• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 
13 static void __meminit
__init_page_cgroup(struct page_cgroup * pc,unsigned long pfn)14 __init_page_cgroup(struct page_cgroup *pc, unsigned long pfn)
15 {
16 	pc->flags = 0;
17 	pc->mem_cgroup = NULL;
18 	pc->page = pfn_to_page(pfn);
19 	INIT_LIST_HEAD(&pc->lru);
20 }
21 static unsigned long total_usage;
22 
23 #if !defined(CONFIG_SPARSEMEM)
24 
25 
pgdat_page_cgroup_init(struct pglist_data * pgdat)26 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
27 {
28 	pgdat->node_page_cgroup = NULL;
29 }
30 
lookup_page_cgroup(struct page * page)31 struct page_cgroup *lookup_page_cgroup(struct page *page)
32 {
33 	unsigned long pfn = page_to_pfn(page);
34 	unsigned long offset;
35 	struct page_cgroup *base;
36 
37 	base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
38 	if (unlikely(!base))
39 		return NULL;
40 
41 	offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
42 	return base + offset;
43 }
44 
alloc_node_page_cgroup(int nid)45 static int __init alloc_node_page_cgroup(int nid)
46 {
47 	struct page_cgroup *base, *pc;
48 	unsigned long table_size;
49 	unsigned long start_pfn, nr_pages, index;
50 
51 	start_pfn = NODE_DATA(nid)->node_start_pfn;
52 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
53 
54 	if (!nr_pages)
55 		return 0;
56 
57 	table_size = sizeof(struct page_cgroup) * nr_pages;
58 
59 	base = __alloc_bootmem_node_nopanic(NODE_DATA(nid),
60 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
61 	if (!base)
62 		return -ENOMEM;
63 	for (index = 0; index < nr_pages; index++) {
64 		pc = base + index;
65 		__init_page_cgroup(pc, start_pfn + index);
66 	}
67 	NODE_DATA(nid)->node_page_cgroup = base;
68 	total_usage += table_size;
69 	return 0;
70 }
71 
page_cgroup_init(void)72 void __init page_cgroup_init(void)
73 {
74 
75 	int nid, fail;
76 
77 	if (mem_cgroup_disabled())
78 		return;
79 
80 	for_each_online_node(nid)  {
81 		fail = alloc_node_page_cgroup(nid);
82 		if (fail)
83 			goto fail;
84 	}
85 	printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
86 	printk(KERN_INFO "please try cgroup_disable=memory option if you"
87 	" don't want\n");
88 	return;
89 fail:
90 	printk(KERN_CRIT "allocation of page_cgroup was failed.\n");
91 	printk(KERN_CRIT "please try cgroup_disable=memory boot option\n");
92 	panic("Out of memory");
93 }
94 
95 #else /* CONFIG_FLAT_NODE_MEM_MAP */
96 
lookup_page_cgroup(struct page * page)97 struct page_cgroup *lookup_page_cgroup(struct page *page)
98 {
99 	unsigned long pfn = page_to_pfn(page);
100 	struct mem_section *section = __pfn_to_section(pfn);
101 
102 	return section->page_cgroup + pfn;
103 }
104 
105 /* __alloc_bootmem...() is protected by !slab_available() */
init_section_page_cgroup(unsigned long pfn)106 static int __init_refok init_section_page_cgroup(unsigned long pfn)
107 {
108 	struct mem_section *section = __pfn_to_section(pfn);
109 	struct page_cgroup *base, *pc;
110 	unsigned long table_size;
111 	int nid, index;
112 
113 	if (!section->page_cgroup) {
114 		nid = page_to_nid(pfn_to_page(pfn));
115 		table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
116 		if (slab_is_available()) {
117 			base = kmalloc_node(table_size,
118 					GFP_KERNEL | __GFP_NOWARN, nid);
119 			if (!base)
120 				base = vmalloc_node(table_size, nid);
121 		} else {
122 			base = __alloc_bootmem_node_nopanic(NODE_DATA(nid),
123 				table_size,
124 				PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
125 		}
126 	} else {
127 		/*
128  		 * We don't have to allocate page_cgroup again, but
129 		 * address of memmap may be changed. So, we have to initialize
130 		 * again.
