1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95
96 #include "internal.h"
97
98 /* Internal flags */
99 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
100 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
101 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
102
103 static struct kmem_cache *policy_cache;
104 static struct kmem_cache *sn_cache;
105
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 enum zone_type policy_zone = 0;
109
110 /*
111 * run-time system-wide default policy => local allocation
112 */
113 struct mempolicy default_policy = {
114 .refcnt = ATOMIC_INIT(1), /* never free it */
115 .mode = MPOL_PREFERRED,
116 .flags = MPOL_F_LOCAL,
117 };
118
119 static const struct mempolicy_operations {
120 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
121 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
122 } mpol_ops[MPOL_MAX];
123
124 /* Check that the nodemask contains at least one populated zone */
is_valid_nodemask(const nodemask_t * nodemask)125 static int is_valid_nodemask(const nodemask_t *nodemask)
126 {
127 int nd, k;
128
129 /* Check that there is something useful in this mask */
130 k = policy_zone;
131
132 for_each_node_mask(nd, *nodemask) {
133 struct zone *z;
134
135 for (k = 0; k <= policy_zone; k++) {
136 z = &NODE_DATA(nd)->node_zones[k];
137 if (z->present_pages > 0)
138 return 1;
139 }
140 }
141
142 return 0;
143 }
144
mpol_store_user_nodemask(const struct mempolicy * pol)145 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
146 {
147 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
148 }
149
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)150 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
151 const nodemask_t *rel)
152 {
153 nodemask_t tmp;
154 nodes_fold(tmp, *orig, nodes_weight(*rel));
155 nodes_onto(*ret, tmp, *rel);
156 }
157
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)158 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
159 {
160 if (nodes_empty(*nodes))
161 return -EINVAL;
162 pol->v.nodes = *nodes;
163 return 0;
164 }
165
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)166 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
167 {
168 if (!nodes)
169 pol->flags |= MPOL_F_LOCAL; /* local allocation */
170 else if (nodes_empty(*nodes))
171 return -EINVAL; /* no allowed nodes */
172 else
173 pol->v.preferred_node = first_node(*nodes);
174 return 0;
175 }
176
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)177 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
178 {
179 if (!is_valid_nodemask(nodes))
180 return -EINVAL;
181 pol->v.nodes = *nodes;
182 return 0;
183 }
184
185 /* Create a new policy */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)186 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
187 nodemask_t *nodes)
188 {
189 struct mempolicy *policy;
190 nodemask_t cpuset_context_nmask;
191 int ret;
192
193 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
194 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
195
196 if (mode == MPOL_DEFAULT) {
197 if (nodes && !nodes_empty(*nodes))
198 return ERR_PTR(-EINVAL);
199 return NULL; /* simply delete any existing policy */
200 }
201 VM_BUG_ON(!nodes);
202
203 /*
204 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
205 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
206 * All other modes require a valid pointer to a non-empty nodemask.
207 */
208 if (mode == MPOL_PREFERRED) {
209 if (nodes_empty(*nodes)) {
210 if (((flags & MPOL_F_STATIC_NODES) ||
211 (flags & MPOL_F_RELATIVE_NODES)))
212 return ERR_PTR(-EINVAL);
213 nodes = NULL; /* flag local alloc */
214 }
215 } else if (nodes_empty(*nodes))
216 return ERR_PTR(-EINVAL);
217 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
218 if (!policy)
219 return ERR_PTR(-ENOMEM);
220 atomic_set(&policy->refcnt, 1);
221 policy->mode = mode;
222 policy->flags = flags;
223
224 if (nodes) {
225 /*
226 * cpuset related setup doesn't apply to local allocation
227 */
228 cpuset_update_task_memory_state();
229 if (flags & MPOL_F_RELATIVE_NODES)
230 mpol_relative_nodemask(&cpuset_context_nmask, nodes,
231 &cpuset_current_mems_allowed);
232 else
233 nodes_and(cpuset_context_nmask, *nodes,
234 cpuset_current_mems_allowed);
235 if (mpol_store_user_nodemask(policy))
236 policy->w.user_nodemask = *nodes;
237 else
238 policy->w.cpuset_mems_allowed =
239 cpuset_mems_allowed(current);
240 }
241
242 ret = mpol_ops[mode].create(policy,
243 nodes ? &cpuset_context_nmask : NULL);
244 if (ret < 0) {
245 kmem_cache_free(policy_cache, policy);
246 return ERR_PTR(ret);
247 }
248 return policy;
249 }
250
251 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)252 void __mpol_put(struct mempolicy *p)
253 {
254 if (!atomic_dec_and_test(&p->refcnt))
255 return;
256 kmem_cache_free(policy_cache, p);
257 }
258
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)259 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
260 {
261 }
262
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)263 static void mpol_rebind_nodemask(struct mempolicy *pol,
264 const nodemask_t *nodes)
265 {
266 nodemask_t tmp;
267
268 if (pol->flags & MPOL_F_STATIC_NODES)
269 nodes_and(tmp, pol->w.user_nodemask, *nodes);
270 else if (pol->flags & MPOL_F_RELATIVE_NODES)
271 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
272 else {
273 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
274 *nodes);
275 pol->w.cpuset_mems_allowed = *nodes;
276 }
277
278 pol->v.nodes = tmp;
279 if (!node_isset(current->il_next, tmp)) {
280 current->il_next = next_node(current->il_next, tmp);
281 if (current->il_next >= MAX_NUMNODES)
282 current->il_next = first_node(tmp);
283 if (current->il_next >= MAX_NUMNODES)
284 current->il_next = numa_node_id();
285 }
286 }
287
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)288 static void mpol_rebind_preferred(struct mempolicy *pol,
289 const nodemask_t *nodes)
290 {
291 nodemask_t tmp;
292
293 if (pol->flags & MPOL_F_STATIC_NODES) {
294 int node = first_node(pol->w.user_nodemask);
295
296 if (node_isset(node, *nodes)) {
297 pol->v.preferred_node = node;
298 pol->flags &= ~MPOL_F_LOCAL;
299 } else
300 pol->flags |= MPOL_F_LOCAL;
301 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
302 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
303 pol->v.preferred_node = first_node(tmp);
304 } else if (!(pol->flags & MPOL_F_LOCAL)) {
305 pol->v.preferred_node = node_remap(pol->v.preferred_node,
306 pol->w.cpuset_mems_allowed,
307 *nodes);
308 pol->w.cpuset_mems_allowed = *nodes;
309 }
310 }
311
312 /* Migrate a policy to a different set of nodes */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)313 static void mpol_rebind_policy(struct mempolicy *pol,
314 const nodemask_t *newmask)
315 {
316 if (!pol)
317 return;
318 if (!mpol_store_user_nodemask(pol) &&
319 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
320 return;
321 mpol_ops[pol->mode].rebind(pol, newmask);
322 }
323
324 /*
325 * Wrapper for mpol_rebind_policy() that just requires task
326 * pointer, and updates task mempolicy.
327 */
328
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)329 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
330 {
331 mpol_rebind_policy(tsk->mempolicy, new);
332 }
333
334 /*
335 * Rebind each vma in mm to new nodemask.
336 *
337 * Call holding a reference to mm. Takes mm->mmap_sem during call.
338 */
339
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)340 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
341 {
342 struct vm_area_struct *vma;
343
344 down_write(&mm->mmap_sem);
345 for (vma = mm->mmap; vma; vma = vma->vm_next)
346 mpol_rebind_policy(vma->vm_policy, new);
347 up_write(&mm->mmap_sem);
348 }
349
350 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
351 [MPOL_DEFAULT] = {
352 .rebind = mpol_rebind_default,
353 },
354 [MPOL_INTERLEAVE] = {
355 .create = mpol_new_interleave,
356 .rebind = mpol_rebind_nodemask,
357 },
358 [MPOL_PREFERRED] = {
359 .create = mpol_new_preferred,
360 .rebind = mpol_rebind_preferred,
361 },
362 [MPOL_BIND] = {
363 .create = mpol_new_bind,
364 .rebind = mpol_rebind_nodemask,
365 },
366 };
367
368 static void gather_stats(struct page *, void *, int pte_dirty);
369 static void migrate_page_add(struct page *page, struct list_head *pagelist,
370 unsigned long flags);
371
372 /* Scan through pages checking if pages follow certain conditions. */
check_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)373 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
374 unsigned long addr, unsigned long end,
375 const nodemask_t *nodes, unsigned long flags,
376 void *private)
377 {
378 pte_t *orig_pte;
379 pte_t *pte;
380 spinlock_t *ptl;
381
382 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
383 do {
384 struct page *page;
385 int nid;
386
387 if (!pte_present(*pte))
388 continue;
389 page = vm_normal_page(vma, addr, *pte);
390 if (!page)
391 continue;
392 /*
393 * The check for PageReserved here is important to avoid
394 * handling zero pages and other pages that may have been
395 * marked special by the system.
