• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/swap.h>
31 
32 static struct vfsmount *shm_mnt;
33 
34 #ifdef CONFIG_SHMEM
35 /*
36  * This virtual memory filesystem is heavily based on the ramfs. It
37  * extends ramfs by the ability to use swap and honor resource limits
38  * which makes it a completely usable filesystem.
39  */
40 
41 #include <linux/xattr.h>
42 #include <linux/exportfs.h>
43 #include <linux/generic_acl.h>
44 #include <linux/mman.h>
45 #include <linux/pagemap.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/backing-dev.h>
49 #include <linux/shmem_fs.h>
50 #include <linux/writeback.h>
51 #include <linux/vfs.h>
52 #include <linux/blkdev.h>
53 #include <linux/security.h>
54 #include <linux/swapops.h>
55 #include <linux/mempolicy.h>
56 #include <linux/namei.h>
57 #include <linux/ctype.h>
58 #include <linux/migrate.h>
59 #include <linux/highmem.h>
60 #include <linux/seq_file.h>
61 #include <linux/magic.h>
62 
63 #include <asm/uaccess.h>
64 #include <asm/div64.h>
65 #include <asm/pgtable.h>
66 
67 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
68 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
69 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
70 
71 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
72 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
73 
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75 
76 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
77 #define SHMEM_PAGEIN	 VM_READ
78 #define SHMEM_TRUNCATE	 VM_WRITE
79 
80 /* Definition to limit shmem_truncate's steps between cond_rescheds */
81 #define LATENCY_LIMIT	 64
82 
83 /* Pretend that each entry is of this size in directory's i_size */
84 #define BOGO_DIRENT_SIZE 20
85 
86 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
87 enum sgp_type {
88 	SGP_READ,	/* don't exceed i_size, don't allocate page */
89 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
90 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
91 	SGP_WRITE,	/* may exceed i_size, may allocate page */
92 };
93 
94 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)95 static unsigned long shmem_default_max_blocks(void)
96 {
97 	return totalram_pages / 2;
98 }
99 
shmem_default_max_inodes(void)100 static unsigned long shmem_default_max_inodes(void)
101 {
102 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103 }
104 #endif
105 
106 static int shmem_getpage(struct inode *inode, unsigned long idx,
107 			 struct page **pagep, enum sgp_type sgp, int *type);
108 
shmem_dir_alloc(gfp_t gfp_mask)109 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
110 {
111 	/*
112 	 * The above definition of ENTRIES_PER_PAGE, and the use of
113 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
114 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
115 	 *
116 	 * Mobility flags are masked out as swap vectors cannot move
117 	 */
118 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
119 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
120 }
121 
shmem_dir_free(struct page * page)122 static inline void shmem_dir_free(struct page *page)
123 {
124 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
125 }
126 
shmem_dir_map(struct page * page)127 static struct page **shmem_dir_map(struct page *page)
128 {
129 	return (struct page **)kmap_atomic(page, KM_USER0);
130 }
131 
shmem_dir_unmap(struct page ** dir)132 static inline void shmem_dir_unmap(struct page **dir)
133 {
134 	kunmap_atomic(dir, KM_USER0);
135 }
136 
shmem_swp_map(struct page * page)137 static swp_entry_t *shmem_swp_map(struct page *page)
138 {
139 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
140 }
141 
shmem_swp_balance_unmap(void)142 static inline void shmem_swp_balance_unmap(void)
143 {
144 	/*
145 	 * When passing a pointer to an i_direct entry, to code which
146 	 * also handles indirect entries and so will shmem_swp_unmap,
147 	 * we must arrange for the preempt count to remain in balance.
148 	 * What kmap_atomic of a lowmem page does depends on config
149 	 * and architecture, so pretend to kmap_atomic some lowmem page.
150 	 */
151 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
152 }
153 
shmem_swp_unmap(swp_entry_t * entry)154 static inline void shmem_swp_unmap(swp_entry_t *entry)
155 {
156 	kunmap_atomic(entry, KM_USER1);
157 }
158 
SHMEM_SB(struct super_block * sb)159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
shmem_acct_size(unsigned long flags,loff_t size)170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
174 }
175 
shmem_unacct_size(unsigned long flags,loff_t size)176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
182 /*
183  * ... whereas tmpfs objects are accounted incrementally as
184  * pages are allocated, in order to allow huge sparse files.
