1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43
44 #include <asm/mman.h>
45
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 *
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 *
81 * ->i_mutex
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
__remove_from_page_cache(struct page * page)115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
124 mem_cgroup_uncharge_cache_page(page);
125
126 /*
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
129 *
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
132 */
133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 dec_zone_page_state(page, NR_FILE_DIRTY);
135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136 }
137 }
138
remove_from_page_cache(struct page * page)139 void remove_from_page_cache(struct page *page)
140 {
141 struct address_space *mapping = page->mapping;
142
143 BUG_ON(!PageLocked(page));
144
145 spin_lock_irq(&mapping->tree_lock);
146 __remove_from_page_cache(page);
147 spin_unlock_irq(&mapping->tree_lock);
148 }
149
sync_page(void * word)150 static int sync_page(void *word)
151 {
152 struct address_space *mapping;
153 struct page *page;
154
155 page = container_of((unsigned long *)word, struct page, flags);
156
157 /*
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
177 */
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
184 }
185
sync_page_killable(void * word)186 static int sync_page_killable(void *word)
187 {
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191
192 /**
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
198 *
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
209 {
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
215 .range_end = end,
216 };
217
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
220
221 ret = do_writepages(mapping, &wbc);
222 return ret;
223 }
224
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
227 {
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230
filemap_fdatawrite(struct address_space * mapping)231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
239 {
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244 /**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
247 *
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
filemap_flush(struct address_space * mapping)251 int filemap_flush(struct address_space *mapping)
252 {
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256
257 /**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
262 *
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
wait_on_page_writeback_range(struct address_space * mapping,pgoff_t start,pgoff_t end)266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
268 {
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
273
274 if (end < start)
275 return 0;
276
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
284
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
287
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
291
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
295 }
296 pagevec_release(&pvec);
297 cond_resched();
298 }
299
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
305
306 return ret;
307 }
308
309 /**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
315 *
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
319 *
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
322 */
sync_page_range(struct inode * inode,struct address_space * mapping,loff_t pos,loff_t count)323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
325 {
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
329
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
337 }
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343
344 /**
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
350 *
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
sync_page_range_nolock(struct inode * inode,struct address_space * mapping,loff_t pos,loff_t count)355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
357 {
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
361
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372
373 /**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
filemap_fdatawait(struct address_space * mapping)380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391
filemap_write_and_wait(struct address_space * mapping)392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 int err = 0;
395
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
398 /*
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
403 */
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
408 }
409 }
410 return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413
414 /**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
419 *
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
427 {
428 int err = 0;
429
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
440 }
441 }
442 return err;
443 }
444
445 /**
446 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
451 *
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU. The caller must do that.
454 */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 pgoff_t offset, gfp_t gfp_mask)
457 {
458 int error;
459
460 VM_BUG_ON(!PageLocked(page));
461
462 error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & GFP_RECLAIM_MASK);
464 if (error)
465 goto out;
466
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 page_cache_get(page);
470 page->mapping = mapping;
471 page->index = offset;
472
473 spin_lock_irq(&mapping->tree_lock);
474 error = radix_tree_insert(&mapping->page_tree, offset, page);
475 if (likely(!error)) {
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else {
479 page->mapping = NULL;
480 mem_cgroup_uncharge_cache_page(page);
481 page_cache_release(page);
482 }
483
484 spin_unlock_irq(&mapping->tree_lock);
485 radix_tree_preload_end();
486 } else
487 mem_cgroup_uncharge_cache_page(page);
488 out:
489 return error;
490 }
491 EXPORT_SYMBOL(add_to_page_cache_locked);
492
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 pgoff_t offset, gfp_t gfp_mask)
495 {
496 int ret;
497
498 /*
499 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 * (called in add_to_page_cache) needs to know where they're going too.
503 */
504 if (mapping_cap_swap_backed(mapping))
505 SetPageSwapBacked(page);
506
507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 if (ret == 0) {
509 if (page_is_file_cache(page))
510 lru_cache_add_file(page);
511 else
512 lru_cache_add_active_anon(page);
513 }
514 return ret;
515 }
516
517 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)518 struct page *__page_cache_alloc(gfp_t gfp)
519 {
520 if (cpuset_do_page_mem_spread()) {
521 int n = cpuset_mem_spread_node();
522 return alloc_pages_node(n, gfp, 0);
523 }
524 return alloc_pages(gfp, 0);
525 }
526 EXPORT_SYMBOL(__page_cache_alloc);
527 #endif
528
__sleep_on_page_lock(void * word)529 static int __sleep_on_page_lock(void *word)
530 {
531 io_schedule();
532 return 0;
533 }
534
535 /*
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
544 */
page_waitqueue(struct page * page)545 static wait_queue_head_t *page_waitqueue(struct page *page)
546 {
547 const struct zone *zone = page_zone(page);
548
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550 }
551
wake_up_page(struct page * page,int bit)552 static inline void wake_up_page(struct page *page, int bit)
553 {
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
555 }
556
wait_on_page_bit(struct page * page,int bit_nr)557 void wait_on_page_bit(struct page *page, int bit_nr)
558 {
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560
561 if (test_bit(bit_nr, &page->flags))
562 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 TASK_UNINTERRUPTIBLE);
564 }
565 EXPORT_SYMBOL(wait_on_page_bit);
566
567 /**
568 * unlock_page - unlock a locked page
569 * @page: the page
570 *
571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573 * mechananism between PageLocked pages and PageWriteback pages is shared.
574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
575 *
576 * The mb is necessary to enforce ordering between the clear_bit and the read
577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
578 */
unlock_page(struct page * page)579 void unlock_page(struct page *page)
580 {
581 VM_BUG_ON(!PageLocked(page));
582 clear_bit_unlock(PG_locked, &page->flags);
583 smp_mb__after_clear_bit();
584 wake_up_page(page, PG_locked);
585 }
586 EXPORT_SYMBOL(unlock_page);
587
588 /**
589 * end_page_writeback - end writeback against a page
590 * @page: the page
591 */
end_page_writeback(struct page * page)592 void end_page_writeback(struct page *page)
593 {
594 if (TestClearPageReclaim(page))
595 rotate_reclaimable_page(page);
596
597 if (!test_clear_page_writeback(page))
598 BUG();
599
600 smp_mb__after_clear_bit();
601 wake_up_page(page, PG_writeback);
602 }
603 EXPORT_SYMBOL(end_page_writeback);
604
605 /**
606 * __lock_page - get a lock on the page, assuming we need to sleep to get it
607 * @page: the page to lock
608 *
609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
610 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
611 * chances are that on the second loop, the block layer's plug list is empty,
612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
613 */
__lock_page(struct page * page)614 void __lock_page(struct page *page)
615 {
616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
617
618 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
619 TASK_UNINTERRUPTIBLE);
620 }
621 EXPORT_SYMBOL(__lock_page);
622
__lock_page_killable(struct page * page)623 int __lock_page_killable(struct page *page)
624 {
625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626
627 return __wait_on_bit_lock(page_waitqueue(page), &wait,
628 sync_page_killable, TASK_KILLABLE);
629 }
630
631 /**
632 * __lock_page_nosync - get a lock on the page, without calling sync_page()
633 * @page: the page to lock
634 *
635 * Variant of lock_page that does not require the caller to hold a reference
636 * on the page's mapping.
637 */
__lock_page_nosync(struct page * page)638 void __lock_page_nosync(struct page *page)
639 {
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
642 TASK_UNINTERRUPTIBLE);
643 }
644
645 /**
646 * find_get_page - find and get a page reference
647 * @mapping: the address_space to search
648 * @offset: the page index
649 *
650 * Is there a pagecache struct page at the given (mapping, offset) tuple?
651 * If yes, increment its refcount and return it; if no, return NULL.
652 */
find_get_page(struct address_space * mapping,pgoff_t offset)653 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
654 {
655 void **pagep;
656 struct page *page;
657
658 rcu_read_lock();
659 repeat:
660 page = NULL;
661 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
662 if (pagep) {
663 page = radix_tree_deref_slot(pagep);
664 if (unlikely(!page || page == RADIX_TREE_RETRY))
665 goto repeat;
666
667 if (!page_cache_get_speculative(page))
668 goto repeat;
669
670 /*
671 * Has the page moved?