131 		 */
132 		base = section->page_cgroup + pfn;
133 		table_size = 0;
134 		/* check address of memmap is changed or not. */
135 		if (base->page == pfn_to_page(pfn))
136 			return 0;
137 	}
138 
139 	if (!base) {
140 		printk(KERN_ERR "page cgroup allocation failure\n");
141 		return -ENOMEM;
142 	}
143 
144 	for (index = 0; index < PAGES_PER_SECTION; index++) {
145 		pc = base + index;
146 		__init_page_cgroup(pc, pfn + index);
147 	}
148 
149 	section->page_cgroup = base - pfn;
150 	total_usage += table_size;
151 	return 0;
152 }
153 #ifdef CONFIG_MEMORY_HOTPLUG
__free_page_cgroup(unsigned long pfn)154 void __free_page_cgroup(unsigned long pfn)
155 {
156 	struct mem_section *ms;
157 	struct page_cgroup *base;
158 
159 	ms = __pfn_to_section(pfn);
160 	if (!ms || !ms->page_cgroup)
161 		return;
162 	base = ms->page_cgroup + pfn;
163 	if (is_vmalloc_addr(base)) {
164 		vfree(base);
165 		ms->page_cgroup = NULL;
166 	} else {
167 		struct page *page = virt_to_page(base);
168 		if (!PageReserved(page)) { /* Is bootmem ? */
169 			kfree(base);
170 			ms->page_cgroup = NULL;
171 		}
172 	}
173 }
174 
online_page_cgroup(unsigned long start_pfn,unsigned long nr_pages,int nid)175 int __meminit online_page_cgroup(unsigned long start_pfn,
176 			unsigned long nr_pages,
177 			int nid)
178 {
179 	unsigned long start, end, pfn;
180 	int fail = 0;
181 
182 	start = start_pfn & ~(PAGES_PER_SECTION - 1);
183 	end = ALIGN(start_pfn + nr_pages, PAGES_PER_SECTION);
184 
185 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
186 		if (!pfn_present(pfn))
187 			continue;
188 		fail = init_section_page_cgroup(pfn);
189 	}
190 	if (!fail)
191 		return 0;
192 
193 	/* rollback */
194 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
195 		__free_page_cgroup(pfn);
196 
197 	return -ENOMEM;
198 }
199 
offline_page_cgroup(unsigned long start_pfn,unsigned long nr_pages,int nid)200 int __meminit offline_page_cgroup(unsigned long start_pfn,
201 		unsigned long nr_pages, int nid)
202 {
203 	unsigned long start, end, pfn;
204 
205 	start = start_pfn & ~(PAGES_PER_SECTION - 1);
206 	end = ALIGN(start_pfn + nr_pages, PAGES_PER_SECTION);
207 
208 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
209 		__free_page_cgroup(pfn);
210 	return 0;
211 
212 }
213 
page_cgroup_callback(struct notifier_block * self,unsigned long action,void * arg)214 static int __meminit page_cgroup_callback(struct notifier_block *self,
215 			       unsigned long action, void *arg)
216 {
217 	struct memory_notify *mn = arg;
218 	int ret = 0;
219 	switch (action) {
220 	case MEM_GOING_ONLINE:
221 		ret = online_page_cgroup(mn->start_pfn,
222 				   mn->nr_pages, mn->status_change_nid);
223 		break;
224 	case MEM_OFFLINE:
225 		offline_page_cgroup(mn->start_pfn,
226 				mn->nr_pages, mn->status_change_nid);
227 		break;
228 	case MEM_CANCEL_ONLINE:
229 	case MEM_GOING_OFFLINE:
230 		break;
231 	case MEM_ONLINE:
232 	case MEM_CANCEL_OFFLINE:
233 		break;
234 	}
235 
236 	if (ret)
237 		ret = notifier_from_errno(ret);
238 	else
239 		ret = NOTIFY_OK;
240 
241 	return ret;
242 }
243 
244 #endif
245 
page_cgroup_init(void)246 void __init page_cgroup_init(void)
247 {
248 	unsigned long pfn;
249 	int fail = 0;
250 
251 	if (mem_cgroup_disabled())
252 		return;
253 
254 	for (pfn = 0; !fail && pfn < max_pfn; pfn += PAGES_PER_SECTION) {
255 		if (!pfn_present(pfn))
256 			continue;
257 		fail = init_section_page_cgroup(pfn);