185  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
186  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
187  */
shmem_acct_block(unsigned long flags)188 static inline int shmem_acct_block(unsigned long flags)
189 {
190 	return (flags & VM_NORESERVE) ?
191 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
192 }
193 
shmem_unacct_blocks(unsigned long flags,long pages)194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195 {
196 	if (flags & VM_NORESERVE)
197 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
198 }
199 
200 static const struct super_operations shmem_ops;
201 static const struct address_space_operations shmem_aops;
202 static const struct file_operations shmem_file_operations;
203 static const struct inode_operations shmem_inode_operations;
204 static const struct inode_operations shmem_dir_inode_operations;
205 static const struct inode_operations shmem_special_inode_operations;
206 static struct vm_operations_struct shmem_vm_ops;
207 
208 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
209 	.ra_pages	= 0,	/* No readahead */
210 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
211 	.unplug_io_fn	= default_unplug_io_fn,
212 };
213 
214 static LIST_HEAD(shmem_swaplist);
215 static DEFINE_MUTEX(shmem_swaplist_mutex);
216 
shmem_free_blocks(struct inode * inode,long pages)217 static void shmem_free_blocks(struct inode *inode, long pages)
218 {
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 	if (sbinfo->max_blocks) {
221 		spin_lock(&sbinfo->stat_lock);
222 		sbinfo->free_blocks += pages;
223 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
224 		spin_unlock(&sbinfo->stat_lock);
225 	}
226 }
227 
shmem_reserve_inode(struct super_block * sb)228 static int shmem_reserve_inode(struct super_block *sb)
229 {
230 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
231 	if (sbinfo->max_inodes) {
232 		spin_lock(&sbinfo->stat_lock);
233 		if (!sbinfo->free_inodes) {
234 			spin_unlock(&sbinfo->stat_lock);
235 			return -ENOSPC;
236 		}
237 		sbinfo->free_inodes--;
238 		spin_unlock(&sbinfo->stat_lock);
239 	}
240 	return 0;
241 }
242 
shmem_free_inode(struct super_block * sb)243 static void shmem_free_inode(struct super_block *sb)
244 {
245 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 	if (sbinfo->max_inodes) {
247 		spin_lock(&sbinfo->stat_lock);
248 		sbinfo->free_inodes++;
249 		spin_unlock(&sbinfo->stat_lock);
250 	}
251 }
252 
253 /**
254  * shmem_recalc_inode - recalculate the size of an inode
255  * @inode: inode to recalc
256  *
257  * We have to calculate the free blocks since the mm can drop
258  * undirtied hole pages behind our back.
259  *
260  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
261  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
262  *
263  * It has to be called with the spinlock held.
264  */
shmem_recalc_inode(struct inode * inode)265 static void shmem_recalc_inode(struct inode *inode)
266 {
267 	struct shmem_inode_info *info = SHMEM_I(inode);
268 	long freed;
269 
270 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
271 	if (freed > 0) {
272 		info->alloced -= freed;
273 		shmem_unacct_blocks(info->flags, freed);
274 		shmem_free_blocks(inode, freed);
275 	}
276 }
277 
278 /**
279  * shmem_swp_entry - find the swap vector position in the info structure
280  * @info:  info structure for the inode
281  * @index: index of the page to find
282  * @page:  optional page to add to the structure. Has to be preset to
283  *         all zeros
284  *
285  * If there is no space allocated yet it will return NULL when
286  * page is NULL, else it will use the page for the needed block,
287  * setting it to NULL on return to indicate that it has been used.
288  *
289  * The swap vector is organized the following way:
290  *
291  * There are SHMEM_NR_DIRECT entries directly stored in the
292  * shmem_inode_info structure. So small files do not need an addional
293  * allocation.