672 * This is part of the lockless pagecache protocol. See
673 * include/linux/pagemap.h for details.
674 */
675 if (unlikely(page != *pagep)) {
676 page_cache_release(page);
677 goto repeat;
678 }
679 }
680 rcu_read_unlock();
681
682 return page;
683 }
684 EXPORT_SYMBOL(find_get_page);
685
686 /**
687 * find_lock_page - locate, pin and lock a pagecache page
688 * @mapping: the address_space to search
689 * @offset: the page index
690 *
691 * Locates the desired pagecache page, locks it, increments its reference
692 * count and returns its address.
693 *
694 * Returns zero if the page was not present. find_lock_page() may sleep.
695 */
find_lock_page(struct address_space * mapping,pgoff_t offset)696 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
697 {
698 struct page *page;
699
700 repeat:
701 page = find_get_page(mapping, offset);
702 if (page) {
703 lock_page(page);
704 /* Has the page been truncated? */
705 if (unlikely(page->mapping != mapping)) {
706 unlock_page(page);
707 page_cache_release(page);
708 goto repeat;
709 }
710 VM_BUG_ON(page->index != offset);
711 }
712 return page;
713 }
714 EXPORT_SYMBOL(find_lock_page);
715
716 /**
717 * find_or_create_page - locate or add a pagecache page
718 * @mapping: the page's address_space
719 * @index: the page's index into the mapping
720 * @gfp_mask: page allocation mode
721 *
722 * Locates a page in the pagecache. If the page is not present, a new page
723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724 * LRU list. The returned page is locked and has its reference count
725 * incremented.
726 *
727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
728 * allocation!
729 *
730 * find_or_create_page() returns the desired page's address, or zero on
731 * memory exhaustion.
732 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)733 struct page *find_or_create_page(struct address_space *mapping,
734 pgoff_t index, gfp_t gfp_mask)
735 {
736 struct page *page;
737 int err;
738 repeat:
739 page = find_lock_page(mapping, index);
740 if (!page) {
741 page = __page_cache_alloc(gfp_mask);
742 if (!page)
743 return NULL;
744 /*
745 * We want a regular kernel memory (not highmem or DMA etc)
746 * allocation for the radix tree nodes, but we need to honour
747 * the context-specific requirements the caller has asked for.
748 * GFP_RECLAIM_MASK collects those requirements.
749 */
750 err = add_to_page_cache_lru(page, mapping, index,
751 (gfp_mask & GFP_RECLAIM_MASK));
752 if (unlikely(err)) {
753 page_cache_release(page);
754 page = NULL;
755 if (err == -EEXIST)
756 goto repeat;
757 }
758 }
759 return page;
760 }
761 EXPORT_SYMBOL(find_or_create_page);
762
763 /**
764 * find_get_pages - gang pagecache lookup
765 * @mapping: The address_space to search
766 * @start: The starting page index
767 * @nr_pages: The maximum number of pages
768 * @pages: Where the resulting pages are placed
769 *
770 * find_get_pages() will search for and return a group of up to
771 * @nr_pages pages in the mapping. The pages are placed at @pages.
772 * find_get_pages() takes a reference against the returned pages.
773 *
774 * The search returns a group of mapping-contiguous pages with ascending
775 * indexes. There may be holes in the indices due to not-present pages.
776 *
777 * find_get_pages() returns the number of pages which were found.
778 */
find_get_pages(struct address_space * mapping,pgoff_t start,unsigned int nr_pages,struct page ** pages)779 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
780 unsigned int nr_pages, struct page **pages)
781 {
782 unsigned int i;
783 unsigned int ret;
784 unsigned int nr_found;
785
786 rcu_read_lock();
787 restart:
788 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
789 (void ***)pages, start, nr_pages);
790 ret = 0;
791 for (i = 0; i < nr_found; i++) {
792 struct page *page;
793 repeat:
794 page = radix_tree_deref_slot((void **)pages[i]);
795 if (unlikely(!page))
796 continue;
797 /*
798 * this can only trigger if nr_found == 1, making livelock
799 * a non issue.
800 */
801 if (unlikely(page == RADIX_TREE_RETRY))
802 goto restart;
803
804 if (!page_cache_get_speculative(page))
805 goto repeat;
806
807 /* Has the page moved? */
808 if (unlikely(page != *((void **)pages[i]))) {
809 page_cache_release(page);
810 goto repeat;
811 }
812
813 pages[ret] = page;
814 ret++;
815 }
816 rcu_read_unlock();
817 return ret;
818 }
819
820 /**
821 * find_get_pages_contig - gang contiguous pagecache lookup
822 * @mapping: The address_space to search
823 * @index: The starting page index
824 * @nr_pages: The maximum number of pages
825 * @pages: Where the resulting pages are placed
826 *
827 * find_get_pages_contig() works exactly like find_get_pages(), except
828 * that the returned number of pages are guaranteed to be contiguous.
829 *
830 * find_get_pages_contig() returns the number of pages which were found.
831 */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)832 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
833 unsigned int nr_pages, struct page **pages)
834 {
835 unsigned int i;
836 unsigned int ret;
837 unsigned int nr_found;
838
839 rcu_read_lock();
840 restart:
841 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
842 (void ***)pages, index, nr_pages);
843 ret = 0;
844 for (i = 0; i < nr_found; i++) {
845 struct page *page;
846 repeat:
847 page = radix_tree_deref_slot((void **)pages[i]);
848 if (unlikely(!page))
849 continue;
850 /*
851 * this can only trigger if nr_found == 1, making livelock
852 * a non issue.
853 */
854 if (unlikely(page == RADIX_TREE_RETRY))
855 goto restart;
856
857 if (page->mapping == NULL || page->index != index)
858 break;
859
860 if (!page_cache_get_speculative(page))
861 goto repeat;
862
863 /* Has the page moved? */
864 if (unlikely(page != *((void **)pages[i]))) {
865 page_cache_release(page);
866 goto repeat;
867 }
868
869 pages[ret] = page;
870 ret++;
871 index++;
872 }
873 rcu_read_unlock();
874 return ret;
875 }
876 EXPORT_SYMBOL(find_get_pages_contig);
877
878 /**
879 * find_get_pages_tag - find and return pages that match @tag
880 * @mapping: the address_space to search
881 * @index: the starting page index
882 * @tag: the tag index
883 * @nr_pages: the maximum number of pages
884 * @pages: where the resulting pages are placed
885 *
886 * Like find_get_pages, except we only return pages which are tagged with
887 * @tag. We update @index to index the next page for the traversal.
888 */
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,int tag,unsigned int nr_pages,struct page ** pages)889 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
890 int tag, unsigned int nr_pages, struct page **pages)
891 {
892 unsigned int i;
893 unsigned int ret;
894 unsigned int nr_found;
895
896 rcu_read_lock();
897 restart:
898 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
899 (void ***)pages, *index, nr_pages, tag);
900 ret = 0;
901 for (i = 0; i < nr_found; i++) {
902 struct page *page;
903 repeat:
904 page = radix_tree_deref_slot((void **)pages[i]);
905 if (unlikely(!page))
906 continue;
907 /*
908 * this can only trigger if nr_found == 1, making livelock
909 * a non issue.
910 */
911 if (unlikely(page == RADIX_TREE_RETRY))
912 goto restart;
913
914 if (!page_cache_get_speculative(page))
915 goto repeat;
916
917 /* Has the page moved? */
918 if (unlikely(page != *((void **)pages[i]))) {
919 page_cache_release(page);
920 goto repeat;
921 }
922
923 pages[ret] = page;
924 ret++;
925 }
926 rcu_read_unlock();
927
928 if (ret)
929 *index = pages[ret - 1]->index + 1;
930
931 return ret;
932 }
933 EXPORT_SYMBOL(find_get_pages_tag);
934
935 /**
936 * grab_cache_page_nowait - returns locked page at given index in given cache
937 * @mapping: target address_space
938 * @index: the page index
939 *
940 * Same as grab_cache_page(), but do not wait if the page is unavailable.
