• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlb.h>
34 #include <asm/mmu_context.h>
35 
36 #include "internal.h"
37 
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags)	(0)
40 #endif
41 
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len)		(addr)
44 #endif
45 
46 static void unmap_region(struct mm_struct *mm,
47 		struct vm_area_struct *vma, struct vm_area_struct *prev,
48 		unsigned long start, unsigned long end);
49 
50 /*
51  * WARNING: the debugging will use recursive algorithms so never enable this
52  * unless you know what you are doing.
53  */
54 #undef DEBUG_MM_RB
55 
56 /* description of effects of mapping type and prot in current implementation.
57  * this is due to the limited x86 page protection hardware.  The expected
58  * behavior is in parens:
59  *
60  * map_type	prot
61  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
62  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
63  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
64  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
65  *
66  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
67  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
68  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
69  *
70  */
71 pgprot_t protection_map[16] = {
72 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74 };
75 
vm_get_page_prot(unsigned long vm_flags)76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 {
78 	return __pgprot(pgprot_val(protection_map[vm_flags &
79 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 }
82 EXPORT_SYMBOL(vm_get_page_prot);
83 
84 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
85 int sysctl_overcommit_ratio = 50;	/* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
88 
89 /* amount of vm to protect from userspace access */
90 unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR;
91 
92 /*
93  * Check that a process has enough memory to allocate a new virtual
94  * mapping. 0 means there is enough memory for the allocation to
95  * succeed and -ENOMEM implies there is not.
96  *
97  * We currently support three overcommit policies, which are set via the
98  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
99  *
100  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101  * Additional code 2002 Jul 20 by Robert Love.
102  *
103  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104  *
105  * Note this is a helper function intended to be used by LSMs which
106  * wish to use this logic.
107  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)108 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
109 {
110 	unsigned long free, allowed;
111 
112 	vm_acct_memory(pages);
113 
114 	/*
115 	 * Sometimes we want to use more memory than we have
116 	 */
117 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
118 		return 0;
119 
120 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
121 		unsigned long n;
122 
123 		free = global_page_state(NR_FILE_PAGES);
124 		free += nr_swap_pages;
125 
126 		/*
127 		 * Any slabs which are created with the
128 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
129 		 * which are reclaimable, under pressure.  The dentry
130 		 * cache and most inode caches should fall into this
131 		 */
132 		free += global_page_state(NR_SLAB_RECLAIMABLE);
133 
134 		/*
135 		 * Leave the last 3% for root
136 		 */
137 		if (!cap_sys_admin)
138 			free -= free / 32;
139 
140 		if (free > pages)
141 			return 0;
142 
143 		/*
144 		 * nr_free_pages() is very expensive on large systems,
145 		 * only call if we're about to fail.
146 		 */
147 		n = nr_free_pages();
148 
149 		/*
150 		 * Leave reserved pages. The pages are not for anonymous pages.
151 		 */
152 		if (n <= totalreserve_pages)
153 			goto error;
154 		else
155 			n -= totalreserve_pages;
156 
157 		/*
158 		 * Leave the last 3% for root
159 		 */
160 		if (!cap_sys_admin)
161 			n -= n / 32;
162 		free += n;
163 
164 		if (free > pages)
165 			return 0;
166 
167 		goto error;
168 	}
169 
170 	allowed = (totalram_pages - hugetlb_total_pages())
171 	       	* sysctl_overcommit_ratio / 100;
172 	/*
173 	 * Leave the last 3% for root
174 	 */
175 	if (!cap_sys_admin)
176 		allowed -= allowed / 32;
177 	allowed += total_swap_pages;
178 
179 	/* Don't let a single process grow too big:
180 	   leave 3% of the size of this process for other processes */
181 	if (mm)
182 		allowed -= mm->total_vm / 32;
183 
184 	/*
185 	 * cast `allowed' as a signed long because vm_committed_space
186 	 * sometimes has a negative value
187 	 */
188 	if (atomic_long_read(&vm_committed_space) < (long)allowed)
189 		return 0;
190 error:
191 	vm_unacct_memory(pages);
192 
193 	return -ENOMEM;
194 }
195 
196 /*
197  * Requires inode->i_mapping->i_mmap_lock
198  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)199 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
200 		struct file *file, struct address_space *mapping)
201 {
202 	if (vma->vm_flags & VM_DENYWRITE)
203 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
204 	if (vma->vm_flags & VM_SHARED)
205 		mapping->i_mmap_writable--;
206 
207 	flush_dcache_mmap_lock(mapping);
208 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
209 		list_del_init(&vma->shared.vm_set.list);
210 	else
211 		vma_prio_tree_remove(vma, &mapping->i_mmap);
212 	flush_dcache_mmap_unlock(mapping);
213 }
214 
215 /*
216  * Unlink a file-based vm structure from its prio_tree, to hide
217  * vma from rmap and vmtruncate before freeing its page tables.
218  */
unlink_file_vma(struct vm_area_struct * vma)219 void unlink_file_vma(struct vm_area_struct *vma)
220 {
221 	struct file *file = vma->vm_file;
222 
223 	if (file) {
224 		struct address_space *mapping = file->f_mapping;
225 		spin_lock(&mapping->i_mmap_lock);
226 		__remove_shared_vm_struct(vma, file, mapping);
227 		spin_unlock(&mapping->i_mmap_lock);
228 	}
229 }
230 
231 /*
232  * Close a vm structure and free it, returning the next.
233  */
remove_vma(struct vm_area_struct * vma)234 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
235 {
236 	struct vm_area_struct *next = vma->vm_next;
237 
238 	might_sleep();
239 	if (vma->vm_ops && vma->vm_ops->close)
240 		vma->vm_ops->close(vma);
241 	if (vma->vm_file) {
242 		fput(vma->vm_file);
243 		if (vma->vm_flags & VM_EXECUTABLE)
244 			removed_exe_file_vma(vma->vm_mm);
245 	}
246 	mpol_put(vma_policy(vma));
247 	kmem_cache_free(vm_area_cachep, vma);
248 	return next;
249 }
250 
SYSCALL_DEFINE1(brk,unsigned long,brk)251 SYSCALL_DEFINE1(brk, unsigned long, brk)
252 {
253 	unsigned long rlim, retval;
254 	unsigned long newbrk, oldbrk;
255 	struct mm_struct *mm = current->mm;
256 	unsigned long min_brk;
257 
258 	down_write(&mm->mmap_sem);
259 
260 #ifdef CONFIG_COMPAT_BRK
261 	min_brk = mm->end_code;
262 #else
263 	min_brk = mm->start_brk;
264 #endif
265 	if (brk < min_brk)
266 		goto out;
267 
268 	/*
269 	 * Check against rlimit here. If this check is done later after the test
270 	 * of oldbrk with newbrk then it can escape the test and let the data
271 	 * segment grow beyond its set limit the in case where the limit is
272 	 * not page aligned -Ram Gupta
273 	 */
274 	rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
275 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276 			(mm->end_data - mm->start_data) > rlim)
277 		goto out;
278 
279 	newbrk = PAGE_ALIGN(brk);
280 	oldbrk = PAGE_ALIGN(mm->brk);
281 	if (oldbrk == newbrk)
282 		goto set_brk;
283 
284 	/* Always allow shrinking brk. */
285 	if (brk <= mm->brk) {
286 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287 			goto set_brk;
288 		goto out;
289 	}
290 
291 	/* Check against existing mmap mappings. */
292 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293 		goto out;
294 
295 	/* Ok, looks good - let it rip. */
296 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297 		goto out;
298 set_brk:
299 	mm->brk = brk;
300 out:
301 	retval = mm->brk;
302 	up_write(&mm->mmap_sem);
303 	return retval;
304 }
305 
306 #ifdef DEBUG_MM_RB
browse_rb(struct rb_root * root)307 static int browse_rb(struct rb_root *root)
308 {
309 	int i = 0, j;
310 	struct rb_node *nd, *pn = NULL;
311 	unsigned long prev = 0, pend = 0;
312 
313 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314 		struct vm_area_struct *vma;
315 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316 		if (vma->vm_start < prev)
317 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318 		if (vma->vm_start < pend)
319 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320 		if (vma->vm_start > vma->vm_end)
321 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322 		i++;
323 		pn = nd;
324 		prev = vma->vm_start;
325 		pend = vma->vm_end;
326 	}
327 	j = 0;
328 	for (nd = pn; nd; nd = rb_prev(nd)) {
329 		j++;
330 	}
331 	if (i != j)
332 		printk("backwards %d, forwards %d\n", j, i), i = 0;
333 	return i;
334 }
335 
validate_mm(struct mm_struct * mm)336 void validate_mm(struct mm_struct *mm)
337 {
338 	int bug = 0;
339 	int i = 0;
340 	struct vm_area_struct *tmp = mm->mmap;
341 	while (tmp) {
342 		tmp = tmp->vm_next;
343 		i++;
344 	}
345 	if (i != mm->map_count)
346 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347 	i = browse_rb(&mm->mm_rb);
348 	if (i != mm->map_count)
349 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350 	BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355 
356 static struct vm_area_struct *
find_vma_prepare(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
359 		struct rb_node ** rb_parent)
360 {
361 	struct vm_area_struct * vma;
362 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363 
364 	__rb_link = &mm->mm_rb.rb_node;
365 	rb_prev = __rb_parent = NULL;
366 	vma = NULL;
367 
368 	while (*__rb_link) {
369 		struct vm_area_struct *vma_tmp;
370 
371 		__rb_parent = *__rb_link;
372 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373 
374 		if (vma_tmp->vm_end > addr) {
375 			vma = vma_tmp;
376 			if (vma_tmp->vm_start <= addr)
377 				break;
378 			__rb_link = &__rb_parent->rb_left;
379 		} else {
380 			rb_prev = __rb_parent;
381 			__rb_link = &__rb_parent->rb_right;
382 		}
383 	}
384 
385 	*pprev = NULL;
386 	if (rb_prev)
387 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388 	*rb_link = __rb_link;
389 	*rb_parent = __rb_parent;
390 	return vma;
391 }
392 
393 static inline void
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node * rb_parent)394 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
395 		struct vm_area_struct *prev, struct rb_node *rb_parent)
396 {
397 	if (prev) {
398 		vma->vm_next = prev->vm_next;
399 		prev->vm_next = vma;
400 	} else {
401 		mm->mmap = vma;
402 		if (rb_parent)
403 			vma->vm_next = rb_entry(rb_parent,
404 					struct vm_area_struct, vm_rb);
405 		else
406 			vma->vm_next = NULL;
407 	}
408 }
409 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)410 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
411 		struct rb_node **rb_link, struct rb_node *rb_parent)
412 {
413 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
414 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
415 }
416 
__vma_link_file(struct vm_area_struct * vma)417 static void __vma_link_file(struct vm_area_struct *vma)
418 {
419 	struct file *file;
420 
421 	file = vma->vm_file;
422 	if (file) {
423 		struct address_space *mapping = file->f_mapping;
424 
425 		if (vma->vm_flags & VM_DENYWRITE)
426 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
427 		if (vma->vm_flags & VM_SHARED)
428 			mapping->i_mmap_writable++;
429 
430 		flush_dcache_mmap_lock(mapping);
431 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
432 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
433 		else
434 			vma_prio_tree_insert(vma, &mapping->i_mmap);
435 		flush_dcache_mmap_unlock(mapping);
436 	}
437 }
438 
439 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)440 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
441 	struct vm_area_struct *prev, struct rb_node **rb_link,
442 	struct rb_node *rb_parent)
443 {
444 	__vma_link_list(mm, vma, prev, rb_parent);
445 	__vma_link_rb(mm, vma, rb_link, rb_parent);
446 	__anon_vma_link(vma);
447 }
448 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)449 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
450 			struct vm_area_struct *prev, struct rb_node **rb_link,
451 			struct rb_node *rb_parent)
452 {
453 	struct address_space *mapping = NULL;
454 
455 	if (vma->vm_file)
456 		mapping = vma->vm_file->f_mapping;
457 
458 	if (mapping) {
459 		spin_lock(&mapping->i_mmap_lock);
460 		vma->vm_truncate_count = mapping->truncate_count;
461 	}
462 	anon_vma_lock(vma);
463 
464 	__vma_link(mm, vma, prev, rb_link, rb_parent);
465 	__vma_link_file(vma);
466 
467 	anon_vma_unlock(vma);
468 	if (mapping)
469 		spin_unlock(&mapping->i_mmap_lock);
470 
471 	mm->map_count++;
472 	validate_mm(mm);
473 }
474 
475 /*
476  * Helper for vma_adjust in the split_vma insert case:
477  * insert vm structure into list and rbtree and anon_vma,
478  * but it has already been inserted into prio_tree earlier.
