• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25 
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28 
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32 
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36 
37 __initdata LIST_HEAD(huge_boot_pages);
38 
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43 
44 #define for_each_hstate(h) \
45 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46 
47 /*
48  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49  */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51 
52 /*
53  * Region tracking -- allows tracking of reservations and instantiated pages
54  *                    across the pages in a mapping.
55  *
56  * The region data structures are protected by a combination of the mmap_sem
57  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58  * must either hold the mmap_sem for write, or the mmap_sem for read and
59  * the hugetlb_instantiation mutex:
60  *
61  * 	down_write(&mm->mmap_sem);
62  * or
63  * 	down_read(&mm->mmap_sem);
64  * 	mutex_lock(&hugetlb_instantiation_mutex);
65  */
66 struct file_region {
67 	struct list_head link;
68 	long from;
69 	long to;
70 };
71 
region_add(struct list_head * head,long f,long t)72 static long region_add(struct list_head *head, long f, long t)
73 {
74 	struct file_region *rg, *nrg, *trg;
75 
76 	/* Locate the region we are either in or before. */
77 	list_for_each_entry(rg, head, link)
78 		if (f <= rg->to)
79 			break;
80 
81 	/* Round our left edge to the current segment if it encloses us. */
82 	if (f > rg->from)
83 		f = rg->from;
84 
85 	/* Check for and consume any regions we now overlap with. */
86 	nrg = rg;
87 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 		if (&rg->link == head)
89 			break;
90 		if (rg->from > t)
91 			break;
92 
93 		/* If this area reaches higher then extend our area to
94 		 * include it completely.  If this is not the first area
95 		 * which we intend to reuse, free it. */
96 		if (rg->to > t)
97 			t = rg->to;
98 		if (rg != nrg) {
99 			list_del(&rg->link);
100 			kfree(rg);
101 		}
102 	}
103 	nrg->from = f;
104 	nrg->to = t;
105 	return 0;
106 }
107 
region_chg(struct list_head * head,long f,long t)108 static long region_chg(struct list_head *head, long f, long t)
109 {
110 	struct file_region *rg, *nrg;
111 	long chg = 0;
112 
113 	/* Locate the region we are before or in. */
114 	list_for_each_entry(rg, head, link)
115 		if (f <= rg->to)
116 			break;
117 
118 	/* If we are below the current region then a new region is required.
119 	 * Subtle, allocate a new region at the position but make it zero
120 	 * size such that we can guarantee to record the reservation. */
121 	if (&rg->link == head || t < rg->from) {
122 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 		if (!nrg)
124 			return -ENOMEM;
125 		nrg->from = f;
126 		nrg->to   = f;
127 		INIT_LIST_HEAD(&nrg->link);
128 		list_add(&nrg->link, rg->link.prev);
129 
130 		return t - f;
131 	}
132 
133 	/* Round our left edge to the current segment if it encloses us. */
134 	if (f > rg->from)
135 		f = rg->from;
136 	chg = t - f;
137 
138 	/* Check for and consume any regions we now overlap with. */
139 	list_for_each_entry(rg, rg->link.prev, link) {
140 		if (&rg->link == head)
141 			break;
142 		if (rg->from > t)
143 			return chg;
144 
145 		/* We overlap with this area, if it extends futher than
146 		 * us then we must extend ourselves.  Account for its
147 		 * existing reservation. */
148 		if (rg->to > t) {
149 			chg += rg->to - t;
150 			t = rg->to;
151 		}
152 		chg -= rg->to - rg->from;
153 	}
154 	return chg;
155 }
156 
region_truncate(struct list_head * head,long end)157 static long region_truncate(struct list_head *head, long end)
158 {
159 	struct file_region *rg, *trg;
160 	long chg = 0;
161 
162 	/* Locate the region we are either in or before. */
163 	list_for_each_entry(rg, head, link)
164 		if (end <= rg->to)
165 			break;
166 	if (&rg->link == head)
167 		return 0;
168 
169 	/* If we are in the middle of a region then adjust it. */
170 	if (end > rg->from) {
171 		chg = rg->to - end;
172 		rg->to = end;
173 		rg = list_entry(rg->link.next, typeof(*rg), link);
174 	}
175 
176 	/* Drop any remaining regions. */
177 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 		if (&rg->link == head)
179 			break;
180 		chg += rg->to - rg->from;
181 		list_del(&rg->link);
182 		kfree(rg);
183 	}
184 	return chg;
185 }
186 
region_count(struct list_head * head,long f,long t)187 static long region_count(struct list_head *head, long f, long t)
188 {
189 	struct file_region *rg;
190 	long chg = 0;
191 
192 	/* Locate each segment we overlap with, and count that overlap. */
193 	list_for_each_entry(rg, head, link) {
194 		int seg_from;
195 		int seg_to;
196 
197 		if (rg->to <= f)
198 			continue;
199 		if (rg->from >= t)
200 			break;
201 
202 		seg_from = max(rg->from, f);
203 		seg_to = min(rg->to, t);
204 
205 		chg += seg_to - seg_from;
206 	}
207 
208 	return chg;
209 }
210 
211 /*
212  * Convert the address within this vma to the page offset within
213  * the mapping, in pagecache page units; huge pages here.
214  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 			struct vm_area_struct *vma, unsigned long address)
217 {
218 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 			(vma->vm_pgoff >> huge_page_order(h));
220 }
221 
222 /*
223  * Return the size of the pages allocated when backing a VMA. In the majority
224  * cases this will be same size as used by the page table entries.
225  */
vma_kernel_pagesize(struct vm_area_struct * vma)226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227 {
228 	struct hstate *hstate;
229 
230 	if (!is_vm_hugetlb_page(vma))
231 		return PAGE_SIZE;
232 
233 	hstate = hstate_vma(vma);
234 
235 	return 1UL << (hstate->order + PAGE_SHIFT);
236 }
237 
238 /*
239  * Return the page size being used by the MMU to back a VMA. In the majority
240  * of cases, the page size used by the kernel matches the MMU size. On
241  * architectures where it differs, an architecture-specific version of this
242  * function is required.
243  */
244 #ifndef vma_mmu_pagesize
vma_mmu_pagesize(struct vm_area_struct * vma)245 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
246 {
247 	return vma_kernel_pagesize(vma);
248 }
249 #endif
250 
251 /*
252  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
253  * bits of the reservation map pointer, which are always clear due to
254  * alignment.
255  */
256 #define HPAGE_RESV_OWNER    (1UL << 0)
257 #define HPAGE_RESV_UNMAPPED (1UL << 1)
258 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
259 
260 /*
261  * These helpers are used to track how many pages are reserved for
262  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
263  * is guaranteed to have their future faults succeed.
264  *
265  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
266  * the reserve counters are updated with the hugetlb_lock held. It is safe
267  * to reset the VMA at fork() time as it is not in use yet and there is no
268  * chance of the global counters getting corrupted as a result of the values.
269  *
270  * The private mapping reservation is represented in a subtly different
271  * manner to a shared mapping.  A shared mapping has a region map associated
272  * with the underlying file, this region map represents the backing file
273  * pages which have ever had a reservation assigned which this persists even
274  * after the page is instantiated.  A private mapping has a region map
275  * associated with the original mmap which is attached to all VMAs which
276  * reference it, this region map represents those offsets which have consumed
277  * reservation ie. where pages have been instantiated.
278  */
get_vma_private_data(struct vm_area_struct * vma)279 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
280 {
281 	return (unsigned long)vma->vm_private_data;
282 }
283 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)284 static void set_vma_private_data(struct vm_area_struct *vma,
285 							unsigned long value)
286 {
287 	vma->vm_private_data = (void *)value;
288 }
289 
290 struct resv_map {
291 	struct kref refs;
292 	struct list_head regions;
293 };
294 
resv_map_alloc(void)295 static struct resv_map *resv_map_alloc(void)
296 {
297 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
298 	if (!resv_map)
299 		return NULL;
300 
301 	kref_init(&resv_map->refs);
302 	INIT_LIST_HEAD(&resv_map->regions);
303 
304 	return resv_map;
305 }
306 
resv_map_release(struct kref * ref)307 static void resv_map_release(struct kref *ref)
308 {
309 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
310 
311 	/* Clear out any active regions before we release the map. */
312 	region_truncate(&resv_map->regions, 0);
313 	kfree(resv_map);
314 }
315 
vma_resv_map(struct vm_area_struct * vma)316 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
317 {
318 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
319 	if (!(vma->vm_flags & VM_SHARED))
320 		return (struct resv_map *)(get_vma_private_data(vma) &
321 							~HPAGE_RESV_MASK);
322 	return NULL;
323 }
324 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)325 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
326 {
327 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
328 	VM_BUG_ON(vma->vm_flags & VM_SHARED);
329 
330 	set_vma_private_data(vma, (get_vma_private_data(vma) &
331 				HPAGE_RESV_MASK) | (unsigned long)map);
332 }
333 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)334 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
335 {
336 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337 	VM_BUG_ON(vma->vm_flags & VM_SHARED);
338 
339 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
340 }
341 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)342 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
343 {
344 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
345 
346 	return (get_vma_private_data(vma) & flag) != 0;
347 }
348 
349 /* Decrement the reserved pages in the hugepage pool by one */
decrement_hugepage_resv_vma(struct hstate * h,struct vm_area_struct * vma)350 static void decrement_hugepage_resv_vma(struct hstate *h,
351 			struct vm_area_struct *vma)
352 {
353 	if (vma->vm_flags & VM_NORESERVE)
354 		return;
355 
356 	if (vma->vm_flags & VM_SHARED) {
357 		/* Shared mappings always use reserves */
358 		h->resv_huge_pages--;
359 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
360 		/*
361 		 * Only the process that called mmap() has reserves for
362 		 * private mappings.
