• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *
8  *  The routines in this file are used to kill a process when
9  *  we're seriously out of memory. This gets called from __alloc_pages()
10  *  in mm/page_alloc.c when we really run out of memory.
11  *
12  *  Since we won't call these routines often (on a well-configured
13  *  machine) this file will double as a 'coding guide' and a signpost
14  *  for newbie kernel hackers. It features several pointers to major
15  *  kernel subsystems and hints as to where to find out what things do.
16  */
17 
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
30 
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_lock);
35 /* #define DEBUG */
36 
37 /**
38  * badness - calculate a numeric value for how bad this task has been
39  * @p: task struct of which task we should calculate
40  * @uptime: current uptime in seconds
41  *
42  * The formula used is relatively simple and documented inline in the
43  * function. The main rationale is that we want to select a good task
44  * to kill when we run out of memory.
45  *
46  * Good in this context means that:
47  * 1) we lose the minimum amount of work done
48  * 2) we recover a large amount of memory
49  * 3) we don't kill anything innocent of eating tons of memory
50  * 4) we want to kill the minimum amount of processes (one)
51  * 5) we try to kill the process the user expects us to kill, this
52  *    algorithm has been meticulously tuned to meet the principle
53  *    of least surprise ... (be careful when you change it)
54  */
55 
badness(struct task_struct * p,unsigned long uptime)56 unsigned long badness(struct task_struct *p, unsigned long uptime)
57 {
58 	unsigned long points, cpu_time, run_time, s;
59 	struct mm_struct *mm;
60 	struct task_struct *child;
61 
62 	task_lock(p);
63 	mm = p->mm;
64 	if (!mm) {
65 		task_unlock(p);
66 		return 0;
67 	}
68 
69 	/*
70 	 * The memory size of the process is the basis for the badness.
71 	 */
72 	points = mm->total_vm;
73 
74 	/*
75 	 * After this unlock we can no longer dereference local variable `mm'
76 	 */
77 	task_unlock(p);
78 
79 	/*
80 	 * swapoff can easily use up all memory, so kill those first.
81 	 */
82 	if (p->flags & PF_SWAPOFF)
83 		return ULONG_MAX;
84 
85 	/*
86 	 * Processes which fork a lot of child processes are likely
87 	 * a good choice. We add half the vmsize of the children if they
88 	 * have an own mm. This prevents forking servers to flood the
89 	 * machine with an endless amount of children. In case a single
90 	 * child is eating the vast majority of memory, adding only half
91 	 * to the parents will make the child our kill candidate of choice.
92 	 */
93 	list_for_each_entry(child, &p->children, sibling) {
94 		task_lock(child);
95 		if (child->mm != mm && child->mm)
96 			points += child->mm->total_vm/2 + 1;
97 		task_unlock(child);
98 	}
99 
100 	/*
101 	 * CPU time is in tens of seconds and run time is in thousands
102          * of seconds. There is no particular reason for this other than
103          * that it turned out to work very well in practice.
104 	 */
105 	cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
106 		>> (SHIFT_HZ + 3);
107 
108 	if (uptime >= p->start_time.tv_sec)
109 		run_time = (uptime - p->start_time.tv_sec) >> 10;
110 	else
111 		run_time = 0;
112 
113 	s = int_sqrt(cpu_time);
114 	if (s)
115 		points /= s;
116 	s = int_sqrt(int_sqrt(run_time));
117 	if (s)
118 		points /= s;
119 
120 	/*
121 	 * Niced processes are most likely less important, so double
122 	 * their badness points.
123 	 */
124 	if (task_nice(p) > 0)
125 		points *= 2;
126 
127 	/*
128 	 * Superuser processes are usually more important, so we make it
129 	 * less likely that we kill those.
130 	 */
131 	if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
132 	    has_capability_noaudit(p, CAP_SYS_RESOURCE))
133 		points /= 4;
134 
135 	/*
136 	 * We don't want to kill a process with direct hardware access.
137 	 * Not only could that mess up the hardware, but usually users
138 	 * tend to only have this flag set on applications they think
139 	 * of as important.