396 *
397 * If the PageReserved would not be checked here then f.e.
398 * the location of the zero page could have an influence
399 * on MPOL_MF_STRICT, zero pages would be counted for
400 * the per node stats, and there would be useless attempts
401 * to put zero pages on the migration list.
402 */
403 if (PageReserved(page))
404 continue;
405 nid = page_to_nid(page);
406 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
407 continue;
408
409 if (flags & MPOL_MF_STATS)
410 gather_stats(page, private, pte_dirty(*pte));
411 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
412 migrate_page_add(page, private, flags);
413 else
414 break;
415 } while (pte++, addr += PAGE_SIZE, addr != end);
416 pte_unmap_unlock(orig_pte, ptl);
417 return addr != end;
418 }
419
check_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)420 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
421 unsigned long addr, unsigned long end,
422 const nodemask_t *nodes, unsigned long flags,
423 void *private)
424 {
425 pmd_t *pmd;
426 unsigned long next;
427
428 pmd = pmd_offset(pud, addr);
429 do {
430 next = pmd_addr_end(addr, end);
431 if (pmd_none_or_clear_bad(pmd))
432 continue;
433 if (check_pte_range(vma, pmd, addr, next, nodes,
434 flags, private))
435 return -EIO;
436 } while (pmd++, addr = next, addr != end);
437 return 0;
438 }
439
check_pud_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)440 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
441 unsigned long addr, unsigned long end,
442 const nodemask_t *nodes, unsigned long flags,
443 void *private)
444 {
445 pud_t *pud;
446 unsigned long next;
447
448 pud = pud_offset(pgd, addr);
449 do {
450 next = pud_addr_end(addr, end);
451 if (pud_none_or_clear_bad(pud))
452 continue;
453 if (check_pmd_range(vma, pud, addr, next, nodes,
454 flags, private))
455 return -EIO;
456 } while (pud++, addr = next, addr != end);
457 return 0;
458 }
459
check_pgd_range(struct vm_area_struct * vma,unsigned long addr,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)460 static inline int check_pgd_range(struct vm_area_struct *vma,
461 unsigned long addr, unsigned long end,
462 const nodemask_t *nodes, unsigned long flags,
463 void *private)
464 {
465 pgd_t *pgd;
466 unsigned long next;
467
468 pgd = pgd_offset(vma->vm_mm, addr);
469 do {
470 next = pgd_addr_end(addr, end);
471 if (pgd_none_or_clear_bad(pgd))
472 continue;
473 if (check_pud_range(vma, pgd, addr, next, nodes,
474 flags, private))
475 return -EIO;
476 } while (pgd++, addr = next, addr != end);
477 return 0;
478 }
479
480 /*
481 * Check if all pages in a range are on a set of nodes.
482 * If pagelist != NULL then isolate pages from the LRU and
483 * put them on the pagelist.
484 */
485 static struct vm_area_struct *
check_range(struct mm_struct * mm,unsigned long start,unsigned long end,const nodemask_t * nodes,unsigned long flags,void * private)486 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
487 const nodemask_t *nodes, unsigned long flags, void *private)
488 {
489 int err;
490 struct vm_area_struct *first, *vma, *prev;
491
492
493 first = find_vma(mm, start);
494 if (!first)
495 return ERR_PTR(-EFAULT);
496 prev = NULL;
497 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
498 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
499 if (!vma->vm_next && vma->vm_end < end)
500 return ERR_PTR(-EFAULT);
501 if (prev && prev->vm_end < vma->vm_start)
502 return ERR_PTR(-EFAULT);
503 }
504 if (!is_vm_hugetlb_page(vma) &&
505 ((flags & MPOL_MF_STRICT) ||
506 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
507 vma_migratable(vma)))) {
508 unsigned long endvma = vma->vm_end;
509
510 if (endvma > end)
511 endvma = end;
512 if (vma->vm_start > start)
513 start = vma->vm_start;
514 err = check_pgd_range(vma, start, endvma, nodes,
515 flags, private);
516 if (err) {
517 first = ERR_PTR(err);
518 break;
519 }
520 }
521 prev = vma;
522 }
523 return first;
524 }
525
526 /* Apply policy to a single VMA */
policy_vma(struct vm_area_struct * vma,struct mempolicy * new)527 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
528 {
529 int err = 0;
530 struct mempolicy *old = vma->vm_policy;
531
532 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
533 vma->vm_start, vma->vm_end, vma->vm_pgoff,
534 vma->vm_ops, vma->vm_file,
535 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
536
537 if (vma->vm_ops && vma->vm_ops->set_policy)
538 err = vma->vm_ops->set_policy(vma, new);
539 if (!err) {
540 mpol_get(new);
541 vma->vm_policy = new;
542 mpol_put(old);
543 }
544 return err;
545 }
546
547 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new)548 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
549 unsigned long end, struct mempolicy *new)
550 {
551 struct vm_area_struct *next;
552 int err;
553
554 err = 0;
555 for (; vma && vma->vm_start < end; vma = next) {
556 next = vma->vm_next;
557 if (vma->vm_start < start)
558 err = split_vma(vma->vm_mm, vma, start, 1);
559 if (!err && vma->vm_end > end)
560 err = split_vma(vma->vm_mm, vma, end, 0);
561 if (!err)
562 err = policy_vma(vma, new);
563 if (err)
564 break;
565 }
566 return err;
567 }
568
569 /*
570 * Update task->flags PF_MEMPOLICY bit: set iff non-default
571 * mempolicy. Allows more rapid checking of this (combined perhaps
572 * with other PF_* flag bits) on memory allocation hot code paths.
573 *
574 * If called from outside this file, the task 'p' should -only- be
575 * a newly forked child not yet visible on the task list, because
576 * manipulating the task flags of a visible task is not safe.
577 *
578 * The above limitation is why this routine has the funny name
579 * mpol_fix_fork_child_flag().
580 *
581 * It is also safe to call this with a task pointer of current,
582 * which the static wrapper mpol_set_task_struct_flag() does,
583 * for use within this file.
584 */
585
mpol_fix_fork_child_flag(struct task_struct * p)586 void mpol_fix_fork_child_flag(struct task_struct *p)
587 {
588 if (p->mempolicy)
589 p->flags |= PF_MEMPOLICY;
590 else
591 p->flags &= ~PF_MEMPOLICY;
592 }
593
mpol_set_task_struct_flag(void)594 static void mpol_set_task_struct_flag(void)
595 {
596 mpol_fix_fork_child_flag(current);
597 }
598
599 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)600 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
601 nodemask_t *nodes)
602 {
603 struct mempolicy *new;
604 struct mm_struct *mm = current->mm;
605
606 new = mpol_new(mode, flags, nodes);
607 if (IS_ERR(new))
608 return PTR_ERR(new);
609
610 /*
611 * prevent changing our mempolicy while show_numa_maps()
612 * is using it.
613 * Note: do_set_mempolicy() can be called at init time
614 * with no 'mm'.
615 */
616 if (mm)
617 down_write(&mm->mmap_sem);
618 mpol_put(current->mempolicy);
619 current->mempolicy = new;
620 mpol_set_task_struct_flag();
621 if (new && new->mode == MPOL_INTERLEAVE &&
622 nodes_weight(new->v.nodes))
623 current->il_next = first_node(new->v.nodes);
624 if (mm)
625 up_write(&mm->mmap_sem);
626
627 return 0;
628 }
629
630 /*
631 * Return nodemask for policy for get_mempolicy() query
632 */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)633 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
634 {
635 nodes_clear(*nodes);
636 if (p == &default_policy)
637 return;
638
639 switch (p->mode) {
640 case MPOL_BIND:
641 /* Fall through */
642 case MPOL_INTERLEAVE:
643 *nodes = p->v.nodes;
644 break;
645 case MPOL_PREFERRED:
646 if (!(p->flags & MPOL_F_LOCAL))
647 node_set(p->v.preferred_node, *nodes);
648 /* else return empty node mask for local allocation */
649 break;
650 default:
651 BUG();
652 }
653 }
654
lookup_node(struct mm_struct * mm,unsigned long addr)655 static int lookup_node(struct mm_struct *mm, unsigned long addr)
656 {
657 struct page *p;
658 int err;
659
660 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
661 if (err >= 0) {
662 err = page_to_nid(p);
663 put_page(p);
664 }
665 return err;
666 }
667
668 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)669 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
670 unsigned long addr, unsigned long flags)
671 {
672 int err;
673 struct mm_struct *mm = current->mm;
674 struct vm_area_struct *vma = NULL;
675 struct mempolicy *pol = current->mempolicy;
676
677 cpuset_update_task_memory_state();
678 if (flags &
679 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
680 return -EINVAL;
681
682 if (flags & MPOL_F_MEMS_ALLOWED) {
683 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
684 return -EINVAL;
685 *policy = 0; /* just so it's initialized */
686 *nmask = cpuset_current_mems_allowed;
687 return 0;
688 }
689
690 if (flags & MPOL_F_ADDR) {
691 /*
692 * Do NOT fall back to task policy if the
693 * vma/shared policy at addr is NULL. We
694 * want to return MPOL_DEFAULT in this case.