294  *
295  * For pages with index > SHMEM_NR_DIRECT there is the pointer
296  * i_indirect which points to a page which holds in the first half
297  * doubly indirect blocks, in the second half triple indirect blocks:
298  *
299  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
300  * following layout (for SHMEM_NR_DIRECT == 16):
301  *
302  * i_indirect -> dir --> 16-19
303  * 	      |	     +-> 20-23
304  * 	      |
305  * 	      +-->dir2 --> 24-27
306  * 	      |	       +-> 28-31
307  * 	      |	       +-> 32-35
308  * 	      |	       +-> 36-39
309  * 	      |
310  * 	      +-->dir3 --> 40-43
311  * 	       	       +-> 44-47
312  * 	      	       +-> 48-51
313  * 	      	       +-> 52-55
314  */
shmem_swp_entry(struct shmem_inode_info * info,unsigned long index,struct page ** page)315 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
316 {
317 	unsigned long offset;
318 	struct page **dir;
319 	struct page *subdir;
320 
321 	if (index < SHMEM_NR_DIRECT) {
322 		shmem_swp_balance_unmap();
323 		return info->i_direct+index;
324 	}
325 	if (!info->i_indirect) {
326 		if (page) {
327 			info->i_indirect = *page;
328 			*page = NULL;
329 		}
330 		return NULL;			/* need another page */
331 	}
332 
333 	index -= SHMEM_NR_DIRECT;
334 	offset = index % ENTRIES_PER_PAGE;
335 	index /= ENTRIES_PER_PAGE;
336 	dir = shmem_dir_map(info->i_indirect);
337 
338 	if (index >= ENTRIES_PER_PAGE/2) {
339 		index -= ENTRIES_PER_PAGE/2;
340 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
341 		index %= ENTRIES_PER_PAGE;
342 		subdir = *dir;
343 		if (!subdir) {
344 			if (page) {
345 				*dir = *page;
346 				*page = NULL;
347 			}
348 			shmem_dir_unmap(dir);
349 			return NULL;		/* need another page */
350 		}
351 		shmem_dir_unmap(dir);
352 		dir = shmem_dir_map(subdir);
353 	}
354 
355 	dir += index;
356 	subdir = *dir;
357 	if (!subdir) {
358 		if (!page || !(subdir = *page)) {
359 			shmem_dir_unmap(dir);
360 			return NULL;		/* need a page */
361 		}
362 		*dir = subdir;
363 		*page = NULL;
364 	}
365 	shmem_dir_unmap(dir);
366 	return shmem_swp_map(subdir) + offset;
367 }
368 
shmem_swp_set(struct shmem_inode_info * info,swp_entry_t * entry,unsigned long value)369 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
370 {
371 	long incdec = value? 1: -1;
372 
373 	entry->val = value;
374 	info->swapped += incdec;
375 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
376 		struct page *page = kmap_atomic_to_page(entry);
377 		set_page_private(page, page_private(page) + incdec);
378 	}
379 }
380 
381 /**
382  * shmem_swp_alloc - get the position of the swap entry for the page.
383  * @info:	info structure for the inode
384  * @index:	index of the page to find
385  * @sgp:	check and recheck i_size? skip allocation?
386  *
387  * If the entry does not exist, allocate it.
388  */
shmem_swp_alloc(struct shmem_inode_info * info,unsigned long index,enum sgp_type sgp)389 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
390 {
391 	struct inode *inode = &info->vfs_inode;
392 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
393 	struct page *page = NULL;
394 	swp_entry_t *entry;
395 
396 	if (sgp != SGP_WRITE &&
397 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
398 		return ERR_PTR(-EINVAL);
399 
400 	while (!(entry = shmem_swp_entry(info, index, &page))) {
401 		if (sgp == SGP_READ)
402 			return shmem_swp_map(ZERO_PAGE(0));
403 		/*
404 		 * Test free_blocks against 1 not 0, since we have 1 data
405 		 * page (and perhaps indirect index pages) yet to allocate:
406 		 * a waste to allocate index if we cannot allocate data.