479  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)480 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
481 {
482 	struct vm_area_struct *__vma, *prev;
483 	struct rb_node **rb_link, *rb_parent;
484 
485 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
486 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
487 	__vma_link(mm, vma, prev, rb_link, rb_parent);
488 	mm->map_count++;
489 }
490 
491 static inline void
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)492 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
493 		struct vm_area_struct *prev)
494 {
495 	prev->vm_next = vma->vm_next;
496 	rb_erase(&vma->vm_rb, &mm->mm_rb);
497 	if (mm->mmap_cache == vma)
498 		mm->mmap_cache = prev;
499 }
500 
501 /*
502  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
503  * is already present in an i_mmap tree without adjusting the tree.
504  * The following helper function should be used when such adjustments
505  * are necessary.  The "insert" vma (if any) is to be inserted
506  * before we drop the necessary locks.
507  */
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)508 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
509 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
510 {
511 	struct mm_struct *mm = vma->vm_mm;
512 	struct vm_area_struct *next = vma->vm_next;
513 	struct vm_area_struct *importer = NULL;
514 	struct address_space *mapping = NULL;
515 	struct prio_tree_root *root = NULL;
516 	struct file *file = vma->vm_file;
517 	struct anon_vma *anon_vma = NULL;
518 	long adjust_next = 0;
519 	int remove_next = 0;
520 
521 	if (next && !insert) {
522 		if (end >= next->vm_end) {
523 			/*
524 			 * vma expands, overlapping all the next, and
525 			 * perhaps the one after too (mprotect case 6).
526 			 */
527 again:			remove_next = 1 + (end > next->vm_end);
528 			end = next->vm_end;
529 			anon_vma = next->anon_vma;
530 			importer = vma;
531 		} else if (end > next->vm_start) {
532 			/*
533 			 * vma expands, overlapping part of the next:
534 			 * mprotect case 5 shifting the boundary up.
535 			 */
536 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
537 			anon_vma = next->anon_vma;
538 			importer = vma;
539 		} else if (end < vma->vm_end) {
540 			/*
541 			 * vma shrinks, and !insert tells it's not
542 			 * split_vma inserting another: so it must be
543 			 * mprotect case 4 shifting the boundary down.
544 			 */
545 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
546 			anon_vma = next->anon_vma;
547 			importer = next;
548 		}
549 	}
550 
551 	if (file) {
552 		mapping = file->f_mapping;
553 		if (!(vma->vm_flags & VM_NONLINEAR))
554 			root = &mapping->i_mmap;
555 		spin_lock(&mapping->i_mmap_lock);
556 		if (importer &&
557 		    vma->vm_truncate_count != next->vm_truncate_count) {
558 			/*
559 			 * unmap_mapping_range might be in progress:
560 			 * ensure that the expanding vma is rescanned.
561 			 */
562 			importer->vm_truncate_count = 0;
563 		}
564 		if (insert) {
565 			insert->vm_truncate_count = vma->vm_truncate_count;
566 			/*
567 			 * Put into prio_tree now, so instantiated pages
568 			 * are visible to arm/parisc __flush_dcache_page
569 			 * throughout; but we cannot insert into address
570 			 * space until vma start or end is updated.
571 			 */
572 			__vma_link_file(insert);
573 		}
574 	}
575 
576 	/*
577 	 * When changing only vma->vm_end, we don't really need
578 	 * anon_vma lock: but is that case worth optimizing out?
579 	 */
580 	if (vma->anon_vma)
581 		anon_vma = vma->anon_vma;
582 	if (anon_vma) {
583 		spin_lock(&anon_vma->lock);
584 		/*
585 		 * Easily overlooked: when mprotect shifts the boundary,
586 		 * make sure the expanding vma has anon_vma set if the
587 		 * shrinking vma had, to cover any anon pages imported.
588 		 */
589 		if (importer && !importer->anon_vma) {
590 			importer->anon_vma = anon_vma;
591 			__anon_vma_link(importer);
592 		}
593 	}
594 
595 	if (root) {
596 		flush_dcache_mmap_lock(mapping);
597 		vma_prio_tree_remove(vma, root);
598 		if (adjust_next)
599 			vma_prio_tree_remove(next, root);
600 	}
601 
602 	vma->vm_start = start;
603 	vma->vm_end = end;
604 	vma->vm_pgoff = pgoff;
605 	if (adjust_next) {
606 		next->vm_start += adjust_next << PAGE_SHIFT;
607 		next->vm_pgoff += adjust_next;
608 	}
609 
610 	if (root) {
611 		if (adjust_next)
612 			vma_prio_tree_insert(next, root);
613 		vma_prio_tree_insert(vma, root);
614 		flush_dcache_mmap_unlock(mapping);
615 	}
616 
617 	if (remove_next) {
618 		/*
619 		 * vma_merge has merged next into vma, and needs
620 		 * us to remove next before dropping the locks.
621 		 */
622 		__vma_unlink(mm, next, vma);
623 		if (file)
624 			__remove_shared_vm_struct(next, file, mapping);
625 		if (next->anon_vma)
626 			__anon_vma_merge(vma, next);
627 	} else if (insert) {
628 		/*
629 		 * split_vma has split insert from vma, and needs
630 		 * us to insert it before dropping the locks
631 		 * (it may either follow vma or precede it).
632 		 */
633 		__insert_vm_struct(mm, insert);
634 	}
635 
636 	if (anon_vma)
637 		spin_unlock(&anon_vma->lock);
638 	if (mapping)
639 		spin_unlock(&mapping->i_mmap_lock);
640 
641 	if (remove_next) {
642 		if (file) {
643 			fput(file);
644 			if (next->vm_flags & VM_EXECUTABLE)
645 				removed_exe_file_vma(mm);
646 		}
647 		mm->map_count--;
648 		mpol_put(vma_policy(next));
649 		kmem_cache_free(vm_area_cachep, next);
650 		/*
651 		 * In mprotect's case 6 (see comments on vma_merge),
652 		 * we must remove another next too. It would clutter
653 		 * up the code too much to do both in one go.
654 		 */
655 		if (remove_next == 2) {
656 			next = vma->vm_next;
657 			goto again;
658 		}
659 	}
660 
661 	validate_mm(mm);
662 }
663 
664 /* Flags that can be inherited from an existing mapping when merging */
665 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
666 
667 /*
668  * If the vma has a ->close operation then the driver probably needs to release
669  * per-vma resources, so we don't attempt to merge those.
670  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags)671 static inline int is_mergeable_vma(struct vm_area_struct *vma,
672 			struct file *file, unsigned long vm_flags)
673 {
674 	if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
675 		return 0;
676 	if (vma->vm_file != file)
677 		return 0;
678 	if (vma->vm_ops && vma->vm_ops->close)
679 		return 0;
680 	return 1;
681 }
682 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2)683 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
684 					struct anon_vma *anon_vma2)
685 {
686 	return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
687 }
688 
689 /*
690  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
691  * in front of (at a lower virtual address and file offset than) the vma.