695 */
696 down_read(&mm->mmap_sem);
697 vma = find_vma_intersection(mm, addr, addr+1);
698 if (!vma) {
699 up_read(&mm->mmap_sem);
700 return -EFAULT;
701 }
702 if (vma->vm_ops && vma->vm_ops->get_policy)
703 pol = vma->vm_ops->get_policy(vma, addr);
704 else
705 pol = vma->vm_policy;
706 } else if (addr)
707 return -EINVAL;
708
709 if (!pol)
710 pol = &default_policy; /* indicates default behavior */
711
712 if (flags & MPOL_F_NODE) {
713 if (flags & MPOL_F_ADDR) {
714 err = lookup_node(mm, addr);
715 if (err < 0)
716 goto out;
717 *policy = err;
718 } else if (pol == current->mempolicy &&
719 pol->mode == MPOL_INTERLEAVE) {
720 *policy = current->il_next;
721 } else {
722 err = -EINVAL;
723 goto out;
724 }
725 } else {
726 *policy = pol == &default_policy ? MPOL_DEFAULT :
727 pol->mode;
728 /*
729 * Internal mempolicy flags must be masked off before exposing
730 * the policy to userspace.
731 */
732 *policy |= (pol->flags & MPOL_MODE_FLAGS);
733 }
734
735 if (vma) {
736 up_read(¤t->mm->mmap_sem);
737 vma = NULL;
738 }
739
740 err = 0;
741 if (nmask)
742 get_policy_nodemask(pol, nmask);
743
744 out:
745 mpol_cond_put(pol);
746 if (vma)
747 up_read(¤t->mm->mmap_sem);
748 return err;
749 }
750
751 #ifdef CONFIG_MIGRATION
752 /*
753 * page migration
754 */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)755 static void migrate_page_add(struct page *page, struct list_head *pagelist,
756 unsigned long flags)
757 {
758 /*
759 * Avoid migrating a page that is shared with others.
760 */
761 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
762 if (!isolate_lru_page(page)) {
763 list_add_tail(&page->lru, pagelist);
764 }
765 }
766 }
767
new_node_page(struct page * page,unsigned long node,int ** x)768 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
769 {
770 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
771 }
772
773 /*
774 * Migrate pages from one node to a target node.
775 * Returns error or the number of pages not migrated.
776 */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)777 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
778 int flags)
779 {
780 nodemask_t nmask;
781 LIST_HEAD(pagelist);
782 int err = 0;
783
784 nodes_clear(nmask);
785 node_set(source, nmask);
786
787 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
788 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
789
790 if (!list_empty(&pagelist))
791 err = migrate_pages(&pagelist, new_node_page, dest);
792
793 return err;
794 }
795
796 /*
797 * Move pages between the two nodesets so as to preserve the physical
798 * layout as much as possible.
799 *
800 * Returns the number of page that could not be moved.
801 */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from_nodes,const nodemask_t * to_nodes,int flags)802 int do_migrate_pages(struct mm_struct *mm,
803 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
804 {
805 int busy = 0;
806 int err;
807 nodemask_t tmp;
808
809 err = migrate_prep();
810 if (err)
811 return err;
812
813 down_read(&mm->mmap_sem);
814
815 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
816 if (err)
817 goto out;
818
819 /*
820 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
821 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
822 * bit in 'tmp', and return that <source, dest> pair for migration.
823 * The pair of nodemasks 'to' and 'from' define the map.
824 *
825 * If no pair of bits is found that way, fallback to picking some
826 * pair of 'source' and 'dest' bits that are not the same. If the
827 * 'source' and 'dest' bits are the same, this represents a node
828 * that will be migrating to itself, so no pages need move.
829 *
830 * If no bits are left in 'tmp', or if all remaining bits left
831 * in 'tmp' correspond to the same bit in 'to', return false
832 * (nothing left to migrate).
833 *
834 * This lets us pick a pair of nodes to migrate between, such that
835 * if possible the dest node is not already occupied by some other
836 * source node, minimizing the risk of overloading the memory on a
837 * node that would happen if we migrated incoming memory to a node
838 * before migrating outgoing memory source that same node.
839 *
840 * A single scan of tmp is sufficient. As we go, we remember the
841 * most recent <s, d> pair that moved (s != d). If we find a pair
842 * that not only moved, but what's better, moved to an empty slot
843 * (d is not set in tmp), then we break out then, with that pair.
844 * Otherwise when we finish scannng from_tmp, we at least have the
845 * most recent <s, d> pair that moved. If we get all the way through
846 * the scan of tmp without finding any node that moved, much less
847 * moved to an empty node, then there is nothing left worth migrating.
848 */
849
850 tmp = *from_nodes;
851 while (!nodes_empty(tmp)) {
852 int s,d;
853 int source = -1;
854 int dest = 0;
855
856 for_each_node_mask(s, tmp) {
857 d = node_remap(s, *from_nodes, *to_nodes);
858 if (s == d)
859 continue;
860
861 source = s; /* Node moved. Memorize */
862 dest = d;
863
864 /* dest not in remaining from nodes? */
865 if (!node_isset(dest, tmp))
866 break;
867 }
868 if (source == -1)
869 break;
870
871 node_clear(source, tmp);
872 err = migrate_to_node(mm, source, dest, flags);
873 if (err > 0)
874 busy += err;
875 if (err < 0)
876 break;
877 }
878 out:
879 up_read(&mm->mmap_sem);
880 if (err < 0)
881 return err;
882 return busy;
883
884 }
885
886 /*
887 * Allocate a new page for page migration based on vma policy.
888 * Start assuming that page is mapped by vma pointed to by @private.
889 * Search forward from there, if not. N.B., this assumes that the
890 * list of pages handed to migrate_pages()--which is how we get here--
891 * is in virtual address order.
892 */
new_vma_page(struct page * page,unsigned long private,int ** x)893 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
894 {
895 struct vm_area_struct *vma = (struct vm_area_struct *)private;
896 unsigned long uninitialized_var(address);
897
898 while (vma) {
899 address = page_address_in_vma(page, vma);
900 if (address != -EFAULT)
901 break;
902 vma = vma->vm_next;
903 }
904
905 /*
906 * if !vma, alloc_page_vma() will use task or system default policy
907 */
908 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
909 }
910 #else
911
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)912 static void migrate_page_add(struct page *page, struct list_head *pagelist,
913 unsigned long flags)
914 {
915 }
916
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from_nodes,const nodemask_t * to_nodes,int flags)917 int do_migrate_pages(struct mm_struct *mm,
918 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
919 {
920 return -ENOSYS;
921 }
922
new_vma_page(struct page * page,unsigned long private,int ** x)923 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
924 {
925 return NULL;
926 }
927 #endif
928
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)929 static long do_mbind(unsigned long start, unsigned long len,
930 unsigned short mode, unsigned short mode_flags,
931 nodemask_t *nmask, unsigned long flags)
932 {
933 struct vm_area_struct *vma;
934 struct mm_struct *mm = current->mm;
935 struct mempolicy *new;
936 unsigned long end;
937 int err;
938 LIST_HEAD(pagelist);
939
940 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
941 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
942 return -EINVAL;
943 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
944 return -EPERM;
945
946 if (start & ~PAGE_MASK)
947 return -EINVAL;
948
949 if (mode == MPOL_DEFAULT)
950 flags &= ~MPOL_MF_STRICT;
951
952 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
953 end = start + len;
954
955 if (end < start)
956 return -EINVAL;
957 if (end == start)
958 return 0;
959
960 new = mpol_new(mode, mode_flags, nmask);
961 if (IS_ERR(new))
962 return PTR_ERR(new);
963
964 /*
965 * If we are using the default policy then operation
966 * on discontinuous address spaces is okay after all
967 */
968 if (!new)
969 flags |= MPOL_MF_DISCONTIG_OK;
970
971 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
972 start, start + len, mode, mode_flags,
973 nmask ? nodes_addr(*nmask)[0] : -1);
974
975 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
976
977 err = migrate_prep();
978 if (err)
979 return err;
980 }
981 down_write(&mm->mmap_sem);
982 vma = check_range(mm, start, end, nmask,
983 flags | MPOL_MF_INVERT, &pagelist);
984
985 err = PTR_ERR(vma);
986 if (!IS_ERR(vma)) {
987 int nr_failed = 0;
988
989 err = mbind_range(vma, start, end, new);
990
991 if (!list_empty(&pagelist))
992 nr_failed = migrate_pages(&pagelist, new_vma_page,
993 (unsigned long)vma);
994
995 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
996 err = -EIO;
997 }
998
999 up_write(&mm->mmap_sem);
1000 mpol_put(new);
1001 return err;
1002 }
1003
1004 /*
1005 * User space interface with variable sized bitmaps for nodelists.
