• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is a fallback for platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13  *			unnecessary i-cache flushing.
14  * 04/07/.. ak		Better overflow handling. Assorted fixes.
15  * 05/09/10 linville	Add support for syncing ranges, support syncing for
16  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  * 08/12/11 beckyb	Add highmem support
18  */
19 
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 
32 #include <asm/io.h>
33 #include <asm/dma.h>
34 #include <asm/scatterlist.h>
35 
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/iommu-helper.h>
39 
40 #define OFFSET(val,align) ((unsigned long)	\
41 	                   ( (val) & ( (align) - 1)))
42 
43 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
44 
45 /*
46  * Minimum IO TLB size to bother booting with.  Systems with mainly
47  * 64bit capable cards will only lightly use the swiotlb.  If we can't
48  * allocate a contiguous 1MB, we're probably in trouble anyway.
49  */
50 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
51 
52 /*
53  * Enumeration for sync targets
54  */
55 enum dma_sync_target {
56 	SYNC_FOR_CPU = 0,
57 	SYNC_FOR_DEVICE = 1,
58 };
59 
60 int swiotlb_force;
61 
62 /*
63  * Used to do a quick range check in swiotlb_unmap_single and
64  * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
65  * API.
66  */
67 static char *io_tlb_start, *io_tlb_end;
68 
69 /*
70  * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
72  */
73 static unsigned long io_tlb_nslabs;
74 
75 /*
76  * When the IOMMU overflows we return a fallback buffer. This sets the size.
77  */
78 static unsigned long io_tlb_overflow = 32*1024;
79 
80 void *io_tlb_overflow_buffer;
81 
82 /*
83  * This is a free list describing the number of free entries available from
84  * each index
85  */
86 static unsigned int *io_tlb_list;
87 static unsigned int io_tlb_index;
88 
89 /*
90  * We need to save away the original address corresponding to a mapped entry
91  * for the sync operations.
92  */
93 static phys_addr_t *io_tlb_orig_addr;
94 
95 /*
96  * Protect the above data structures in the map and unmap calls
97  */
98 static DEFINE_SPINLOCK(io_tlb_lock);
99 
100 static int __init
setup_io_tlb_npages(char * str)101 setup_io_tlb_npages(char *str)
102 {
103 	if (isdigit(*str)) {
104 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
105 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
106 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
107 	}
108 	if (*str == ',')
109 		++str;
110 	if (!strcmp(str, "force"))
111 		swiotlb_force = 1;
112 	return 1;
113 }
114 __setup("swiotlb=", setup_io_tlb_npages);
115 /* make io_tlb_overflow tunable too? */
116 
swiotlb_alloc_boot(size_t size,unsigned long nslabs)117 void * __weak __init swiotlb_alloc_boot(size_t size, unsigned long nslabs)
118 {
119 	return alloc_bootmem_low_pages(size);
120 }
121 
swiotlb_alloc(unsigned order,unsigned long nslabs)122 void * __weak swiotlb_alloc(unsigned order, unsigned long nslabs)
123 {
124 	return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order);
125 }
126 
swiotlb_phys_to_bus(struct device * hwdev,phys_addr_t paddr)127 dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
128 {
129 	return paddr;
130 }
131 
swiotlb_bus_to_phys(dma_addr_t baddr)132 phys_addr_t __weak swiotlb_bus_to_phys(dma_addr_t baddr)
133 {
134 	return baddr;
135 }
136 
swiotlb_virt_to_bus(struct device * hwdev,volatile void * address)137 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
138 				      volatile void *address)
139 {
140 	return swiotlb_phys_to_bus(hwdev, virt_to_phys(address));
141 }
142 
swiotlb_bus_to_virt(dma_addr_t address)143 static void *swiotlb_bus_to_virt(dma_addr_t address)
144 {
145 	return phys_to_virt(swiotlb_bus_to_phys(address));
146 }
147 
swiotlb_arch_range_needs_mapping(void * ptr,size_t size)148 int __weak swiotlb_arch_range_needs_mapping(void *ptr, size_t size)
149 {
150 	return 0;
151 }
152 
swiotlb_print_info(unsigned long bytes)153 static void swiotlb_print_info(unsigned long bytes)
154 {
155 	phys_addr_t pstart, pend;
156 
157 	pstart = virt_to_phys(io_tlb_start);
158 	pend = virt_to_phys(io_tlb_end);
159 
160 	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
161 	       bytes >> 20, io_tlb_start, io_tlb_end);
162 	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
163 	       (unsigned long long)pstart,
164 	       (unsigned long long)pend);
165 }
166 
167 /*
168  * Statically reserve bounce buffer space and initialize bounce buffer data
169  * structures for the software IO TLB used to implement the DMA API.