692  *
693  * We cannot merge two vmas if they have differently assigned (non-NULL)
694  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
695  *
696  * We don't check here for the merged mmap wrapping around the end of pagecache
697  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
698  * wrap, nor mmaps which cover the final page at index -1UL.
699  */
700 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)701 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
702 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
703 {
704 	if (is_mergeable_vma(vma, file, vm_flags) &&
705 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
706 		if (vma->vm_pgoff == vm_pgoff)
707 			return 1;
708 	}
709 	return 0;
710 }
711 
712 /*
713  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
714  * beyond (at a higher virtual address and file offset than) the vma.
715  *
716  * We cannot merge two vmas if they have differently assigned (non-NULL)
717  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
718  */
719 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)720 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
721 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
722 {
723 	if (is_mergeable_vma(vma, file, vm_flags) &&
724 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
725 		pgoff_t vm_pglen;
726 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
727 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
728 			return 1;
729 	}
730 	return 0;
731 }
732 
733 /*
734  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
735  * whether that can be merged with its predecessor or its successor.
736  * Or both (it neatly fills a hole).
737  *
738  * In most cases - when called for mmap, brk or mremap - [addr,end) is
739  * certain not to be mapped by the time vma_merge is called; but when
740  * called for mprotect, it is certain to be already mapped (either at
741  * an offset within prev, or at the start of next), and the flags of
742  * this area are about to be changed to vm_flags - and the no-change
743  * case has already been eliminated.
744  *
745  * The following mprotect cases have to be considered, where AAAA is
746  * the area passed down from mprotect_fixup, never extending beyond one
747  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
748  *
749  *     AAAA             AAAA                AAAA          AAAA
750  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
751  *    cannot merge    might become    might become    might become
752  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
753  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
754  *    mremap move:                                    PPPPNNNNNNNN 8
755  *        AAAA
756  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
757  *    might become    case 1 below    case 2 below    case 3 below
758  *
759  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
760  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
761  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy)762 struct vm_area_struct *vma_merge(struct mm_struct *mm,
763 			struct vm_area_struct *prev, unsigned long addr,
764 			unsigned long end, unsigned long vm_flags,
765 		     	struct anon_vma *anon_vma, struct file *file,
766 			pgoff_t pgoff, struct mempolicy *policy)
767 {
768 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
769 	struct vm_area_struct *area, *next;
770 
771 	/*
772 	 * We later require that vma->vm_flags == vm_flags,
773 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
774 	 */
775 	if (vm_flags & VM_SPECIAL)
776 		return NULL;
777 
778 	if (prev)
779 		next = prev->vm_next;
780 	else
781 		next = mm->mmap;
782 	area = next;
783 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
784 		next = next->vm_next;
785 
786 	/*
787 	 * Can it merge with the predecessor?
788 	 */
789 	if (prev && prev->vm_end == addr &&
790   			mpol_equal(vma_policy(prev), policy) &&
791 			can_vma_merge_after(prev, vm_flags,
792 						anon_vma, file, pgoff)) {
793 		/*
794 		 * OK, it can.  Can we now merge in the successor as well?
795 		 */
796 		if (next && end == next->vm_start &&
797 				mpol_equal(policy, vma_policy(next)) &&
798 				can_vma_merge_before(next, vm_flags,
799 					anon_vma, file, pgoff+pglen) &&
800 				is_mergeable_anon_vma(prev->anon_vma,
801 						      next->anon_vma)) {
802 							/* cases 1, 6 */
803 			vma_adjust(prev, prev->vm_start,
804 				next->vm_end, prev->vm_pgoff, NULL);
805 		} else					/* cases 2, 5, 7 */
806 			vma_adjust(prev, prev->vm_start,
807 				end, prev->vm_pgoff, NULL);
808 		return prev;
809 	}
810 
811 	/*
812 	 * Can this new request be merged in front of next?
813 	 */
814 	if (next && end == next->vm_start &&
815  			mpol_equal(policy, vma_policy(next)) &&
816 			can_vma_merge_before(next, vm_flags,
817 					anon_vma, file, pgoff+pglen)) {
818 		if (prev && addr < prev->vm_end)	/* case 4 */
819 			vma_adjust(prev, prev->vm_start,
820 				addr, prev->vm_pgoff, NULL);
821 		else					/* cases 3, 8 */
822 			vma_adjust(area, addr, next->vm_end,
823 				next->vm_pgoff - pglen, NULL);
824 		return area;
825 	}
826 
827 	return NULL;
828 }
829 
830 /*
831  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
832  * neighbouring vmas for a suitable anon_vma, before it goes off
833  * to allocate a new anon_vma.  It checks because a repetitive
834  * sequence of mprotects and faults may otherwise lead to distinct
835  * anon_vmas being allocated, preventing vma merge in subsequent
836  * mprotect.
837  */
find_mergeable_anon_vma(struct vm_area_struct * vma)838 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
839 {
840 	struct vm_area_struct *near;
841 	unsigned long vm_flags;
842 
843 	near = vma->vm_next;
844 	if (!near)
845 		goto try_prev;
846 
847 	/*
848 	 * Since only mprotect tries to remerge vmas, match flags
849 	 * which might be mprotected into each other later on.
850 	 * Neither mlock nor madvise tries to remerge at present,
851 	 * so leave their flags as obstructing a merge.
852 	 */
853 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
854 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
855 
856 	if (near->anon_vma && vma->vm_end == near->vm_start &&
857  			mpol_equal(vma_policy(vma), vma_policy(near)) &&
858 			can_vma_merge_before(near, vm_flags,
859 				NULL, vma->vm_file, vma->vm_pgoff +
860 				((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
861 		return near->anon_vma;
862 try_prev:
863 	/*
864 	 * It is potentially slow to have to call find_vma_prev here.
865 	 * But it's only on the first write fault on the vma, not
866 	 * every time, and we could devise a way to avoid it later
867 	 * (e.g. stash info in next's anon_vma_node when assigning
868 	 * an anon_vma, or when trying vma_merge).  Another time.
869 	 */
870 	BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
871 	if (!near)
872 		goto none;
873 
874 	vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
875 	vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
876 
877 	if (near->anon_vma && near->vm_end == vma->vm_start &&
878   			mpol_equal(vma_policy(near), vma_policy(vma)) &&
879 			can_vma_merge_after(near, vm_flags,
880 				NULL, vma->vm_file, vma->vm_pgoff))
881 		return near->anon_vma;
882 none:
883 	/*
884 	 * There's no absolute need to look only at touching neighbours:
885 	 * we could search further afield for "compatible" anon_vmas.
886 	 * But it would probably just be a waste of time searching,
887 	 * or lead to too many vmas hanging off the same anon_vma.
888 	 * We're trying to allow mprotect remerging later on,
889 	 * not trying to minimize memory used for anon_vmas.
890 	 */
891 	return NULL;
892 }
893 
894 #ifdef CONFIG_PROC_FS
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)895 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
896 						struct file *file, long pages)
897 {
898 	const unsigned long stack_flags
899 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
900 
901 	if (file) {
902 		mm->shared_vm += pages;
903 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
904 			mm->exec_vm += pages;
905 	} else if (flags & stack_flags)
906 		mm->stack_vm += pages;
907 	if (flags & (VM_RESERVED|VM_IO))
908 		mm->reserved_vm += pages;
909 }
910 #endif /* CONFIG_PROC_FS */
911 
912 #ifdef CONFIG_QEMU_TRACE
913 extern void qemu_trace_mmap(struct vm_area_struct * vma);
914 extern void qemu_trace_munmap(unsigned long start, unsigned long end);
915 #endif
916 
917 /*
918  * The caller must hold down_write(current->mm->mmap_sem).
919  */
920 
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff)921 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
922 			unsigned long len, unsigned long prot,
923 			unsigned long flags, unsigned long pgoff)
924 {
925 	struct mm_struct * mm = current->mm;
926 	struct inode *inode;
927 	unsigned int vm_flags;
928 	int error;
929 	unsigned long reqprot = prot;
930 
931 	/*
932 	 * Does the application expect PROT_READ to imply PROT_EXEC?
933 	 *
934 	 * (the exception is when the underlying filesystem is noexec
935 	 *  mounted, in which case we dont add PROT_EXEC.)
936 	 */
937 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
938 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
939 			prot |= PROT_EXEC;
940 
941 	if (!len)
942 		return -EINVAL;
943 
944 	if (!(flags & MAP_FIXED))
945 		addr = round_hint_to_min(addr);
946 
947 	error = arch_mmap_check(addr, len, flags);
948 	if (error)
949 		return error;
950 
951 	/* Careful about overflows.. */
952 	len = PAGE_ALIGN(len);
953 	if (!len || len > TASK_SIZE)
954 		return -ENOMEM;
955 
956 	/* offset overflow? */
957 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
958                return -EOVERFLOW;
959 
960 	/* Too many mappings? */
961 	if (mm->map_count > sysctl_max_map_count)
962 		return -ENOMEM;
963 
964 	/* Obtain the address to map to. we verify (or select) it and ensure
965 	 * that it represents a valid section of the address space.
966 	 */
967 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
968 	if (addr & ~PAGE_MASK)
969 		return addr;
970 
971 	/* Do simple checking here so the lower-level routines won't have
972 	 * to. we assume access permissions have been handled by the open
973 	 * of the memory object, so we don't do any here.
974 	 */
975 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
976 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
977 
978 	if (flags & MAP_LOCKED) {
979 		if (!can_do_mlock())
980 			return -EPERM;
981 		vm_flags |= VM_LOCKED;
982 	}
983 
984 	/* mlock MCL_FUTURE? */
985 	if (vm_flags & VM_LOCKED) {
986 		unsigned long locked, lock_limit;
987 		locked = len >> PAGE_SHIFT;
988 		locked += mm->locked_vm;
989 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
990 		lock_limit >>= PAGE_SHIFT;
991 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
992 			return -EAGAIN;
993 	}
994 
995 	inode = file ? file->f_path.dentry->d_inode : NULL;
996 
997 	if (file) {
998 		switch (flags & MAP_TYPE) {
999 		case MAP_SHARED:
1000 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1001 				return -EACCES;
1002 
1003 			/*
1004 			 * Make sure we don't allow writing to an append-only
1005 			 * file..