1006 */
1007
1008 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1009 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1010 unsigned long maxnode)
1011 {
1012 unsigned long k;
1013 unsigned long nlongs;
1014 unsigned long endmask;
1015
1016 --maxnode;
1017 nodes_clear(*nodes);
1018 if (maxnode == 0 || !nmask)
1019 return 0;
1020 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1021 return -EINVAL;
1022
1023 nlongs = BITS_TO_LONGS(maxnode);
1024 if ((maxnode % BITS_PER_LONG) == 0)
1025 endmask = ~0UL;
1026 else
1027 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1028
1029 /* When the user specified more nodes than supported just check
1030 if the non supported part is all zero. */
1031 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1032 if (nlongs > PAGE_SIZE/sizeof(long))
1033 return -EINVAL;
1034 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1035 unsigned long t;
1036 if (get_user(t, nmask + k))
1037 return -EFAULT;
1038 if (k == nlongs - 1) {
1039 if (t & endmask)
1040 return -EINVAL;
1041 } else if (t)
1042 return -EINVAL;
1043 }
1044 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1045 endmask = ~0UL;
1046 }
1047
1048 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1049 return -EFAULT;
1050 nodes_addr(*nodes)[nlongs-1] &= endmask;
1051 return 0;
1052 }
1053
1054 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1055 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1056 nodemask_t *nodes)
1057 {
1058 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1059 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1060
1061 if (copy > nbytes) {
1062 if (copy > PAGE_SIZE)
1063 return -EINVAL;
1064 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1065 return -EFAULT;
1066 copy = nbytes;
1067 }
1068 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1069 }
1070
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,unsigned long __user *,nmask,unsigned long,maxnode,unsigned,flags)1071 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1072 unsigned long, mode, unsigned long __user *, nmask,
1073 unsigned long, maxnode, unsigned, flags)
1074 {
1075 nodemask_t nodes;
1076 int err;
1077 unsigned short mode_flags;
1078
1079 mode_flags = mode & MPOL_MODE_FLAGS;
1080 mode &= ~MPOL_MODE_FLAGS;
1081 if (mode >= MPOL_MAX)
1082 return -EINVAL;
1083 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1084 (mode_flags & MPOL_F_RELATIVE_NODES))
1085 return -EINVAL;
1086 err = get_nodes(&nodes, nmask, maxnode);
1087 if (err)
1088 return err;
1089 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1090 }
1091
1092 /* Set the process memory policy */
SYSCALL_DEFINE3(set_mempolicy,int,mode,unsigned long __user *,nmask,unsigned long,maxnode)1093 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1094 unsigned long, maxnode)
1095 {
1096 int err;
1097 nodemask_t nodes;
1098 unsigned short flags;
1099
1100 flags = mode & MPOL_MODE_FLAGS;
1101 mode &= ~MPOL_MODE_FLAGS;
1102 if ((unsigned int)mode >= MPOL_MAX)
1103 return -EINVAL;
1104 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1105 return -EINVAL;
1106 err = get_nodes(&nodes, nmask, maxnode);
1107 if (err)
1108 return err;
1109 return do_set_mempolicy(mode, flags, &nodes);
1110 }
1111
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1112 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1113 const unsigned long __user *, old_nodes,
1114 const unsigned long __user *, new_nodes)
1115 {
1116 const struct cred *cred = current_cred(), *tcred;
1117 struct mm_struct *mm;
1118 struct task_struct *task;
1119 nodemask_t old;
1120 nodemask_t new;
1121 nodemask_t task_nodes;
1122 int err;
1123
1124 err = get_nodes(&old, old_nodes, maxnode);
1125 if (err)
1126 return err;
1127
1128 err = get_nodes(&new, new_nodes, maxnode);
1129 if (err)
1130 return err;
1131
1132 /* Find the mm_struct */
1133 read_lock(&tasklist_lock);
1134 task = pid ? find_task_by_vpid(pid) : current;
1135 if (!task) {
1136 read_unlock(&tasklist_lock);
1137 return -ESRCH;
1138 }
1139 mm = get_task_mm(task);
1140 read_unlock(&tasklist_lock);
1141
1142 if (!mm)
1143 return -EINVAL;
1144
1145 /*
1146 * Check if this process has the right to modify the specified
1147 * process. The right exists if the process has administrative
1148 * capabilities, superuser privileges or the same
1149 * userid as the target process.
1150 */
1151 rcu_read_lock();
1152 tcred = __task_cred(task);
1153 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1154 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1155 !capable(CAP_SYS_NICE)) {
1156 rcu_read_unlock();
1157 err = -EPERM;
1158 goto out;
1159 }
1160 rcu_read_unlock();
1161
1162 task_nodes = cpuset_mems_allowed(task);
1163 /* Is the user allowed to access the target nodes? */
1164 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1165 err = -EPERM;
1166 goto out;
1167 }
1168
1169 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1170 err = -EINVAL;
1171 goto out;
1172 }
1173
1174 err = security_task_movememory(task);
1175 if (err)
1176 goto out;
1177
1178 err = do_migrate_pages(mm, &old, &new,
1179 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1180 out:
1181 mmput(mm);
1182 return err;
1183 }
1184
1185
1186 /* Retrieve NUMA policy */
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1187 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1188 unsigned long __user *, nmask, unsigned long, maxnode,
1189 unsigned long, addr, unsigned long, flags)
1190 {
1191 int err;
1192 int uninitialized_var(pval);
1193 nodemask_t nodes;
1194
1195 if (nmask != NULL && maxnode < MAX_NUMNODES)
1196 return -EINVAL;
1197
1198 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1199
1200 if (err)
1201 return err;
1202
1203 if (policy && put_user(pval, policy))
1204 return -EFAULT;
1205
1206 if (nmask)
1207 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1208
1209 return err;
1210 }
1211
1212 #ifdef CONFIG_COMPAT
1213
compat_sys_get_mempolicy(int __user * policy,compat_ulong_t __user * nmask,compat_ulong_t maxnode,compat_ulong_t addr,compat_ulong_t flags)1214 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1215 compat_ulong_t __user *nmask,
1216 compat_ulong_t maxnode,
1217 compat_ulong_t addr, compat_ulong_t flags)
1218 {
1219 long err;
1220 unsigned long __user *nm = NULL;
1221 unsigned long nr_bits, alloc_size;
1222 DECLARE_BITMAP(bm, MAX_NUMNODES);
1223
1224 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1225 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1226
1227 if (nmask)
1228 nm = compat_alloc_user_space(alloc_size);
1229
1230 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1231
1232 if (!err && nmask) {
1233 err = copy_from_user(bm, nm, alloc_size);
1234 /* ensure entire bitmap is zeroed */
1235 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1236 err |= compat_put_bitmap(nmask, bm, nr_bits);
1237 }
1238
1239 return err;
1240 }
1241
compat_sys_set_mempolicy(int mode,compat_ulong_t __user * nmask,compat_ulong_t maxnode)1242 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1243 compat_ulong_t maxnode)
1244 {
1245 long err = 0;
1246 unsigned long __user *nm = NULL;
1247 unsigned long nr_bits, alloc_size;
1248 DECLARE_BITMAP(bm, MAX_NUMNODES);
1249
1250 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1251 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1252
1253 if (nmask) {
1254 err = compat_get_bitmap(bm, nmask, nr_bits);
1255 nm = compat_alloc_user_space(alloc_size);
1256 err |= copy_to_user(nm, bm, alloc_size);
1257 }
1258
1259 if (err)
1260 return -EFAULT;
1261
1262 return sys_set_mempolicy(mode, nm, nr_bits+1);
1263 }
1264
compat_sys_mbind(compat_ulong_t start,compat_ulong_t len,compat_ulong_t mode,compat_ulong_t __user * nmask,compat_ulong_t maxnode,compat_ulong_t flags)1265 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1266 compat_ulong_t mode, compat_ulong_t __user *nmask,
1267 compat_ulong_t maxnode, compat_ulong_t flags)
1268 {
1269 long err = 0;
1270 unsigned long __user *nm = NULL;
1271 unsigned long nr_bits, alloc_size;
1272 nodemask_t bm;
1273
1274 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1275 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1276
1277 if (nmask) {
1278 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1279 nm = compat_alloc_user_space(alloc_size);
1280 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1281 }
1282
1283 if (err)
1284 return -EFAULT;
1285
1286 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1287 }
1288
1289 #endif
1290
1291 /*
1292 * get_vma_policy(@task, @vma, @addr)
1293 * @task - task for fallback if vma policy == default
1294 * @vma - virtual memory area whose policy is sought
1295 * @addr - address in @vma for shared policy lookup
1296 *
1297 * Returns effective policy for a VMA at specified address.