363 		 */
364 		h->resv_huge_pages--;
365 	}
366 }
367 
368 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)369 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
370 {
371 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
372 	if (!(vma->vm_flags & VM_SHARED))
373 		vma->vm_private_data = (void *)0;
374 }
375 
376 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma)377 static int vma_has_reserves(struct vm_area_struct *vma)
378 {
379 	if (vma->vm_flags & VM_SHARED)
380 		return 1;
381 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
382 		return 1;
383 	return 0;
384 }
385 
clear_gigantic_page(struct page * page,unsigned long addr,unsigned long sz)386 static void clear_gigantic_page(struct page *page,
387 			unsigned long addr, unsigned long sz)
388 {
389 	int i;
390 	struct page *p = page;
391 
392 	might_sleep();
393 	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
394 		cond_resched();
395 		clear_user_highpage(p, addr + i * PAGE_SIZE);
396 	}
397 }
clear_huge_page(struct page * page,unsigned long addr,unsigned long sz)398 static void clear_huge_page(struct page *page,
399 			unsigned long addr, unsigned long sz)
400 {
401 	int i;
402 
403 	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
404 		clear_gigantic_page(page, addr, sz);
405 		return;
406 	}
407 
408 	might_sleep();
409 	for (i = 0; i < sz/PAGE_SIZE; i++) {
410 		cond_resched();
411 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
412 	}
413 }
414 
copy_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma)415 static void copy_gigantic_page(struct page *dst, struct page *src,
416 			   unsigned long addr, struct vm_area_struct *vma)
417 {
418 	int i;
419 	struct hstate *h = hstate_vma(vma);
420 	struct page *dst_base = dst;
421 	struct page *src_base = src;
422 	might_sleep();
423 	for (i = 0; i < pages_per_huge_page(h); ) {
424 		cond_resched();
425 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
426 
427 		i++;
428 		dst = mem_map_next(dst, dst_base, i);
429 		src = mem_map_next(src, src_base, i);
430 	}
431 }
copy_huge_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma)432 static void copy_huge_page(struct page *dst, struct page *src,
433 			   unsigned long addr, struct vm_area_struct *vma)
434 {
435 	int i;
436 	struct hstate *h = hstate_vma(vma);
437 
438 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
439 		copy_gigantic_page(dst, src, addr, vma);
440 		return;
441 	}
442 
443 	might_sleep();
444 	for (i = 0; i < pages_per_huge_page(h); i++) {
445 		cond_resched();
446 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
447 	}
448 }
449 
enqueue_huge_page(struct hstate * h,struct page * page)450 static void enqueue_huge_page(struct hstate *h, struct page *page)
451 {
452 	int nid = page_to_nid(page);
453 	list_add(&page->lru, &h->hugepage_freelists[nid]);
454 	h->free_huge_pages++;
455 	h->free_huge_pages_node[nid]++;
456 }
457 
dequeue_huge_page(struct hstate * h)458 static struct page *dequeue_huge_page(struct hstate *h)
459 {
460 	int nid;
461 	struct page *page = NULL;
462 
463 	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
464 		if (!list_empty(&h->hugepage_freelists[nid])) {
465 			page = list_entry(h->hugepage_freelists[nid].next,
466 					  struct page, lru);
467 			list_del(&page->lru);
468 			h->free_huge_pages--;
469 			h->free_huge_pages_node[nid]--;
470 			break;
471 		}
472 	}
473 	return page;
474 }
475 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve)476 static struct page *dequeue_huge_page_vma(struct hstate *h,
477 				struct vm_area_struct *vma,
478 				unsigned long address, int avoid_reserve)
479 {
480 	int nid;
481 	struct page *page = NULL;
482 	struct mempolicy *mpol;
483 	nodemask_t *nodemask;
484 	struct zonelist *zonelist = huge_zonelist(vma, address,
485 					htlb_alloc_mask, &mpol, &nodemask);
486 	struct zone *zone;
487 	struct zoneref *z;
488 
489 	/*
490 	 * A child process with MAP_PRIVATE mappings created by their parent
491 	 * have no page reserves. This check ensures that reservations are
492 	 * not "stolen". The child may still get SIGKILLed
493 	 */
494 	if (!vma_has_reserves(vma) &&
495 			h->free_huge_pages - h->resv_huge_pages == 0)
496 		return NULL;
497 
498 	/* If reserves cannot be used, ensure enough pages are in the pool */
499 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
500 		return NULL;
501 
502 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
503 						MAX_NR_ZONES - 1, nodemask) {
504 		nid = zone_to_nid(zone);
505 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
506 		    !list_empty(&h->hugepage_freelists[nid])) {
507 			page = list_entry(h->hugepage_freelists[nid].next,
508 					  struct page, lru);
509 			list_del(&page->lru);
510 			h->free_huge_pages--;
511 			h->free_huge_pages_node[nid]--;
512 
513 			if (!avoid_reserve)
514 				decrement_hugepage_resv_vma(h, vma);
515 
516 			break;
517 		}
518 	}
519 	mpol_cond_put(mpol);
520 	return page;
521 }
522 
update_and_free_page(struct hstate * h,struct page * page)523 static void update_and_free_page(struct hstate *h, struct page *page)
524 {
525 	int i;
526 
527 	VM_BUG_ON(h->order >= MAX_ORDER);
528 
529 	h->nr_huge_pages--;
530 	h->nr_huge_pages_node[page_to_nid(page)]--;
531 	for (i = 0; i < pages_per_huge_page(h); i++) {
532 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
533 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
534 				1 << PG_private | 1<< PG_writeback);
535 	}
536 	set_compound_page_dtor(page, NULL);
537 	set_page_refcounted(page);
538 	arch_release_hugepage(page);
539 	__free_pages(page, huge_page_order(h));
540 }
541 
size_to_hstate(unsigned long size)542 struct hstate *size_to_hstate(unsigned long size)
543 {
544 	struct hstate *h;
545 
546 	for_each_hstate(h) {
547 		if (huge_page_size(h) == size)
548 			return h;
549 	}
550 	return NULL;
551 }
552 
free_huge_page(struct page * page)553 static void free_huge_page(struct page *page)
554 {
555 	/*
556 	 * Can't pass hstate in here because it is called from the
557 	 * compound page destructor.
558 	 */
559 	struct hstate *h = page_hstate(page);
560 	int nid = page_to_nid(page);
561 	struct address_space *mapping;
562 
563 	mapping = (struct address_space *) page_private(page);
564 	set_page_private(page, 0);
565 	BUG_ON(page_count(page));
566 	INIT_LIST_HEAD(&page->lru);
567 
568 	spin_lock(&hugetlb_lock);
569 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
570 		update_and_free_page(h, page);
571 		h->surplus_huge_pages--;
572 		h->surplus_huge_pages_node[nid]--;
573 	} else {
574 		enqueue_huge_page(h, page);
575 	}
576 	spin_unlock(&hugetlb_lock);
577 	if (mapping)
578 		hugetlb_put_quota(mapping, 1);
579 }
580 
581 /*
582  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
583  * balanced by operating on them in a round-robin fashion.
584  * Returns 1 if an adjustment was made.
585  */
adjust_pool_surplus(struct hstate * h,int delta)586 static int adjust_pool_surplus(struct hstate *h, int delta)
587 {
588 	static int prev_nid;
589 	int nid = prev_nid;
590 	int ret = 0;
591 
592 	VM_BUG_ON(delta != -1 && delta != 1);
593 	do {
594 		nid = next_node(nid, node_online_map);
595 		if (nid == MAX_NUMNODES)
596 			nid = first_node(node_online_map);
597 
598 		/* To shrink on this node, there must be a surplus page */
599 		if (delta < 0 && !h->surplus_huge_pages_node[nid])
600 			continue;
601 		/* Surplus cannot exceed the total number of pages */
602 		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
603 						h->nr_huge_pages_node[nid])
604 			continue;
605 
606 		h->surplus_huge_pages += delta;
607 		h->surplus_huge_pages_node[nid] += delta;
608 		ret = 1;
609 		break;
610 	} while (nid != prev_nid);
611 
612 	prev_nid = nid;
613 	return ret;
614 }
615 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)616 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
617 {
618 	set_compound_page_dtor(page, free_huge_page);
619 	spin_lock(&hugetlb_lock);
620 	h->nr_huge_pages++;
621 	h->nr_huge_pages_node[nid]++;
622 	spin_unlock(&hugetlb_lock);
623 	put_page(page); /* free it into the hugepage allocator */
624 }
625 
alloc_fresh_huge_page_node(struct hstate * h,int nid)626 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
627 {
628 	struct page *page;
629 
630 	if (h->order >= MAX_ORDER)
631 		return NULL;
632 
633 	page = alloc_pages_node(nid,
634 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
635 						__GFP_REPEAT|__GFP_NOWARN,
636 		huge_page_order(h));
637 	if (page) {
638 		if (arch_prepare_hugepage(page)) {
639 			__free_pages(page, huge_page_order(h));
640 			return NULL;
641 		}
642 		prep_new_huge_page(h, page, nid);
643 	}
644 
645 	return page;
646 }
647 
648 /*
649  * Use a helper variable to find the next node and then
650  * copy it back to hugetlb_next_nid afterwards:
651  * otherwise there's a window in which a racer might
652  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
653  * But we don't need to use a spin_lock here: it really
654  * doesn't matter if occasionally a racer chooses the
655  * same nid as we do.  Move nid forward in the mask even
656  * if we just successfully allocated a hugepage so that
657  * the next caller gets hugepages on the next node.