1006 			 */
1007 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1008 				return -EACCES;
1009 
1010 			/*
1011 			 * Make sure there are no mandatory locks on the file.
1012 			 */
1013 			if (locks_verify_locked(inode))
1014 				return -EAGAIN;
1015 
1016 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1017 			if (!(file->f_mode & FMODE_WRITE))
1018 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1019 
1020 			/* fall through */
1021 		case MAP_PRIVATE:
1022 			if (!(file->f_mode & FMODE_READ))
1023 				return -EACCES;
1024 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1025 				if (vm_flags & VM_EXEC)
1026 					return -EPERM;
1027 				vm_flags &= ~VM_MAYEXEC;
1028 			}
1029 
1030 			if (!file->f_op || !file->f_op->mmap)
1031 				return -ENODEV;
1032 			break;
1033 
1034 		default:
1035 			return -EINVAL;
1036 		}
1037 	} else {
1038 		switch (flags & MAP_TYPE) {
1039 		case MAP_SHARED:
1040 			/*
1041 			 * Ignore pgoff.
1042 			 */
1043 			pgoff = 0;
1044 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1045 			break;
1046 		case MAP_PRIVATE:
1047 			/*
1048 			 * Set pgoff according to addr for anon_vma.
1049 			 */
1050 			pgoff = addr >> PAGE_SHIFT;
1051 			break;
1052 		default:
1053 			return -EINVAL;
1054 		}
1055 	}
1056 
1057 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1058 	if (error)
1059 		return error;
1060 
1061 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1062 }
1063 EXPORT_SYMBOL(do_mmap_pgoff);
1064 
1065 /*
1066  * Some shared mappigns will want the pages marked read-only
1067  * to track write events. If so, we'll downgrade vm_page_prot
1068  * to the private version (using protection_map[] without the
1069  * VM_SHARED bit).
1070  */
vma_wants_writenotify(struct vm_area_struct * vma)1071 int vma_wants_writenotify(struct vm_area_struct *vma)
1072 {
1073 	unsigned int vm_flags = vma->vm_flags;
1074 
1075 	/* If it was private or non-writable, the write bit is already clear */
1076 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1077 		return 0;
1078 
1079 	/* The backer wishes to know when pages are first written to? */
1080 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1081 		return 1;
1082 
1083 	/* The open routine did something to the protections already? */
1084 	if (pgprot_val(vma->vm_page_prot) !=
1085 	    pgprot_val(vm_get_page_prot(vm_flags)))
1086 		return 0;
1087 
1088 	/* Specialty mapping? */
1089 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1090 		return 0;
1091 
1092 	/* Can the mapping track the dirty pages? */
1093 	return vma->vm_file && vma->vm_file->f_mapping &&
1094 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1095 }
1096 
1097 /*
1098  * We account for memory if it's a private writeable mapping,
1099  * not hugepages and VM_NORESERVE wasn't set.
1100  */
accountable_mapping(struct file * file,unsigned int vm_flags)1101 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1102 {
1103 	/*
1104 	 * hugetlb has its own accounting separate from the core VM
1105 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1106 	 */
1107 	if (file && is_file_hugepages(file))
1108 		return 0;
1109 
1110 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1111 }
1112 
mmap_region(struct file * file,unsigned long addr,unsigned long len,unsigned long flags,unsigned int vm_flags,unsigned long pgoff)1113 unsigned long mmap_region(struct file *file, unsigned long addr,
1114 			  unsigned long len, unsigned long flags,
1115 			  unsigned int vm_flags, unsigned long pgoff)
1116 {
1117 	struct mm_struct *mm = current->mm;
1118 	struct vm_area_struct *vma, *prev;
1119 	int correct_wcount = 0;
1120 	int error;
1121 	struct rb_node **rb_link, *rb_parent;
1122 	unsigned long charged = 0;
1123 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1124 
1125 	/* Clear old maps */
1126 	error = -ENOMEM;
1127 munmap_back:
1128 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1129 	if (vma && vma->vm_start < addr + len) {
1130 		if (do_munmap(mm, addr, len))
1131 			return -ENOMEM;
1132 		goto munmap_back;
1133 	}
1134 
1135 	/* Check against address space limit. */
1136 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1137 		return -ENOMEM;
1138 
1139 	/*
1140 	 * Set 'VM_NORESERVE' if we should not account for the
1141 	 * memory use of this mapping.
1142 	 */
1143 	if ((flags & MAP_NORESERVE)) {
1144 		/* We honor MAP_NORESERVE if allowed to overcommit */
1145 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1146 			vm_flags |= VM_NORESERVE;
1147 
1148 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1149 		if (file && is_file_hugepages(file))
1150 			vm_flags |= VM_NORESERVE;
1151 	}
1152 
1153 	/*
1154 	 * Private writable mapping: check memory availability
1155 	 */
1156 	if (accountable_mapping(file, vm_flags)) {
1157 		charged = len >> PAGE_SHIFT;
1158 		if (security_vm_enough_memory(charged))
1159 			return -ENOMEM;
1160 		vm_flags |= VM_ACCOUNT;
1161 	}
1162 
1163 	/*
1164 	 * Can we just expand an old mapping?
1165 	 */
1166 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1167 	if (vma)
1168 		goto out;
1169 
1170 	/*
1171 	 * Determine the object being mapped and call the appropriate
1172 	 * specific mapper. the address has already been validated, but
1173 	 * not unmapped, but the maps are removed from the list.
1174 	 */
1175 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1176 	if (!vma) {
1177 		error = -ENOMEM;
1178 		goto unacct_error;
1179 	}
1180 
1181 	vma->vm_mm = mm;
1182 	vma->vm_start = addr;
1183 	vma->vm_end = addr + len;
1184 	vma->vm_flags = vm_flags;
1185 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1186 	vma->vm_pgoff = pgoff;
1187 
1188 	if (file) {
1189 		error = -EINVAL;
1190 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1191 			goto free_vma;
1192 		if (vm_flags & VM_DENYWRITE) {
1193 			error = deny_write_access(file);
1194 			if (error)
1195 				goto free_vma;
1196 			correct_wcount = 1;
1197 		}
1198 		vma->vm_file = file;
1199 		get_file(file);
1200 		error = file->f_op->mmap(file, vma);
1201 		if (error)
1202 			goto unmap_and_free_vma;
1203 		if (vm_flags & VM_EXECUTABLE)
1204 			added_exe_file_vma(mm);
1205 	} else if (vm_flags & VM_SHARED) {
1206 		error = shmem_zero_setup(vma);
1207 		if (error)
1208 			goto free_vma;
1209 	}
1210 
1211 	/* Can addr have changed??
1212 	 *
1213 	 * Answer: Yes, several device drivers can do it in their
1214 	 *         f_op->mmap method. -DaveM
1215 	 */
1216 	addr = vma->vm_start;
1217 	pgoff = vma->vm_pgoff;
1218 	vm_flags = vma->vm_flags;
1219 
1220 #ifdef CONFIG_QEMU_TRACE
1221         qemu_trace_mmap(vma);
1222 #endif
1223 
1224 	if (vma_wants_writenotify(vma))
1225 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1226 
1227 	vma_link(mm, vma, prev, rb_link, rb_parent);
1228 	file = vma->vm_file;
1229 
1230 	/* Once vma denies write, undo our temporary denial count */
1231 	if (correct_wcount)
1232 		atomic_inc(&inode->i_writecount);
1233 out:
1234 	mm->total_vm += len >> PAGE_SHIFT;
1235 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1236 	if (vm_flags & VM_LOCKED) {
1237 		/*
1238 		 * makes pages present; downgrades, drops, reacquires mmap_sem
1239 		 */
1240 		long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1241 		if (nr_pages < 0)
1242 			return nr_pages;	/* vma gone! */
1243 		mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1244 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1245 		make_pages_present(addr, addr + len);
1246 	return addr;
1247 
1248 unmap_and_free_vma:
1249 	if (correct_wcount)
1250 		atomic_inc(&inode->i_writecount);
1251 	vma->vm_file = NULL;
1252 	fput(file);
1253 
1254 	/* Undo any partial mapping done by a device driver. */
1255 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1256 	charged = 0;
1257 free_vma:
1258 	kmem_cache_free(vm_area_cachep, vma);
1259 unacct_error:
1260 	if (charged)
1261 		vm_unacct_memory(charged);
1262 	return error;
1263 }
1264 
1265 /* Get an address range which is currently unmapped.
1266  * For shmat() with addr=0.
1267  *
1268  * Ugly calling convention alert:
1269  * Return value with the low bits set means error value,
1270  * ie
1271  *	if (ret & ~PAGE_MASK)
1272  *		error = ret;
1273  *
1274  * This function "knows" that -ENOMEM has the bits set.
1275  */
1276 #ifndef HAVE_ARCH_UNMAPPED_AREA
1277 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1278 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1279 		unsigned long len, unsigned long pgoff, unsigned long flags)
1280 {
1281 	struct mm_struct *mm = current->mm;
1282 	struct vm_area_struct *vma;
1283 	unsigned long start_addr;
1284 
1285 	if (len > TASK_SIZE)
1286 		return -ENOMEM;
1287 
1288 	if (flags & MAP_FIXED)
1289 		return addr;
1290 
1291 	if (addr) {
1292 		addr = PAGE_ALIGN(addr);
1293 		vma = find_vma(mm, addr);
1294 		if (TASK_SIZE - len >= addr &&
1295 		    (!vma || addr + len <= vma->vm_start))
1296 			return addr;
1297 	}
1298 	if (len > mm->cached_hole_size) {
1299 	        start_addr = addr = mm->free_area_cache;
1300 	} else {
1301 	        start_addr = addr = TASK_UNMAPPED_BASE;
1302 	        mm->cached_hole_size = 0;
1303 	}
1304 
1305 full_search:
1306 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1307 		/* At this point:  (!vma || addr < vma->vm_end). */
1308 		if (TASK_SIZE - len < addr) {
1309 			/*
1310 			 * Start a new search - just in case we missed
1311 			 * some holes.