407 		 */
408 		if (sbinfo->max_blocks) {
409 			spin_lock(&sbinfo->stat_lock);
410 			if (sbinfo->free_blocks <= 1) {
411 				spin_unlock(&sbinfo->stat_lock);
412 				return ERR_PTR(-ENOSPC);
413 			}
414 			sbinfo->free_blocks--;
415 			inode->i_blocks += BLOCKS_PER_PAGE;
416 			spin_unlock(&sbinfo->stat_lock);
417 		}
418 
419 		spin_unlock(&info->lock);
420 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
421 		if (page)
422 			set_page_private(page, 0);
423 		spin_lock(&info->lock);
424 
425 		if (!page) {
426 			shmem_free_blocks(inode, 1);
427 			return ERR_PTR(-ENOMEM);
428 		}
429 		if (sgp != SGP_WRITE &&
430 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
431 			entry = ERR_PTR(-EINVAL);
432 			break;
433 		}
434 		if (info->next_index <= index)
435 			info->next_index = index + 1;
436 	}
437 	if (page) {
438 		/* another task gave its page, or truncated the file */
439 		shmem_free_blocks(inode, 1);
440 		shmem_dir_free(page);
441 	}
442 	if (info->next_index <= index && !IS_ERR(entry))
443 		info->next_index = index + 1;
444 	return entry;
445 }
446 
447 /**
448  * shmem_free_swp - free some swap entries in a directory
449  * @dir:        pointer to the directory
450  * @edir:       pointer after last entry of the directory
451  * @punch_lock: pointer to spinlock when needed for the holepunch case
452  */
shmem_free_swp(swp_entry_t * dir,swp_entry_t * edir,spinlock_t * punch_lock)453 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
454 						spinlock_t *punch_lock)
455 {
456 	spinlock_t *punch_unlock = NULL;
457 	swp_entry_t *ptr;
458 	int freed = 0;
459 
460 	for (ptr = dir; ptr < edir; ptr++) {
461 		if (ptr->val) {
462 			if (unlikely(punch_lock)) {
463 				punch_unlock = punch_lock;
464 				punch_lock = NULL;
465 				spin_lock(punch_unlock);
466 				if (!ptr->val)
467 					continue;
468 			}
469 			free_swap_and_cache(*ptr);
470 			*ptr = (swp_entry_t){0};
471 			freed++;
472 		}
473 	}
474 	if (punch_unlock)
475 		spin_unlock(punch_unlock);
476 	return freed;
477 }
478 
shmem_map_and_free_swp(struct page * subdir,int offset,int limit,struct page *** dir,spinlock_t * punch_lock)479 static int shmem_map_and_free_swp(struct page *subdir, int offset,
480 		int limit, struct page ***dir, spinlock_t *punch_lock)
481 {
482 	swp_entry_t *ptr;
483 	int freed = 0;
484 
485 	ptr = shmem_swp_map(subdir);
486 	for (; offset < limit; offset += LATENCY_LIMIT) {
487 		int size = limit - offset;
488 		if (size > LATENCY_LIMIT)
489 			size = LATENCY_LIMIT;
490 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
491 							punch_lock);
492 		if (need_resched()) {
493 			shmem_swp_unmap(ptr);
494 			if (*dir) {
495 				shmem_dir_unmap(*dir);
496 				*dir = NULL;
497 			}
498 			cond_resched();
499 			ptr = shmem_swp_map(subdir);
500 		}
501 	}
502 	shmem_swp_unmap(ptr);
503 	return freed;
504 }
505 
shmem_free_pages(struct list_head * next)506 static void shmem_free_pages(struct list_head *next)
507 {
508 	struct page *page;
509 	int freed = 0;
510 
511 	do {
512 		page = container_of(next, struct page, lru);
513 		next = next->next;
514 		shmem_dir_free(page);
515 		freed++;
516 		if (freed >= LATENCY_LIMIT) {
517 			cond_resched();
518 			freed = 0;
519 		}
520 	} while (next);
521 }
522 
shmem_truncate_range(struct inode * inode,loff_t start,loff_t end)523 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
524 {
525 	struct shmem_inode_info *info = SHMEM_I(inode);
526 	unsigned long idx;
527 	unsigned long size;
528 	unsigned long limit;
529 	unsigned long stage;
530 	unsigned long diroff;
531 	struct page **dir;
532 	struct page *topdir;
533 	struct page *middir;
534 	struct page *subdir;
535 	swp_entry_t *ptr;
536 	LIST_HEAD(pages_to_free);
537 	long nr_pages_to_free = 0;
538 	long nr_swaps_freed = 0;
539 	int offset;
540 	int freed;
541 	int punch_hole;
542 	spinlock_t *needs_lock;
543 	spinlock_t *punch_lock;
544 	unsigned long upper_limit;
545 
546 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
548 	if (idx >= info->next_index)
549 		return;
550 
551 	spin_lock(&info->lock);
552 	info->flags |= SHMEM_TRUNCATE;
553 	if (likely(end == (loff_t) -1)) {
554 		limit = info->next_index;
555 		upper_limit = SHMEM_MAX_INDEX;
556 		info->next_index = idx;
557 		needs_lock = NULL;
558 		punch_hole = 0;
559 	} else {
560 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
561 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
562 							PAGE_CACHE_SHIFT;
563 			upper_limit = SHMEM_MAX_INDEX;
564 		} else {
565 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
566 			upper_limit = limit;
567 		}
568 		needs_lock = &info->lock;
569 		punch_hole = 1;
570 	}
571 
572 	topdir = info->i_indirect;
573 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
574 		info->i_indirect = NULL;
575 		nr_pages_to_free++;
576 		list_add(&topdir->lru, &pages_to_free);
577 	}
578 	spin_unlock(&info->lock);
579 
580 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
581 		ptr = info->i_direct;
582 		size = limit;
583 		if (size > SHMEM_NR_DIRECT)
584 			size = SHMEM_NR_DIRECT;
585 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
586 	}
587 
588 	/*
589 	 * If there are no indirect blocks or we are punching a hole
590 	 * below indirect blocks, nothing to be done.