170  */
171 void __init
swiotlb_init_with_default_size(size_t default_size)172 swiotlb_init_with_default_size(size_t default_size)
173 {
174 	unsigned long i, bytes;
175 
176 	if (!io_tlb_nslabs) {
177 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
178 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
179 	}
180 
181 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
182 
183 	/*
184 	 * Get IO TLB memory from the low pages
185 	 */
186 	io_tlb_start = swiotlb_alloc_boot(bytes, io_tlb_nslabs);
187 	if (!io_tlb_start)
188 		panic("Cannot allocate SWIOTLB buffer");
189 	io_tlb_end = io_tlb_start + bytes;
190 
191 	/*
192 	 * Allocate and initialize the free list array.  This array is used
193 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
194 	 * between io_tlb_start and io_tlb_end.
195 	 */
196 	io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
197 	for (i = 0; i < io_tlb_nslabs; i++)
198  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
199 	io_tlb_index = 0;
200 	io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
201 
202 	/*
203 	 * Get the overflow emergency buffer
204 	 */
205 	io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
206 	if (!io_tlb_overflow_buffer)
207 		panic("Cannot allocate SWIOTLB overflow buffer!\n");
208 
209 	swiotlb_print_info(bytes);
210 }
211 
212 void __init
swiotlb_init(void)213 swiotlb_init(void)
214 {
215 	swiotlb_init_with_default_size(64 * (1<<20));	/* default to 64MB */
216 }
217 
218 /*
219  * Systems with larger DMA zones (those that don't support ISA) can
220  * initialize the swiotlb later using the slab allocator if needed.
221  * This should be just like above, but with some error catching.
222  */
223 int
swiotlb_late_init_with_default_size(size_t default_size)224 swiotlb_late_init_with_default_size(size_t default_size)
225 {
226 	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
227 	unsigned int order;
228 
229 	if (!io_tlb_nslabs) {
230 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
231 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
232 	}
233 
234 	/*
235 	 * Get IO TLB memory from the low pages
236 	 */
237 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
238 	io_tlb_nslabs = SLABS_PER_PAGE << order;
239 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
240 
241 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
242 		io_tlb_start = swiotlb_alloc(order, io_tlb_nslabs);
243 		if (io_tlb_start)
244 			break;
245 		order--;
246 	}
247 
248 	if (!io_tlb_start)
249 		goto cleanup1;
250 
251 	if (order != get_order(bytes)) {
252 		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
253 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
254 		io_tlb_nslabs = SLABS_PER_PAGE << order;
255 		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
256 	}
257 	io_tlb_end = io_tlb_start + bytes;
258 	memset(io_tlb_start, 0, bytes);
259 
260 	/*
261 	 * Allocate and initialize the free list array.  This array is used
262 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
263 	 * between io_tlb_start and io_tlb_end.