658  */
hstate_next_node(struct hstate * h)659 static int hstate_next_node(struct hstate *h)
660 {
661 	int next_nid;
662 	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
663 	if (next_nid == MAX_NUMNODES)
664 		next_nid = first_node(node_online_map);
665 	h->hugetlb_next_nid = next_nid;
666 	return next_nid;
667 }
668 
alloc_fresh_huge_page(struct hstate * h)669 static int alloc_fresh_huge_page(struct hstate *h)
670 {
671 	struct page *page;
672 	int start_nid;
673 	int next_nid;
674 	int ret = 0;
675 
676 	start_nid = h->hugetlb_next_nid;
677 
678 	do {
679 		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
680 		if (page)
681 			ret = 1;
682 		next_nid = hstate_next_node(h);
683 	} while (!page && h->hugetlb_next_nid != start_nid);
684 
685 	if (ret)
686 		count_vm_event(HTLB_BUDDY_PGALLOC);
687 	else
688 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
689 
690 	return ret;
691 }
692 
alloc_buddy_huge_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)693 static struct page *alloc_buddy_huge_page(struct hstate *h,
694 			struct vm_area_struct *vma, unsigned long address)
695 {
696 	struct page *page;
697 	unsigned int nid;
698 
699 	if (h->order >= MAX_ORDER)
700 		return NULL;
701 
702 	/*
703 	 * Assume we will successfully allocate the surplus page to
704 	 * prevent racing processes from causing the surplus to exceed
705 	 * overcommit
706 	 *
707 	 * This however introduces a different race, where a process B
708 	 * tries to grow the static hugepage pool while alloc_pages() is
709 	 * called by process A. B will only examine the per-node
710 	 * counters in determining if surplus huge pages can be
711 	 * converted to normal huge pages in adjust_pool_surplus(). A
712 	 * won't be able to increment the per-node counter, until the
713 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
714 	 * no more huge pages can be converted from surplus to normal
715 	 * state (and doesn't try to convert again). Thus, we have a
716 	 * case where a surplus huge page exists, the pool is grown, and
717 	 * the surplus huge page still exists after, even though it
718 	 * should just have been converted to a normal huge page. This
719 	 * does not leak memory, though, as the hugepage will be freed
720 	 * once it is out of use. It also does not allow the counters to
721 	 * go out of whack in adjust_pool_surplus() as we don't modify
722 	 * the node values until we've gotten the hugepage and only the
723 	 * per-node value is checked there.
724 	 */
725 	spin_lock(&hugetlb_lock);
726 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
727 		spin_unlock(&hugetlb_lock);
728 		return NULL;
729 	} else {
730 		h->nr_huge_pages++;
731 		h->surplus_huge_pages++;
732 	}
733 	spin_unlock(&hugetlb_lock);
734 
735 	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
736 					__GFP_REPEAT|__GFP_NOWARN,
737 					huge_page_order(h));
738 
739 	if (page && arch_prepare_hugepage(page)) {
740 		__free_pages(page, huge_page_order(h));
741 		return NULL;
742 	}
743 
744 	spin_lock(&hugetlb_lock);
745 	if (page) {
746 		/*
747 		 * This page is now managed by the hugetlb allocator and has
748 		 * no users -- drop the buddy allocator's reference.
749 		 */
750 		put_page_testzero(page);
751 		VM_BUG_ON(page_count(page));
752 		nid = page_to_nid(page);
753 		set_compound_page_dtor(page, free_huge_page);
754 		/*
755 		 * We incremented the global counters already
756 		 */
757 		h->nr_huge_pages_node[nid]++;
758 		h->surplus_huge_pages_node[nid]++;
759 		__count_vm_event(HTLB_BUDDY_PGALLOC);
760 	} else {
761 		h->nr_huge_pages--;
762 		h->surplus_huge_pages--;
763 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
764 	}
765 	spin_unlock(&hugetlb_lock);
766 
767 	return page;
768 }
769 
770 /*
771  * Increase the hugetlb pool such that it can accomodate a reservation
772  * of size 'delta'.
773  */
gather_surplus_pages(struct hstate * h,int delta)774 static int gather_surplus_pages(struct hstate *h, int delta)
775 {
776 	struct list_head surplus_list;
777 	struct page *page, *tmp;
778 	int ret, i;
779 	int needed, allocated;
780 
781 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
782 	if (needed <= 0) {
783 		h->resv_huge_pages += delta;
784 		return 0;
785 	}
786 
787 	allocated = 0;
788 	INIT_LIST_HEAD(&surplus_list);
789 
790 	ret = -ENOMEM;
791 retry:
792 	spin_unlock(&hugetlb_lock);
793 	for (i = 0; i < needed; i++) {
794 		page = alloc_buddy_huge_page(h, NULL, 0);
795 		if (!page) {
796 			/*
797 			 * We were not able to allocate enough pages to
798 			 * satisfy the entire reservation so we free what
799 			 * we've allocated so far.
800 			 */
801 			spin_lock(&hugetlb_lock);
802 			needed = 0;
803 			goto free;
804 		}
805 
806 		list_add(&page->lru, &surplus_list);
807 	}
808 	allocated += needed;
809 
810 	/*
811 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
812 	 * because either resv_huge_pages or free_huge_pages may have changed.
813 	 */
814 	spin_lock(&hugetlb_lock);
815 	needed = (h->resv_huge_pages + delta) -
816 			(h->free_huge_pages + allocated);
817 	if (needed > 0)
818 		goto retry;
819 
820 	/*
821 	 * The surplus_list now contains _at_least_ the number of extra pages
822 	 * needed to accomodate the reservation.  Add the appropriate number
823 	 * of pages to the hugetlb pool and free the extras back to the buddy
824 	 * allocator.  Commit the entire reservation here to prevent another
825 	 * process from stealing the pages as they are added to the pool but
826 	 * before they are reserved.
827 	 */
828 	needed += allocated;
829 	h->resv_huge_pages += delta;
830 	ret = 0;
831 free:
832 	/* Free the needed pages to the hugetlb pool */
833 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
834 		if ((--needed) < 0)
835 			break;
836 		list_del(&page->lru);
837 		enqueue_huge_page(h, page);
838 	}
839 
840 	/* Free unnecessary surplus pages to the buddy allocator */
841 	if (!list_empty(&surplus_list)) {
842 		spin_unlock(&hugetlb_lock);
843 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
844 			list_del(&page->lru);
845 			/*
846 			 * The page has a reference count of zero already, so
847 			 * call free_huge_page directly instead of using
848 			 * put_page.  This must be done with hugetlb_lock
849 			 * unlocked which is safe because free_huge_page takes
850 			 * hugetlb_lock before deciding how to free the page.
851 			 */
852 			free_huge_page(page);
853 		}
854 		spin_lock(&hugetlb_lock);
855 	}
856 
857 	return ret;
858 }
859 
860 /*
861  * When releasing a hugetlb pool reservation, any surplus pages that were
862  * allocated to satisfy the reservation must be explicitly freed if they were
863  * never used.
864  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)865 static void return_unused_surplus_pages(struct hstate *h,
866 					unsigned long unused_resv_pages)
867 {
868 	static int nid = -1;
869 	struct page *page;
870 	unsigned long nr_pages;
871 
872 	/*
873 	 * We want to release as many surplus pages as possible, spread
874 	 * evenly across all nodes. Iterate across all nodes until we
875 	 * can no longer free unreserved surplus pages. This occurs when
876 	 * the nodes with surplus pages have no free pages.
877 	 */
878 	unsigned long remaining_iterations = num_online_nodes();
879 
880 	/* Uncommit the reservation */
881 	h->resv_huge_pages -= unused_resv_pages;
882 
883 	/* Cannot return gigantic pages currently */
884 	if (h->order >= MAX_ORDER)
885 		return;
886 
887 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
888 
889 	while (remaining_iterations-- && nr_pages) {
890 		nid = next_node(nid, node_online_map);
891 		if (nid == MAX_NUMNODES)
892 			nid = first_node(node_online_map);
893 
894 		if (!h->surplus_huge_pages_node[nid])
895 			continue;
896 
897 		if (!list_empty(&h->hugepage_freelists[nid])) {
898 			page = list_entry(h->hugepage_freelists[nid].next,
899 					  struct page, lru);
900 			list_del(&page->lru);
901 			update_and_free_page(h, page);
902 			h->free_huge_pages--;
903 			h->free_huge_pages_node[nid]--;
904 			h->surplus_huge_pages--;
905 			h->surplus_huge_pages_node[nid]--;
906 			nr_pages--;
907 			remaining_iterations = num_online_nodes();
908 		}
909 	}
910 }
911 
912 /*
913  * Determine if the huge page at addr within the vma has an associated
914  * reservation.  Where it does not we will need to logically increase
915  * reservation and actually increase quota before an allocation can occur.
916  * Where any new reservation would be required the reservation change is
917  * prepared, but not committed.  Once the page has been quota'd allocated
918  * an instantiated the change should be committed via vma_commit_reservation.
919  * No action is required on failure.