140 	 */
141 	if (has_capability_noaudit(p, CAP_SYS_RAWIO))
142 		points /= 4;
143 
144 	/*
145 	 * If p's nodes don't overlap ours, it may still help to kill p
146 	 * because p may have allocated or otherwise mapped memory on
147 	 * this node before. However it will be less likely.
148 	 */
149 	if (!cpuset_mems_allowed_intersects(current, p))
150 		points /= 8;
151 
152 	/*
153 	 * Adjust the score by oomkilladj.
154 	 */
155 	if (p->oomkilladj) {
156 		if (p->oomkilladj > 0) {
157 			if (!points)
158 				points = 1;
159 			points <<= p->oomkilladj;
160 		} else
161 			points >>= -(p->oomkilladj);
162 	}
163 
164 #ifdef DEBUG
165 	printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
166 	p->pid, p->comm, points);
167 #endif
168 	return points;
169 }
170 
171 /*
172  * Determine the type of allocation constraint.
173  */
constrained_alloc(struct zonelist * zonelist,gfp_t gfp_mask)174 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
175 						    gfp_t gfp_mask)
176 {
177 #ifdef CONFIG_NUMA
178 	struct zone *zone;
179 	struct zoneref *z;
180 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
181 	nodemask_t nodes = node_states[N_HIGH_MEMORY];
182 
183 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
184 		if (cpuset_zone_allowed_softwall(zone, gfp_mask))
185 			node_clear(zone_to_nid(zone), nodes);
186 		else
187 			return CONSTRAINT_CPUSET;
188 
189 	if (!nodes_empty(nodes))
190 		return CONSTRAINT_MEMORY_POLICY;
191 #endif
192 
193 	return CONSTRAINT_NONE;
194 }
195 
196 /*
197  * Simple selection loop. We chose the process with the highest
198  * number of 'points'. We expect the caller will lock the tasklist.
199  *
200  * (not docbooked, we don't want this one cluttering up the manual)
201  */
select_bad_process(unsigned long * ppoints,struct mem_cgroup * mem)202 static struct task_struct *select_bad_process(unsigned long *ppoints,
203 						struct mem_cgroup *mem)
204 {
205 	struct task_struct *g, *p;
206 	struct task_struct *chosen = NULL;
207 	struct timespec uptime;
208 	*ppoints = 0;
209 
210 	do_posix_clock_monotonic_gettime(&uptime);
211 	do_each_thread(g, p) {
212 		unsigned long points;
213 
214 		/*
215 		 * skip kernel threads and tasks which have already released
216 		 * their mm.
217 		 */
218 		if (!p->mm)
219 			continue;
220 		/* skip the init task */
221 		if (is_global_init(p))
222 			continue;
223 		if (mem && !task_in_mem_cgroup(p, mem))
224 			continue;
225 
226 		/*
227 		 * This task already has access to memory reserves and is
228 		 * being killed. Don't allow any other task access to the
229 		 * memory reserve.
230 		 *
231 		 * Note: this may have a chance of deadlock if it gets
232 		 * blocked waiting for another task which itself is waiting
233 		 * for memory. Is there a better alternative?
234 		 */
235 		if (test_tsk_thread_flag(p, TIF_MEMDIE))
236 			return ERR_PTR(-1UL);
237 
238 		/*
239 		 * This is in the process of releasing memory so wait for it
240 		 * to finish before killing some other task by mistake.
241 		 *
242 		 * However, if p is the current task, we allow the 'kill' to
243 		 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
244 		 * which will allow it to gain access to memory reserves in
245 		 * the process of exiting and releasing its resources.
246 		 * Otherwise we could get an easy OOM deadlock.
247 		 */
248 		if (p->flags & PF_EXITING) {
249 			if (p != current)
250 				return ERR_PTR(-1UL);
251 
252 			chosen = p;
253 			*ppoints = ULONG_MAX;
254 		}
255 
256 		if (p->oomkilladj == OOM_DISABLE)
257 			continue;
258 
259 		points = badness(p, uptime.tv_sec);
260 		if (points > *ppoints || !chosen) {
261 			chosen = p;
262 			*ppoints = points;
263 		}
264 	} while_each_thread(g, p);
265 
266 	return chosen;
267 }
268 
269 /**
270  * dump_tasks - dump current memory state of all system tasks
271  * @mem: target memory controller
272  *
273  * Dumps the current memory state of all system tasks, excluding kernel threads.