1298 * Falls back to @task or system default policy, as necessary.
1299 * Current or other task's task mempolicy and non-shared vma policies
1300 * are protected by the task's mmap_sem, which must be held for read by
1301 * the caller.
1302 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1303 * count--added by the get_policy() vm_op, as appropriate--to protect against
1304 * freeing by another task. It is the caller's responsibility to free the
1305 * extra reference for shared policies.
1306 */
get_vma_policy(struct task_struct * task,struct vm_area_struct * vma,unsigned long addr)1307 static struct mempolicy *get_vma_policy(struct task_struct *task,
1308 struct vm_area_struct *vma, unsigned long addr)
1309 {
1310 struct mempolicy *pol = task->mempolicy;
1311
1312 if (vma) {
1313 if (vma->vm_ops && vma->vm_ops->get_policy) {
1314 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1315 addr);
1316 if (vpol)
1317 pol = vpol;
1318 } else if (vma->vm_policy)
1319 pol = vma->vm_policy;
1320 }
1321 if (!pol)
1322 pol = &default_policy;
1323 return pol;
1324 }
1325
1326 /*
1327 * Return a nodemask representing a mempolicy for filtering nodes for
1328 * page allocation
1329 */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1330 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1331 {
1332 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1333 if (unlikely(policy->mode == MPOL_BIND) &&
1334 gfp_zone(gfp) >= policy_zone &&
1335 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1336 return &policy->v.nodes;
1337
1338 return NULL;
1339 }
1340
1341 /* Return a zonelist indicated by gfp for node representing a mempolicy */
policy_zonelist(gfp_t gfp,struct mempolicy * policy)1342 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1343 {
1344 int nd = numa_node_id();
1345
1346 switch (policy->mode) {
1347 case MPOL_PREFERRED:
1348 if (!(policy->flags & MPOL_F_LOCAL))
1349 nd = policy->v.preferred_node;
1350 break;
1351 case MPOL_BIND:
1352 /*
1353 * Normally, MPOL_BIND allocations are node-local within the
1354 * allowed nodemask. However, if __GFP_THISNODE is set and the
1355 * current node is part of the mask, we use the zonelist for
1356 * the first node in the mask instead.
1357 */
1358 if (unlikely(gfp & __GFP_THISNODE) &&
1359 unlikely(!node_isset(nd, policy->v.nodes)))
1360 nd = first_node(policy->v.nodes);
1361 break;
1362 case MPOL_INTERLEAVE: /* should not happen */
1363 break;
1364 default:
1365 BUG();
1366 }
1367 return node_zonelist(nd, gfp);
1368 }
1369
1370 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1371 static unsigned interleave_nodes(struct mempolicy *policy)
1372 {
1373 unsigned nid, next;
1374 struct task_struct *me = current;
1375
1376 nid = me->il_next;
1377 next = next_node(nid, policy->v.nodes);
1378 if (next >= MAX_NUMNODES)
1379 next = first_node(policy->v.nodes);
1380 if (next < MAX_NUMNODES)
1381 me->il_next = next;
1382 return nid;
1383 }
1384
1385 /*
1386 * Depending on the memory policy provide a node from which to allocate the
1387 * next slab entry.
1388 * @policy must be protected by freeing by the caller. If @policy is
1389 * the current task's mempolicy, this protection is implicit, as only the
1390 * task can change it's policy. The system default policy requires no
1391 * such protection.
1392 */
slab_node(struct mempolicy * policy)1393 unsigned slab_node(struct mempolicy *policy)
1394 {
1395 if (!policy || policy->flags & MPOL_F_LOCAL)
1396 return numa_node_id();
1397
1398 switch (policy->mode) {
1399 case MPOL_PREFERRED:
1400 /*
1401 * handled MPOL_F_LOCAL above
1402 */
1403 return policy->v.preferred_node;
1404
1405 case MPOL_INTERLEAVE:
1406 return interleave_nodes(policy);
1407
1408 case MPOL_BIND: {
1409 /*
1410 * Follow bind policy behavior and start allocation at the
1411 * first node.
1412 */
1413 struct zonelist *zonelist;
1414 struct zone *zone;
1415 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1416 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1417 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1418 &policy->v.nodes,
1419 &zone);
1420 return zone->node;
1421 }
1422
1423 default:
1424 BUG();
1425 }
1426 }
1427
1428 /* Do static interleaving for a VMA with known offset. */
offset_il_node(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long off)1429 static unsigned offset_il_node(struct mempolicy *pol,
1430 struct vm_area_struct *vma, unsigned long off)
1431 {
1432 unsigned nnodes = nodes_weight(pol->v.nodes);
1433 unsigned target;
1434 int c;
1435 int nid = -1;
1436
1437 if (!nnodes)
1438 return numa_node_id();
1439 target = (unsigned int)off % nnodes;
1440 c = 0;
1441 do {
1442 nid = next_node(nid, pol->v.nodes);
1443 c++;
1444 } while (c <= target);
1445 return nid;
1446 }
1447
1448 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1449 static inline unsigned interleave_nid(struct mempolicy *pol,
1450 struct vm_area_struct *vma, unsigned long addr, int shift)
1451 {
1452 if (vma) {
1453 unsigned long off;
1454
1455 /*
1456 * for small pages, there is no difference between
1457 * shift and PAGE_SHIFT, so the bit-shift is safe.
1458 * for huge pages, since vm_pgoff is in units of small
1459 * pages, we need to shift off the always 0 bits to get
1460 * a useful offset.
1461 */
1462 BUG_ON(shift < PAGE_SHIFT);
1463 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1464 off += (addr - vma->vm_start) >> shift;
1465 return offset_il_node(pol, vma, off);
1466 } else
1467 return interleave_nodes(pol);
1468 }
1469
1470 #ifdef CONFIG_HUGETLBFS
1471 /*
1472 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1473 * @vma = virtual memory area whose policy is sought
1474 * @addr = address in @vma for shared policy lookup and interleave policy
1475 * @gfp_flags = for requested zone
1476 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1477 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1478 *
1479 * Returns a zonelist suitable for a huge page allocation and a pointer
1480 * to the struct mempolicy for conditional unref after allocation.
1481 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1482 * @nodemask for filtering the zonelist.
1483 */
huge_zonelist(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)1484 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1485 gfp_t gfp_flags, struct mempolicy **mpol,
1486 nodemask_t **nodemask)
1487 {
1488 struct zonelist *zl;
1489
1490 *mpol = get_vma_policy(current, vma, addr);
1491 *nodemask = NULL; /* assume !MPOL_BIND */
1492
1493 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1494 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1495 huge_page_shift(hstate_vma(vma))), gfp_flags);
1496 } else {
1497 zl = policy_zonelist(gfp_flags, *mpol);
1498 if ((*mpol)->mode == MPOL_BIND)
1499 *nodemask = &(*mpol)->v.nodes;
1500 }
1501 return zl;
1502 }
1503 #endif
1504
1505 /* Allocate a page in interleaved policy.
1506 Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)1507 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1508 unsigned nid)
1509 {
1510 struct zonelist *zl;
1511 struct page *page;
1512
1513 zl = node_zonelist(nid, gfp);
1514 page = __alloc_pages(gfp, order, zl);
1515 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1516 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1517 return page;
1518 }
1519
1520 /**
1521 * alloc_page_vma - Allocate a page for a VMA.