1312 			 */
1313 			if (start_addr != TASK_UNMAPPED_BASE) {
1314 				addr = TASK_UNMAPPED_BASE;
1315 			        start_addr = addr;
1316 				mm->cached_hole_size = 0;
1317 				goto full_search;
1318 			}
1319 			return -ENOMEM;
1320 		}
1321 		if (!vma || addr + len <= vma->vm_start) {
1322 			/*
1323 			 * Remember the place where we stopped the search:
1324 			 */
1325 			mm->free_area_cache = addr + len;
1326 			return addr;
1327 		}
1328 		if (addr + mm->cached_hole_size < vma->vm_start)
1329 		        mm->cached_hole_size = vma->vm_start - addr;
1330 		addr = vma->vm_end;
1331 	}
1332 }
1333 #endif
1334 
arch_unmap_area(struct mm_struct * mm,unsigned long addr)1335 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1336 {
1337 	/*
1338 	 * Is this a new hole at the lowest possible address?
1339 	 */
1340 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1341 		mm->free_area_cache = addr;
1342 		mm->cached_hole_size = ~0UL;
1343 	}
1344 }
1345 
1346 /*
1347  * This mmap-allocator allocates new areas top-down from below the
1348  * stack's low limit (the base):
1349  */
1350 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1351 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)1352 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1353 			  const unsigned long len, const unsigned long pgoff,
1354 			  const unsigned long flags)
1355 {
1356 	struct vm_area_struct *vma;
1357 	struct mm_struct *mm = current->mm;
1358 	unsigned long addr = addr0;
1359 
1360 	/* requested length too big for entire address space */
1361 	if (len > TASK_SIZE)
1362 		return -ENOMEM;
1363 
1364 	if (flags & MAP_FIXED)
1365 		return addr;
1366 
1367 	/* requesting a specific address */
1368 	if (addr) {
1369 		addr = PAGE_ALIGN(addr);
1370 		vma = find_vma(mm, addr);
1371 		if (TASK_SIZE - len >= addr &&
1372 				(!vma || addr + len <= vma->vm_start))
1373 			return addr;
1374 	}
1375 
1376 	/* check if free_area_cache is useful for us */
1377 	if (len <= mm->cached_hole_size) {
1378  	        mm->cached_hole_size = 0;
1379  		mm->free_area_cache = mm->mmap_base;
1380  	}
1381 
1382 	/* either no address requested or can't fit in requested address hole */
1383 	addr = mm->free_area_cache;
1384 
1385 	/* make sure it can fit in the remaining address space */
1386 	if (addr > len) {
1387 		vma = find_vma(mm, addr-len);
1388 		if (!vma || addr <= vma->vm_start)
1389 			/* remember the address as a hint for next time */
1390 			return (mm->free_area_cache = addr-len);
1391 	}
1392 
1393 	if (mm->mmap_base < len)
1394 		goto bottomup;
1395 
1396 	addr = mm->mmap_base-len;
1397 
1398 	do {
1399 		/*
1400 		 * Lookup failure means no vma is above this address,
1401 		 * else if new region fits below vma->vm_start,
1402 		 * return with success:
1403 		 */
1404 		vma = find_vma(mm, addr);
1405 		if (!vma || addr+len <= vma->vm_start)
1406 			/* remember the address as a hint for next time */
1407 			return (mm->free_area_cache = addr);
1408 
1409  		/* remember the largest hole we saw so far */
1410  		if (addr + mm->cached_hole_size < vma->vm_start)
1411  		        mm->cached_hole_size = vma->vm_start - addr;
1412 
1413 		/* try just below the current vma->vm_start */
1414 		addr = vma->vm_start-len;
1415 	} while (len < vma->vm_start);
1416 
1417 bottomup:
1418 	/*
1419 	 * A failed mmap() very likely causes application failure,
1420 	 * so fall back to the bottom-up function here. This scenario
1421 	 * can happen with large stack limits and large mmap()
1422 	 * allocations.
1423 	 */
1424 	mm->cached_hole_size = ~0UL;
1425   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1426 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1427 	/*
1428 	 * Restore the topdown base:
1429 	 */
1430 	mm->free_area_cache = mm->mmap_base;
1431 	mm->cached_hole_size = ~0UL;
1432 
1433 	return addr;
1434 }
1435 #endif
1436 
arch_unmap_area_topdown(struct mm_struct * mm,unsigned long addr)1437 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1438 {
1439 	/*
1440 	 * Is this a new hole at the highest possible address?
1441 	 */
1442 	if (addr > mm->free_area_cache)
1443 		mm->free_area_cache = addr;
1444 
1445 	/* dont allow allocations above current base */
1446 	if (mm->free_area_cache > mm->mmap_base)
1447 		mm->free_area_cache = mm->mmap_base;
1448 }
1449 
1450 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1451 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1452 		unsigned long pgoff, unsigned long flags)
1453 {
1454 	unsigned long (*get_area)(struct file *, unsigned long,
1455 				  unsigned long, unsigned long, unsigned long);
1456 
1457 	get_area = current->mm->get_unmapped_area;
1458 	if (file && file->f_op && file->f_op->get_unmapped_area)
1459 		get_area = file->f_op->get_unmapped_area;
1460 	addr = get_area(file, addr, len, pgoff, flags);
1461 	if (IS_ERR_VALUE(addr))
1462 		return addr;
1463 
1464 	if (addr > TASK_SIZE - len)
1465 		return -ENOMEM;
1466 	if (addr & ~PAGE_MASK)
1467 		return -EINVAL;
1468 
1469 	return arch_rebalance_pgtables(addr, len);
1470 }
1471 
1472 EXPORT_SYMBOL(get_unmapped_area);
1473 
1474 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)1475 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1476 {
1477 	struct vm_area_struct *vma = NULL;
1478 
1479 	if (mm) {
1480 		/* Check the cache first. */
1481 		/* (Cache hit rate is typically around 35%.) */
1482 		vma = mm->mmap_cache;
1483 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1484 			struct rb_node * rb_node;
1485 
1486 			rb_node = mm->mm_rb.rb_node;
1487 			vma = NULL;
1488 
1489 			while (rb_node) {
1490 				struct vm_area_struct * vma_tmp;
1491 
1492 				vma_tmp = rb_entry(rb_node,
1493 						struct vm_area_struct, vm_rb);
1494 
1495 				if (vma_tmp->vm_end > addr) {
1496 					vma = vma_tmp;
1497 					if (vma_tmp->vm_start <= addr)
1498 						break;
1499 					rb_node = rb_node->rb_left;
1500 				} else
1501 					rb_node = rb_node->rb_right;
1502 			}
1503 			if (vma)
1504 				mm->mmap_cache = vma;
1505 		}
1506 	}
1507 	return vma;
1508 }
1509 
1510 EXPORT_SYMBOL(find_vma);
1511 
1512 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1513 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)1514 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1515 			struct vm_area_struct **pprev)
1516 {
1517 	struct vm_area_struct *vma = NULL, *prev = NULL;
1518 	struct rb_node *rb_node;
1519 	if (!mm)
1520 		goto out;
1521 
1522 	/* Guard against addr being lower than the first VMA */
1523 	vma = mm->mmap;
1524 
1525 	/* Go through the RB tree quickly. */
1526 	rb_node = mm->mm_rb.rb_node;
1527 
1528 	while (rb_node) {
1529 		struct vm_area_struct *vma_tmp;
1530 		vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1531 
1532 		if (addr < vma_tmp->vm_end) {
1533 			rb_node = rb_node->rb_left;
1534 		} else {
1535 			prev = vma_tmp;
1536 			if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1537 				break;
1538 			rb_node = rb_node->rb_right;
1539 		}
1540 	}
1541 
1542 out:
1543 	*pprev = prev;
1544 	return prev ? prev->vm_next : vma;
1545 }
1546 
1547 /*
1548  * Verify that the stack growth is acceptable and
1549  * update accounting. This is shared with both the
1550  * grow-up and grow-down cases.
1551  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)1552 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1553 {
1554 	struct mm_struct *mm = vma->vm_mm;
1555 	struct rlimit *rlim = current->signal->rlim;
1556 	unsigned long new_start;
1557 
1558 	/* address space limit tests */
1559 	if (!may_expand_vm(mm, grow))
1560 		return -ENOMEM;
1561 
1562 	/* Stack limit test */
1563 	if (size > rlim[RLIMIT_STACK].rlim_cur)
1564 		return -ENOMEM;
1565 
1566 	/* mlock limit tests */
1567 	if (vma->vm_flags & VM_LOCKED) {
1568 		unsigned long locked;
1569 		unsigned long limit;
1570 		locked = mm->locked_vm + grow;
1571 		limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1572 		if (locked > limit && !capable(CAP_IPC_LOCK))
1573 			return -ENOMEM;
1574 	}
1575 
1576 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1577 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1578 			vma->vm_end - size;
1579 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1580 		return -EFAULT;
1581 
1582 	/*
1583 	 * Overcommit..  This must be the final test, as it will
1584 	 * update security statistics.