274  * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
275  * score, and name.
276  *
277  * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
278  * shown.
279  *
280  * Call with tasklist_lock read-locked.
281  */
dump_tasks(const struct mem_cgroup * mem)282 static void dump_tasks(const struct mem_cgroup *mem)
283 {
284 	struct task_struct *g, *p;
285 
286 	printk(KERN_INFO "[ pid ]   uid  tgid total_vm      rss cpu oom_adj "
287 	       "name\n");
288 	do_each_thread(g, p) {
289 		/*
290 		 * total_vm and rss sizes do not exist for tasks with a
291 		 * detached mm so there's no need to report them.
292 		 */
293 		if (!p->mm)
294 			continue;
295 		if (mem && !task_in_mem_cgroup(p, mem))
296 			continue;
297 		if (!thread_group_leader(p))
298 			continue;
299 
300 		task_lock(p);
301 		printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d     %3d %s\n",
302 		       p->pid, __task_cred(p)->uid, p->tgid,
303 		       p->mm->total_vm, get_mm_rss(p->mm), (int)task_cpu(p),
304 		       p->oomkilladj, p->comm);
305 		task_unlock(p);
306 	} while_each_thread(g, p);
307 }
308 
309 /*
310  * Send SIGKILL to the selected  process irrespective of  CAP_SYS_RAW_IO
311  * flag though it's unlikely that  we select a process with CAP_SYS_RAW_IO
312  * set.
313  */
__oom_kill_task(struct task_struct * p,int verbose)314 static void __oom_kill_task(struct task_struct *p, int verbose)
315 {
316 	if (is_global_init(p)) {
317 		WARN_ON(1);
318 		printk(KERN_WARNING "tried to kill init!\n");
319 		return;
320 	}
321 
322 	if (!p->mm) {
323 		WARN_ON(1);
324 		printk(KERN_WARNING "tried to kill an mm-less task!\n");
325 		return;
326 	}
327 
328 	if (verbose)
329 		printk(KERN_ERR "Killed process %d (%s)\n",
330 				task_pid_nr(p), p->comm);
331 
332 	/*
333 	 * We give our sacrificial lamb high priority and access to
334 	 * all the memory it needs. That way it should be able to
335 	 * exit() and clear out its resources quickly...
336 	 */
337 	p->rt.time_slice = HZ;
338 	set_tsk_thread_flag(p, TIF_MEMDIE);
339 
340 	force_sig(SIGKILL, p);
341 }
342 
oom_kill_task(struct task_struct * p)343 static int oom_kill_task(struct task_struct *p)
344 {
345 	struct mm_struct *mm;
346 	struct task_struct *g, *q;
347 
348 	mm = p->mm;
349 
350 	/* WARNING: mm may not be dereferenced since we did not obtain its
351 	 * value from get_task_mm(p).  This is OK since all we need to do is
352 	 * compare mm to q->mm below.
353 	 *
354 	 * Furthermore, even if mm contains a non-NULL value, p->mm may
355 	 * change to NULL at any time since we do not hold task_lock(p).
356 	 * However, this is of no concern to us.
357 	 */
358 
359 	if (mm == NULL)
360 		return 1;
361 
362 	/*
363 	 * Don't kill the process if any threads are set to OOM_DISABLE
364 	 */
365 	do_each_thread(g, q) {
366 		if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
367 			return 1;
368 	} while_each_thread(g, q);
369 
370 	__oom_kill_task(p, 1);
371 
372 	/*
373 	 * kill all processes that share the ->mm (i.e. all threads),
374 	 * but are in a different thread group. Don't let them have access
375 	 * to memory reserves though, otherwise we might deplete all memory.