264 	 */
265 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
266 	                              get_order(io_tlb_nslabs * sizeof(int)));
267 	if (!io_tlb_list)
268 		goto cleanup2;
269 
270 	for (i = 0; i < io_tlb_nslabs; i++)
271  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
272 	io_tlb_index = 0;
273 
274 	io_tlb_orig_addr = (phys_addr_t *)
275 		__get_free_pages(GFP_KERNEL,
276 				 get_order(io_tlb_nslabs *
277 					   sizeof(phys_addr_t)));
278 	if (!io_tlb_orig_addr)
279 		goto cleanup3;
280 
281 	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
282 
283 	/*
284 	 * Get the overflow emergency buffer
285 	 */
286 	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
287 	                                          get_order(io_tlb_overflow));
288 	if (!io_tlb_overflow_buffer)
289 		goto cleanup4;
290 
291 	swiotlb_print_info(bytes);
292 
293 	return 0;
294 
295 cleanup4:
296 	free_pages((unsigned long)io_tlb_orig_addr,
297 		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
298 	io_tlb_orig_addr = NULL;
299 cleanup3:
300 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
301 	                                                 sizeof(int)));
302 	io_tlb_list = NULL;
303 cleanup2:
304 	io_tlb_end = NULL;
305 	free_pages((unsigned long)io_tlb_start, order);
306 	io_tlb_start = NULL;
307 cleanup1:
308 	io_tlb_nslabs = req_nslabs;
309 	return -ENOMEM;
310 }
311 
312 static int
address_needs_mapping(struct device * hwdev,dma_addr_t addr,size_t size)313 address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
314 {
315 	return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
316 }
317 
range_needs_mapping(void * ptr,size_t size)318 static inline int range_needs_mapping(void *ptr, size_t size)
319 {
320 	return swiotlb_force || swiotlb_arch_range_needs_mapping(ptr, size);
321 }
322 
is_swiotlb_buffer(char * addr)323 static int is_swiotlb_buffer(char *addr)
324 {
325 	return addr >= io_tlb_start && addr < io_tlb_end;
326 }
327 
328 /*
329  * Bounce: copy the swiotlb buffer back to the original dma location
330  */
swiotlb_bounce(phys_addr_t phys,char * dma_addr,size_t size,enum dma_data_direction dir)331 static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
332 			   enum dma_data_direction dir)
333 {
334 	unsigned long pfn = PFN_DOWN(phys);
335 
336 	if (PageHighMem(pfn_to_page(pfn))) {
337 		/* The buffer does not have a mapping.  Map it in and copy */
338 		unsigned int offset = phys & ~PAGE_MASK;
339 		char *buffer;
340 		unsigned int sz = 0;
341 		unsigned long flags;
342 
343 		while (size) {
344 			sz = min(PAGE_SIZE - offset, size);
345 
346 			local_irq_save(flags);
347 			buffer = kmap_atomic(pfn_to_page(pfn),
348 					     KM_BOUNCE_READ);
349 			if (dir == DMA_TO_DEVICE)
350 				memcpy(dma_addr, buffer + offset, sz);
351 			else
352 				memcpy(buffer + offset, dma_addr, sz);
353 			kunmap_atomic(buffer, KM_BOUNCE_READ);
354 			local_irq_restore(flags);
355 
356 			size -= sz;
357 			pfn++;
358 			dma_addr += sz;
359 			offset = 0;
360 		}
361 	} else {
362 		if (dir == DMA_TO_DEVICE)
363 			memcpy(dma_addr, phys_to_virt(phys), size);
364 		else
365 			memcpy(phys_to_virt(phys), dma_addr, size);
366 	}
367 }
368 
369 /*
370  * Allocates bounce buffer and returns its kernel virtual address.
371  */
372 static void *
map_single(struct device * hwdev,phys_addr_t phys,size_t size,int dir)373 map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
374 {
375 	unsigned long flags;
376 	char *dma_addr;
377 	unsigned int nslots, stride, index, wrap;
378 	int i;
379 	unsigned long start_dma_addr;
380 	unsigned long mask;
381 	unsigned long offset_slots;
382 	unsigned long max_slots;
383 
384 	mask = dma_get_seg_boundary(hwdev);
385 	start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
386 
387 	offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
388 
389 	/*
390  	 * Carefully handle integer overflow which can occur when mask == ~0UL.
391  	 */
392 	max_slots = mask + 1
393 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
394 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
395 
396 	/*
397 	 * For mappings greater than a page, we limit the stride (and
398 	 * hence alignment) to a page size.
399 	 */
400 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
401 	if (size > PAGE_SIZE)
402 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
403 	else
404 		stride = 1;
405 
406 	BUG_ON(!nslots);
407 
408 	/*
409 	 * Find suitable number of IO TLB entries size that will fit this
410 	 * request and allocate a buffer from that IO TLB pool.
