir == DMA_FROM_DEVICE)
767 dma_mark_clean(dma_addr, size);
768 }
769
770 void
swiotlb_sync_single_range_for_cpu(struct device * hwdev,dma_addr_t dev_addr,unsigned long offset,size_t size,int dir)771 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
772 unsigned long offset, size_t size, int dir)
773 {
774 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
775 SYNC_FOR_CPU);
776 }
777 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
778
779 void
swiotlb_sync_single_range_for_device(struct device * hwdev,dma_addr_t dev_addr,unsigned long offset,size_t size,int dir)780 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
781 unsigned long offset, size_t size, int dir)
782 {
783 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
784 SYNC_FOR_DEVICE);
785 }
786 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
787
788 /*
789 * Map a set of buffers described by scatterlist in streaming mode for DMA.
790 * This is the scatter-gather version of the above swiotlb_map_single
791 * interface. Here the scatter gather list elements are each tagged with the
792 * appropriate dma address and length. They are obtained via
793 * sg_dma_{address,length}(SG).
794 *
795 * NOTE: An implementation may be able to use a smaller number of
796 * DMA address/length pairs than there are SG table elements.
797 * (for example via virtual mapping capabilities)
798 * The routine returns the number of addr/length pairs actually
799 * used, at most nents.
800 *
801 * Device ownership issues as mentioned above for swiotlb_map_single are the
802 * same here.
803 */
804 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir,struct dma_attrs * attrs)805 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
806 int dir, struct dma_attrs *attrs)
807 {
808 struct scatterlist *sg;
809 int i;
810
811 BUG_ON(dir == DMA_NONE);
812
813 for_each_sg(sgl, sg, nelems, i) {
814 void *addr = sg_virt(sg);
815 dma_addr_t dev_addr = swiotlb_virt_to_bus(hwdev, addr);
816
817 if (range_needs_mapping(addr, sg->length) ||
818 address_needs_mapping(hwdev, dev_addr, sg->length)) {
819 void *map = map_single(hwdev, sg_phys(sg),
820 sg->length, dir);
821 if (!map) {
822 /* Don't panic here, we expect map_sg users
823 to do proper error handling. */
824 swiotlb_full(hwdev, sg->length, dir, 0);
825 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
826 attrs);
827 sgl[0].dma_length = 0;
828 return 0;
829 }
830 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
831 } else
832 sg->dma_address = dev_addr;
833 sg->dma_length = sg->length;
834 }
835 return nelems;
836 }
837 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
838
839 int
swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir)840 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
841 int dir)
842 {
843 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
844 }
845 EXPORT_SYMBOL(swiotlb_map_sg);
846
847 /*
848 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
849 * concerning calls here are the same as for swiotlb_unmap_single() above.
850 */
851 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir,struct dma_attrs * attrs)852 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
853 int nelems, int dir, struct dma_attrs *attrs)
854 {
855 struct scatterlist *sg;
856 int i;
857
858 BUG_ON(dir == DMA_NONE);
859
860 for_each_sg(sgl, sg, nelems, i) {
861 if (sg->dma_address != swiotlb_virt_to_bus(hwdev, sg_virt(sg)))
862 unmap_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
863 sg->dma_length, dir);
864 else if (dir == DMA_FROM_DEVICE)
865 dma_mark_clean(sg_virt(sg), sg->dma_length);
866 }
867 }
868 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
869
870 void
swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir)871 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
872 int dir)
873 {
874 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
875 }
876 EXPORT_SYMBOL(swiotlb_unmap_sg);
877
878 /*
879 * Make physical memory consistent for a set of streaming mode DMA translations
880 * after a transfer.
881 *
882 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
883 * and usage.
884 */
885 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir,int target)886 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
887 int nelems, int dir, int target)
888 {
889 struct scatterlist *sg;
890 int i;
891
892 BUG_ON(dir == DMA_NONE);
893
894 for_each_sg(sgl, sg, nelems, i) {
895 if (sg->dma_address != swiotlb_virt_to_bus(hwdev, sg_virt(sg)))
896 sync_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
897 sg->dma_length, dir, target);
898 else if (dir == DMA_FROM_DEVICE)
899 dma_mark_clean(sg_virt(sg), sg->dma_length);
900 }
901 }
902
903 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,int dir)904 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
905 int nelems, int dir)
906 {
907 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
908 }
909 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
910
911 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,int dir)912 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
913 int nelems, int dir)
914 {
915 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
916 }
917 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
918
919 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)920 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
921 {
922 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
923 }
924 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
925
926 /*
927 * Return whether the given device DMA address mask can be supported
928 * properly. For example, if your device can only drive the low 24-bits
929 * during bus mastering, then you would pass 0x00ffffff as the mask to
930 * this function.
931 */
932 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)933 swiotlb_dma_supported(struct device *hwdev, u64 mask)
934 {
935 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
936 }
937 EXPORT_SYMBOL(swiotlb_dma_supported);
938