920  */
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)921 static int vma_needs_reservation(struct hstate *h,
922 			struct vm_area_struct *vma, unsigned long addr)
923 {
924 	struct address_space *mapping = vma->vm_file->f_mapping;
925 	struct inode *inode = mapping->host;
926 
927 	if (vma->vm_flags & VM_SHARED) {
928 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
929 		return region_chg(&inode->i_mapping->private_list,
930 							idx, idx + 1);
931 
932 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
933 		return 1;
934 
935 	} else  {
936 		int err;
937 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
938 		struct resv_map *reservations = vma_resv_map(vma);
939 
940 		err = region_chg(&reservations->regions, idx, idx + 1);
941 		if (err < 0)
942 			return err;
943 		return 0;
944 	}
945 }
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)946 static void vma_commit_reservation(struct hstate *h,
947 			struct vm_area_struct *vma, unsigned long addr)
948 {
949 	struct address_space *mapping = vma->vm_file->f_mapping;
950 	struct inode *inode = mapping->host;
951 
952 	if (vma->vm_flags & VM_SHARED) {
953 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
954 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
955 
956 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
957 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
958 		struct resv_map *reservations = vma_resv_map(vma);
959 
960 		/* Mark this page used in the map. */
961 		region_add(&reservations->regions, idx, idx + 1);
962 	}
963 }
964 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)965 static struct page *alloc_huge_page(struct vm_area_struct *vma,
966 				    unsigned long addr, int avoid_reserve)
967 {
968 	struct hstate *h = hstate_vma(vma);
969 	struct page *page;
970 	struct address_space *mapping = vma->vm_file->f_mapping;
971 	struct inode *inode = mapping->host;
972 	unsigned int chg;
973 
974 	/*
975 	 * Processes that did not create the mapping will have no reserves and
976 	 * will not have accounted against quota. Check that the quota can be
977 	 * made before satisfying the allocation
978 	 * MAP_NORESERVE mappings may also need pages and quota allocated
979 	 * if no reserve mapping overlaps.
980 	 */
981 	chg = vma_needs_reservation(h, vma, addr);
982 	if (chg < 0)
983 		return ERR_PTR(chg);
984 	if (chg)
985 		if (hugetlb_get_quota(inode->i_mapping, chg))
986 			return ERR_PTR(-ENOSPC);
987 
988 	spin_lock(&hugetlb_lock);
989 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
990 	spin_unlock(&hugetlb_lock);
991 
992 	if (!page) {
993 		page = alloc_buddy_huge_page(h, vma, addr);
994 		if (!page) {
995 			hugetlb_put_quota(inode->i_mapping, chg);
996 			return ERR_PTR(-VM_FAULT_OOM);
997 		}
998 	}
999 
1000 	set_page_refcounted(page);
1001 	set_page_private(page, (unsigned long) mapping);
1002 
1003 	vma_commit_reservation(h, vma, addr);
1004 
1005 	return page;
1006 }
1007 
alloc_bootmem_huge_page(struct hstate * h)1008 int __weak alloc_bootmem_huge_page(struct hstate *h)
1009 {
1010 	struct huge_bootmem_page *m;
1011 	int nr_nodes = nodes_weight(node_online_map);
1012 
1013 	while (nr_nodes) {
1014 		void *addr;
1015 
1016 		addr = __alloc_bootmem_node_nopanic(
1017 				NODE_DATA(h->hugetlb_next_nid),
1018 				huge_page_size(h), huge_page_size(h), 0);
1019 
1020 		if (addr) {
1021 			/*
1022 			 * Use the beginning of the huge page to store the
1023 			 * huge_bootmem_page struct (until gather_bootmem
1024 			 * puts them into the mem_map).
1025 			 */
1026 			m = addr;
1027 			goto found;
1028 		}
1029 		hstate_next_node(h);
1030 		nr_nodes--;
1031 	}
1032 	return 0;
1033 
1034 found:
1035 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1036 	/* Put them into a private list first because mem_map is not up yet */
1037 	list_add(&m->list, &huge_boot_pages);
1038 	m->hstate = h;
1039 	return 1;
1040 }
1041 
prep_compound_huge_page(struct page * page,int order)1042 static void prep_compound_huge_page(struct page *page, int order)
1043 {
1044 	if (unlikely(order > (MAX_ORDER - 1)))
1045 		prep_compound_gigantic_page(page, order);
1046 	else
1047 		prep_compound_page(page, order);
1048 }
1049 
1050 /* Put bootmem huge pages into the standard lists after mem_map is up */
gather_bootmem_prealloc(void)1051 static void __init gather_bootmem_prealloc(void)
1052 {
1053 	struct huge_bootmem_page *m;
1054 
1055 	list_for_each_entry(m, &huge_boot_pages, list) {
1056 		struct page *page = virt_to_page(m);
1057 		struct hstate *h = m->hstate;
1058 		__ClearPageReserved(page);
1059 		WARN_ON(page_count(page) != 1);
1060 		prep_compound_huge_page(page, h->order);
1061 		prep_new_huge_page(h, page, page_to_nid(page));
1062 	}
1063 }
1064 
hugetlb_hstate_alloc_pages(struct hstate * h)1065 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1066 {
1067 	unsigned long i;
1068 
1069 	for (i = 0; i < h->max_huge_pages; ++i) {
1070 		if (h->order >= MAX_ORDER) {
1071 			if (!alloc_bootmem_huge_page(h))
1072 				break;
1073 		} else if (!alloc_fresh_huge_page(h))
1074 			break;
1075 	}
1076 	h->max_huge_pages = i;
1077 }
1078 
hugetlb_init_hstates(void)1079 static void __init hugetlb_init_hstates(void)
1080 {
1081 	struct hstate *h;
1082 
1083 	for_each_hstate(h) {
1084 		/* oversize hugepages were init'ed in early boot */
1085 		if (h->order < MAX_ORDER)
1086 			hugetlb_hstate_alloc_pages(h);
1087 	}
1088 }
1089 
memfmt(char * buf,unsigned long n)1090 static char * __init memfmt(char *buf, unsigned long n)
1091 {
1092 	if (n >= (1UL << 30))
1093 		sprintf(buf, "%lu GB", n >> 30);
1094 	else if (n >= (1UL << 20))
1095 		sprintf(buf, "%lu MB", n >> 20);
1096 	else
1097 		sprintf(buf, "%lu KB", n >> 10);
1098 	return buf;
1099 }
1100 
report_hugepages(void)1101 static void __init report_hugepages(void)
1102 {
1103 	struct hstate *h;
1104 
1105 	for_each_hstate(h) {
1106 		char buf[32];
1107 		printk(KERN_INFO "HugeTLB registered %s page size, "
1108 				 "pre-allocated %ld pages\n",
1109 			memfmt(buf, huge_page_size(h)),
1110 			h->free_huge_pages);
1111 	}
1112 }
1113 
1114 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count)1115 static void try_to_free_low(struct hstate *h, unsigned long count)
1116 {
1117 	int i;
1118 
1119 	if (h->order >= MAX_ORDER)
1120 		return;
1121 
1122 	for (i = 0; i < MAX_NUMNODES; ++i) {
1123 		struct page *page, *next;
1124 		struct list_head *freel = &h->hugepage_freelists[i];
1125 		list_for_each_entry_safe(page, next, freel, lru) {
1126 			if (count >= h->nr_huge_pages)
1127 				return;
1128 			if (PageHighMem(page))
1129 				continue;
1130 			list_del(&page->lru);
1131 			update_and_free_page(h, page);
1132 			h->free_huge_pages--;
1133 			h->free_huge_pages_node[page_to_nid(page)]--;
1134 		}
1135 	}
1136 }
1137 #else
try_to_free_low(struct hstate * h,unsigned long count)1138 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1139 {
1140 }
1141 #endif
1142 
1143 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count)1144 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1145 {
1146 	unsigned long min_count, ret;
1147 
1148 	if (h->order >= MAX_ORDER)
1149 		return h->max_huge_pages;
1150 
1151 	/*
1152 	 * Increase the pool size
1153 	 * First take pages out of surplus state.  Then make up the
1154 	 * remaining difference by allocating fresh huge pages.
1155 	 *
1156 	 * We might race with alloc_buddy_huge_page() here and be unable
1157 	 * to convert a surplus huge page to a normal huge page. That is
1158 	 * not critical, though, it just means the overall size of the
1159 	 * pool might be one hugepage larger than it needs to be, but
1160 	 * within all the constraints specified by the sysctls.
1161 	 */
1162 	spin_lock(&hugetlb_lock);
1163 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1164 		if (!adjust_pool_surplus(h, -1))
1165 			break;
1166 	}
1167 
1168 	while (count > persistent_huge_pages(h)) {
1169 		/*
1170 		 * If this allocation races such that we no longer need the
1171 		 * page, free_huge_page will handle it by freeing the page
1172 		 * and reducing the surplus.
1173 		 */
1174 		spin_unlock(&hugetlb_lock);
1175 		ret = alloc_fresh_huge_page(h);
1176 		spin_lock(&hugetlb_lock);
1177 		if (!ret)
1178 			goto out;
1179 
1180 	}
1181 
1182 	/*
1183 	 * Decrease the pool size
1184 	 * First return free pages to the buddy allocator (being careful
1185 	 * to keep enough around to satisfy reservations).  Then place
1186 	 * pages into surplus state as needed so the pool will shrink
1187 	 * to the desired size as pages become free.
1188 	 *
1189 	 * By placing pages into the surplus state independent of the
1190 	 * overcommit value, we are allowing the surplus pool size to
1191 	 * exceed overcommit. There are few sane options here. Since
1192 	 * alloc_buddy_huge_page() is checking the global counter,
1193 	 * though, we'll note that we're not allowed to exceed surplus
1194 	 * and won't grow the pool anywhere else. Not until one of the
1195 	 * sysctls are changed, or the surplus pages go out of use.