376 	 */
377 	do_each_thread(g, q) {
378 		if (q->mm == mm && !same_thread_group(q, p))
379 			force_sig(SIGKILL, q);
380 	} while_each_thread(g, q);
381 
382 	return 0;
383 }
384 
oom_kill_process(struct task_struct * p,gfp_t gfp_mask,int order,unsigned long points,struct mem_cgroup * mem,const char * message)385 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
386 			    unsigned long points, struct mem_cgroup *mem,
387 			    const char *message)
388 {
389 	struct task_struct *c;
390 
391 	if (printk_ratelimit()) {
392 		printk(KERN_WARNING "%s invoked oom-killer: "
393 			"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
394 			current->comm, gfp_mask, order, current->oomkilladj);
395 		task_lock(current);
396 		cpuset_print_task_mems_allowed(current);
397 		task_unlock(current);
398 		dump_stack();
399 		show_mem();
400 		if (sysctl_oom_dump_tasks)
401 			dump_tasks(mem);
402 	}
403 
404 	/*
405 	 * If the task is already exiting, don't alarm the sysadmin or kill
406 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
407 	 */
408 	if (p->flags & PF_EXITING) {
409 		__oom_kill_task(p, 0);
410 		return 0;
411 	}
412 
413 	printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
414 					message, task_pid_nr(p), p->comm, points);
415 
416 	/* Try to kill a child first */
417 	list_for_each_entry(c, &p->children, sibling) {
418 		if (c->mm == p->mm)
419 			continue;
420 		if (!oom_kill_task(c))
421 			return 0;
422 	}
423 	return oom_kill_task(p);
424 }
425 
426 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
mem_cgroup_out_of_memory(struct mem_cgroup * mem,gfp_t gfp_mask)427 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
428 {
429 	unsigned long points = 0;
430 	struct task_struct *p;
431 
432 	read_lock(&tasklist_lock);
433 retry:
434 	p = select_bad_process(&points, mem);
435 	if (PTR_ERR(p) == -1UL)
436 		goto out;
437 
438 	if (!p)
439 		p = current;
440 
441 	if (oom_kill_process(p, gfp_mask, 0, points, mem,
442 				"Memory cgroup out of memory"))
443 		goto retry;
444 out:
445 	read_unlock(&tasklist_lock);
446 }
447 #endif
448 
449 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
450 
register_oom_notifier(struct notifier_block * nb)451 int register_oom_notifier(struct notifier_block *nb)
452 {
453 	return blocking_notifier_chain_register(&oom_notify_list, nb);
454 }
455 EXPORT_SYMBOL_GPL(register_oom_notifier);
456 
unregister_oom_notifier(struct notifier_block * nb)457 int unregister_oom_notifier(struct notifier_block *nb)
458 {
459 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
460 }
461 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
462 
463 /*
464  * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
465  * if a parallel OOM killing is already taking place that includes a zone in
466  * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
467  */
try_set_zone_oom(struct zonelist * zonelist,gfp_t gfp_mask)468 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
469 {
470 	struct zoneref *z;
471 	struct zone *zone;
472 	int ret = 1;
473 
474 	spin_lock(&zone_scan_lock);
475 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
476 		if (zone_is_oom_locked(zone)) {
477 			ret = 0;
478 			goto out;
479 		}
480 	}
481 
482 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
483 		/*
484 		 * Lock each zone in the zonelist under zone_scan_lock so a
485 		 * parallel invocation of try_set_zone_oom() doesn't succeed
486 		 * when it shouldn't.
487 		 */
488 		zone_set_flag(zone, ZONE_OOM_LOCKED);
489 	}
490 
491 out:
492 	spin_unlock(&zone_scan_lock);
493 	return ret;
494 }
495 
496 /*
497  * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
498  * allocation attempts with zonelists containing them may now recall the OOM
499  * killer, if necessary.
500  */
clear_zonelist_oom(struct zonelist * zonelist,gfp_t gfp_mask)501 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
502 {
503 	struct zoneref *z;
504 	struct zone *zone;
505 
506 	spin_lock(&zone_scan_lock);
507 	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
508 		zone_clear_flag(zone, ZONE_OOM_LOCKED);
509 	}
510 	spin_unlock(&zone_scan_lock);
511 }
512 
513 /*
514  * Must be called with tasklist_lock held for read.