411 	 */
412 	spin_lock_irqsave(&io_tlb_lock, flags);
413 	index = ALIGN(io_tlb_index, stride);
414 	if (index >= io_tlb_nslabs)
415 		index = 0;
416 	wrap = index;
417 
418 	do {
419 		while (iommu_is_span_boundary(index, nslots, offset_slots,
420 					      max_slots)) {
421 			index += stride;
422 			if (index >= io_tlb_nslabs)
423 				index = 0;
424 			if (index == wrap)
425 				goto not_found;
426 		}
427 
428 		/*
429 		 * If we find a slot that indicates we have 'nslots' number of
430 		 * contiguous buffers, we allocate the buffers from that slot
431 		 * and mark the entries as '0' indicating unavailable.
432 		 */
433 		if (io_tlb_list[index] >= nslots) {
434 			int count = 0;
435 
436 			for (i = index; i < (int) (index + nslots); i++)
437 				io_tlb_list[i] = 0;
438 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
439 				io_tlb_list[i] = ++count;
440 			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
441 
442 			/*
443 			 * Update the indices to avoid searching in the next
444 			 * round.
445 			 */
446 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
447 					? (index + nslots) : 0);
448 
449 			goto found;
450 		}
451 		index += stride;
452 		if (index >= io_tlb_nslabs)
453 			index = 0;
454 	} while (index != wrap);
455 
456 not_found:
457 	spin_unlock_irqrestore(&io_tlb_lock, flags);
458 	return NULL;
459 found:
460 	spin_unlock_irqrestore(&io_tlb_lock, flags);
461 
462 	/*
463 	 * Save away the mapping from the original address to the DMA address.
464 	 * This is needed when we sync the memory.  Then we sync the buffer if
465 	 * needed.
466 	 */
467 	for (i = 0; i < nslots; i++)
468 		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
469 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
470 		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
471 
472 	return dma_addr;
473 }
474 
475 /*
476  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
477  */
478 static void
unmap_single(struct device * hwdev,char * dma_addr,size_t size,int dir)479 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
480 {
481 	unsigned long flags;
482 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
483 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
484 	phys_addr_t phys = io_tlb_orig_addr[index];
485 
486 	/*
487 	 * First, sync the memory before unmapping the entry
488 	 */
489 	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
490 		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
491 
492 	/*
493 	 * Return the buffer to the free list by setting the corresponding
494 	 * entries to indicate the number of contigous entries available.
495 	 * While returning the entries to the free list, we merge the entries
496 	 * with slots below and above the pool being returned.
497 	 */
498 	spin_lock_irqsave(&io_tlb_lock, flags);
499 	{
500 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
501 			 io_tlb_list[index + nslots] : 0);
502 		/*
503 		 * Step 1: return the slots to the free list, merging the
504 		 * slots with superceeding slots
505 		 */
506 		for (i = index + nslots - 1; i >= index; i--)
507 			io_tlb_list[i] = ++count;
508 		/*
509 		 * Step 2: merge the returned slots with the preceding slots,
510 		 * if available (non zero)
511 		 */
512 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
513 			io_tlb_list[i] = ++count;
514 	}
515 	spin_unlock_irqrestore(&io_tlb_lock, flags);
516 }
517 
518 static void
sync_single(struct device * hwdev,char * dma_addr,size_t size,int dir,int target)519 sync_single(struct device *hwdev, char *dma_addr, size_t size,
520 	    int dir, int target)
521 {
522 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
523 	phys_addr_t phys = io_tlb_orig_addr[index];
524 
525 	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
526 
527 	switch (target) {
528 	case SYNC_FOR_CPU:
529 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
530 			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
531 		else
532 			BUG_ON(dir != DMA_TO_DEVICE);
533 		break;
534 	case SYNC_FOR_DEVICE:
535 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
536 			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
537 		else
538 			BUG_ON(dir != DMA_FROM_DEVICE);
539 		break;
540 	default:
541 		BUG();
542 	}
543 }
544 
545 void *
swiotlb_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags)546 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
547 		       dma_addr_t *dma_handle, gfp_t flags)
548 {
549 	dma_addr_t dev_addr;
550 	void *ret;
551 	int order = get_order(size);
552 	u64 dma_mask = DMA_32BIT_MASK;
553 
554 	if (hwdev && hwdev->coherent_dma_mask)
555 		dma_mask = hwdev->coherent_dma_mask;
556 
557 	ret = (void *)__get_free_pages(flags, order);
558 	if (ret &&
559 	    !is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(hwdev, ret),
560 				   size)) {
561 		/*
562 		 * The allocated memory isn't reachable by the device.