941 * This is intended for speculative data generators, where the data can
942 * be regenerated if the page couldn't be grabbed. This routine should
943 * be safe to call while holding the lock for another page.
944 *
945 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
946 * and deadlock against the caller's locked page.
947 */
948 struct page *
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)949 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
950 {
951 struct page *page = find_get_page(mapping, index);
952
953 if (page) {
954 if (trylock_page(page))
955 return page;
956 page_cache_release(page);
957 return NULL;
958 }
959 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
960 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
961 page_cache_release(page);
962 page = NULL;
963 }
964 return page;
965 }
966 EXPORT_SYMBOL(grab_cache_page_nowait);
967
968 /*
969 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
970 * a _large_ part of the i/o request. Imagine the worst scenario:
971 *
972 * ---R__________________________________________B__________
973 * ^ reading here ^ bad block(assume 4k)
974 *
975 * read(R) => miss => readahead(R...B) => media error => frustrating retries
976 * => failing the whole request => read(R) => read(R+1) =>
977 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
978 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
979 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
980 *
981 * It is going insane. Fix it by quickly scaling down the readahead size.
982 */
shrink_readahead_size_eio(struct file * filp,struct file_ra_state * ra)983 static void shrink_readahead_size_eio(struct file *filp,
984 struct file_ra_state *ra)
985 {
986 if (!ra->ra_pages)
987 return;
988
989 ra->ra_pages /= 4;
990 }
991
992 /**
993 * do_generic_file_read - generic file read routine
994 * @filp: the file to read
995 * @ppos: current file position
996 * @desc: read_descriptor
997 * @actor: read method
998 *
999 * This is a generic file read routine, and uses the
1000 * mapping->a_ops->readpage() function for the actual low-level stuff.
1001 *
1002 * This is really ugly. But the goto's actually try to clarify some
1003 * of the logic when it comes to error handling etc.
1004 */
do_generic_file_read(struct file * filp,loff_t * ppos,read_descriptor_t * desc,read_actor_t actor)1005 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1006 read_descriptor_t *desc, read_actor_t actor)
1007 {
1008 struct address_space *mapping = filp->f_mapping;
1009 struct inode *inode = mapping->host;
1010 struct file_ra_state *ra = &filp->f_ra;
1011 pgoff_t index;
1012 pgoff_t last_index;
1013 pgoff_t prev_index;
1014 unsigned long offset; /* offset into pagecache page */
1015 unsigned int prev_offset;
1016 int error;
1017
1018 index = *ppos >> PAGE_CACHE_SHIFT;
1019 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1020 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1021 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1022 offset = *ppos & ~PAGE_CACHE_MASK;
1023
1024 for (;;) {
1025 struct page *page;
1026 pgoff_t end_index;
1027 loff_t isize;
1028 unsigned long nr, ret;
1029
1030 cond_resched();
1031 find_page:
1032 page = find_get_page(mapping, index);
1033 if (!page) {
1034 page_cache_sync_readahead(mapping,
1035 ra, filp,
1036 index, last_index - index);
1037 page = find_get_page(mapping, index);
1038 if (unlikely(page == NULL))
1039 goto no_cached_page;
1040 }
1041 if (PageReadahead(page)) {
1042 page_cache_async_readahead(mapping,
1043 ra, filp, page,
1044 index, last_index - index);
1045 }
1046 if (!PageUptodate(page)) {
1047 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1048 !mapping->a_ops->is_partially_uptodate)
1049 goto page_not_up_to_date;
1050 if (!trylock_page(page))
1051 goto page_not_up_to_date;
1052 if (!mapping->a_ops->is_partially_uptodate(page,
1053 desc, offset))
1054 goto page_not_up_to_date_locked;
1055 unlock_page(page);
1056 }
1057 page_ok:
1058 /*
1059 * i_size must be checked after we know the page is Uptodate.
1060 *
1061 * Checking i_size after the check allows us to calculate
1062 * the correct value for "nr", which means the zero-filled
1063 * part of the page is not copied back to userspace (unless
1064 * another truncate extends the file - this is desired though).
1065 */
1066
1067 isize = i_size_read(inode);
1068 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1069 if (unlikely(!isize || index > end_index)) {
1070 page_cache_release(page);
1071 goto out;
1072 }
1073
1074 /* nr is the maximum number of bytes to copy from this page */
1075 nr = PAGE_CACHE_SIZE;
1076 if (index == end_index) {
1077 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1078 if (nr <= offset) {
1079 page_cache_release(page);
1080 goto out;
1081 }
1082 }
1083 nr = nr - offset;
1084
1085 /* If users can be writing to this page using arbitrary
1086 * virtual addresses, take care about potential aliasing
1087 * before reading the page on the kernel side.
1088 */
1089 if (mapping_writably_mapped(mapping))
1090 flush_dcache_page(page);
1091
1092 /*
1093 * When a sequential read accesses a page several times,
1094 * only mark it as accessed the first time.
1095 */
1096 if (prev_index != index || offset != prev_offset)
1097 mark_page_accessed(page);
1098 prev_index = index;
1099
1100 /*
1101 * Ok, we have the page, and it's up-to-date, so
1102 * now we can copy it to user space...
1103 *
1104 * The actor routine returns how many bytes were actually used..
1105 * NOTE! This may not be the same as how much of a user buffer
1106 * we filled up (we may be padding etc), so we can only update
1107 * "pos" here (the actor routine has to update the user buffer
1108 * pointers and the remaining count).
1109 */
1110 ret = actor(desc, page, offset, nr);
1111 offset += ret;
1112 index += offset >> PAGE_CACHE_SHIFT;
1113 offset &= ~PAGE_CACHE_MASK;
1114 prev_offset = offset;
1115
1116 page_cache_release(page);
1117 if (ret == nr && desc->count)
1118 continue;
1119 goto out;
1120
1121 page_not_up_to_date:
1122 /* Get exclusive access to the page ... */
1123 error = lock_page_killable(page);
1124 if (unlikely(error))
1125 goto readpage_error;
1126
1127 page_not_up_to_date_locked:
1128 /* Did it get truncated before we got the lock? */
1129 if (!page->mapping) {
1130 unlock_page(page);
1131 page_cache_release(page);
1132 continue;
1133 }
1134
1135 /* Did somebody else fill it already? */
1136 if (PageUptodate(page)) {
1137 unlock_page(page);
1138 goto page_ok;
1139 }
1140
1141 readpage:
1142 /* Start the actual read. The read will unlock the page. */
1143 error = mapping->a_ops->readpage(filp, page);
1144
1145 if (unlikely(error)) {
1146 if (error == AOP_TRUNCATED_PAGE) {
1147 page_cache_release(page);
1148 goto find_page;
1149 }
1150 goto readpage_error;
1151 }
1152
1153 if (!PageUptodate(page)) {
1154 error = lock_page_killable(page);
1155 if (unlikely(error))
1156 goto readpage_error;
1157 if (!PageUptodate(page)) {
1158 if (page->mapping == NULL) {
1159 /*
1160 * invalidate_inode_pages got it
1161 */
1162 unlock_page(page);
1163 page_cache_release(page);
1164 goto find_page;
1165 }
1166 unlock_page(page);
1167 shrink_readahead_size_eio(filp, ra);
1168 error = -EIO;
1169 goto readpage_error;
1170 }
1171 unlock_page(page);
1172 }
1173
1174 goto page_ok;
1175
1176 readpage_error:
1177 /* UHHUH! A synchronous read error occurred. Report it */
1178 desc->error = error;
1179 page_cache_release(page);
1180 goto out;
1181
1182 no_cached_page:
1183 /*
1184 * Ok, it wasn't cached, so we need to create a new
1185 * page..