591 	 */
592 	if (!topdir || limit <= SHMEM_NR_DIRECT)
593 		goto done2;
594 
595 	/*
596 	 * The truncation case has already dropped info->lock, and we're safe
597 	 * because i_size and next_index have already been lowered, preventing
598 	 * access beyond.  But in the punch_hole case, we still need to take
599 	 * the lock when updating the swap directory, because there might be
600 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
601 	 * shmem_writepage.  However, whenever we find we can remove a whole
602 	 * directory page (not at the misaligned start or end of the range),
603 	 * we first NULLify its pointer in the level above, and then have no
604 	 * need to take the lock when updating its contents: needs_lock and
605 	 * punch_lock (either pointing to info->lock or NULL) manage this.
606 	 */
607 
608 	upper_limit -= SHMEM_NR_DIRECT;
609 	limit -= SHMEM_NR_DIRECT;
610 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
611 	offset = idx % ENTRIES_PER_PAGE;
612 	idx -= offset;
613 
614 	dir = shmem_dir_map(topdir);
615 	stage = ENTRIES_PER_PAGEPAGE/2;
616 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
617 		middir = topdir;
618 		diroff = idx/ENTRIES_PER_PAGE;
619 	} else {
620 		dir += ENTRIES_PER_PAGE/2;
621 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
622 		while (stage <= idx)
623 			stage += ENTRIES_PER_PAGEPAGE;
624 		middir = *dir;
625 		if (*dir) {
626 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
627 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
628 			if (!diroff && !offset && upper_limit >= stage) {
629 				if (needs_lock) {
630 					spin_lock(needs_lock);
631 					*dir = NULL;
632 					spin_unlock(needs_lock);
633 					needs_lock = NULL;
634 				} else
635 					*dir = NULL;
636 				nr_pages_to_free++;
637 				list_add(&middir->lru, &pages_to_free);
638 			}
639 			shmem_dir_unmap(dir);
640 			dir = shmem_dir_map(middir);
641 		} else {
642 			diroff = 0;
643 			offset = 0;
644 			idx = stage;
645 		}
646 	}
647 
648 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
649 		if (unlikely(idx == stage)) {
650 			shmem_dir_unmap(dir);
651 			dir = shmem_dir_map(topdir) +
652 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
653 			while (!*dir) {
654 				dir++;
655 				idx += ENTRIES_PER_PAGEPAGE;
656 				if (idx >= limit)
657 					goto done1;
658 			}
659 			stage = idx + ENTRIES_PER_PAGEPAGE;
660 			middir = *dir;
661 			if (punch_hole)
662 				needs_lock = &info->lock;
663 			if (upper_limit >= stage) {
664 				if (needs_lock) {
665 					spin_lock(needs_lock);
666 					*dir = NULL;
667 					spin_unlock(needs_lock);
668 					needs_lock = NULL;
669 				} else
670 					*dir = NULL;
671 				nr_pages_to_free++;
672 				list_add(&middir->lru, &pages_to_free);
673 			}
674 			shmem_dir_unmap(dir);
675 			cond_resched();
676 			dir = shmem_dir_map(middir);
677 			diroff = 0;
678 		}
679 		punch_lock = needs_lock;
680 		subdir = dir[diroff];
681 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
682 			if (needs_lock) {
683 				spin_lock(needs_lock);
684 				dir[diroff] = NULL;
685 				spin_unlock(needs_lock);
686 				punch_lock = NULL;
687 			} else
688 				dir[diroff] = NULL;
689 			nr_pages_to_free++;
690 			list_add(&subdir->lru, &pages_to_free);
691 		}
692 		if (subdir && page_private(subdir) /* has swap entries */) {
693 			size = limit - idx;
694 			if (size > ENTRIES_PER_PAGE)
695 				size = ENTRIES_PER_PAGE;
696 			freed = shmem_map_and_free_swp(subdir,
697 					offset, size, &dir, punch_lock);
698 			if (!dir)
699 				dir = shmem_dir_map(middir);
700 			nr_swaps_freed += freed;
701 			if (offset || punch_lock) {
702 				spin_lock(&info->lock);
703 				set_page_private(subdir,
704 					page_private(subdir) - freed);
705 				spin_unlock(&info->lock);
706 			} else
707 				BUG_ON(page_private(subdir) != freed);
708 		}
709 		offset = 0;
710 	}
711 done1:
712 	shmem_dir_unmap(dir);
713 done2:
714 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
715 		/*
716 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
717 		 * may have swizzled a page in from swap since vmtruncate or
718 		 * generic_delete_inode did it, before we lowered next_index.