1522 *
1523 * @gfp:
1524 * %GFP_USER user allocation.
1525 * %GFP_KERNEL kernel allocations,
1526 * %GFP_HIGHMEM highmem/user allocations,
1527 * %GFP_FS allocation should not call back into a file system.
1528 * %GFP_ATOMIC don't sleep.
1529 *
1530 * @vma: Pointer to VMA or NULL if not available.
1531 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1532 *
1533 * This function allocates a page from the kernel page pool and applies
1534 * a NUMA policy associated with the VMA or the current process.
1535 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1536 * mm_struct of the VMA to prevent it from going away. Should be used for
1537 * all allocations for pages that will be mapped into
1538 * user space. Returns NULL when no page can be allocated.
1539 *
1540 * Should be called with the mm_sem of the vma hold.
1541 */
1542 struct page *
alloc_page_vma(gfp_t gfp,struct vm_area_struct * vma,unsigned long addr)1543 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1544 {
1545 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1546 struct zonelist *zl;
1547
1548 cpuset_update_task_memory_state();
1549
1550 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1551 unsigned nid;
1552
1553 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1554 mpol_cond_put(pol);
1555 return alloc_page_interleave(gfp, 0, nid);
1556 }
1557 zl = policy_zonelist(gfp, pol);
1558 if (unlikely(mpol_needs_cond_ref(pol))) {
1559 /*
1560 * slow path: ref counted shared policy
1561 */
1562 struct page *page = __alloc_pages_nodemask(gfp, 0,
1563 zl, policy_nodemask(gfp, pol));
1564 __mpol_put(pol);
1565 return page;
1566 }
1567 /*
1568 * fast path: default or task policy
1569 */
1570 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1571 }
1572
1573 /**
1574 * alloc_pages_current - Allocate pages.
1575 *
1576 * @gfp:
1577 * %GFP_USER user allocation,
1578 * %GFP_KERNEL kernel allocation,
1579 * %GFP_HIGHMEM highmem allocation,
1580 * %GFP_FS don't call back into a file system.
1581 * %GFP_ATOMIC don't sleep.
1582 * @order: Power of two of allocation size in pages. 0 is a single page.
1583 *
1584 * Allocate a page from the kernel page pool. When not in
1585 * interrupt context and apply the current process NUMA policy.
1586 * Returns NULL when no page can be allocated.
1587 *
1588 * Don't call cpuset_update_task_memory_state() unless
1589 * 1) it's ok to take cpuset_sem (can WAIT), and
1590 * 2) allocating for current task (not interrupt).
1591 */
alloc_pages_current(gfp_t gfp,unsigned order)1592 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1593 {
1594 struct mempolicy *pol = current->mempolicy;
1595
1596 if ((gfp & __GFP_WAIT) && !in_interrupt())
1597 cpuset_update_task_memory_state();
1598 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1599 pol = &default_policy;
1600
1601 /*
1602 * No reference counting needed for current->mempolicy
1603 * nor system default_policy
1604 */
1605 if (pol->mode == MPOL_INTERLEAVE)
1606 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1607 return __alloc_pages_nodemask(gfp, order,
1608 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1609 }
1610 EXPORT_SYMBOL(alloc_pages_current);
1611
1612 /*
1613 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1614 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1615 * with the mems_allowed returned by cpuset_mems_allowed(). This
1616 * keeps mempolicies cpuset relative after its cpuset moves. See
1617 * further kernel/cpuset.c update_nodemask().
1618 */
1619
1620 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)1621 struct mempolicy *__mpol_dup(struct mempolicy *old)
1622 {
1623 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1624
1625 if (!new)
1626 return ERR_PTR(-ENOMEM);
1627 if (current_cpuset_is_being_rebound()) {
1628 nodemask_t mems = cpuset_mems_allowed(current);
1629 mpol_rebind_policy(old, &mems);
1630 }
1631 *new = *old;
1632 atomic_set(&new->refcnt, 1);
1633 return new;
1634 }
1635
1636 /*
1637 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1638 * eliminate the * MPOL_F_* flags that require conditional ref and
1639 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1640 * after return. Use the returned value.
1641 *
1642 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1643 * policy lookup, even if the policy needs/has extra ref on lookup.
1644 * shmem_readahead needs this.
1645 */
__mpol_cond_copy(struct mempolicy * tompol,struct mempolicy * frompol)1646 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1647 struct mempolicy *frompol)
1648 {
1649 if (!mpol_needs_cond_ref(frompol))
1650 return frompol;
1651
1652 *tompol = *frompol;
1653 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1654 __mpol_put(frompol);
1655 return tompol;
1656 }
1657
mpol_match_intent(const struct mempolicy * a,const struct mempolicy * b)1658 static int mpol_match_intent(const struct mempolicy *a,
1659 const struct mempolicy *b)
1660 {
1661 if (a->flags != b->flags)
1662 return 0;
1663 if (!mpol_store_user_nodemask(a))
1664 return 1;
1665 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1666 }
1667
1668 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)1669 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1670 {
1671 if (!a || !b)
1672 return 0;
1673 if (a->mode != b->mode)
1674 return 0;
1675 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1676 return 0;
1677 switch (a->mode) {
1678 case MPOL_BIND:
1679 /* Fall through */
1680 case MPOL_INTERLEAVE:
1681 return nodes_equal(a->v.nodes, b->v.nodes);
1682 case MPOL_PREFERRED:
1683 return a->v.preferred_node == b->v.preferred_node &&
1684 a->flags == b->flags;
1685 default:
1686 BUG();
1687 return 0;
1688 }
1689 }
1690
1691 /*
1692 * Shared memory backing store policy support.
1693 *
1694 * Remember policies even when nobody has shared memory mapped.
1695 * The policies are kept in Red-Black tree linked from the inode.
1696 * They are protected by the sp->lock spinlock, which should be held
1697 * for any accesses to the tree.
1698 */
1699
1700 /* lookup first element intersecting start-end */
1701 /* Caller holds sp->lock */
1702 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)1703 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1704 {
1705 struct rb_node *n = sp->root.rb_node;
1706
1707 while (n) {
1708 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1709
1710 if (start >= p->end)
1711 n = n->rb_right;
1712 else if (end <= p->start)
1713 n = n->rb_left;
1714 else
1715 break;
1716 }
1717 if (!n)
1718 return NULL;
1719 for (;;) {
1720 struct sp_node *w = NULL;
1721 struct rb_node *prev = rb_prev(n);
1722 if (!prev)
1723 break;
1724 w = rb_entry(prev, struct sp_node, nd);
1725 if (w->end <= start)
1726 break;
1727 n = prev;
1728 }
1729 return rb_entry(n, struct sp_node, nd);
1730 }
1731
1732 /* Insert a new shared policy into the list. */
1733 /* Caller holds sp->lock */
sp_insert(struct shared_policy * sp,struct sp_node * new)1734 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1735 {
1736 struct rb_node **p = &sp->root.rb_node;
1737 struct rb_node *parent = NULL;
1738 struct sp_node *nd;
1739
1740 while (*p) {
1741 parent = *p;
1742 nd = rb_entry(parent, struct sp_node, nd);
1743 if (new->start < nd->start)
1744 p = &(*p)->rb_left;
1745 else if (new->end > nd->end)
1746 p = &(*p)->rb_right;
1747 else
1748 BUG();
1749 }
1750 rb_link_node(&new->nd, parent, p);
1751 rb_insert_color(&new->nd, &sp->root);
1752 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1753 new->policy ? new->policy->mode : 0);
1754 }
1755
1756 /* Find shared policy intersecting idx */
1757 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)1758 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1759 {
1760 struct mempolicy *pol = NULL;
1761 struct sp_node *sn;
1762
1763 if (!sp->root.rb_node)
1764 return NULL;
1765 spin_lock(&sp->lock);
1766 sn = sp_lookup(sp, idx, idx+1);
1767 if (sn) {
1768 mpol_get(sn->policy);
1769 pol = sn->policy;
1770 }
1771 spin_unlock(&sp->lock);
1772 return pol;
1773 }
1774
sp_delete(struct shared_policy * sp,struct sp_node * n)1775 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1776 {
1777 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1778 rb_erase(&n->nd, &sp->root);
1779 mpol_put(n->policy);
1780 kmem_cache_free(sn_cache, n);
1781 }
1782
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)1783 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1784 struct mempolicy *pol)
1785 {
1786 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1787
1788 if (!n)
1789 return NULL;
1790 n->start = start;
1791 n->end = end;
1792 mpol_get(pol);
1793 pol->flags |= MPOL_F_SHARED; /* for unref */
1794 n->policy = pol;
1795 return n;
1796 }
1797
1798 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)1799 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1800 unsigned long end, struct sp_node *new)
1801 {
1802 struct sp_node *n, *new2 = NULL;
1803
1804 restart:
1805 spin_lock(&sp->lock);
1806 n = sp_lookup(sp, start, end);
1807 /* Take care of old policies in the same range. */
1808 while (n && n->start < end) {
1809 struct rb_node *next = rb_next(&n->nd);
1810 if (n->start >= start) {
1811 if (n->end <= end)
1812 sp_delete(sp, n);
1813 else
1814 n->start = end;
1815 } else {
1816 /* Old policy spanning whole new range. */
1817 if (n->end > end) {
1818 if (!new2) {
1819 spin_unlock(&sp->lock);
1820 new2 = sp_alloc(end, n->end, n->policy);
1821 if (!new2)
1822 return -ENOMEM;
1823 goto restart;
1824 }
1825 n->end = start;
1826 sp_insert(sp, new2);
1827 new2 = NULL;
1828 break;
1829 } else
1830 n->end = start;
1831 }
1832 if (!next)
1833 break;
1834 n = rb_entry(next, struct sp_node, nd);
1835 }
1836 if (new)
1837 sp_insert(sp, new);
1838 spin_unlock(&sp->lock);
1839 if (new2) {
1840 mpol_put(new2->policy);
1841 kmem_cache_free(sn_cache, new2);
1842 }
1843 return 0;
1844 }
1845
1846 /**
1847 * mpol_shared_policy_init - initialize shared policy for inode
1848 * @sp: pointer to inode shared policy
1849 * @mpol: struct mempolicy to install
1850 *
1851 * Install non-NULL @mpol in inode's shared policy rb-tree.