563 		 * Fall back on swiotlb_map_single().
564 		 */
565 		free_pages((unsigned long) ret, order);
566 		ret = NULL;
567 	}
568 	if (!ret) {
569 		/*
570 		 * We are either out of memory or the device can't DMA
571 		 * to GFP_DMA memory; fall back on
572 		 * swiotlb_map_single(), which will grab memory from
573 		 * the lowest available address range.
574 		 */
575 		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
576 		if (!ret)
577 			return NULL;
578 	}
579 
580 	memset(ret, 0, size);
581 	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
582 
583 	/* Confirm address can be DMA'd by device */
584 	if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
585 		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
586 		       (unsigned long long)dma_mask,
587 		       (unsigned long long)dev_addr);
588 
589 		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
590 		unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
591 		return NULL;
592 	}
593 	*dma_handle = dev_addr;
594 	return ret;
595 }
596 EXPORT_SYMBOL(swiotlb_alloc_coherent);
597 
598 void
swiotlb_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dma_handle)599 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
600 		      dma_addr_t dma_handle)
601 {
602 	WARN_ON(irqs_disabled());
603 	if (!is_swiotlb_buffer(vaddr))
604 		free_pages((unsigned long) vaddr, get_order(size));
605 	else
606 		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
607 		unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
608 }
609 EXPORT_SYMBOL(swiotlb_free_coherent);
610 
611 static void
swiotlb_full(struct device * dev,size_t size,int dir,int do_panic)612 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
613 {
614 	/*
615 	 * Ran out of IOMMU space for this operation. This is very bad.
616 	 * Unfortunately the drivers cannot handle this operation properly.
617 	 * unless they check for dma_mapping_error (most don't)
618 	 * When the mapping is small enough return a static buffer to limit
619 	 * the damage, or panic when the transfer is too big.
620 	 */
621 	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
622 	       "device %s\n", size, dev ? dev_name(dev) : "?");
623 
624 	if (size > io_tlb_overflow && do_panic) {
625 		if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
626 			panic("DMA: Memory would be corrupted\n");
627 		if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
628 			panic("DMA: Random memory would be DMAed\n");
629 	}
630 }
631 
632 /*
633  * Map a single buffer of the indicated size for DMA in streaming mode.  The
634  * physical address to use is returned.
635  *
636  * Once the device is given the dma address, the device owns this memory until
637  * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
638  */
639 dma_addr_t
swiotlb_map_single_attrs(struct device * hwdev,void * ptr,size_t size,int dir,struct dma_attrs * attrs)640 swiotlb_map_single_attrs(struct device *hwdev, void *ptr, size_t size,
641 			 int dir, struct dma_attrs *attrs)
642 {
643 	dma_addr_t dev_addr = swiotlb_virt_to_bus(hwdev, ptr);
644 	void *map;
645 
646 	BUG_ON(dir == DMA_NONE);
647 	/*
648 	 * If the pointer passed in happens to be in the device's DMA window,
649 	 * we can safely return the device addr and not worry about bounce
650 	 * buffering it.
651 	 */
652 	if (!address_needs_mapping(hwdev, dev_addr, size) &&
653 	    !range_needs_mapping(ptr, size))
654 		return dev_addr;
655 
656 	/*
657 	 * Oh well, have to allocate and map a bounce buffer.
658 	 */
659 	map = map_single(hwdev, virt_to_phys(ptr), size, dir);
660 	if (!map) {
661 		swiotlb_full(hwdev, size, dir, 1);
662 		map = io_tlb_overflow_buffer;
663 	}
664 
665 	dev_addr = swiotlb_virt_to_bus(hwdev, map);
666 
667 	/*
668 	 * Ensure that the address returned is DMA'ble
669 	 */
670 	if (address_needs_mapping(hwdev, dev_addr, size))
671 		panic("map_single: bounce buffer is not DMA'ble");
672 
673 	return dev_addr;
674 }
675 EXPORT_SYMBOL(swiotlb_map_single_attrs);
676 
677 dma_addr_t
swiotlb_map_single(struct device * hwdev,void * ptr,size_t size,int dir)678 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
679 {
680 	return swiotlb_map_single_attrs(hwdev, ptr, size, dir, NULL);
681 }
682 EXPORT_SYMBOL(swiotlb_map_single);
683 
684 /*
685  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
686  * match what was provided for in a previous swiotlb_map_single call.  All
687  * other usages are undefined.