1585 	 */
1586 	if (security_vm_enough_memory(grow))
1587 		return -ENOMEM;
1588 
1589 	/* Ok, everything looks good - let it rip */
1590 	mm->total_vm += grow;
1591 	if (vma->vm_flags & VM_LOCKED)
1592 		mm->locked_vm += grow;
1593 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1594 	return 0;
1595 }
1596 
1597 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1598 /*
1599  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1600  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1601  */
1602 #ifndef CONFIG_IA64
1603 static
1604 #endif
expand_upwards(struct vm_area_struct * vma,unsigned long address)1605 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1606 {
1607 	int error;
1608 
1609 	if (!(vma->vm_flags & VM_GROWSUP))
1610 		return -EFAULT;
1611 
1612 	/*
1613 	 * We must make sure the anon_vma is allocated
1614 	 * so that the anon_vma locking is not a noop.
1615 	 */
1616 	if (unlikely(anon_vma_prepare(vma)))
1617 		return -ENOMEM;
1618 	anon_vma_lock(vma);
1619 
1620 	/*
1621 	 * vma->vm_start/vm_end cannot change under us because the caller
1622 	 * is required to hold the mmap_sem in read mode.  We need the
1623 	 * anon_vma lock to serialize against concurrent expand_stacks.
1624 	 * Also guard against wrapping around to address 0.
1625 	 */
1626 	if (address < PAGE_ALIGN(address+4))
1627 		address = PAGE_ALIGN(address+4);
1628 	else {
1629 		anon_vma_unlock(vma);
1630 		return -ENOMEM;
1631 	}
1632 	error = 0;
1633 
1634 	/* Somebody else might have raced and expanded it already */
1635 	if (address > vma->vm_end) {
1636 		unsigned long size, grow;
1637 
1638 		size = address - vma->vm_start;
1639 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1640 
1641 		error = acct_stack_growth(vma, size, grow);
1642 		if (!error)
1643 			vma->vm_end = address;
1644 	}
1645 	anon_vma_unlock(vma);
1646 	return error;
1647 }
1648 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1649 
1650 /*
1651  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1652  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)1653 static int expand_downwards(struct vm_area_struct *vma,
1654 				   unsigned long address)
1655 {
1656 	int error;
1657 
1658 	/*
1659 	 * We must make sure the anon_vma is allocated
1660 	 * so that the anon_vma locking is not a noop.
1661 	 */
1662 	if (unlikely(anon_vma_prepare(vma)))
1663 		return -ENOMEM;
1664 
1665 	address &= PAGE_MASK;
1666 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1667 	if (error)
1668 		return error;
1669 
1670 	anon_vma_lock(vma);
1671 
1672 	/*
1673 	 * vma->vm_start/vm_end cannot change under us because the caller
1674 	 * is required to hold the mmap_sem in read mode.  We need the
1675 	 * anon_vma lock to serialize against concurrent expand_stacks.
1676 	 */
1677 
1678 	/* Somebody else might have raced and expanded it already */
1679 	if (address < vma->vm_start) {
1680 		unsigned long size, grow;
1681 
1682 		size = vma->vm_end - address;
1683 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1684 
1685 		error = acct_stack_growth(vma, size, grow);
1686 		if (!error) {
1687 			vma->vm_start = address;
1688 			vma->vm_pgoff -= grow;
1689 		}
1690 	}
1691 	anon_vma_unlock(vma);
1692 	return error;
1693 }
1694 
expand_stack_downwards(struct vm_area_struct * vma,unsigned long address)1695 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1696 {
1697 	return expand_downwards(vma, address);
1698 }
1699 
1700 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)1701 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1702 {
1703 	return expand_upwards(vma, address);
1704 }
1705 
1706 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)1707 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1708 {
1709 	struct vm_area_struct *vma, *prev;
1710 
1711 	addr &= PAGE_MASK;
1712 	vma = find_vma_prev(mm, addr, &prev);
1713 	if (vma && (vma->vm_start <= addr))
1714 		return vma;
1715 	if (!prev || expand_stack(prev, addr))
1716 		return NULL;
1717 	if (prev->vm_flags & VM_LOCKED) {
1718 		if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1719 			return NULL;	/* vma gone! */
1720 	}
1721 	return prev;
1722 }
1723 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)1724 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1725 {
1726 	return expand_downwards(vma, address);
1727 }
1728 
1729 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)1730 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1731 {
1732 	struct vm_area_struct * vma;
1733 	unsigned long start;
1734 
1735 	addr &= PAGE_MASK;
1736 	vma = find_vma(mm,addr);
1737 	if (!vma)
1738 		return NULL;
1739 	if (vma->vm_start <= addr)
1740 		return vma;
1741 	if (!(vma->vm_flags & VM_GROWSDOWN))
1742 		return NULL;
1743 	start = vma->vm_start;
1744 	if (expand_stack(vma, addr))
1745 		return NULL;
1746 	if (vma->vm_flags & VM_LOCKED) {
1747 		if (mlock_vma_pages_range(vma, addr, start) < 0)
1748 			return NULL;	/* vma gone! */
1749 	}
1750 	return vma;
1751 }
1752 #endif
1753 
1754 /*
1755  * Ok - we have the memory areas we should free on the vma list,
1756  * so release them, and do the vma updates.
1757  *
1758  * Called with the mm semaphore held.
1759  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)1760 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1761 {
1762 	/* Update high watermark before we lower total_vm */
1763 	update_hiwater_vm(mm);
1764 	do {
1765 		long nrpages = vma_pages(vma);
1766 
1767 		mm->total_vm -= nrpages;
1768 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1769 		vma = remove_vma(vma);
1770 	} while (vma);
1771 	validate_mm(mm);
1772 }
1773 
1774 /*
1775  * Get rid of page table information in the indicated region.
1776  *
1777  * Called with the mm semaphore held.
1778  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)1779 static void unmap_region(struct mm_struct *mm,
1780 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1781 		unsigned long start, unsigned long end)
1782 {
1783 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1784 	struct mmu_gather *tlb;
1785 	unsigned long nr_accounted = 0;
1786 
1787 	lru_add_drain();
1788 	tlb = tlb_gather_mmu(mm, 0);
1789 	update_hiwater_rss(mm);
1790 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1791 	vm_unacct_memory(nr_accounted);
1792 	free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1793 				 next? next->vm_start: 0);
1794 	tlb_finish_mmu(tlb, start, end);
1795 }
1796 
1797 /*
1798  * Create a list of vma's touched by the unmap, removing them from the mm's
1799  * vma list as we go..
1800  */
1801 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)1802 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1803 	struct vm_area_struct *prev, unsigned long end)
1804 {
1805 	struct vm_area_struct **insertion_point;
1806 	struct vm_area_struct *tail_vma = NULL;
1807 	unsigned long addr;
1808 
1809 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1810 	do {
1811 		rb_erase(&vma->vm_rb, &mm->mm_rb);
1812 		mm->map_count--;
1813 		tail_vma = vma;
1814 		vma = vma->vm_next;
1815 	} while (vma && vma->vm_start < end);
1816 	*insertion_point = vma;
1817 	tail_vma->vm_next = NULL;
1818 	if (mm->unmap_area == arch_unmap_area)
1819 		addr = prev ? prev->vm_end : mm->mmap_base;
1820 	else
1821 		addr = vma ?  vma->vm_start : mm->mmap_base;
1822 	mm->unmap_area(mm, addr);
1823 	mm->mmap_cache = NULL;		/* Kill the cache. */
1824 }
1825 
1826 /*
1827  * Split a vma into two pieces at address 'addr', a new vma is allocated
1828  * either for the first part or the tail.
1829  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1830 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1831 	      unsigned long addr, int new_below)
1832 {
1833 	struct mempolicy *pol;
1834 	struct vm_area_struct *new;
1835 
1836 	if (is_vm_hugetlb_page(vma) && (addr &
1837 					~(huge_page_mask(hstate_vma(vma)))))
1838 		return -EINVAL;
1839 
1840 	if (mm->map_count >= sysctl_max_map_count)
1841 		return -ENOMEM;
1842 
1843 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1844 	if (!new)
1845 		return -ENOMEM;
1846 
1847 	/* most fields are the same, copy all, and then fixup */
1848 	*new = *vma;
1849 
1850 	if (new_below)
1851 		new->vm_end = addr;
1852 	else {
1853 		new->vm_start = addr;
1854 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1855 	}
1856 
1857 	pol = mpol_dup(vma_policy(vma));
1858 	if (IS_ERR(pol)) {
1859 		kmem_cache_free(vm_area_cachep, new);
1860 		return PTR_ERR(pol);
1861 	}
1862 	vma_set_policy(new, pol);
1863 
1864 	if (new->vm_file) {
1865 		get_file(new->vm_file);
1866 		if (vma->vm_flags & VM_EXECUTABLE)
1867 			added_exe_file_vma(mm);
1868 	}
1869 
1870 	if (new->vm_ops && new->vm_ops->open)
1871 		new->vm_ops->open(new);
1872 
1873 	if (new_below)
1874 		vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1875 			((addr - new->vm_start) >> PAGE_SHIFT), new);
1876 	else
1877 		vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1878 
1879 	return 0;
1880 }
1881 
1882 /* Munmap is split into 2 main parts -- this part which finds
1883  * what needs doing, and the areas themselves, which do the
1884  * work.  This now handles partial unmappings.
1885  * Jeremy Fitzhardinge <jeremy@goop.org>
1886  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)1887 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1888 {
1889 	unsigned long end;
1890 	struct vm_area_struct *vma, *prev, *last;
1891 
1892 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1893 		return -EINVAL;
1894 
1895 	if ((len = PAGE_ALIGN(len)) == 0)
1896 		return -EINVAL;
1897 
1898 	/* Find the first overlapping VMA */
1899 	vma = find_vma_prev(mm, start, &prev);
1900 	if (!vma)
1901 		return 0;
1902 	/* we have  start < vma->vm_end  */
1903 
1904 	/* if it doesn't overlap, we have nothing.. */
1905 	end = start + len;
1906 	if (vma->vm_start >= end)
1907 		return 0;
1908 
1909 	/*
1910 	 * If we need to split any vma, do it now to save pain later.