1186 */
1187 page = page_cache_alloc_cold(mapping);
1188 if (!page) {
1189 desc->error = -ENOMEM;
1190 goto out;
1191 }
1192 error = add_to_page_cache_lru(page, mapping,
1193 index, GFP_KERNEL);
1194 if (error) {
1195 page_cache_release(page);
1196 if (error == -EEXIST)
1197 goto find_page;
1198 desc->error = error;
1199 goto out;
1200 }
1201 goto readpage;
1202 }
1203
1204 out:
1205 ra->prev_pos = prev_index;
1206 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1207 ra->prev_pos |= prev_offset;
1208
1209 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1210 file_accessed(filp);
1211 }
1212
file_read_actor(read_descriptor_t * desc,struct page * page,unsigned long offset,unsigned long size)1213 int file_read_actor(read_descriptor_t *desc, struct page *page,
1214 unsigned long offset, unsigned long size)
1215 {
1216 char *kaddr;
1217 unsigned long left, count = desc->count;
1218
1219 if (size > count)
1220 size = count;
1221
1222 /*
1223 * Faults on the destination of a read are common, so do it before
1224 * taking the kmap.
1225 */
1226 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1227 kaddr = kmap_atomic(page, KM_USER0);
1228 left = __copy_to_user_inatomic(desc->arg.buf,
1229 kaddr + offset, size);
1230 kunmap_atomic(kaddr, KM_USER0);
1231 if (left == 0)
1232 goto success;
1233 }
1234
1235 /* Do it the slow way */
1236 kaddr = kmap(page);
1237 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1238 kunmap(page);
1239
1240 if (left) {
1241 size -= left;
1242 desc->error = -EFAULT;
1243 }
1244 success:
1245 desc->count = count - size;
1246 desc->written += size;
1247 desc->arg.buf += size;
1248 return size;
1249 }
1250
1251 /*
1252 * Performs necessary checks before doing a write
1253 * @iov: io vector request
1254 * @nr_segs: number of segments in the iovec
1255 * @count: number of bytes to write
1256 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1257 *
1258 * Adjust number of segments and amount of bytes to write (nr_segs should be
1259 * properly initialized first). Returns appropriate error code that caller
1260 * should return or zero in case that write should be allowed.
1261 */
generic_segment_checks(const struct iovec * iov,unsigned long * nr_segs,size_t * count,int access_flags)1262 int generic_segment_checks(const struct iovec *iov,
1263 unsigned long *nr_segs, size_t *count, int access_flags)
1264 {
1265 unsigned long seg;
1266 size_t cnt = 0;
1267 for (seg = 0; seg < *nr_segs; seg++) {
1268 const struct iovec *iv = &iov[seg];
1269
1270 /*
1271 * If any segment has a negative length, or the cumulative
1272 * length ever wraps negative then return -EINVAL.
1273 */
1274 cnt += iv->iov_len;
1275 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1276 return -EINVAL;
1277 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1278 continue;
1279 if (seg == 0)
1280 return -EFAULT;
1281 *nr_segs = seg;
1282 cnt -= iv->iov_len; /* This segment is no good */
1283 break;
1284 }
1285 *count = cnt;
1286 return 0;
1287 }
1288 EXPORT_SYMBOL(generic_segment_checks);
1289
1290 /**
1291 * generic_file_aio_read - generic filesystem read routine
1292 * @iocb: kernel I/O control block
1293 * @iov: io vector request
1294 * @nr_segs: number of segments in the iovec
1295 * @pos: current file position
1296 *
1297 * This is the "read()" routine for all filesystems
1298 * that can use the page cache directly.
1299 */
1300 ssize_t
generic_file_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1301 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1302 unsigned long nr_segs, loff_t pos)
1303 {
1304 struct file *filp = iocb->ki_filp;
1305 ssize_t retval;
1306 unsigned long seg;
1307 size_t count;
1308 loff_t *ppos = &iocb->ki_pos;
1309
1310 count = 0;
1311 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1312 if (retval)
1313 return retval;
1314
1315 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1316 if (filp->f_flags & O_DIRECT) {
1317 loff_t size;
1318 struct address_space *mapping;
1319 struct inode *inode;
1320
1321 mapping = filp->f_mapping;
1322 inode = mapping->host;
1323 if (!count)
1324 goto out; /* skip atime */
1325 size = i_size_read(inode);
1326 if (pos < size) {
1327 retval = filemap_write_and_wait_range(mapping, pos,
1328 pos + iov_length(iov, nr_segs) - 1);
1329 if (!retval) {
1330 retval = mapping->a_ops->direct_IO(READ, iocb,
1331 iov, pos, nr_segs);
1332 }
1333 if (retval > 0)
1334 *ppos = pos + retval;
1335 if (retval) {
1336 file_accessed(filp);
1337 goto out;
1338 }
1339 }
1340 }
1341
1342 for (seg = 0; seg < nr_segs; seg++) {
1343 read_descriptor_t desc;
1344
1345 desc.written = 0;
1346 desc.arg.buf = iov[seg].iov_base;
1347 desc.count = iov[seg].iov_len;
1348 if (desc.count == 0)
1349 continue;
1350 desc.error = 0;
1351 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1352 retval += desc.written;
1353 if (desc.error) {
1354 retval = retval ?: desc.error;
1355 break;
1356 }
1357 if (desc.count > 0)
1358 break;
1359 }
1360 out:
1361 return retval;
1362 }
1363 EXPORT_SYMBOL(generic_file_aio_read);
1364
1365 static ssize_t
do_readahead(struct address_space * mapping,struct file * filp,pgoff_t index,unsigned long nr)1366 do_readahead(struct address_space *mapping, struct file *filp,
1367 pgoff_t index, unsigned long nr)
1368 {
1369 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1370 return -EINVAL;
1371
1372 force_page_cache_readahead(mapping, filp, index,
1373 max_sane_readahead(nr));
1374 return 0;
1375 }
1376
SYSCALL_DEFINE(readahead)1377 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1378 {
1379 ssize_t ret;
1380 struct file *file;
1381
1382 ret = -EBADF;
1383 file = fget(fd);
1384 if (file) {
1385 if (file->f_mode & FMODE_READ) {
1386 struct address_space *mapping = file->f_mapping;
1387 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1388 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1389 unsigned long len = end - start + 1;
1390 ret = do_readahead(mapping, file, start, len);
1391 }
1392 fput(file);
1393 }
1394 return ret;
1395 }
1396 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
SyS_readahead(long fd,loff_t offset,long count)1397 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1398 {
1399 return SYSC_readahead((int) fd, offset, (size_t) count);
1400 }
1401 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1402 #endif
1403
1404 #ifdef CONFIG_MMU
1405 /**
1406 * page_cache_read - adds requested page to the page cache if not already there
1407 * @file: file to read
1408 * @offset: page index
1409 *
1410 * This adds the requested page to the page cache if it isn't already there,
1411 * and schedules an I/O to read in its contents from disk.
1412 */
page_cache_read(struct file * file,pgoff_t offset)1413 static int page_cache_read(struct file *file, pgoff_t offset)
1414 {
1415 struct address_space *mapping = file->f_mapping;
1416 struct page *page;
1417 int ret;
1418
1419 do {
1420 page = page_cache_alloc_cold(mapping);
1421 if (!page)
1422 return -ENOMEM;
1423
1424 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1425 if (ret == 0)
1426 ret = mapping->a_ops->readpage(file, page);
1427 else if (ret == -EEXIST)
1428 ret = 0; /* losing race to add is OK */
1429
1430 page_cache_release(page);
1431
1432 } while (ret == AOP_TRUNCATED_PAGE);
1433
1434 return ret;
1435 }
1436
1437 #define MMAP_LOTSAMISS (100)
1438
1439 /**
1440 * filemap_fault - read in file data for page fault handling
1441 * @vma: vma in which the fault was taken
1442 * @vmf: struct vm_fault containing details of the fault
1443 *
1444 * filemap_fault() is invoked via the vma operations vector for a
1445 * mapped memory region to read in file data during a page fault.
1446 *
1447 * The goto's are kind of ugly, but this streamlines the normal case of having
1448 * it in the page cache, and handles the special cases reasonably without
1449 * having a lot of duplicated code.
1450 */
filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1451 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1452 {
1453 int error;
1454 struct file *file = vma->vm_file;
1455 struct address_space *mapping = file->f_mapping;
1456 struct file_ra_state *ra = &file->f_ra;
1457 struct inode *inode = mapping->host;
1458 struct page *page;
1459 pgoff_t size;
1460 int did_readaround = 0;
1461 int ret = 0;
1462
1463 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1464 if (vmf->pgoff >= size)
1465 return VM_FAULT_SIGBUS;
1466
1467 /* If we don't want any read-ahead, don't bother */
1468 if (VM_RandomReadHint(vma))
1469 goto no_cached_page;
1470
1471 /*
1472 * Do we have something in the page cache already?