1196 	 */
1197 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1198 	min_count = max(count, min_count);
1199 	try_to_free_low(h, min_count);
1200 	while (min_count < persistent_huge_pages(h)) {
1201 		struct page *page = dequeue_huge_page(h);
1202 		if (!page)
1203 			break;
1204 		update_and_free_page(h, page);
1205 	}
1206 	while (count < persistent_huge_pages(h)) {
1207 		if (!adjust_pool_surplus(h, 1))
1208 			break;
1209 	}
1210 out:
1211 	ret = persistent_huge_pages(h);
1212 	spin_unlock(&hugetlb_lock);
1213 	return ret;
1214 }
1215 
1216 #define HSTATE_ATTR_RO(_name) \
1217 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1218 
1219 #define HSTATE_ATTR(_name) \
1220 	static struct kobj_attribute _name##_attr = \
1221 		__ATTR(_name, 0644, _name##_show, _name##_store)
1222 
1223 static struct kobject *hugepages_kobj;
1224 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1225 
kobj_to_hstate(struct kobject * kobj)1226 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1227 {
1228 	int i;
1229 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1230 		if (hstate_kobjs[i] == kobj)
1231 			return &hstates[i];
1232 	BUG();
1233 	return NULL;
1234 }
1235 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1236 static ssize_t nr_hugepages_show(struct kobject *kobj,
1237 					struct kobj_attribute *attr, char *buf)
1238 {
1239 	struct hstate *h = kobj_to_hstate(kobj);
1240 	return sprintf(buf, "%lu\n", h->nr_huge_pages);
1241 }
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1242 static ssize_t nr_hugepages_store(struct kobject *kobj,
1243 		struct kobj_attribute *attr, const char *buf, size_t count)
1244 {
1245 	int err;
1246 	unsigned long input;
1247 	struct hstate *h = kobj_to_hstate(kobj);
1248 
1249 	err = strict_strtoul(buf, 10, &input);
1250 	if (err)
1251 		return 0;
1252 
1253 	h->max_huge_pages = set_max_huge_pages(h, input);
1254 
1255 	return count;
1256 }
1257 HSTATE_ATTR(nr_hugepages);
1258 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1259 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1260 					struct kobj_attribute *attr, char *buf)
1261 {
1262 	struct hstate *h = kobj_to_hstate(kobj);
1263 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1264 }
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1265 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1266 		struct kobj_attribute *attr, const char *buf, size_t count)
1267 {
1268 	int err;
1269 	unsigned long input;
1270 	struct hstate *h = kobj_to_hstate(kobj);
1271 
1272 	err = strict_strtoul(buf, 10, &input);
1273 	if (err)
1274 		return 0;
1275 
1276 	spin_lock(&hugetlb_lock);
1277 	h->nr_overcommit_huge_pages = input;
1278 	spin_unlock(&hugetlb_lock);
1279 
1280 	return count;
1281 }
1282 HSTATE_ATTR(nr_overcommit_hugepages);
1283 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1284 static ssize_t free_hugepages_show(struct kobject *kobj,
1285 					struct kobj_attribute *attr, char *buf)
1286 {
1287 	struct hstate *h = kobj_to_hstate(kobj);
1288 	return sprintf(buf, "%lu\n", h->free_huge_pages);
1289 }
1290 HSTATE_ATTR_RO(free_hugepages);
1291 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1292 static ssize_t resv_hugepages_show(struct kobject *kobj,
1293 					struct kobj_attribute *attr, char *buf)
1294 {
1295 	struct hstate *h = kobj_to_hstate(kobj);
1296 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1297 }
1298 HSTATE_ATTR_RO(resv_hugepages);
1299 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1300 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1301 					struct kobj_attribute *attr, char *buf)
1302 {
1303 	struct hstate *h = kobj_to_hstate(kobj);
1304 	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1305 }
1306 HSTATE_ATTR_RO(surplus_hugepages);
1307 
1308 static struct attribute *hstate_attrs[] = {
1309 	&nr_hugepages_attr.attr,
1310 	&nr_overcommit_hugepages_attr.attr,
1311 	&free_hugepages_attr.attr,
1312 	&resv_hugepages_attr.attr,
1313 	&surplus_hugepages_attr.attr,
1314 	NULL,
1315 };
1316 
1317 static struct attribute_group hstate_attr_group = {
1318 	.attrs = hstate_attrs,
1319 };
1320 
hugetlb_sysfs_add_hstate(struct hstate * h)1321 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1322 {
1323 	int retval;
1324 
1325 	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1326 							hugepages_kobj);
1327 	if (!hstate_kobjs[h - hstates])
1328 		return -ENOMEM;
1329 
1330 	retval = sysfs_create_group(hstate_kobjs[h - hstates],
1331 							&hstate_attr_group);
1332 	if (retval)
1333 		kobject_put(hstate_kobjs[h - hstates]);
1334 
1335 	return retval;
1336 }
1337 
hugetlb_sysfs_init(void)1338 static void __init hugetlb_sysfs_init(void)
1339 {
1340 	struct hstate *h;
1341 	int err;
1342 
1343 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1344 	if (!hugepages_kobj)
1345 		return;
1346 
1347 	for_each_hstate(h) {
1348 		err = hugetlb_sysfs_add_hstate(h);
1349 		if (err)
1350 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1351 								h->name);
1352 	}
1353 }
1354 
hugetlb_exit(void)1355 static void __exit hugetlb_exit(void)
1356 {
1357 	struct hstate *h;
1358 
1359 	for_each_hstate(h) {
1360 		kobject_put(hstate_kobjs[h - hstates]);
1361 	}
1362 
1363 	kobject_put(hugepages_kobj);
1364 }
1365 module_exit(hugetlb_exit);
1366 
hugetlb_init(void)1367 static int __init hugetlb_init(void)
1368 {
1369 	/* Some platform decide whether they support huge pages at boot
1370 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1371 	 * there is no such support
1372 	 */
1373 	if (HPAGE_SHIFT == 0)
1374 		return 0;
1375 
1376 	if (!size_to_hstate(default_hstate_size)) {
1377 		default_hstate_size = HPAGE_SIZE;
1378 		if (!size_to_hstate(default_hstate_size))
1379 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1380 	}
1381 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1382 	if (default_hstate_max_huge_pages)
1383 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1384 
1385 	hugetlb_init_hstates();
1386 
1387 	gather_bootmem_prealloc();
1388 
1389 	report_hugepages();
1390 
1391 	hugetlb_sysfs_init();
1392 
1393 	return 0;
1394 }
1395 module_init(hugetlb_init);
1396 
1397 /* Should be called on processing a hugepagesz=... option */
hugetlb_add_hstate(unsigned order)1398 void __init hugetlb_add_hstate(unsigned order)
1399 {
1400 	struct hstate *h;
1401 	unsigned long i;
1402 
1403 	if (size_to_hstate(PAGE_SIZE << order)) {
1404 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1405 		return;
1406 	}
1407 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1408 	BUG_ON(order == 0);
1409 	h = &hstates[max_hstate++];
1410 	h->order = order;
1411 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1412 	h->nr_huge_pages = 0;
1413 	h->free_huge_pages = 0;
1414 	for (i = 0; i < MAX_NUMNODES; ++i)
1415 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1416 	h->hugetlb_next_nid = first_node(node_online_map);
1417 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1418 					huge_page_size(h)/1024);
1419 
1420 	parsed_hstate = h;
1421 }
1422 
hugetlb_nrpages_setup(char * s)1423 static int __init hugetlb_nrpages_setup(char *s)
1424 {
1425 	unsigned long *mhp;
1426 	static unsigned long *last_mhp;
1427 
1428 	/*
1429 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1430 	 * so this hugepages= parameter goes to the "default hstate".
1431 	 */
1432 	if (!max_hstate)
1433 		mhp = &default_hstate_max_huge_pages;
1434 	else
1435 		mhp = &parsed_hstate->max_huge_pages;
1436 
1437 	if (mhp == last_mhp) {
1438 		printk(KERN_WARNING "hugepages= specified twice without "
1439 			"interleaving hugepagesz=, ignoring\n");
1440 		return 1;
1441 	}
1442 
1443 	if (sscanf(s, "%lu", mhp) <= 0)
1444 		*mhp = 0;
1445 
1446 	/*
1447 	 * Global state is always initialized later in hugetlb_init.
1448 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1449 	 * use the bootmem allocator.