1911 	 *
1912 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1913 	 * unmapped vm_area_struct will remain in use: so lower split_vma
1914 	 * places tmp vma above, and higher split_vma places tmp vma below.
1915 	 */
1916 	if (start > vma->vm_start) {
1917 		int error = split_vma(mm, vma, start, 0);
1918 		if (error)
1919 			return error;
1920 		prev = vma;
1921 	}
1922 
1923 	/* Does it split the last one? */
1924 	last = find_vma(mm, end);
1925 	if (last && end > last->vm_start) {
1926 		int error = split_vma(mm, last, end, 1);
1927 		if (error)
1928 			return error;
1929 	}
1930 	vma = prev? prev->vm_next: mm->mmap;
1931 
1932 	/*
1933 	 * unlock any mlock()ed ranges before detaching vmas
1934 	 */
1935 	if (mm->locked_vm) {
1936 		struct vm_area_struct *tmp = vma;
1937 		while (tmp && tmp->vm_start < end) {
1938 			if (tmp->vm_flags & VM_LOCKED) {
1939 				mm->locked_vm -= vma_pages(tmp);
1940 				munlock_vma_pages_all(tmp);
1941 			}
1942 			tmp = tmp->vm_next;
1943 		}
1944 	}
1945 
1946 	/*
1947 	 * Remove the vma's, and unmap the actual pages
1948 	 */
1949 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
1950 
1951 #ifdef CONFIG_QEMU_TRACE
1952 	qemu_trace_munmap(start, end);
1953 #endif
1954 	unmap_region(mm, vma, prev, start, end);
1955 
1956 	/* Fix up all other VM information */
1957 	remove_vma_list(mm, vma);
1958 
1959 	return 0;
1960 }
1961 
1962 EXPORT_SYMBOL(do_munmap);
1963 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1964 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1965 {
1966 	int ret;
1967 	struct mm_struct *mm = current->mm;
1968 
1969 	profile_munmap(addr);
1970 
1971 	down_write(&mm->mmap_sem);
1972 	ret = do_munmap(mm, addr, len);
1973 	up_write(&mm->mmap_sem);
1974 	return ret;
1975 }
1976 
verify_mm_writelocked(struct mm_struct * mm)1977 static inline void verify_mm_writelocked(struct mm_struct *mm)
1978 {
1979 #ifdef CONFIG_DEBUG_VM
1980 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1981 		WARN_ON(1);
1982 		up_read(&mm->mmap_sem);
1983 	}
1984 #endif
1985 }
1986 
1987 /*
1988  *  this is really a simplified "do_mmap".  it only handles
1989  *  anonymous maps.  eventually we may be able to do some
1990  *  brk-specific accounting here.
1991  */
do_brk(unsigned long addr,unsigned long len)1992 unsigned long do_brk(unsigned long addr, unsigned long len)
1993 {
1994 	struct mm_struct * mm = current->mm;
1995 	struct vm_area_struct * vma, * prev;
1996 	unsigned long flags;
1997 	struct rb_node ** rb_link, * rb_parent;
1998 	pgoff_t pgoff = addr >> PAGE_SHIFT;
1999 	int error;
2000 
2001 	len = PAGE_ALIGN(len);
2002 	if (!len)
2003 		return addr;
2004 
2005 	if ((addr + len) > TASK_SIZE || (addr + len) < addr)
2006 		return -EINVAL;
2007 
2008 	if (is_hugepage_only_range(mm, addr, len))
2009 		return -EINVAL;
2010 
2011 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2012 	if (error)
2013 		return error;
2014 
2015 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2016 
2017 	error = arch_mmap_check(addr, len, flags);
2018 	if (error)
2019 		return error;
2020 
2021 	/*
2022 	 * mlock MCL_FUTURE?
2023 	 */
2024 	if (mm->def_flags & VM_LOCKED) {
2025 		unsigned long locked, lock_limit;
2026 		locked = len >> PAGE_SHIFT;
2027 		locked += mm->locked_vm;
2028 		lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2029 		lock_limit >>= PAGE_SHIFT;
2030 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2031 			return -EAGAIN;
2032 	}
2033 
2034 	/*
2035 	 * mm->mmap_sem is required to protect against another thread
2036 	 * changing the mappings in case we sleep.
2037 	 */
2038 	verify_mm_writelocked(mm);
2039 
2040 	/*
2041 	 * Clear old maps.  this also does some error checking for us
2042 	 */
2043  munmap_back:
2044 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2045 	if (vma && vma->vm_start < addr + len) {
2046 		if (do_munmap(mm, addr, len))
2047 			return -ENOMEM;
2048 		goto munmap_back;
2049 	}
2050 
2051 	/* Check against address space limits *after* clearing old maps... */
2052 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2053 		return -ENOMEM;
2054 
2055 	if (mm->map_count > sysctl_max_map_count)
2056 		return -ENOMEM;
2057 
2058 	if (security_vm_enough_memory(len >> PAGE_SHIFT))
2059 		return -ENOMEM;
2060 
2061 	/* Can we just expand an old private anonymous mapping? */
2062 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2063 					NULL, NULL, pgoff, NULL);
2064 	if (vma)
2065 		goto out;
2066 
2067 	/*
2068 	 * create a vma struct for an anonymous mapping
2069 	 */
2070 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2071 	if (!vma) {
2072 		vm_unacct_memory(len >> PAGE_SHIFT);
2073 		return -ENOMEM;
2074 	}
2075 
2076 	vma->vm_mm = mm;
2077 	vma->vm_start = addr;
2078 	vma->vm_end = addr + len;
2079 	vma->vm_pgoff = pgoff;
2080 	vma->vm_flags = flags;
2081 	vma->vm_page_prot = vm_get_page_prot(flags);
2082 	vma_link(mm, vma, prev, rb_link, rb_parent);
2083 out:
2084 	mm->total_vm += len >> PAGE_SHIFT;
2085 	if (flags & VM_LOCKED) {
2086 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2087 			mm->locked_vm += (len >> PAGE_SHIFT);
2088 	}
2089 	return addr;
2090 }
2091 
2092 EXPORT_SYMBOL(do_brk);
2093 
2094 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)2095 void exit_mmap(struct mm_struct *mm)
2096 {
2097 	struct mmu_gather *tlb;
2098 	struct vm_area_struct *vma;
2099 	unsigned long nr_accounted = 0;
2100 	unsigned long end;
2101 
2102 	/* mm's last user has gone, and its about to be pulled down */
2103 	mmu_notifier_release(mm);
2104 
2105 	if (mm->locked_vm) {
2106 		vma = mm->mmap;
2107 		while (vma) {
2108 			if (vma->vm_flags & VM_LOCKED)
2109 				munlock_vma_pages_all(vma);
2110 			vma = vma->vm_next;
2111 		}
2112 	}
2113 
2114 	arch_exit_mmap(mm);
2115 
2116 	vma = mm->mmap;
2117 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2118 		return;
2119 
2120 	lru_add_drain();
2121 	flush_cache_mm(mm);
2122 	tlb = tlb_gather_mmu(mm, 1);
2123 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2124 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2125 	end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2126 	vm_unacct_memory(nr_accounted);
2127 	free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2128 	tlb_finish_mmu(tlb, 0, end);
2129 
2130 	/*
2131 	 * Walk the list again, actually closing and freeing it,
2132 	 * with preemption enabled, without holding any MM locks.
2133 	 */
2134 	while (vma)
2135 		vma = remove_vma(vma);
2136 
2137 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2138 }
2139 
2140 /* Insert vm structure into process list sorted by address
2141  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2142  * then i_mmap_lock is taken here.
2143  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)2144 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2145 {
2146 	struct vm_area_struct * __vma, * prev;
2147 	struct rb_node ** rb_link, * rb_parent;
2148 
2149 	/*
2150 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2151 	 * until its first write fault, when page's anon_vma and index
2152 	 * are set.  But now set the vm_pgoff it will almost certainly
2153 	 * end up with (unless mremap moves it elsewhere before that
2154 	 * first wfault), so /proc/pid/maps tells a consistent story.
2155 	 *
2156 	 * By setting it to reflect the virtual start address of the
2157 	 * vma, merges and splits can happen in a seamless way, just
2158 	 * using the existing file pgoff checks and manipulations.
2159 	 * Similarly in do_mmap_pgoff and in do_brk.
2160 	 */
2161 	if (!vma->vm_file) {
2162 		BUG_ON(vma->anon_vma);
2163 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2164 	}
2165 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2166 	if (__vma && __vma->vm_start < vma->vm_end)
2167 		return -ENOMEM;
2168 	if ((vma->vm_flags & VM_ACCOUNT) &&
2169 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2170 		return -ENOMEM;
2171 	vma_link(mm, vma, prev, rb_link, rb_parent);
2172 	return 0;
2173 }
2174 
2175 /*
2176  * Copy the vma structure to a new location in the same mm,
2177  * prior to moving page table entries, to effect an mremap move.
2178  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff)2179 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2180 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2181 {
2182 	struct vm_area_struct *vma = *vmap;
2183 	unsigned long vma_start = vma->vm_start;
2184 	struct mm_struct *mm = vma->vm_mm;
2185 	struct vm_area_struct *new_vma, *prev;
2186 	struct rb_node **rb_link, *rb_parent;
2187 	struct mempolicy *pol;
2188 
2189 	/*
2190 	 * If anonymous vma has not yet been faulted, update new pgoff
2191 	 * to match new location, to increase its chance of merging.