1473 */
1474 retry_find:
1475 page = find_lock_page(mapping, vmf->pgoff);
1476 /*
1477 * For sequential accesses, we use the generic readahead logic.
1478 */
1479 if (VM_SequentialReadHint(vma)) {
1480 if (!page) {
1481 page_cache_sync_readahead(mapping, ra, file,
1482 vmf->pgoff, 1);
1483 page = find_lock_page(mapping, vmf->pgoff);
1484 if (!page)
1485 goto no_cached_page;
1486 }
1487 if (PageReadahead(page)) {
1488 page_cache_async_readahead(mapping, ra, file, page,
1489 vmf->pgoff, 1);
1490 }
1491 }
1492
1493 if (!page) {
1494 unsigned long ra_pages;
1495
1496 ra->mmap_miss++;
1497
1498 /*
1499 * Do we miss much more than hit in this file? If so,
1500 * stop bothering with read-ahead. It will only hurt.
1501 */
1502 if (ra->mmap_miss > MMAP_LOTSAMISS)
1503 goto no_cached_page;
1504
1505 /*
1506 * To keep the pgmajfault counter straight, we need to
1507 * check did_readaround, as this is an inner loop.
1508 */
1509 if (!did_readaround) {
1510 ret = VM_FAULT_MAJOR;
1511 count_vm_event(PGMAJFAULT);
1512 }
1513 did_readaround = 1;
1514 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1515 if (ra_pages) {
1516 pgoff_t start = 0;
1517
1518 if (vmf->pgoff > ra_pages / 2)
1519 start = vmf->pgoff - ra_pages / 2;
1520 do_page_cache_readahead(mapping, file, start, ra_pages);
1521 }
1522 page = find_lock_page(mapping, vmf->pgoff);
1523 if (!page)
1524 goto no_cached_page;
1525 }
1526
1527 if (!did_readaround)
1528 ra->mmap_miss--;
1529
1530 /*
1531 * We have a locked page in the page cache, now we need to check
1532 * that it's up-to-date. If not, it is going to be due to an error.
1533 */
1534 if (unlikely(!PageUptodate(page)))
1535 goto page_not_uptodate;
1536
1537 /* Must recheck i_size under page lock */
1538 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1539 if (unlikely(vmf->pgoff >= size)) {
1540 unlock_page(page);
1541 page_cache_release(page);
1542 return VM_FAULT_SIGBUS;
1543 }
1544
1545 /*
1546 * Found the page and have a reference on it.
1547 */
1548 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1549 vmf->page = page;
1550 return ret | VM_FAULT_LOCKED;
1551
1552 no_cached_page:
1553 /*
1554 * We're only likely to ever get here if MADV_RANDOM is in
1555 * effect.
1556 */
1557 error = page_cache_read(file, vmf->pgoff);
1558
1559 /*
1560 * The page we want has now been added to the page cache.
1561 * In the unlikely event that someone removed it in the
1562 * meantime, we'll just come back here and read it again.
1563 */
1564 if (error >= 0)
1565 goto retry_find;
1566
1567 /*
1568 * An error return from page_cache_read can result if the
1569 * system is low on memory, or a problem occurs while trying
1570 * to schedule I/O.
1571 */
1572 if (error == -ENOMEM)
1573 return VM_FAULT_OOM;
1574 return VM_FAULT_SIGBUS;
1575
1576 page_not_uptodate:
1577 /* IO error path */
1578 if (!did_readaround) {
1579 ret = VM_FAULT_MAJOR;
1580 count_vm_event(PGMAJFAULT);
1581 }
1582
1583 /*
1584 * Umm, take care of errors if the page isn't up-to-date.
1585 * Try to re-read it _once_. We do this synchronously,
1586 * because there really aren't any performance issues here
1587 * and we need to check for errors.
1588 */
1589 ClearPageError(page);
1590 error = mapping->a_ops->readpage(file, page);
1591 if (!error) {
1592 wait_on_page_locked(page);
1593 if (!PageUptodate(page))
1594 error = -EIO;
1595 }
1596 page_cache_release(page);
1597
1598 if (!error || error == AOP_TRUNCATED_PAGE)
1599 goto retry_find;
1600
1601 /* Things didn't work out. Return zero to tell the mm layer so. */
1602 shrink_readahead_size_eio(file, ra);
1603 return VM_FAULT_SIGBUS;
1604 }
1605 EXPORT_SYMBOL(filemap_fault);
1606
1607 struct vm_operations_struct generic_file_vm_ops = {
1608 .fault = filemap_fault,
1609 };
1610
1611 /* This is used for a general mmap of a disk file */
1612
generic_file_mmap(struct file * file,struct vm_area_struct * vma)1613 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1614 {
1615 struct address_space *mapping = file->f_mapping;
1616
1617 if (!mapping->a_ops->readpage)
1618 return -ENOEXEC;
1619 file_accessed(file);
1620 vma->vm_ops = &generic_file_vm_ops;
1621 vma->vm_flags |= VM_CAN_NONLINEAR;
1622 return 0;
1623 }
1624
1625 /*
1626 * This is for filesystems which do not implement ->writepage.
1627 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)1628 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1629 {
1630 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1631 return -EINVAL;
1632 return generic_file_mmap(file, vma);
1633 }
1634 #else
generic_file_mmap(struct file * file,struct vm_area_struct * vma)1635 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1636 {
1637 return -ENOSYS;
1638 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)1639 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1640 {
1641 return -ENOSYS;
1642 }
1643 #endif /* CONFIG_MMU */
1644
1645 EXPORT_SYMBOL(generic_file_mmap);
1646 EXPORT_SYMBOL(generic_file_readonly_mmap);
1647
__read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)1648 static struct page *__read_cache_page(struct address_space *mapping,
1649 pgoff_t index,
1650 int (*filler)(void *,struct page*),
1651 void *data)
1652 {
1653 struct page *page;
1654 int err;
1655 repeat:
1656 page = find_get_page(mapping, index);
1657 if (!page) {
1658 page = page_cache_alloc_cold(mapping);
1659 if (!page)
1660 return ERR_PTR(-ENOMEM);
1661 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1662 if (unlikely(err)) {
1663 page_cache_release(page);
1664 if (err == -EEXIST)
1665 goto repeat;
1666 /* Presumably ENOMEM for radix tree node */
1667 return ERR_PTR(err);
1668 }
1669 err = filler(data, page);
1670 if (err < 0) {
1671 page_cache_release(page);
1672 page = ERR_PTR(err);
1673 }
1674 }
1675 return page;
1676 }
1677
1678 /**
1679 * read_cache_page_async - read into page cache, fill it if needed
1680 * @mapping: the page's address_space
1681 * @index: the page index
1682 * @filler: function to perform the read
1683 * @data: destination for read data
1684 *
1685 * Same as read_cache_page, but don't wait for page to become unlocked
1686 * after submitting it to the filler.
1687 *
1688 * Read into the page cache. If a page already exists, and PageUptodate() is
1689 * not set, try to fill the page but don't wait for it to become unlocked.
1690 *
1691 * If the page does not get brought uptodate, return -EIO.
1692 */
read_cache_page_async(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)1693 struct page *read_cache_page_async(struct address_space *mapping,
1694 pgoff_t index,
1695 int (*filler)(void *,struct page*),
1696 void *data)
1697 {
1698 struct page *page;
1699 int err;
1700
1701 retry:
1702 page = __read_cache_page(mapping, index, filler, data);
1703 if (IS_ERR(page))
1704 return page;
1705 if (PageUptodate(page))
1706 goto out;
1707
1708 lock_page(page);
1709 if (!page->mapping) {
1710 unlock_page(page);
1711 page_cache_release(page);
1712 goto retry;
1713 }
1714 if (PageUptodate(page)) {
1715 unlock_page(page);
1716 goto out;
1717 }
1718 err = filler(data, page);
1719 if (err < 0) {
1720 page_cache_release(page);
1721 return ERR_PTR(err);
1722 }
1723 out:
1724 mark_page_accessed(page);
1725 return page;
1726 }
1727 EXPORT_SYMBOL(read_cache_page_async);
1728
1729 /**
1730 * read_cache_page - read into page cache, fill it if needed
1731 * @mapping: the page's address_space
1732 * @index: the page index
1733 * @filler: function to perform the read
1734 * @data: destination for read data
1735 *
1736 * Read into the page cache. If a page already exists, and PageUptodate() is
1737 * not set, try to fill the page then wait for it to become unlocked.