258 	}
259 	if (fail) {
260 		printk(KERN_CRIT "try cgroup_disable=memory boot option\n");
261 		panic("Out of memory");
262 	} else {
263 		hotplug_memory_notifier(page_cgroup_callback, 0);
264 	}
265 	printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
266 	printk(KERN_INFO "please try cgroup_disable=memory option if you don't"
267 	" want\n");
268 }
269 
pgdat_page_cgroup_init(struct pglist_data * pgdat)270 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
271 {
272 	return;
273 }
274 
275 #endif
276 
277 
278 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
279 
280 static DEFINE_MUTEX(swap_cgroup_mutex);
281 struct swap_cgroup_ctrl {
282 	struct page **map;
283 	unsigned long length;
284 };
285 
286 struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
287 
288 /*
289  * This 8bytes seems big..maybe we can reduce this when we can use "id" for
290  * cgroup rather than pointer.
291  */
292 struct swap_cgroup {
293 	struct mem_cgroup	*val;
294 };
295 #define SC_PER_PAGE	(PAGE_SIZE/sizeof(struct swap_cgroup))
296 #define SC_POS_MASK	(SC_PER_PAGE - 1)
297 
298 /*
299  * SwapCgroup implements "lookup" and "exchange" operations.
300  * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
301  * against SwapCache. At swap_free(), this is accessed directly from swap.
302  *
303  * This means,
304  *  - we have no race in "exchange" when we're accessed via SwapCache because
305  *    SwapCache(and its swp_entry) is under lock.
306  *  - When called via swap_free(), there is no user of this entry and no race.
307  * Then, we don't need lock around "exchange".
308  *
309  * TODO: we can push these buffers out to HIGHMEM.
310  */
311 
312 /*
313  * allocate buffer for swap_cgroup.
314  */
swap_cgroup_prepare(int type)315 static int swap_cgroup_prepare(int type)
316 {
317 	struct page *page;
318 	struct swap_cgroup_ctrl *ctrl;
319 	unsigned long idx, max;
320 
321 	if (!do_swap_account)
322 		return 0;
323 	ctrl = &swap_cgroup_ctrl[type];
324 
325 	for (idx = 0; idx < ctrl->length; idx++) {
326 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
327 		if (!page)
328 			goto not_enough_page;
329 		ctrl->map[idx] = page;
330 	}
331 	return 0;
332 not_enough_page:
333 	max = idx;
334 	for (idx = 0; idx < max; idx++)
335 		__free_page(ctrl->map[idx]);
336 
337 	return -ENOMEM;
338 }
339 
340 /**
341  * swap_cgroup_record - record mem_cgroup for this swp_entry.
342  * @ent: swap entry to be recorded into
343  * @mem: mem_cgroup to be recorded
344  *
345  * Returns old value at success, NULL at failure.
346  * (Of course, old value can be NULL.)
347  */
swap_cgroup_record(swp_entry_t ent,struct mem_cgroup * mem)348 struct mem_cgroup *swap_cgroup_record(swp_entry_t ent, struct mem_cgroup *mem)
349 {
350 	int type = swp_type(ent);
351 	unsigned long offset = swp_offset(ent);
352 	unsigned long idx = offset / SC_PER_PAGE;
353 	unsigned long pos = offset & SC_POS_MASK;
354 	struct swap_cgroup_ctrl *ctrl;
355 	struct page *mappage;
356 	struct swap_cgroup *sc;
357 	struct mem_cgroup *old;
358 
359 	if (!do_swap_account)
360 		return NULL;
361 
362 	ctrl = &swap_cgroup_ctrl[type];
363 
364 	mappage = ctrl->map[idx];
365 	sc = page_address(mappage);
366 	sc += pos;
367 	old = sc->val;
368 	sc->val = mem;
369 
370 	return old;
371 }
372 
373 /**
374  * lookup_swap_cgroup - lookup mem_cgroup tied to swap entry
375  * @ent: swap entry to be looked up.