515  */
__out_of_memory(gfp_t gfp_mask,int order)516 static void __out_of_memory(gfp_t gfp_mask, int order)
517 {
518 	if (sysctl_oom_kill_allocating_task) {
519 		oom_kill_process(current, gfp_mask, order, 0, NULL,
520 				"Out of memory (oom_kill_allocating_task)");
521 
522 	} else {
523 		unsigned long points;
524 		struct task_struct *p;
525 
526 retry:
527 		/*
528 		 * Rambo mode: Shoot down a process and hope it solves whatever
529 		 * issues we may have.
530 		 */
531 		p = select_bad_process(&points, NULL);
532 
533 		if (PTR_ERR(p) == -1UL)
534 			return;
535 
536 		/* Found nothing?!?! Either we hang forever, or we panic. */
537 		if (!p) {
538 			read_unlock(&tasklist_lock);
539 			panic("Out of memory and no killable processes...\n");
540 		}
541 
542 		if (oom_kill_process(p, gfp_mask, order, points, NULL,
543 				     "Out of memory"))
544 			goto retry;
545 	}
546 }
547 
548 /*
549  * pagefault handler calls into here because it is out of memory but
550  * doesn't know exactly how or why.
551  */
pagefault_out_of_memory(void)552 void pagefault_out_of_memory(void)
553 {
554 	unsigned long freed = 0;
555 
556 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
557 	if (freed > 0)
558 		/* Got some memory back in the last second. */
559 		return;
560 
561 	/*
562 	 * If this is from memcg, oom-killer is already invoked.
563 	 * and not worth to go system-wide-oom.
564 	 */
565 	if (mem_cgroup_oom_called(current))
566 		goto rest_and_return;
567 
568 	if (sysctl_panic_on_oom)
569 		panic("out of memory from page fault. panic_on_oom is selected.\n");
570 
571 	read_lock(&tasklist_lock);
572 	__out_of_memory(0, 0); /* unknown gfp_mask and order */
573 	read_unlock(&tasklist_lock);
574 
575 	/*
576 	 * Give "p" a good chance of killing itself before we
577 	 * retry to allocate memory.
578 	 */
579 rest_and_return:
580 	if (!test_thread_flag(TIF_MEMDIE))
581 		schedule_timeout_uninterruptible(1);
582 }
583 
584 /**
585  * out_of_memory - kill the "best" process when we run out of memory
586  * @zonelist: zonelist pointer
587  * @gfp_mask: memory allocation flags
588  * @order: amount of memory being requested as a power of 2
589  *
590  * If we run out of memory, we have the choice between either
591  * killing a random task (bad), letting the system crash (worse)
592  * OR try to be smart about which process to kill. Note that we
593  * don't have to be perfect here, we just have to be good.
594  */
out_of_memory(struct zonelist * zonelist,gfp_t gfp_mask,int order)595 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
596 {
597 	unsigned long freed = 0;
598 	enum oom_constraint constraint;
599 
600 	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
601 	if (freed > 0)
602 		/* Got some memory back in the last second. */
603 		return;
604 
605 	if (sysctl_panic_on_oom == 2)
606 		panic("out of memory. Compulsory panic_on_oom is selected.\n");
607 
608 	/*
609 	 * Check if there were limitations on the allocation (only relevant for
610 	 * NUMA) that may require different handling.
611 	 */
612 	constraint = constrained_alloc(zonelist, gfp_mask);
613 	read_lock(&tasklist_lock);
614 
615 	switch (constraint) {
616 	case CONSTRAINT_MEMORY_POLICY:
617 		oom_kill_process(current, gfp_mask, order, 0, NULL,
618 				"No available memory (MPOL_BIND)");
619 		break;
620 
621 	case CONSTRAINT_NONE:
622 		if (sysctl_panic_on_oom)
623 			panic("out of memory. panic_on_oom is selected\n");
624 		/* Fall-through */
625 	case CONSTRAINT_CPUSET:
626 		__out_of_memory(gfp_mask, order);
627 		break;
628 	}
629 
630 	read_unlock(&tasklist_lock);
631 
632 	/*
633 	 * Give "p" a good chance of killing itself before we
634 	 * retry to allocate memory unless "p" is current
635 	 */
636 	if (!test_thread_flag(TIF_MEMDIE))
637 		schedule_timeout_uninterruptible(1);
638 }
639