1738 *
1739 * If the page does not get brought uptodate, return -EIO.
1740 */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)1741 struct page *read_cache_page(struct address_space *mapping,
1742 pgoff_t index,
1743 int (*filler)(void *,struct page*),
1744 void *data)
1745 {
1746 struct page *page;
1747
1748 page = read_cache_page_async(mapping, index, filler, data);
1749 if (IS_ERR(page))
1750 goto out;
1751 wait_on_page_locked(page);
1752 if (!PageUptodate(page)) {
1753 page_cache_release(page);
1754 page = ERR_PTR(-EIO);
1755 }
1756 out:
1757 return page;
1758 }
1759 EXPORT_SYMBOL(read_cache_page);
1760
1761 /*
1762 * The logic we want is
1763 *
1764 * if suid or (sgid and xgrp)
1765 * remove privs
1766 */
should_remove_suid(struct dentry * dentry)1767 int should_remove_suid(struct dentry *dentry)
1768 {
1769 mode_t mode = dentry->d_inode->i_mode;
1770 int kill = 0;
1771
1772 /* suid always must be killed */
1773 if (unlikely(mode & S_ISUID))
1774 kill = ATTR_KILL_SUID;
1775
1776 /*
1777 * sgid without any exec bits is just a mandatory locking mark; leave
1778 * it alone. If some exec bits are set, it's a real sgid; kill it.
1779 */
1780 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1781 kill |= ATTR_KILL_SGID;
1782
1783 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1784 return kill;
1785
1786 return 0;
1787 }
1788 EXPORT_SYMBOL(should_remove_suid);
1789
__remove_suid(struct dentry * dentry,int kill)1790 static int __remove_suid(struct dentry *dentry, int kill)
1791 {
1792 struct iattr newattrs;
1793
1794 newattrs.ia_valid = ATTR_FORCE | kill;
1795 return notify_change(dentry, &newattrs);
1796 }
1797
file_remove_suid(struct file * file)1798 int file_remove_suid(struct file *file)
1799 {
1800 struct dentry *dentry = file->f_path.dentry;
1801 int killsuid = should_remove_suid(dentry);
1802 int killpriv = security_inode_need_killpriv(dentry);
1803 int error = 0;
1804
1805 if (killpriv < 0)
1806 return killpriv;
1807 if (killpriv)
1808 error = security_inode_killpriv(dentry);
1809 if (!error && killsuid)
1810 error = __remove_suid(dentry, killsuid);
1811
1812 return error;
1813 }
1814 EXPORT_SYMBOL(file_remove_suid);
1815
__iovec_copy_from_user_inatomic(char * vaddr,const struct iovec * iov,size_t base,size_t bytes)1816 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1817 const struct iovec *iov, size_t base, size_t bytes)
1818 {
1819 size_t copied = 0, left = 0;
1820
1821 while (bytes) {
1822 char __user *buf = iov->iov_base + base;
1823 int copy = min(bytes, iov->iov_len - base);
1824
1825 base = 0;
1826 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1827 copied += copy;
1828 bytes -= copy;
1829 vaddr += copy;
1830 iov++;
1831
1832 if (unlikely(left))
1833 break;
1834 }
1835 return copied - left;
1836 }
1837
1838 /*
1839 * Copy as much as we can into the page and return the number of bytes which
1840 * were sucessfully copied. If a fault is encountered then return the number of
1841 * bytes which were copied.
1842 */
iov_iter_copy_from_user_atomic(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)1843 size_t iov_iter_copy_from_user_atomic(struct page *page,
1844 struct iov_iter *i, unsigned long offset, size_t bytes)
1845 {
1846 char *kaddr;
1847 size_t copied;
1848
1849 BUG_ON(!in_atomic());
1850 kaddr = kmap_atomic(page, KM_USER0);
1851 if (likely(i->nr_segs == 1)) {
1852 int left;
1853 char __user *buf = i->iov->iov_base + i->iov_offset;
1854 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1855 buf, bytes);
1856 copied = bytes - left;
1857 } else {
1858 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1859 i->iov, i->iov_offset, bytes);
1860 }
1861 kunmap_atomic(kaddr, KM_USER0);
1862
1863 return copied;
1864 }
1865 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1866
1867 /*
1868 * This has the same sideeffects and return value as
1869 * iov_iter_copy_from_user_atomic().
1870 * The difference is that it attempts to resolve faults.
1871 * Page must not be locked.
1872 */
iov_iter_copy_from_user(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)1873 size_t iov_iter_copy_from_user(struct page *page,
1874 struct iov_iter *i, unsigned long offset, size_t bytes)
1875 {
1876 char *kaddr;
1877 size_t copied;
1878
1879 kaddr = kmap(page);
1880 if (likely(i->nr_segs == 1)) {
1881 int left;
1882 char __user *buf = i->iov->iov_base + i->iov_offset;
1883 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1884 copied = bytes - left;
1885 } else {
1886 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1887 i->iov, i->iov_offset, bytes);
1888 }
1889 kunmap(page);
1890 return copied;
1891 }
1892 EXPORT_SYMBOL(iov_iter_copy_from_user);
1893
iov_iter_advance(struct iov_iter * i,size_t bytes)1894 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1895 {
1896 BUG_ON(i->count < bytes);
1897
1898 if (likely(i->nr_segs == 1)) {
1899 i->iov_offset += bytes;
1900 i->count -= bytes;
1901 } else {
1902 const struct iovec *iov = i->iov;
1903 size_t base = i->iov_offset;
1904
1905 /*
1906 * The !iov->iov_len check ensures we skip over unlikely
1907 * zero-length segments (without overruning the iovec).
1908 */
1909 while (bytes || unlikely(i->count && !iov->iov_len)) {
1910 int copy;
1911
1912 copy = min(bytes, iov->iov_len - base);
1913 BUG_ON(!i->count || i->count < copy);
1914 i->count -= copy;
1915 bytes -= copy;
1916 base += copy;
1917 if (iov->iov_len == base) {
1918 iov++;
1919 base = 0;
1920 }
1921 }
1922 i->iov = iov;
1923 i->iov_offset = base;
1924 }
1925 }
1926 EXPORT_SYMBOL(iov_iter_advance);
1927
1928 /*
1929 * Fault in the first iovec of the given iov_iter, to a maximum length
1930 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1931 * accessed (ie. because it is an invalid address).
1932 *
1933 * writev-intensive code may want this to prefault several iovecs -- that
1934 * would be possible (callers must not rely on the fact that _only_ the
1935 * first iovec will be faulted with the current implementation).
1936 */
iov_iter_fault_in_readable(struct iov_iter * i,size_t bytes)1937 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1938 {
1939 char __user *buf = i->iov->iov_base + i->iov_offset;
1940 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1941 return fault_in_pages_readable(buf, bytes);
1942 }
1943 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1944
1945 /*
1946 * Return the count of just the current iov_iter segment.
1947 */
iov_iter_single_seg_count(struct iov_iter * i)1948 size_t iov_iter_single_seg_count(struct iov_iter *i)
1949 {
1950 const struct iovec *iov = i->iov;
1951 if (i->nr_segs == 1)
1952 return i->count;
1953 else
1954 return min(i->count, iov->iov_len - i->iov_offset);
1955 }
1956 EXPORT_SYMBOL(iov_iter_single_seg_count);
1957
1958 /*
1959 * Performs necessary checks before doing a write
1960 *
1961 * Can adjust writing position or amount of bytes to write.
1962 * Returns appropriate error code that caller should return or
1963 * zero in case that write should be allowed.