688  *
689  * After this call, reads by the cpu to the buffer are guaranteed to see
690  * whatever the device wrote there.
691  */
692 void
swiotlb_unmap_single_attrs(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir,struct dma_attrs * attrs)693 swiotlb_unmap_single_attrs(struct device *hwdev, dma_addr_t dev_addr,
694 			   size_t size, int dir, struct dma_attrs *attrs)
695 {
696 	char *dma_addr = swiotlb_bus_to_virt(dev_addr);
697 
698 	BUG_ON(dir == DMA_NONE);
699 	if (is_swiotlb_buffer(dma_addr))
700 		unmap_single(hwdev, dma_addr, size, dir);
701 	else if (dir == DMA_FROM_DEVICE)
702 		dma_mark_clean(dma_addr, size);
703 }
704 EXPORT_SYMBOL(swiotlb_unmap_single_attrs);
705 
706 void
swiotlb_unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir)707 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
708 		     int dir)
709 {
710 	return swiotlb_unmap_single_attrs(hwdev, dev_addr, size, dir, NULL);
711 }
712 EXPORT_SYMBOL(swiotlb_unmap_single);
713 
714 /*
715  * Make physical memory consistent for a single streaming mode DMA translation
716  * after a transfer.
717  *
718  * If you perform a swiotlb_map_single() but wish to interrogate the buffer
719  * using the cpu, yet do not wish to teardown the dma mapping, you must
720  * call this function before doing so.  At the next point you give the dma
721  * address back to the card, you must first perform a
722  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
723  */
724 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir,int target)725 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
726 		    size_t size, int dir, int target)
727 {
728 	char *dma_addr = swiotlb_bus_to_virt(dev_addr);
729 
730 	BUG_ON(dir == DMA_NONE);
731 	if (is_swiotlb_buffer(dma_addr))
732 		sync_single(hwdev, dma_addr, size, dir, target);
733 	else if (dir == DMA_FROM_DEVICE)
734 		dma_mark_clean(dma_addr, size);
735 }
736 
737 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir)738 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
739 			    size_t size, int dir)
740 {
741 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
742 }
743 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
744 
745 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,int dir)746 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
747 			       size_t size, int dir)
748 {
749 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
750 }
751 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
752 
753 /*
754  * Same as above, but for a sub-range of the mapping.
755  */
756 static void
swiotlb_sync_single_range(struct device * hwdev,dma_addr_t dev_addr,unsigned long offset,size_t size,int dir,int target)757 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
758 			  unsigned long offset, size_t size,
759 			  int dir, int target)
760 {
761 	char *dma_addr = swiotlb_bus_to_virt(dev_addr) + offset;
762 
763 	BUG_ON(dir == DMA_NONE);
764 	if (is_swiotlb_buffer(dma_addr))
765 		sync_single(hwdev, dma_addr, size, dir, target);
766 	else if (dir == DMA_FROM_DEVICE)
767 		dma_mark_clean(dma_addr, size);
768 }
769 
770 void
swiotlb_sync_single_range_for_cpu(struct device * hwdev,dma_addr_t dev_addr,unsigned long offset,size_t size,int dir)771 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
772 				  unsigned long offset, size_t size, int dir)
773 {
774 	swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
775 				  SYNC_FOR_CPU);
776 }
777 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
778 
779 void
swiotlb_sync_single_range_for_device(struct device * hwdev,dma_addr_t dev_addr,unsigned long offset,size_t size,int dir)780 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
781 				     unsigned long offset, size_t size, int dir)
782 {
783 	swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
784 				  SYNC_FOR_DEVICE);
785 }
786 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
787 
788 /*
789  * Map a set of buffers described by scatterlist in streaming mode for DMA.
790  * This is the scatter-gather version of the above swiotlb_map_single
791  * interface.  Here the scatter gather list elements are each tagged with the
792  * appropriate dma address and length.  They are obtained via
793  * sg_dma_{address,length}(SG).