1450 	 */
1451 	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1452 		hugetlb_hstate_alloc_pages(parsed_hstate);
1453 
1454 	last_mhp = mhp;
1455 
1456 	return 1;
1457 }
1458 __setup("hugepages=", hugetlb_nrpages_setup);
1459 
hugetlb_default_setup(char * s)1460 static int __init hugetlb_default_setup(char *s)
1461 {
1462 	default_hstate_size = memparse(s, &s);
1463 	return 1;
1464 }
1465 __setup("default_hugepagesz=", hugetlb_default_setup);
1466 
cpuset_mems_nr(unsigned int * array)1467 static unsigned int cpuset_mems_nr(unsigned int *array)
1468 {
1469 	int node;
1470 	unsigned int nr = 0;
1471 
1472 	for_each_node_mask(node, cpuset_current_mems_allowed)
1473 		nr += array[node];
1474 
1475 	return nr;
1476 }
1477 
1478 #ifdef CONFIG_SYSCTL
hugetlb_sysctl_handler(struct ctl_table * table,int write,struct file * file,void __user * buffer,size_t * length,loff_t * ppos)1479 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1480 			   struct file *file, void __user *buffer,
1481 			   size_t *length, loff_t *ppos)
1482 {
1483 	struct hstate *h = &default_hstate;
1484 	unsigned long tmp;
1485 
1486 	if (!write)
1487 		tmp = h->max_huge_pages;
1488 
1489 	table->data = &tmp;
1490 	table->maxlen = sizeof(unsigned long);
1491 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1492 
1493 	if (write)
1494 		h->max_huge_pages = set_max_huge_pages(h, tmp);
1495 
1496 	return 0;
1497 }
1498 
hugetlb_treat_movable_handler(struct ctl_table * table,int write,struct file * file,void __user * buffer,size_t * length,loff_t * ppos)1499 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1500 			struct file *file, void __user *buffer,
1501 			size_t *length, loff_t *ppos)
1502 {
1503 	proc_dointvec(table, write, file, buffer, length, ppos);
1504 	if (hugepages_treat_as_movable)
1505 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1506 	else
1507 		htlb_alloc_mask = GFP_HIGHUSER;
1508 	return 0;
1509 }
1510 
hugetlb_overcommit_handler(struct ctl_table * table,int write,struct file * file,void __user * buffer,size_t * length,loff_t * ppos)1511 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1512 			struct file *file, void __user *buffer,
1513 			size_t *length, loff_t *ppos)
1514 {
1515 	struct hstate *h = &default_hstate;
1516 	unsigned long tmp;
1517 
1518 	if (!write)
1519 		tmp = h->nr_overcommit_huge_pages;
1520 
1521 	table->data = &tmp;
1522 	table->maxlen = sizeof(unsigned long);
1523 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1524 
1525 	if (write) {
1526 		spin_lock(&hugetlb_lock);
1527 		h->nr_overcommit_huge_pages = tmp;
1528 		spin_unlock(&hugetlb_lock);
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 #endif /* CONFIG_SYSCTL */
1535 
hugetlb_report_meminfo(struct seq_file * m)1536 void hugetlb_report_meminfo(struct seq_file *m)
1537 {
1538 	struct hstate *h = &default_hstate;
1539 	seq_printf(m,
1540 			"HugePages_Total:   %5lu\n"
1541 			"HugePages_Free:    %5lu\n"
1542 			"HugePages_Rsvd:    %5lu\n"
1543 			"HugePages_Surp:    %5lu\n"
1544 			"Hugepagesize:   %8lu kB\n",
1545 			h->nr_huge_pages,
1546 			h->free_huge_pages,
1547 			h->resv_huge_pages,
1548 			h->surplus_huge_pages,
1549 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1550 }
1551 
hugetlb_report_node_meminfo(int nid,char * buf)1552 int hugetlb_report_node_meminfo(int nid, char *buf)
1553 {
1554 	struct hstate *h = &default_hstate;
1555 	return sprintf(buf,
1556 		"Node %d HugePages_Total: %5u\n"
1557 		"Node %d HugePages_Free:  %5u\n"
1558 		"Node %d HugePages_Surp:  %5u\n",
1559 		nid, h->nr_huge_pages_node[nid],
1560 		nid, h->free_huge_pages_node[nid],
1561 		nid, h->surplus_huge_pages_node[nid]);
1562 }
1563 
1564 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)1565 unsigned long hugetlb_total_pages(void)
1566 {
1567 	struct hstate *h = &default_hstate;
1568 	return h->nr_huge_pages * pages_per_huge_page(h);
1569 }
1570 
hugetlb_acct_memory(struct hstate * h,long delta)1571 static int hugetlb_acct_memory(struct hstate *h, long delta)
1572 {
1573 	int ret = -ENOMEM;
1574 
1575 	spin_lock(&hugetlb_lock);
1576 	/*
1577 	 * When cpuset is configured, it breaks the strict hugetlb page
1578 	 * reservation as the accounting is done on a global variable. Such
1579 	 * reservation is completely rubbish in the presence of cpuset because
1580 	 * the reservation is not checked against page availability for the
1581 	 * current cpuset. Application can still potentially OOM'ed by kernel
1582 	 * with lack of free htlb page in cpuset that the task is in.
1583 	 * Attempt to enforce strict accounting with cpuset is almost
1584 	 * impossible (or too ugly) because cpuset is too fluid that
1585 	 * task or memory node can be dynamically moved between cpusets.
1586 	 *
1587 	 * The change of semantics for shared hugetlb mapping with cpuset is
1588 	 * undesirable. However, in order to preserve some of the semantics,
1589 	 * we fall back to check against current free page availability as
1590 	 * a best attempt and hopefully to minimize the impact of changing
1591 	 * semantics that cpuset has.
1592 	 */
1593 	if (delta > 0) {
1594 		if (gather_surplus_pages(h, delta) < 0)
1595 			goto out;
1596 
1597 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1598 			return_unused_surplus_pages(h, delta);
1599 			goto out;
1600 		}
1601 	}
1602 
1603 	ret = 0;
1604 	if (delta < 0)
1605 		return_unused_surplus_pages(h, (unsigned long) -delta);
1606 
1607 out:
1608 	spin_unlock(&hugetlb_lock);
1609 	return ret;
1610 }
1611 
hugetlb_vm_op_open(struct vm_area_struct * vma)1612 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1613 {
1614 	struct resv_map *reservations = vma_resv_map(vma);
1615 
1616 	/*
1617 	 * This new VMA should share its siblings reservation map if present.
1618 	 * The VMA will only ever have a valid reservation map pointer where
1619 	 * it is being copied for another still existing VMA.  As that VMA
1620 	 * has a reference to the reservation map it cannot dissappear until
1621 	 * after this open call completes.  It is therefore safe to take a
1622 	 * new reference here without additional locking.
1623 	 */
1624 	if (reservations)
1625 		kref_get(&reservations->refs);
1626 }
1627 
hugetlb_vm_op_close(struct vm_area_struct * vma)1628 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1629 {
1630 	struct hstate *h = hstate_vma(vma);
1631 	struct resv_map *reservations = vma_resv_map(vma);
1632 	unsigned long reserve;
1633 	unsigned long start;
1634 	unsigned long end;
1635 
1636 	if (reservations) {
1637 		start = vma_hugecache_offset(h, vma, vma->vm_start);
1638 		end = vma_hugecache_offset(h, vma, vma->vm_end);
1639 
1640 		reserve = (end - start) -
1641 			region_count(&reservations->regions, start, end);
1642 
1643 		kref_put(&reservations->refs, resv_map_release);
1644 
1645 		if (reserve) {
1646 			hugetlb_acct_memory(h, -reserve);
1647 			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1648 		}
1649 	}
1650 }
1651 
1652 /*
1653  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1654  * handle_mm_fault() to try to instantiate regular-sized pages in the
1655  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1656  * this far.
1657  */
hugetlb_vm_op_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1658 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1659 {
1660 	BUG();
1661 	return 0;
1662 }
1663 
1664 struct vm_operations_struct hugetlb_vm_ops = {
1665 	.fault = hugetlb_vm_op_fault,
1666 	.open = hugetlb_vm_op_open,
1667 	.close = hugetlb_vm_op_close,
1668 };
1669 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)1670 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1671 				int writable)
1672 {
1673 	pte_t entry;
1674 
1675 	if (writable) {
1676 		entry =
1677 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1678 	} else {
1679 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1680 	}
1681 	entry = pte_mkyoung(entry);
1682 	entry = pte_mkhuge(entry);
1683 
1684 	return entry;
1685 }
1686 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1687 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1688 				   unsigned long address, pte_t *ptep)
1689 {
1690 	pte_t entry;
1691 
1692 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1693 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1694 		update_mmu_cache(vma, address, entry);
1695 	}
1696 }
1697 
1698 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)1699 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1700 			    struct vm_area_struct *vma)
1701 {
1702 	pte_t *src_pte, *dst_pte, entry;
1703 	struct page *ptepage;
1704 	unsigned long addr;
1705 	int cow;
1706 	struct hstate *h = hstate_vma(vma);
1707 	unsigned long sz = huge_page_size(h);
1708 
1709 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1710 
1711 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1712 		src_pte = huge_pte_offset(src, addr);
1713 		if (!src_pte)
1714 			continue;
1715 		dst_pte = huge_pte_alloc(dst, addr, sz);
1716 		if (!dst_pte)
1717 			goto nomem;
1718 
1719 		/* If the pagetables are shared don't copy or take references */
1720 		if (dst_pte == src_pte)
1721 			continue;
1722 
1723 		spin_lock(&dst->page_table_lock);
1724 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1725 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1726 			if (cow)
1727 				huge_ptep_set_wrprotect(src, addr, src_pte);
1728 			entry = huge_ptep_get(src_pte);
1729 			ptepage = pte_page(entry);
1730 			get_page(ptepage);
1731 			set_huge_pte_at(dst, addr, dst_pte, entry);
1732 		}
1733 		spin_unlock(&src->page_table_lock);
1734 		spin_unlock(&dst->page_table_lock);
1735 	}
1736 	return 0;
1737 
1738 nomem:
1739 	return -ENOMEM;
1740 }
1741 
__unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)1742 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1743 			    unsigned long end, struct page *ref_page)
1744 {
1745 	struct mm_struct *mm = vma->vm_mm;
1746 	unsigned long address;
1747 	pte_t *ptep;
1748 	pte_t pte;
1749 	struct page *page;
1750 	struct page *tmp;
1751 	struct hstate *h = hstate_vma(vma);
1752 	unsigned long sz = huge_page_size(h);
1753 
1754 	/*
1755 	 * A page gathering list, protected by per file i_mmap_lock. The
1756 	 * lock is used to avoid list corruption from multiple unmapping
1757 	 * of the same page since we are using page->lru.
1758 	 */
1759 	LIST_HEAD(page_list);
1760 
1761 	WARN_ON(!is_vm_hugetlb_page(vma));
1762 	BUG_ON(start & ~huge_page_mask(h));
1763 	BUG_ON(end & ~huge_page_mask(h));
1764 
1765 	mmu_notifier_invalidate_range_start(mm, start, end);
1766 	spin_lock(&mm->page_table_lock);
1767 	for (address = start; address < end; address += sz) {
1768 		ptep = huge_pte_offset(mm, address);
1769 		if (!ptep)
1770 			continue;
1771 
1772 		if (huge_pmd_unshare(mm, &address, ptep))
1773 			continue;
1774 
1775 		/*
1776 		 * If a reference page is supplied, it is because a specific
1777 		 * page is being unmapped, not a range. Ensure the page we
1778 		 * are about to unmap is the actual page of interest.