2192 	 */
2193 	if (!vma->vm_file && !vma->anon_vma)
2194 		pgoff = addr >> PAGE_SHIFT;
2195 
2196 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2197 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2198 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2199 	if (new_vma) {
2200 		/*
2201 		 * Source vma may have been merged into new_vma
2202 		 */
2203 		if (vma_start >= new_vma->vm_start &&
2204 		    vma_start < new_vma->vm_end)
2205 			*vmap = new_vma;
2206 	} else {
2207 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2208 		if (new_vma) {
2209 			*new_vma = *vma;
2210 			pol = mpol_dup(vma_policy(vma));
2211 			if (IS_ERR(pol)) {
2212 				kmem_cache_free(vm_area_cachep, new_vma);
2213 				return NULL;
2214 			}
2215 			vma_set_policy(new_vma, pol);
2216 			new_vma->vm_start = addr;
2217 			new_vma->vm_end = addr + len;
2218 			new_vma->vm_pgoff = pgoff;
2219 			if (new_vma->vm_file) {
2220 				get_file(new_vma->vm_file);
2221 				if (vma->vm_flags & VM_EXECUTABLE)
2222 					added_exe_file_vma(mm);
2223 			}
2224 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2225 				new_vma->vm_ops->open(new_vma);
2226 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2227 		}
2228 	}
2229 	return new_vma;
2230 }
2231 
2232 /*
2233  * Return true if the calling process may expand its vm space by the passed
2234  * number of pages
2235  */
may_expand_vm(struct mm_struct * mm,unsigned long npages)2236 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2237 {
2238 	unsigned long cur = mm->total_vm;	/* pages */
2239 	unsigned long lim;
2240 
2241 	lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2242 
2243 	if (cur + npages > lim)
2244 		return 0;
2245 	return 1;
2246 }
2247 
2248 
special_mapping_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2249 static int special_mapping_fault(struct vm_area_struct *vma,
2250 				struct vm_fault *vmf)
2251 {
2252 	pgoff_t pgoff;
2253 	struct page **pages;
2254 
2255 	/*
2256 	 * special mappings have no vm_file, and in that case, the mm
2257 	 * uses vm_pgoff internally. So we have to subtract it from here.
2258 	 * We are allowed to do this because we are the mm; do not copy
2259 	 * this code into drivers!
2260 	 */
2261 	pgoff = vmf->pgoff - vma->vm_pgoff;
2262 
2263 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2264 		pgoff--;
2265 
2266 	if (*pages) {
2267 		struct page *page = *pages;
2268 		get_page(page);
2269 		vmf->page = page;
2270 		return 0;
2271 	}
2272 
2273 	return VM_FAULT_SIGBUS;
2274 }
2275 
2276 /*
2277  * Having a close hook prevents vma merging regardless of flags.
2278  */
special_mapping_close(struct vm_area_struct * vma)2279 static void special_mapping_close(struct vm_area_struct *vma)
2280 {
2281 }
2282 
2283 static struct vm_operations_struct special_mapping_vmops = {
2284 	.close = special_mapping_close,
2285 	.fault = special_mapping_fault,
2286 };
2287 
2288 /*
2289  * Called with mm->mmap_sem held for writing.
2290  * Insert a new vma covering the given region, with the given flags.
2291  * Its pages are supplied by the given array of struct page *.
2292  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2293  * The region past the last page supplied will always produce SIGBUS.
2294  * The array pointer and the pages it points to are assumed to stay alive
2295  * for as long as this mapping might exist.
2296  */
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)2297 int install_special_mapping(struct mm_struct *mm,
2298 			    unsigned long addr, unsigned long len,
2299 			    unsigned long vm_flags, struct page **pages)
2300 {
2301 	struct vm_area_struct *vma;
2302 
2303 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2304 	if (unlikely(vma == NULL))
2305 		return -ENOMEM;
2306 
2307 	vma->vm_mm = mm;
2308 	vma->vm_start = addr;
2309 	vma->vm_end = addr + len;
2310 
2311 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2312 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2313 
2314 	vma->vm_ops = &special_mapping_vmops;
2315 	vma->vm_private_data = pages;
2316 
2317 	if (unlikely(insert_vm_struct(mm, vma))) {
2318 		kmem_cache_free(vm_area_cachep, vma);
2319 		return -ENOMEM;
2320 	}
2321 
2322 	mm->total_vm += len >> PAGE_SHIFT;
2323 
2324 	return 0;
2325 }
2326 
2327 static DEFINE_MUTEX(mm_all_locks_mutex);
2328 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2329 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2330 {
2331 	if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2332 		/*
2333 		 * The LSB of head.next can't change from under us
2334 		 * because we hold the mm_all_locks_mutex.
2335 		 */
2336 		spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2337 		/*
2338 		 * We can safely modify head.next after taking the
2339 		 * anon_vma->lock. If some other vma in this mm shares
2340 		 * the same anon_vma we won't take it again.
2341 		 *
2342 		 * No need of atomic instructions here, head.next
2343 		 * can't change from under us thanks to the
2344 		 * anon_vma->lock.
2345 		 */
2346 		if (__test_and_set_bit(0, (unsigned long *)
2347 				       &anon_vma->head.next))
2348 			BUG();
2349 	}
2350 }
2351 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2352 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2353 {
2354 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2355 		/*
2356 		 * AS_MM_ALL_LOCKS can't change from under us because
2357 		 * we hold the mm_all_locks_mutex.
2358 		 *
2359 		 * Operations on ->flags have to be atomic because
2360 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2361 		 * mm_all_locks_mutex, there may be other cpus
2362 		 * changing other bitflags in parallel to us.
2363 		 */
2364 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2365 			BUG();
2366 		spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2367 	}
2368 }
2369 
2370 /*
2371  * This operation locks against the VM for all pte/vma/mm related
2372  * operations that could ever happen on a certain mm. This includes
2373  * vmtruncate, try_to_unmap, and all page faults.
2374  *
2375  * The caller must take the mmap_sem in write mode before calling
2376  * mm_take_all_locks(). The caller isn't allowed to release the
2377  * mmap_sem until mm_drop_all_locks() returns.
2378  *
2379  * mmap_sem in write mode is required in order to block all operations
2380  * that could modify pagetables and free pages without need of
2381  * altering the vma layout (for example populate_range() with
2382  * nonlinear vmas). It's also needed in write mode to avoid new
2383  * anon_vmas to be associated with existing vmas.
2384  *
2385  * A single task can't take more than one mm_take_all_locks() in a row
2386  * or it would deadlock.
2387  *
2388  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2389  * mapping->flags avoid to take the same lock twice, if more than one
2390  * vma in this mm is backed by the same anon_vma or address_space.
2391  *
2392  * We can take all the locks in random order because the VM code
2393  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2394  * takes more than one of them in a row. Secondly we're protected
2395  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2396  *
2397  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2398  * that may have to take thousand of locks.
2399  *
2400  * mm_take_all_locks() can fail if it's interrupted by signals.
2401  */
mm_take_all_locks(struct mm_struct * mm)2402 int mm_take_all_locks(struct mm_struct *mm)
2403 {
2404 	struct vm_area_struct *vma;
2405 	int ret = -EINTR;
2406 
2407 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2408 
2409 	mutex_lock(&mm_all_locks_mutex);
2410 
2411 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2412 		if (signal_pending(current))
2413 			goto out_unlock;
2414 		if (vma->vm_file && vma->vm_file->f_mapping)
2415 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2416 	}
2417 
2418 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2419 		if (signal_pending(current))
2420 			goto out_unlock;
2421 		if (vma->anon_vma)
2422 			vm_lock_anon_vma(mm, vma->anon_vma);
2423 	}
2424 
2425 	ret = 0;
2426 
2427 out_unlock:
2428 	if (ret)
2429 		mm_drop_all_locks(mm);
2430 
2431 	return ret;
2432 }
2433 
vm_unlock_anon_vma(struct anon_vma * anon_vma)2434 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2435 {
2436 	if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2437 		/*
2438 		 * The LSB of head.next can't change to 0 from under
2439 		 * us because we hold the mm_all_locks_mutex.
2440 		 *
2441 		 * We must however clear the bitflag before unlocking
2442 		 * the vma so the users using the anon_vma->head will
2443 		 * never see our bitflag.
2444 		 *
2445 		 * No need of atomic instructions here, head.next
2446 		 * can't change from under us until we release the
2447 		 * anon_vma->lock.
2448 		 */
2449 		if (!__test_and_clear_bit(0, (unsigned long *)
2450 					  &anon_vma->head.next))
2451 			BUG();
2452 		spin_unlock(&anon_vma->lock);
2453 	}
2454 }
2455 
vm_unlock_mapping(struct address_space * mapping)2456 static void vm_unlock_mapping(struct address_space *mapping)
2457 {
2458 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2459 		/*
2460 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2461 		 * because we hold the mm_all_locks_mutex.
2462 		 */
2463 		spin_unlock(&mapping->i_mmap_lock);
2464 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2465 					&mapping->flags))
2466 			BUG();
2467 	}
2468 }
2469 
2470 /*
2471  * The mmap_sem cannot be released by the caller until
2472  * mm_drop_all_locks() returns.
2473  */
mm_drop_all_locks(struct mm_struct * mm)2474 void mm_drop_all_locks(struct mm_struct *mm)
2475 {
2476 	struct vm_area_struct *vma;
2477 
2478 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2479 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2480 
2481 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2482 		if (vma->anon_vma)
2483 			vm_unlock_anon_vma(vma->anon_vma);
2484 		if (vma->vm_file && vma->vm_file->f_mapping)
2485 			vm_unlock_mapping(vma->vm_file->f_mapping);
2486 	}
2487 
2488 	mutex_unlock(&mm_all_locks_mutex);
2489 }
2490 
2491 /*
2492  * initialise the VMA slab
2493  */
mmap_init(void)2494 void __init mmap_init(void)
2495 {
2496 	vm_area_cachep = kmem_cache_create("vm_area_struct",
2497 			sizeof(struct vm_area_struct), 0,
2498 			SLAB_PANIC, NULL);
2499 }
2500