719 		 * Also, though shmem_getpage checks i_size before adding to
720 		 * cache, no recheck after: so fix the narrow window there too.
721 		 *
722 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
723 		 * every time for punch_hole (which never got a chance to clear
724 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
725 		 * yet hardly ever necessary: try to optimize them out later.
726 		 */
727 		truncate_inode_pages_range(inode->i_mapping, start, end);
728 		if (punch_hole)
729 			unmap_mapping_range(inode->i_mapping, start,
730 							end - start, 1);
731 	}
732 
733 	spin_lock(&info->lock);
734 	info->flags &= ~SHMEM_TRUNCATE;
735 	info->swapped -= nr_swaps_freed;
736 	if (nr_pages_to_free)
737 		shmem_free_blocks(inode, nr_pages_to_free);
738 	shmem_recalc_inode(inode);
739 	spin_unlock(&info->lock);
740 
741 	/*
742 	 * Empty swap vector directory pages to be freed?
743 	 */
744 	if (!list_empty(&pages_to_free)) {
745 		pages_to_free.prev->next = NULL;
746 		shmem_free_pages(pages_to_free.next);
747 	}
748 }
749 
shmem_truncate(struct inode * inode)750 static void shmem_truncate(struct inode *inode)
751 {
752 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
753 }
754 
shmem_notify_change(struct dentry * dentry,struct iattr * attr)755 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
756 {
757 	struct inode *inode = dentry->d_inode;
758 	struct page *page = NULL;
759 	int error;
760 
761 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
762 		if (attr->ia_size < inode->i_size) {
763 			/*
764 			 * If truncating down to a partial page, then
765 			 * if that page is already allocated, hold it
766 			 * in memory until the truncation is over, so
767 			 * truncate_partial_page cannnot miss it were
768 			 * it assigned to swap.
769 			 */
770 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
771 				(void) shmem_getpage(inode,
772 					attr->ia_size>>PAGE_CACHE_SHIFT,
773 						&page, SGP_READ, NULL);
774 				if (page)
775 					unlock_page(page);
776 			}
777 			/*
778 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
779 			 * detect if any pages might have been added to cache
780 			 * after truncate_inode_pages.  But we needn't bother
781 			 * if it's being fully truncated to zero-length: the
782 			 * nrpages check is efficient enough in that case.