794  *
795  * NOTE: An implementation may be able to use a smaller number of
796  *       DMA address/length pairs than there are SG table elements.
797  *       (for example via virtual mapping capabilities)
798  *       The routine returns the number of addr/length pairs actually
799  *       used, at most nents.
800  *
801  * Device ownership issues as mentioned above for swiotlb_map_single are the
802  * same here.
803  */
804 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir,struct dma_attrs * attrs)805 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
806 		     int dir, struct dma_attrs *attrs)
807 {
808 	struct scatterlist *sg;
809 	int i;
810 
811 	BUG_ON(dir == DMA_NONE);
812 
813 	for_each_sg(sgl, sg, nelems, i) {
814 		void *addr = sg_virt(sg);
815 		dma_addr_t dev_addr = swiotlb_virt_to_bus(hwdev, addr);
816 
817 		if (range_needs_mapping(addr, sg->length) ||
818 		    address_needs_mapping(hwdev, dev_addr, sg->length)) {
819 			void *map = map_single(hwdev, sg_phys(sg),
820 					       sg->length, dir);
821 			if (!map) {
822 				/* Don't panic here, we expect map_sg users
823 				   to do proper error handling. */
824 				swiotlb_full(hwdev, sg->length, dir, 0);
825 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
826 						       attrs);
827 				sgl[0].dma_length = 0;
828 				return 0;
829 			}
830 			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
831 		} else
832 			sg->dma_address = dev_addr;
833 		sg->dma_length = sg->length;
834 	}
835 	return nelems;
836 }
837 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
838 
839 int
swiotlb_map_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir)840 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
841 	       int dir)
842 {
843 	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
844 }
845 EXPORT_SYMBOL(swiotlb_map_sg);
846 
847 /*
848  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
849  * concerning calls here are the same as for swiotlb_unmap_single() above.
850  */
851 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir,struct dma_attrs * attrs)852 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
853 		       int nelems, int dir, struct dma_attrs *attrs)
854 {
855 	struct scatterlist *sg;
856 	int i;
857 
858 	BUG_ON(dir == DMA_NONE);
859 
860 	for_each_sg(sgl, sg, nelems, i) {
861 		if (sg->dma_address != swiotlb_virt_to_bus(hwdev, sg_virt(sg)))
862 			unmap_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
863 				     sg->dma_length, dir);
864 		else if (dir == DMA_FROM_DEVICE)
865 			dma_mark_clean(sg_virt(sg), sg->dma_length);
866 	}
867 }
868 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
869 
870 void
swiotlb_unmap_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir)871 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
872 		 int dir)
873 {
874 	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
875 }
876 EXPORT_SYMBOL(swiotlb_unmap_sg);
877 
878 /*
879  * Make physical memory consistent for a set of streaming mode DMA translations
880  * after a transfer.
881  *
882  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
883  * and usage.
884  */
885 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,int dir,int target)886 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
887 		int nelems, int dir, int target)
888 {
889 	struct scatterlist *sg;
890 	int i;
891 
892 	BUG_ON(dir == DMA_NONE);
893 
894 	for_each_sg(sgl, sg, nelems, i) {
895 		if (sg->dma_address != swiotlb_virt_to_bus(hwdev, sg_virt(sg)))
896 			sync_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
897 				    sg->dma_length, dir, target);
898 		else if (dir == DMA_FROM_DEVICE)
899 			dma_mark_clean(sg_virt(sg), sg->dma_length);
900 	}
901 }
902 
903 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,int dir)904 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
905 			int nelems, int dir)
906 {
907 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
908 }
909 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
910 
911 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,int dir)912 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
913 			   int nelems, int dir)
914 {
915 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
916 }
917 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
918 
919 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)920 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
921 {
922 	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
923 }
924 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
925 
926 /*
927  * Return whether the given device DMA address mask can be supported
928  * properly.  For example, if your device can only drive the low 24-bits
929  * during bus mastering, then you would pass 0x00ffffff as the mask to
930  * this function.
931  */
932 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)933 swiotlb_dma_supported(struct device *hwdev, u64 mask)
934 {
935 	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
936 }
937 EXPORT_SYMBOL(swiotlb_dma_supported);
938