1852 * On entry, the current task has a reference on a non-NULL @mpol.
1853 * This must be released on exit.
1854 */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)1855 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1856 {
1857 sp->root = RB_ROOT; /* empty tree == default mempolicy */
1858 spin_lock_init(&sp->lock);
1859
1860 if (mpol) {
1861 struct vm_area_struct pvma;
1862 struct mempolicy *new;
1863
1864 /* contextualize the tmpfs mount point mempolicy */
1865 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
1866 mpol_put(mpol); /* drop our ref on sb mpol */
1867 if (IS_ERR(new))
1868 return; /* no valid nodemask intersection */
1869
1870 /* Create pseudo-vma that contains just the policy */
1871 memset(&pvma, 0, sizeof(struct vm_area_struct));
1872 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
1873 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
1874 mpol_put(new); /* drop initial ref */
1875 }
1876 }
1877
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)1878 int mpol_set_shared_policy(struct shared_policy *info,
1879 struct vm_area_struct *vma, struct mempolicy *npol)
1880 {
1881 int err;
1882 struct sp_node *new = NULL;
1883 unsigned long sz = vma_pages(vma);
1884
1885 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1886 vma->vm_pgoff,
1887 sz, npol ? npol->mode : -1,
1888 npol ? npol->flags : -1,
1889 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1890
1891 if (npol) {
1892 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1893 if (!new)
1894 return -ENOMEM;
1895 }
1896 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1897 if (err && new)
1898 kmem_cache_free(sn_cache, new);
1899 return err;
1900 }
1901
1902 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)1903 void mpol_free_shared_policy(struct shared_policy *p)
1904 {
1905 struct sp_node *n;
1906 struct rb_node *next;
1907
1908 if (!p->root.rb_node)
1909 return;
1910 spin_lock(&p->lock);
1911 next = rb_first(&p->root);
1912 while (next) {
1913 n = rb_entry(next, struct sp_node, nd);
1914 next = rb_next(&n->nd);
1915 rb_erase(&n->nd, &p->root);
1916 mpol_put(n->policy);
1917 kmem_cache_free(sn_cache, n);
1918 }
1919 spin_unlock(&p->lock);
1920 }
1921
1922 /* assumes fs == KERNEL_DS */
numa_policy_init(void)1923 void __init numa_policy_init(void)
1924 {
1925 nodemask_t interleave_nodes;
1926 unsigned long largest = 0;
1927 int nid, prefer = 0;
1928
1929 policy_cache = kmem_cache_create("numa_policy",
1930 sizeof(struct mempolicy),
1931 0, SLAB_PANIC, NULL);
1932
1933 sn_cache = kmem_cache_create("shared_policy_node",
1934 sizeof(struct sp_node),
1935 0, SLAB_PANIC, NULL);
1936
1937 /*
1938 * Set interleaving policy for system init. Interleaving is only
1939 * enabled across suitably sized nodes (default is >= 16MB), or
1940 * fall back to the largest node if they're all smaller.
1941 */
1942 nodes_clear(interleave_nodes);
1943 for_each_node_state(nid, N_HIGH_MEMORY) {
1944 unsigned long total_pages = node_present_pages(nid);
1945
1946 /* Preserve the largest node */
1947 if (largest < total_pages) {
1948 largest = total_pages;
1949 prefer = nid;
1950 }
1951
1952 /* Interleave this node? */
1953 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1954 node_set(nid, interleave_nodes);
1955 }
1956
1957 /* All too small, use the largest */
1958 if (unlikely(nodes_empty(interleave_nodes)))
1959 node_set(prefer, interleave_nodes);
1960
1961 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1962 printk("numa_policy_init: interleaving failed\n");
1963 }
1964
1965 /* Reset policy of current process to default */
numa_default_policy(void)1966 void numa_default_policy(void)
1967 {
1968 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1969 }
1970
1971 /*
1972 * Parse and format mempolicy from/to strings
1973 */
1974
1975 /*
1976 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
1977 * Used only for mpol_parse_str() and mpol_to_str()
1978 */
1979 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
1980 static const char * const policy_types[] =
1981 { "default", "prefer", "bind", "interleave", "local" };
1982
1983
1984 #ifdef CONFIG_TMPFS
1985 /**
1986 * mpol_parse_str - parse string to mempolicy
1987 * @str: string containing mempolicy to parse
1988 * @mpol: pointer to struct mempolicy pointer, returned on success.
1989 * @no_context: flag whether to "contextualize" the mempolicy
1990 *
1991 * Format of input:
1992 * <mode>[=<flags>][:<nodelist>]
1993 *
1994 * if @no_context is true, save the input nodemask in w.user_nodemask in
1995 * the returned mempolicy. This will be used to "clone" the mempolicy in
1996 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
1997 * mount option. Note that if 'static' or 'relative' mode flags were
1998 * specified, the input nodemask will already have been saved. Saving
1999 * it again is redundant, but safe.
2000 *
2001 * On success, returns 0, else 1
2002 */
mpol_parse_str(char * str,struct mempolicy ** mpol,int no_context)2003 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2004 {
2005 struct mempolicy *new = NULL;
2006 unsigned short uninitialized_var(mode);
2007 unsigned short uninitialized_var(mode_flags);
2008 nodemask_t nodes;
2009 char *nodelist = strchr(str, ':');
2010 char *flags = strchr(str, '=');
2011 int i;
2012 int err = 1;
2013
2014 if (nodelist) {
2015 /* NUL-terminate mode or flags string */
2016 *nodelist++ = '\0';
2017 if (nodelist_parse(nodelist, nodes))
2018 goto out;
2019 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2020 goto out;
2021 } else
2022 nodes_clear(nodes);
2023
2024 if (flags)
2025 *flags++ = '\0'; /* terminate mode string */
2026
2027 for (i = 0; i <= MPOL_LOCAL; i++) {
2028 if (!strcmp(str, policy_types[i])) {
2029 mode = i;
2030 break;
2031 }
2032 }
2033 if (i > MPOL_LOCAL)
2034 goto out;
2035
2036 switch (mode) {
2037 case MPOL_PREFERRED:
2038 /*
2039 * Insist on a nodelist of one node only
2040 */
2041 if (nodelist) {
2042 char *rest = nodelist;
2043 while (isdigit(*rest))
2044 rest++;
2045 if (!*rest)
2046 err = 0;
2047 }
2048 break;
2049 case MPOL_INTERLEAVE:
2050 /*
2051 * Default to online nodes with memory if no nodelist
2052 */
2053 if (!nodelist)
2054 nodes = node_states[N_HIGH_MEMORY];
2055 err = 0;
2056 break;
2057 case MPOL_LOCAL:
2058 /*
2059 * Don't allow a nodelist; mpol_new() checks flags
2060 */
2061 if (nodelist)
2062 goto out;
2063 mode = MPOL_PREFERRED;
2064 break;
2065
2066 /*
2067 * case MPOL_BIND: mpol_new() enforces non-empty nodemask.