376  *
377  * Returns pointer to mem_cgroup at success. NULL at failure.
378  */
lookup_swap_cgroup(swp_entry_t ent)379 struct mem_cgroup *lookup_swap_cgroup(swp_entry_t ent)
380 {
381 	int type = swp_type(ent);
382 	unsigned long offset = swp_offset(ent);
383 	unsigned long idx = offset / SC_PER_PAGE;
384 	unsigned long pos = offset & SC_POS_MASK;
385 	struct swap_cgroup_ctrl *ctrl;
386 	struct page *mappage;
387 	struct swap_cgroup *sc;
388 	struct mem_cgroup *ret;
389 
390 	if (!do_swap_account)
391 		return NULL;
392 
393 	ctrl = &swap_cgroup_ctrl[type];
394 	mappage = ctrl->map[idx];
395 	sc = page_address(mappage);
396 	sc += pos;
397 	ret = sc->val;
398 	return ret;
399 }
400 
swap_cgroup_swapon(int type,unsigned long max_pages)401 int swap_cgroup_swapon(int type, unsigned long max_pages)
402 {
403 	void *array;
404 	unsigned long array_size;
405 	unsigned long length;
406 	struct swap_cgroup_ctrl *ctrl;
407 
408 	if (!do_swap_account)
409 		return 0;
410 
411 	length = ((max_pages/SC_PER_PAGE) + 1);
412 	array_size = length * sizeof(void *);
413 
414 	array = vmalloc(array_size);
415 	if (!array)
416 		goto nomem;
417 
418 	memset(array, 0, array_size);
419 	ctrl = &swap_cgroup_ctrl[type];
420 	mutex_lock(&swap_cgroup_mutex);
421 	ctrl->length = length;
422 	ctrl->map = array;
423 	if (swap_cgroup_prepare(type)) {
424 		/* memory shortage */
425 		ctrl->map = NULL;
426 		ctrl->length = 0;
427 		vfree(array);
428 		mutex_unlock(&swap_cgroup_mutex);
429 		goto nomem;
430 	}
431 	mutex_unlock(&swap_cgroup_mutex);
432 
433 	printk(KERN_INFO
434 		"swap_cgroup: uses %ld bytes of vmalloc for pointer array space"
435 		" and %ld bytes to hold mem_cgroup pointers on swap\n",
436 		array_size, length * PAGE_SIZE);
437 	printk(KERN_INFO
438 	"swap_cgroup can be disabled by noswapaccount boot option.\n");
439 
440 	return 0;
441 nomem:
442 	printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
443 	printk(KERN_INFO
444 		"swap_cgroup can be disabled by noswapaccount boot option\n");
445 	return -ENOMEM;
446 }
447 
swap_cgroup_swapoff(int type)448 void swap_cgroup_swapoff(int type)
449 {
450 	int i;
451 	struct swap_cgroup_ctrl *ctrl;
452 
453 	if (!do_swap_account)
454 		return;
455 
456 	mutex_lock(&swap_cgroup_mutex);
457 	ctrl = &swap_cgroup_ctrl[type];
458 	if (ctrl->map) {
459 		for (i = 0; i < ctrl->length; i++) {
460 			struct page *page = ctrl->map[i];
461 			if (page)
462 				__free_page(page);
463 		}
464 		vfree(ctrl->map);
465 		ctrl->map = NULL;
466 		ctrl->length = 0;
467 	}
468 	mutex_unlock(&swap_cgroup_mutex);
469 }
470 
471 #endif
472