1964 */
generic_write_checks(struct file * file,loff_t * pos,size_t * count,int isblk)1965 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1966 {
1967 struct inode *inode = file->f_mapping->host;
1968 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1969
1970 if (unlikely(*pos < 0))
1971 return -EINVAL;
1972
1973 if (!isblk) {
1974 /* FIXME: this is for backwards compatibility with 2.4 */
1975 if (file->f_flags & O_APPEND)
1976 *pos = i_size_read(inode);
1977
1978 if (limit != RLIM_INFINITY) {
1979 if (*pos >= limit) {
1980 send_sig(SIGXFSZ, current, 0);
1981 return -EFBIG;
1982 }
1983 if (*count > limit - (typeof(limit))*pos) {
1984 *count = limit - (typeof(limit))*pos;
1985 }
1986 }
1987 }
1988
1989 /*
1990 * LFS rule
1991 */
1992 if (unlikely(*pos + *count > MAX_NON_LFS &&
1993 !(file->f_flags & O_LARGEFILE))) {
1994 if (*pos >= MAX_NON_LFS) {
1995 return -EFBIG;
1996 }
1997 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1998 *count = MAX_NON_LFS - (unsigned long)*pos;
1999 }
2000 }
2001
2002 /*
2003 * Are we about to exceed the fs block limit ?
2004 *
2005 * If we have written data it becomes a short write. If we have
2006 * exceeded without writing data we send a signal and return EFBIG.
2007 * Linus frestrict idea will clean these up nicely..
2008 */
2009 if (likely(!isblk)) {
2010 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2011 if (*count || *pos > inode->i_sb->s_maxbytes) {
2012 return -EFBIG;
2013 }
2014 /* zero-length writes at ->s_maxbytes are OK */
2015 }
2016
2017 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2018 *count = inode->i_sb->s_maxbytes - *pos;
2019 } else {
2020 #ifdef CONFIG_BLOCK
2021 loff_t isize;
2022 if (bdev_read_only(I_BDEV(inode)))
2023 return -EPERM;
2024 isize = i_size_read(inode);
2025 if (*pos >= isize) {
2026 if (*count || *pos > isize)
2027 return -ENOSPC;
2028 }
2029
2030 if (*pos + *count > isize)
2031 *count = isize - *pos;
2032 #else
2033 return -EPERM;
2034 #endif
2035 }
2036 return 0;
2037 }
2038 EXPORT_SYMBOL(generic_write_checks);
2039
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2040 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2041 loff_t pos, unsigned len, unsigned flags,
2042 struct page **pagep, void **fsdata)
2043 {
2044 const struct address_space_operations *aops = mapping->a_ops;
2045
2046 return aops->write_begin(file, mapping, pos, len, flags,
2047 pagep, fsdata);
2048 }
2049 EXPORT_SYMBOL(pagecache_write_begin);
2050
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2051 int pagecache_write_end(struct file *file, struct address_space *mapping,
2052 loff_t pos, unsigned len, unsigned copied,
2053 struct page *page, void *fsdata)
2054 {
2055 const struct address_space_operations *aops = mapping->a_ops;
2056
2057 mark_page_accessed(page);
2058 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2059 }
2060 EXPORT_SYMBOL(pagecache_write_end);
2061
2062 ssize_t
generic_file_direct_write(struct kiocb * iocb,const struct iovec * iov,unsigned long * nr_segs,loff_t pos,loff_t * ppos,size_t count,size_t ocount)2063 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2064 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2065 size_t count, size_t ocount)
2066 {
2067 struct file *file = iocb->ki_filp;
2068 struct address_space *mapping = file->f_mapping;
2069 struct inode *inode = mapping->host;
2070 ssize_t written;
2071 size_t write_len;
2072 pgoff_t end;
2073
2074 if (count != ocount)
2075 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2076
2077 write_len = iov_length(iov, *nr_segs);
2078 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2079
2080 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2081 if (written)
2082 goto out;
2083
2084 /*
2085 * After a write we want buffered reads to be sure to go to disk to get
2086 * the new data. We invalidate clean cached page from the region we're
2087 * about to write. We do this *before* the write so that we can return
2088 * without clobbering -EIOCBQUEUED from ->direct_IO().
2089 */
2090 if (mapping->nrpages) {
2091 written = invalidate_inode_pages2_range(mapping,
2092 pos >> PAGE_CACHE_SHIFT, end);
2093 /*
2094 * If a page can not be invalidated, return 0 to fall back
2095 * to buffered write.
2096 */
2097 if (written) {
2098 if (written == -EBUSY)
2099 return 0;
2100 goto out;
2101 }
2102 }
2103
2104 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2105
2106 /*
2107 * Finally, try again to invalidate clean pages which might have been
2108 * cached by non-direct readahead, or faulted in by get_user_pages()
2109 * if the source of the write was an mmap'ed region of the file
2110 * we're writing. Either one is a pretty crazy thing to do,
2111 * so we don't support it 100%. If this invalidation
2112 * fails, tough, the write still worked...
2113 */
2114 if (mapping->nrpages) {
2115 invalidate_inode_pages2_range(mapping,
2116 pos >> PAGE_CACHE_SHIFT, end);
2117 }
2118
2119 if (written > 0) {
2120 loff_t end = pos + written;
2121 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2122 i_size_write(inode, end);
2123 mark_inode_dirty(inode);
2124 }
2125 *ppos = end;
2126 }
2127
2128 /*
2129 * Sync the fs metadata but not the minor inode changes and
2130 * of course not the data as we did direct DMA for the IO.
2131 * i_mutex is held, which protects generic_osync_inode() from
2132 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2133 */
2134 out:
2135 if ((written >= 0 || written == -EIOCBQUEUED) &&
2136 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2137 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2138 if (err < 0)
2139 written = err;
2140 }
2141 return written;
2142 }
2143 EXPORT_SYMBOL(generic_file_direct_write);
2144
2145 /*
2146 * Find or create a page at the given pagecache position. Return the locked
2147 * page. This function is specifically for buffered writes.
2148 */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)2149 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2150 pgoff_t index, unsigned flags)
2151 {
2152 int status;
2153 struct page *page;
2154 gfp_t gfp_notmask = 0;
2155 if (flags & AOP_FLAG_NOFS)
2156 gfp_notmask = __GFP_FS;
2157 repeat:
2158 page = find_lock_page(mapping, index);
2159 if (likely(page))
2160 return page;
2161
2162 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2163 if (!page)
2164 return NULL;
2165 status = add_to_page_cache_lru(page, mapping, index,
2166 GFP_KERNEL & ~gfp_notmask);
2167 if (unlikely(status)) {
2168 page_cache_release(page);
2169 if (status == -EEXIST)
2170 goto repeat;
2171 return NULL;
2172 }
2173 return page;
2174 }
2175 EXPORT_SYMBOL(grab_cache_page_write_begin);
2176
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)2177 static ssize_t generic_perform_write(struct file *file,
2178 struct iov_iter *i, loff_t pos)
2179 {
2180 struct address_space *mapping = file->f_mapping;
2181 const struct address_space_operations *a_ops = mapping->a_ops;
2182 long status = 0;
2183 ssize_t written = 0;
2184 unsigned int flags = 0;
2185
2186 /*
2187 * Copies from kernel address space cannot fail (NFSD is a big user).
2188 */
2189 if (segment_eq(get_fs(), KERNEL_DS))
2190 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2191
2192 do {
2193 struct page *page;
2194 pgoff_t index; /* Pagecache index for current page */
2195 unsigned long offset; /* Offset into pagecache page */
2196 unsigned long bytes; /* Bytes to write to page */
2197 size_t copied; /* Bytes copied from user */
2198 void *fsdata;
2199
2200 offset = (pos & (PAGE_CACHE_SIZE - 1));
2201 index = pos >> PAGE_CACHE_SHIFT;
2202 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2203 iov_iter_count(i));
2204
2205 again:
2206
2207 /*
2208 * Bring in the user page that we will copy from _first_.
2209 * Otherwise there's a nasty deadlock on copying from the
2210 * same page as we're writing to, without it being marked
2211 * up-to-date.
2212 *
2213 * Not only is this an optimisation, but it is also required
2214 * to check that the address is actually valid, when atomic
2215 * usercopies are used, below.