2068 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2069 */
2070 }
2071
2072 mode_flags = 0;
2073 if (flags) {
2074 /*
2075 * Currently, we only support two mutually exclusive
2076 * mode flags.
2077 */
2078 if (!strcmp(flags, "static"))
2079 mode_flags |= MPOL_F_STATIC_NODES;
2080 else if (!strcmp(flags, "relative"))
2081 mode_flags |= MPOL_F_RELATIVE_NODES;
2082 else
2083 err = 1;
2084 }
2085
2086 new = mpol_new(mode, mode_flags, &nodes);
2087 if (IS_ERR(new))
2088 err = 1;
2089 else if (no_context)
2090 new->w.user_nodemask = nodes; /* save for contextualization */
2091
2092 out:
2093 /* Restore string for error message */
2094 if (nodelist)
2095 *--nodelist = ':';
2096 if (flags)
2097 *--flags = '=';
2098 if (!err)
2099 *mpol = new;
2100 return err;
2101 }
2102 #endif /* CONFIG_TMPFS */
2103
2104 /**
2105 * mpol_to_str - format a mempolicy structure for printing
2106 * @buffer: to contain formatted mempolicy string
2107 * @maxlen: length of @buffer
2108 * @pol: pointer to mempolicy to be formatted
2109 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2110 *
2111 * Convert a mempolicy into a string.
2112 * Returns the number of characters in buffer (if positive)
2113 * or an error (negative)
2114 */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol,int no_context)2115 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2116 {
2117 char *p = buffer;
2118 int l;
2119 nodemask_t nodes;
2120 unsigned short mode;
2121 unsigned short flags = pol ? pol->flags : 0;
2122
2123 /*
2124 * Sanity check: room for longest mode, flag and some nodes
2125 */
2126 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2127
2128 if (!pol || pol == &default_policy)
2129 mode = MPOL_DEFAULT;
2130 else
2131 mode = pol->mode;
2132
2133 switch (mode) {
2134 case MPOL_DEFAULT:
2135 nodes_clear(nodes);
2136 break;
2137
2138 case MPOL_PREFERRED:
2139 nodes_clear(nodes);
2140 if (flags & MPOL_F_LOCAL)
2141 mode = MPOL_LOCAL; /* pseudo-policy */
2142 else
2143 node_set(pol->v.preferred_node, nodes);
2144 break;
2145
2146 case MPOL_BIND:
2147 /* Fall through */
2148 case MPOL_INTERLEAVE:
2149 if (no_context)
2150 nodes = pol->w.user_nodemask;
2151 else
2152 nodes = pol->v.nodes;
2153 break;
2154
2155 default:
2156 BUG();
2157 }
2158
2159 l = strlen(policy_types[mode]);
2160 if (buffer + maxlen < p + l + 1)
2161 return -ENOSPC;
2162
2163 strcpy(p, policy_types[mode]);
2164 p += l;
2165
2166 if (flags & MPOL_MODE_FLAGS) {
2167 if (buffer + maxlen < p + 2)
2168 return -ENOSPC;
2169 *p++ = '=';
2170
2171 /*
2172 * Currently, the only defined flags are mutually exclusive
2173 */
2174 if (flags & MPOL_F_STATIC_NODES)
2175 p += snprintf(p, buffer + maxlen - p, "static");
2176 else if (flags & MPOL_F_RELATIVE_NODES)
2177 p += snprintf(p, buffer + maxlen - p, "relative");
2178 }
2179
2180 if (!nodes_empty(nodes)) {
2181 if (buffer + maxlen < p + 2)
2182 return -ENOSPC;
2183 *p++ = ':';
2184 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2185 }
2186 return p - buffer;
2187 }
2188
2189 struct numa_maps {
2190 unsigned long pages;
2191 unsigned long anon;
2192 unsigned long active;
2193 unsigned long writeback;
2194 unsigned long mapcount_max;
2195 unsigned long dirty;
2196 unsigned long swapcache;
2197 unsigned long node[MAX_NUMNODES];
2198 };
2199
gather_stats(struct page * page,void * private,int pte_dirty)2200 static void gather_stats(struct page *page, void *private, int pte_dirty)
2201 {
2202 struct numa_maps *md = private;
2203 int count = page_mapcount(page);
2204
2205 md->pages++;
2206 if (pte_dirty || PageDirty(page))
2207 md->dirty++;
2208
2209 if (PageSwapCache(page))
2210 md->swapcache++;
2211
2212 if (PageActive(page) || PageUnevictable(page))
2213 md->active++;
2214
2215 if (PageWriteback(page))
2216 md->writeback++;
2217
2218 if (PageAnon(page))
2219 md->anon++;
2220
2221 if (count > md->mapcount_max)
2222 md->mapcount_max = count;
2223
2224 md->node[page_to_nid(page)]++;
2225 }
2226
2227 #ifdef CONFIG_HUGETLB_PAGE
check_huge_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct numa_maps * md)2228 static void check_huge_range(struct vm_area_struct *vma,
2229 unsigned long start, unsigned long end,
2230 struct numa_maps *md)
2231 {
2232 unsigned long addr;
2233 struct page *page;
2234 struct hstate *h = hstate_vma(vma);
2235 unsigned long sz = huge_page_size(h);
2236
2237 for (addr = start; addr < end; addr += sz) {
2238 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2239 addr & huge_page_mask(h));
2240 pte_t pte;
2241
2242 if (!ptep)
2243 continue;
2244
2245 pte = *ptep;
2246 if (pte_none(pte))
2247 continue;
2248
2249 page = pte_page(pte);
2250 if (!page)
2251 continue;
2252
2253 gather_stats(page, md, pte_dirty(*ptep));
2254 }
2255 }
2256 #else
check_huge_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct numa_maps * md)2257 static inline void check_huge_range(struct vm_area_struct *vma,
2258 unsigned long start, unsigned long end,
2259 struct numa_maps *md)
2260 {
2261 }
2262 #endif
2263
2264 /*
2265 * Display pages allocated per node and memory policy via /proc.
2266 */
show_numa_map(struct seq_file * m,void * v)2267 int show_numa_map(struct seq_file *m, void *v)
2268 {
2269 struct proc_maps_private *priv = m->private;
2270 struct vm_area_struct *vma = v;
2271 struct numa_maps *md;
2272 struct file *file = vma->vm_file;
2273 struct mm_struct *mm = vma->vm_mm;
2274 struct mempolicy *pol;
2275 int n;
2276 char buffer[50];
2277
2278 if (!mm)
2279 return 0;
2280
2281 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2282 if (!md)
2283 return 0;
2284
2285 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2286 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2287 mpol_cond_put(pol);
2288
2289 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2290
2291 if (file) {
2292 seq_printf(m, " file=");
2293 seq_path(m, &file->f_path, "\n\t= ");
2294 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2295 seq_printf(m, " heap");
2296 } else if (vma->vm_start <= mm->start_stack &&
2297 vma->vm_end >= mm->start_stack) {
2298 seq_printf(m, " stack");
2299 }
2300
2301 if (is_vm_hugetlb_page(vma)) {
2302 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2303 seq_printf(m, " huge");
2304 } else {
2305 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2306 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2307 }
2308
2309 if (!md->pages)
2310 goto out;
2311
2312 if (md->anon)
2313 seq_printf(m," anon=%lu",md->anon);
2314
2315 if (md->dirty)
2316 seq_printf(m," dirty=%lu",md->dirty);
2317
2318 if (md->pages != md->anon && md->pages != md->dirty)
2319 seq_printf(m, " mapped=%lu", md->pages);
2320
2321 if (md->mapcount_max > 1)
2322 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2323
2324 if (md->swapcache)
2325 seq_printf(m," swapcache=%lu", md->swapcache);
2326
2327 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2328 seq_printf(m," active=%lu", md->active);
2329
2330 if (md->writeback)
2331 seq_printf(m," writeback=%lu", md->writeback);
2332
2333 for_each_node_state(n, N_HIGH_MEMORY)
2334 if (md->node[n])
2335 seq_printf(m, " N%d=%lu", n, md->node[n]);
2336 out:
2337 seq_putc(m, '\n');
2338 kfree(md);
2339
2340 if (m->count < m->size)
2341 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2342 return 0;
2343 }
2344