1779 		 */
1780 		if (ref_page) {
1781 			pte = huge_ptep_get(ptep);
1782 			if (huge_pte_none(pte))
1783 				continue;
1784 			page = pte_page(pte);
1785 			if (page != ref_page)
1786 				continue;
1787 
1788 			/*
1789 			 * Mark the VMA as having unmapped its page so that
1790 			 * future faults in this VMA will fail rather than
1791 			 * looking like data was lost
1792 			 */
1793 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1794 		}
1795 
1796 		pte = huge_ptep_get_and_clear(mm, address, ptep);
1797 		if (huge_pte_none(pte))
1798 			continue;
1799 
1800 		page = pte_page(pte);
1801 		if (pte_dirty(pte))
1802 			set_page_dirty(page);
1803 		list_add(&page->lru, &page_list);
1804 	}
1805 	spin_unlock(&mm->page_table_lock);
1806 	flush_tlb_range(vma, start, end);
1807 	mmu_notifier_invalidate_range_end(mm, start, end);
1808 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
1809 		list_del(&page->lru);
1810 		put_page(page);
1811 	}
1812 }
1813 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)1814 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1815 			  unsigned long end, struct page *ref_page)
1816 {
1817 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1818 	__unmap_hugepage_range(vma, start, end, ref_page);
1819 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1820 }
1821 
1822 /*
1823  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1824  * mappping it owns the reserve page for. The intention is to unmap the page
1825  * from other VMAs and let the children be SIGKILLed if they are faulting the
1826  * same region.
1827  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)1828 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1829 				struct page *page, unsigned long address)
1830 {
1831 	struct hstate *h = hstate_vma(vma);
1832 	struct vm_area_struct *iter_vma;
1833 	struct address_space *mapping;
1834 	struct prio_tree_iter iter;
1835 	pgoff_t pgoff;
1836 
1837 	/*
1838 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1839 	 * from page cache lookup which is in HPAGE_SIZE units.
1840 	 */
1841 	address = address & huge_page_mask(h);
1842 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1843 		+ (vma->vm_pgoff >> PAGE_SHIFT);
1844 	mapping = (struct address_space *)page_private(page);
1845 
1846 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1847 		/* Do not unmap the current VMA */
1848 		if (iter_vma == vma)
1849 			continue;
1850 
1851 		/*
1852 		 * Unmap the page from other VMAs without their own reserves.
1853 		 * They get marked to be SIGKILLed if they fault in these
1854 		 * areas. This is because a future no-page fault on this VMA
1855 		 * could insert a zeroed page instead of the data existing
1856 		 * from the time of fork. This would look like data corruption
1857 		 */
1858 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1859 			unmap_hugepage_range(iter_vma,
1860 				address, address + huge_page_size(h),
1861 				page);
1862 	}
1863 
1864 	return 1;
1865 }
1866 
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t pte,struct page * pagecache_page)1867 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1868 			unsigned long address, pte_t *ptep, pte_t pte,
1869 			struct page *pagecache_page)
1870 {
1871 	struct hstate *h = hstate_vma(vma);
1872 	struct page *old_page, *new_page;
1873 	int avoidcopy;
1874 	int outside_reserve = 0;
1875 
1876 	old_page = pte_page(pte);
1877 
1878 retry_avoidcopy:
1879 	/* If no-one else is actually using this page, avoid the copy
1880 	 * and just make the page writable */
1881 	avoidcopy = (page_count(old_page) == 1);
1882 	if (avoidcopy) {
1883 		set_huge_ptep_writable(vma, address, ptep);
1884 		return 0;
1885 	}
1886 
1887 	/*
1888 	 * If the process that created a MAP_PRIVATE mapping is about to
1889 	 * perform a COW due to a shared page count, attempt to satisfy
1890 	 * the allocation without using the existing reserves. The pagecache
1891 	 * page is used to determine if the reserve at this address was
1892 	 * consumed or not. If reserves were used, a partial faulted mapping
1893 	 * at the time of fork() could consume its reserves on COW instead
1894 	 * of the full address range.
1895 	 */
1896 	if (!(vma->vm_flags & VM_SHARED) &&
1897 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1898 			old_page != pagecache_page)
1899 		outside_reserve = 1;
1900 
1901 	page_cache_get(old_page);
1902 	new_page = alloc_huge_page(vma, address, outside_reserve);
1903 
1904 	if (IS_ERR(new_page)) {
1905 		page_cache_release(old_page);
1906 
1907 		/*
1908 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
1909 		 * it is due to references held by a child and an insufficient
1910 		 * huge page pool. To guarantee the original mappers
1911 		 * reliability, unmap the page from child processes. The child
1912 		 * may get SIGKILLed if it later faults.
1913 		 */
1914 		if (outside_reserve) {
1915 			BUG_ON(huge_pte_none(pte));
1916 			if (unmap_ref_private(mm, vma, old_page, address)) {
1917 				BUG_ON(page_count(old_page) != 1);
1918 				BUG_ON(huge_pte_none(pte));
1919 				goto retry_avoidcopy;
1920 			}
1921 			WARN_ON_ONCE(1);
1922 		}
1923 
1924 		return -PTR_ERR(new_page);
1925 	}
1926 
1927 	spin_unlock(&mm->page_table_lock);
1928 	copy_huge_page(new_page, old_page, address, vma);
1929 	__SetPageUptodate(new_page);
1930 	spin_lock(&mm->page_table_lock);
1931 
1932 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1933 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1934 		/* Break COW */
1935 		huge_ptep_clear_flush(vma, address, ptep);
1936 		set_huge_pte_at(mm, address, ptep,
1937 				make_huge_pte(vma, new_page, 1));
1938 		/* Make the old page be freed below */
1939 		new_page = old_page;
1940 	}
1941 	page_cache_release(new_page);
1942 	page_cache_release(old_page);
1943 	return 0;
1944 }
1945 
1946 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1947 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1948 			struct vm_area_struct *vma, unsigned long address)
1949 {
1950 	struct address_space *mapping;
1951 	pgoff_t idx;
1952 
1953 	mapping = vma->vm_file->f_mapping;
1954 	idx = vma_hugecache_offset(h, vma, address);
1955 
1956 	return find_lock_page(mapping, idx);
1957 }
1958 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,int write_access)1959 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1960 			unsigned long address, pte_t *ptep, int write_access)
1961 {
1962 	struct hstate *h = hstate_vma(vma);
1963 	int ret = VM_FAULT_SIGBUS;
1964 	pgoff_t idx;
1965 	unsigned long size;
1966 	struct page *page;
1967 	struct address_space *mapping;
1968 	pte_t new_pte;
1969 
1970 	/*
1971 	 * Currently, we are forced to kill the process in the event the
1972 	 * original mapper has unmapped pages from the child due to a failed
1973 	 * COW. Warn that such a situation has occured as it may not be obvious
1974 	 */
1975 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1976 		printk(KERN_WARNING
1977 			"PID %d killed due to inadequate hugepage pool\n",
1978 			current->pid);
1979 		return ret;
1980 	}
1981 
1982 	mapping = vma->vm_file->f_mapping;
1983 	idx = vma_hugecache_offset(h, vma, address);
1984 
1985 	/*
1986 	 * Use page lock to guard against racing truncation
1987 	 * before we get page_table_lock.
1988 	 */
1989 retry:
1990 	page = find_lock_page(mapping, idx);
1991 	if (!page) {
1992 		size = i_size_read(mapping->host) >> huge_page_shift(h);
1993 		if (idx >= size)
1994 			goto out;
1995 		page = alloc_huge_page(vma, address, 0);
1996 		if (IS_ERR(page)) {
1997 			ret = -PTR_ERR(page);
1998 			goto out;
1999 		}
2000 		clear_huge_page(page, address, huge_page_size(h));
2001 		__SetPageUptodate(page);
2002 
2003 		if (vma->vm_flags & VM_SHARED) {
2004 			int err;
2005 			struct inode *inode = mapping->host;
2006 
2007 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2008 			if (err) {
2009 				put_page(page);
2010 				if (err == -EEXIST)
2011 					goto retry;
2012 				goto out;
2013 			}
2014 
2015 			spin_lock(&inode->i_lock);
2016 			inode->i_blocks += blocks_per_huge_page(h);
2017 			spin_unlock(&inode->i_lock);
2018 		} else
2019 			lock_page(page);
2020 	}
2021 
2022 	/*
2023 	 * If we are going to COW a private mapping later, we examine the
2024 	 * pending reservations for this page now. This will ensure that
2025 	 * any allocations necessary to record that reservation occur outside
2026 	 * the spinlock.
2027 	 */
2028 	if (write_access && !(vma->vm_flags & VM_SHARED))
2029 		if (vma_needs_reservation(h, vma, address) < 0) {
2030 			ret = VM_FAULT_OOM;
2031 			goto backout_unlocked;
2032 		}
2033 
2034 	spin_lock(&mm->page_table_lock);
2035 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2036 	if (idx >= size)
2037 		goto backout;
2038 
2039 	ret = 0;
2040 	if (!huge_pte_none(huge_ptep_get(ptep)))
2041 		goto backout;
2042 
2043 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2044 				&& (vma->vm_flags & VM_SHARED)));
2045 	set_huge_pte_at(mm, address, ptep, new_pte);
2046 
2047 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
2048 		/* Optimization, do the COW without a second fault */
2049 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2050 	}
2051 
2052 	spin_unlock(&mm->page_table_lock);
2053 	unlock_page(page);
2054 out:
2055 	return ret;
2056 
2057 backout:
2058 	spin_unlock(&mm->page_table_lock);
2059 backout_unlocked:
2060 	unlock_page(page);
2061 	put_page(page);
2062 	goto out;
2063 }
2064 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,int write_access)2065 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2066 			unsigned long address, int write_access)
2067 {
2068 	pte_t *ptep;
2069 	pte_t entry;
2070 	int ret;
2071 	struct page *pagecache_page = NULL;
2072 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2073 	struct hstate *h = hstate_vma(vma);
2074 
2075 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2076 	if (!ptep)
2077 		return VM_FAULT_OOM;
2078 
2079 	/*
2080 	 * Serialize hugepage allocation and instantiation, so that we don't
2081 	 * get spurious allocation failures if two CPUs race to instantiate
2082 	 * the same page in the page cache.