2216 */
2217 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2218 status = -EFAULT;
2219 break;
2220 }
2221
2222 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2223 &page, &fsdata);
2224 if (unlikely(status))
2225 break;
2226
2227 pagefault_disable();
2228 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2229 pagefault_enable();
2230 flush_dcache_page(page);
2231
2232 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2233 page, fsdata);
2234 if (unlikely(status < 0))
2235 break;
2236 copied = status;
2237
2238 cond_resched();
2239
2240 iov_iter_advance(i, copied);
2241 if (unlikely(copied == 0)) {
2242 /*
2243 * If we were unable to copy any data at all, we must
2244 * fall back to a single segment length write.
2245 *
2246 * If we didn't fallback here, we could livelock
2247 * because not all segments in the iov can be copied at
2248 * once without a pagefault.
2249 */
2250 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2251 iov_iter_single_seg_count(i));
2252 goto again;
2253 }
2254 pos += copied;
2255 written += copied;
2256
2257 balance_dirty_pages_ratelimited(mapping);
2258
2259 } while (iov_iter_count(i));
2260
2261 return written ? written : status;
2262 }
2263
2264 ssize_t
generic_file_buffered_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos,loff_t * ppos,size_t count,ssize_t written)2265 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2266 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2267 size_t count, ssize_t written)
2268 {
2269 struct file *file = iocb->ki_filp;
2270 struct address_space *mapping = file->f_mapping;
2271 const struct address_space_operations *a_ops = mapping->a_ops;
2272 struct inode *inode = mapping->host;
2273 ssize_t status;
2274 struct iov_iter i;
2275
2276 iov_iter_init(&i, iov, nr_segs, count, written);
2277 status = generic_perform_write(file, &i, pos);
2278
2279 if (likely(status >= 0)) {
2280 written += status;
2281 *ppos = pos + status;
2282
2283 /*
2284 * For now, when the user asks for O_SYNC, we'll actually give
2285 * O_DSYNC
2286 */
2287 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2288 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2289 status = generic_osync_inode(inode, mapping,
2290 OSYNC_METADATA|OSYNC_DATA);
2291 }
2292 }
2293
2294 /*
2295 * If we get here for O_DIRECT writes then we must have fallen through
2296 * to buffered writes (block instantiation inside i_size). So we sync
2297 * the file data here, to try to honour O_DIRECT expectations.
2298 */
2299 if (unlikely(file->f_flags & O_DIRECT) && written)
2300 status = filemap_write_and_wait_range(mapping,
2301 pos, pos + written - 1);
2302
2303 return written ? written : status;
2304 }
2305 EXPORT_SYMBOL(generic_file_buffered_write);
2306
2307 static ssize_t
__generic_file_aio_write_nolock(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t * ppos)2308 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2309 unsigned long nr_segs, loff_t *ppos)
2310 {
2311 struct file *file = iocb->ki_filp;
2312 struct address_space * mapping = file->f_mapping;
2313 size_t ocount; /* original count */
2314 size_t count; /* after file limit checks */
2315 struct inode *inode = mapping->host;
2316 loff_t pos;
2317 ssize_t written;
2318 ssize_t err;
2319
2320 ocount = 0;
2321 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2322 if (err)
2323 return err;
2324
2325 count = ocount;
2326 pos = *ppos;
2327
2328 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2329
2330 /* We can write back this queue in page reclaim */
2331 current->backing_dev_info = mapping->backing_dev_info;
2332 written = 0;
2333
2334 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2335 if (err)
2336 goto out;
2337
2338 if (count == 0)
2339 goto out;
2340
2341 err = file_remove_suid(file);
2342 if (err)
2343 goto out;
2344
2345 file_update_time(file);
2346
2347 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2348 if (unlikely(file->f_flags & O_DIRECT)) {
2349 loff_t endbyte;
2350 ssize_t written_buffered;
2351
2352 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2353 ppos, count, ocount);
2354 if (written < 0 || written == count)
2355 goto out;
2356 /*
2357 * direct-io write to a hole: fall through to buffered I/O
2358 * for completing the rest of the request.
2359 */
2360 pos += written;
2361 count -= written;
2362 written_buffered = generic_file_buffered_write(iocb, iov,
2363 nr_segs, pos, ppos, count,
2364 written);
2365 /*
2366 * If generic_file_buffered_write() retuned a synchronous error
2367 * then we want to return the number of bytes which were
2368 * direct-written, or the error code if that was zero. Note
2369 * that this differs from normal direct-io semantics, which
2370 * will return -EFOO even if some bytes were written.
2371 */
2372 if (written_buffered < 0) {
2373 err = written_buffered;
2374 goto out;
2375 }
2376
2377 /*
2378 * We need to ensure that the page cache pages are written to
2379 * disk and invalidated to preserve the expected O_DIRECT
2380 * semantics.
2381 */
2382 endbyte = pos + written_buffered - written - 1;
2383 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2384 SYNC_FILE_RANGE_WAIT_BEFORE|
2385 SYNC_FILE_RANGE_WRITE|
2386 SYNC_FILE_RANGE_WAIT_AFTER);
2387 if (err == 0) {
2388 written = written_buffered;
2389 invalidate_mapping_pages(mapping,
2390 pos >> PAGE_CACHE_SHIFT,
2391 endbyte >> PAGE_CACHE_SHIFT);
2392 } else {
2393 /*
2394 * We don't know how much we wrote, so just return
2395 * the number of bytes which were direct-written
2396 */
2397 }
2398 } else {
2399 written = generic_file_buffered_write(iocb, iov, nr_segs,
2400 pos, ppos, count, written);
2401 }
2402 out:
2403 current->backing_dev_info = NULL;
2404 return written ? written : err;
2405 }
2406
generic_file_aio_write_nolock(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)2407 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2408 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2409 {
2410 struct file *file = iocb->ki_filp;
2411 struct address_space *mapping = file->f_mapping;
2412 struct inode *inode = mapping->host;
2413 ssize_t ret;
2414
2415 BUG_ON(iocb->ki_pos != pos);
2416
2417 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2418 &iocb->ki_pos);
2419
2420 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2421 ssize_t err;
2422
2423 err = sync_page_range_nolock(inode, mapping, pos, ret);
2424 if (err < 0)
2425 ret = err;
2426 }
2427 return ret;
2428 }
2429 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2430
generic_file_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)2431 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2432 unsigned long nr_segs, loff_t pos)
2433 {
2434 struct file *file = iocb->ki_filp;
2435 struct address_space *mapping = file->f_mapping;
2436 struct inode *inode = mapping->host;
2437 ssize_t ret;
2438
2439 BUG_ON(iocb->ki_pos != pos);
2440
2441 mutex_lock(&inode->i_mutex);
2442 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2443 &iocb->ki_pos);
2444 mutex_unlock(&inode->i_mutex);
2445
2446 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2447 ssize_t err;
2448
2449 err = sync_page_range(inode, mapping, pos, ret);
2450 if (err < 0)
2451 ret = err;
2452 }
2453 return ret;
2454 }
2455 EXPORT_SYMBOL(generic_file_aio_write);
2456
2457 /**
2458 * try_to_release_page() - release old fs-specific metadata on a page
2459 *
2460 * @page: the page which the kernel is trying to free
2461 * @gfp_mask: memory allocation flags (and I/O mode)
2462 *
2463 * The address_space is to try to release any data against the page
2464 * (presumably at page->private). If the release was successful, return `1'.
2465 * Otherwise return zero.
2466 *
2467 * The @gfp_mask argument specifies whether I/O may be performed to release
2468 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2469 *
2470 */
try_to_release_page(struct page * page,gfp_t gfp_mask)2471 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2472 {
2473 struct address_space * const mapping = page->mapping;
2474
2475 BUG_ON(!PageLocked(page));
2476 if (PageWriteback(page))
2477 return 0;
2478
2479 if (mapping && mapping->a_ops->releasepage)
2480 return mapping->a_ops->releasepage(page, gfp_mask);
2481 return try_to_free_buffers(page);
2482 }
2483
2484 EXPORT_SYMBOL(try_to_release_page);
2485