2083 	 */
2084 	mutex_lock(&hugetlb_instantiation_mutex);
2085 	entry = huge_ptep_get(ptep);
2086 	if (huge_pte_none(entry)) {
2087 		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2088 		goto out_mutex;
2089 	}
2090 
2091 	ret = 0;
2092 
2093 	/*
2094 	 * If we are going to COW the mapping later, we examine the pending
2095 	 * reservations for this page now. This will ensure that any
2096 	 * allocations necessary to record that reservation occur outside the
2097 	 * spinlock. For private mappings, we also lookup the pagecache
2098 	 * page now as it is used to determine if a reservation has been
2099 	 * consumed.
2100 	 */
2101 	if (write_access && !pte_write(entry)) {
2102 		if (vma_needs_reservation(h, vma, address) < 0) {
2103 			ret = VM_FAULT_OOM;
2104 			goto out_mutex;
2105 		}
2106 
2107 		if (!(vma->vm_flags & VM_SHARED))
2108 			pagecache_page = hugetlbfs_pagecache_page(h,
2109 								vma, address);
2110 	}
2111 
2112 	spin_lock(&mm->page_table_lock);
2113 	/* Check for a racing update before calling hugetlb_cow */
2114 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2115 		goto out_page_table_lock;
2116 
2117 
2118 	if (write_access) {
2119 		if (!pte_write(entry)) {
2120 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2121 							pagecache_page);
2122 			goto out_page_table_lock;
2123 		}
2124 		entry = pte_mkdirty(entry);
2125 	}
2126 	entry = pte_mkyoung(entry);
2127 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2128 		update_mmu_cache(vma, address, entry);
2129 
2130 out_page_table_lock:
2131 	spin_unlock(&mm->page_table_lock);
2132 
2133 	if (pagecache_page) {
2134 		unlock_page(pagecache_page);
2135 		put_page(pagecache_page);
2136 	}
2137 
2138 out_mutex:
2139 	mutex_unlock(&hugetlb_instantiation_mutex);
2140 
2141 	return ret;
2142 }
2143 
2144 /* Can be overriden by architectures */
2145 __attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int write)2146 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2147 	       pud_t *pud, int write)
2148 {
2149 	BUG();
2150 	return NULL;
2151 }
2152 
huge_zeropage_ok(pte_t * ptep,int write,int shared)2153 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2154 {
2155 	if (!ptep || write || shared)
2156 		return 0;
2157 	else
2158 		return huge_pte_none(huge_ptep_get(ptep));
2159 }
2160 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,int * length,int i,int write)2161 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2162 			struct page **pages, struct vm_area_struct **vmas,
2163 			unsigned long *position, int *length, int i,
2164 			int write)
2165 {
2166 	unsigned long pfn_offset;
2167 	unsigned long vaddr = *position;
2168 	int remainder = *length;
2169 	struct hstate *h = hstate_vma(vma);
2170 	int zeropage_ok = 0;
2171 	int shared = vma->vm_flags & VM_SHARED;
2172 
2173 	spin_lock(&mm->page_table_lock);
2174 	while (vaddr < vma->vm_end && remainder) {
2175 		pte_t *pte;
2176 		struct page *page;
2177 
2178 		/*
2179 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2180 		 * each hugepage.  We have to make * sure we get the
2181 		 * first, for the page indexing below to work.
2182 		 */
2183 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2184 		if (huge_zeropage_ok(pte, write, shared))
2185 			zeropage_ok = 1;
2186 
2187 		if (!pte ||
2188 		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2189 		    (write && !pte_write(huge_ptep_get(pte)))) {
2190 			int ret;
2191 
2192 			spin_unlock(&mm->page_table_lock);
2193 			ret = hugetlb_fault(mm, vma, vaddr, write);
2194 			spin_lock(&mm->page_table_lock);
2195 			if (!(ret & VM_FAULT_ERROR))
2196 				continue;
2197 
2198 			remainder = 0;
2199 			if (!i)
2200 				i = -EFAULT;
2201 			break;
2202 		}
2203 
2204 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2205 		page = pte_page(huge_ptep_get(pte));
2206 same_page:
2207 		if (pages) {
2208 			if (zeropage_ok)
2209 				pages[i] = ZERO_PAGE(0);
2210 			else
2211 				pages[i] = mem_map_offset(page, pfn_offset);
2212 			get_page(pages[i]);
2213 		}
2214 
2215 		if (vmas)
2216 			vmas[i] = vma;
2217 
2218 		vaddr += PAGE_SIZE;
2219 		++pfn_offset;
2220 		--remainder;
2221 		++i;
2222 		if (vaddr < vma->vm_end && remainder &&
2223 				pfn_offset < pages_per_huge_page(h)) {
2224 			/*
2225 			 * We use pfn_offset to avoid touching the pageframes
2226 			 * of this compound page.
2227 			 */
2228 			goto same_page;
2229 		}
2230 	}
2231 	spin_unlock(&mm->page_table_lock);
2232 	*length = remainder;
2233 	*position = vaddr;
2234 
2235 	return i;
2236 }
2237 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)2238 void hugetlb_change_protection(struct vm_area_struct *vma,
2239 		unsigned long address, unsigned long end, pgprot_t newprot)
2240 {
2241 	struct mm_struct *mm = vma->vm_mm;
2242 	unsigned long start = address;
2243 	pte_t *ptep;
2244 	pte_t pte;
2245 	struct hstate *h = hstate_vma(vma);
2246 
2247 	BUG_ON(address >= end);
2248 	flush_cache_range(vma, address, end);
2249 
2250 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2251 	spin_lock(&mm->page_table_lock);
2252 	for (; address < end; address += huge_page_size(h)) {
2253 		ptep = huge_pte_offset(mm, address);
2254 		if (!ptep)
2255 			continue;
2256 		if (huge_pmd_unshare(mm, &address, ptep))
2257 			continue;
2258 		if (!huge_pte_none(huge_ptep_get(ptep))) {
2259 			pte = huge_ptep_get_and_clear(mm, address, ptep);
2260 			pte = pte_mkhuge(pte_modify(pte, newprot));
2261 			set_huge_pte_at(mm, address, ptep, pte);
2262 		}
2263 	}
2264 	spin_unlock(&mm->page_table_lock);
2265 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2266 
2267 	flush_tlb_range(vma, start, end);
2268 }
2269 
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,int acctflag)2270 int hugetlb_reserve_pages(struct inode *inode,
2271 					long from, long to,
2272 					struct vm_area_struct *vma,
2273 					int acctflag)
2274 {
2275 	long ret, chg;
2276 	struct hstate *h = hstate_inode(inode);
2277 
2278 	/*
2279 	 * Only apply hugepage reservation if asked. At fault time, an
2280 	 * attempt will be made for VM_NORESERVE to allocate a page
2281 	 * and filesystem quota without using reserves
2282 	 */
2283 	if (acctflag & VM_NORESERVE)
2284 		return 0;
2285 
2286 	/*
2287 	 * Shared mappings base their reservation on the number of pages that
2288 	 * are already allocated on behalf of the file. Private mappings need
2289 	 * to reserve the full area even if read-only as mprotect() may be
2290 	 * called to make the mapping read-write. Assume !vma is a shm mapping
2291 	 */
2292 	if (!vma || vma->vm_flags & VM_SHARED)
2293 		chg = region_chg(&inode->i_mapping->private_list, from, to);
2294 	else {
2295 		struct resv_map *resv_map = resv_map_alloc();
2296 		if (!resv_map)
2297 			return -ENOMEM;
2298 
2299 		chg = to - from;
2300 
2301 		set_vma_resv_map(vma, resv_map);
2302 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2303 	}
2304 
2305 	if (chg < 0)
2306 		return chg;
2307 
2308 	/* There must be enough filesystem quota for the mapping */
2309 	if (hugetlb_get_quota(inode->i_mapping, chg))
2310 		return -ENOSPC;
2311 
2312 	/*
2313 	 * Check enough hugepages are available for the reservation.
2314 	 * Hand back the quota if there are not
2315 	 */
2316 	ret = hugetlb_acct_memory(h, chg);
2317 	if (ret < 0) {
2318 		hugetlb_put_quota(inode->i_mapping, chg);
2319 		return ret;
2320 	}
2321 
2322 	/*
2323 	 * Account for the reservations made. Shared mappings record regions
2324 	 * that have reservations as they are shared by multiple VMAs.
2325 	 * When the last VMA disappears, the region map says how much
2326 	 * the reservation was and the page cache tells how much of
2327 	 * the reservation was consumed. Private mappings are per-VMA and
2328 	 * only the consumed reservations are tracked. When the VMA
2329 	 * disappears, the original reservation is the VMA size and the
2330 	 * consumed reservations are stored in the map. Hence, nothing
2331 	 * else has to be done for private mappings here
2332 	 */
2333 	if (!vma || vma->vm_flags & VM_SHARED)
2334 		region_add(&inode->i_mapping->private_list, from, to);
2335 	return 0;
2336 }
2337 
hugetlb_unreserve_pages(struct inode * inode,long offset,long freed)2338 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2339 {
2340 	struct hstate *h = hstate_inode(inode);
2341 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2342 
2343 	spin_lock(&inode->i_lock);
2344 	inode->i_blocks -= blocks_per_huge_page(h);
2345 	spin_unlock(&inode->i_lock);
2346 
2347 	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2348 	hugetlb_acct_memory(h, -(chg - freed));
2349 }
2350