783 			 */
784 			if (attr->ia_size) {
785 				struct shmem_inode_info *info = SHMEM_I(inode);
786 				spin_lock(&info->lock);
787 				info->flags &= ~SHMEM_PAGEIN;
788 				spin_unlock(&info->lock);
789 			}
790 		}
791 	}
792 
793 	error = inode_change_ok(inode, attr);
794 	if (!error)
795 		error = inode_setattr(inode, attr);
796 #ifdef CONFIG_TMPFS_POSIX_ACL
797 	if (!error && (attr->ia_valid & ATTR_MODE))
798 		error = generic_acl_chmod(inode, &shmem_acl_ops);
799 #endif
800 	if (page)
801 		page_cache_release(page);
802 	return error;
803 }
804 
shmem_delete_inode(struct inode * inode)805 static void shmem_delete_inode(struct inode *inode)
806 {
807 	struct shmem_inode_info *info = SHMEM_I(inode);
808 
809 	if (inode->i_op->truncate == shmem_truncate) {
810 		truncate_inode_pages(inode->i_mapping, 0);
811 		shmem_unacct_size(info->flags, inode->i_size);
812 		inode->i_size = 0;
813 		shmem_truncate(inode);
814 		if (!list_empty(&info->swaplist)) {
815 			mutex_lock(&shmem_swaplist_mutex);
816 			list_del_init(&info->swaplist);
817 			mutex_unlock(&shmem_swaplist_mutex);
818 		}
819 	}
820 	BUG_ON(inode->i_blocks);
821 	shmem_free_inode(inode->i_sb);
822 	clear_inode(inode);
823 }
824 
shmem_find_swp(swp_entry_t entry,swp_entry_t * dir,swp_entry_t * edir)825 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
826 {
827 	swp_entry_t *ptr;
828 
829 	for (ptr = dir; ptr < edir; ptr++) {
830 		if (ptr->val == entry.val)
831 			return ptr - dir;
832 	}
833 	return -1;
834 }
835 
shmem_unuse_inode(struct shmem_inode_info * info,swp_entry_t entry,struct page * page)836 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
837 {
838 	struct inode *inode;
839 	unsigned long idx;
840 	unsigned long size;
841 	unsigned long limit;
842 	unsigned long stage;
843 	struct page **dir;
844 	struct page *subdir;
845 	swp_entry_t *ptr;
846 	int offset;
847 	int error;
848 
849 	idx = 0;
850 	ptr = info->i_direct;
851 	spin_lock(&info->lock);
852 	if (!info->swapped) {
853 		list_del_init(&info->swaplist);
854 		goto lost2;
855 	}
856 	limit = info->next_index;
857 	size = limit;
858 	if (size > SHMEM_NR_DIRECT)
859 		size = SHMEM_NR_DIRECT;
860 	offset = shmem_find_swp(entry, ptr, ptr+size);
861 	if (offset >= 0)
862 		goto found;
863 	if (!info->i_indirect)
864 		goto lost2;
865 
866 	dir = shmem_dir_map(info->i_indirect);
867 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
868 
869 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
870 		if (unlikely(idx == stage)) {
871 			shmem_dir_unmap(dir-1);
872 			if (cond_resched_lock(&info->lock)) {
873 				/* check it has not been truncated */
874 				if (limit > info->next_index) {
875 					limit = info->next_index;
876 					if (idx >= limit)
877 						goto lost2;
878 				}
879 			}
880 			dir = shmem_dir_map(info->i_indirect) +
881 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
882 			while (!*dir) {
883 				dir++;
884 				idx += ENTRIES_PER_PAGEPAGE;
885 				if (idx >= limit)
886 					goto lost1;
887 			}
888 			stage = idx + ENTRIES_PER_PAGEPAGE;
889 			subdir = *dir;
890 			shmem_dir_unmap(dir);
891 			dir = shmem_dir_map(subdir);
892 		}
893 		subdir = *dir;
894 		if (subdir && page_private(subdir)) {
895 			ptr = shmem_swp_map(subdir);
896 			size = limit - idx;
897 			if (size > ENTRIES_PER_PAGE)
898 				size = ENTRIES_PER_PAGE;
899 			offset = shmem_find_swp(entry, ptr, ptr+size);
900 			shmem_swp_unmap(ptr);
901 			if (offset >= 0) {
902 				shmem_dir_unmap(dir);
903 				goto found;
904 			}
905 		}
906 	}
907 lost1:
908 	shmem_dir_unmap(dir-1);
909 lost2:
910 	spin_unlock(&info->lock);
911 	return 0;
912 found:
913 	idx += offset;
914 	inode = igrab(&info->vfs_inode);
915 	spin_unlock(&info->lock);
916 
917 	/*
918 	 * Move _head_ to start search for next from here.
919 	 * But be careful: shmem_delete_inode checks list_empty without taking
920 	 * mutex, and there's an instant in list_move_tail when info->swaplist
921 	 * would appear empty, if it were the only one on shmem_swaplist.  We
922 	 * could avoid doing it if inode NULL; or use this minor optimization.
923 	 */
924 	if (shmem_swaplist.next != &info->swaplist)
925 		list_move_tail(&shmem_swaplist, &info->swaplist);
926 	mutex_unlock(&shmem_swaplist_mutex);
927 
928 	error = 1;
929 	if (!inode)
930 		goto out;
931 	/*
932 	 * Charge page using GFP_KERNEL while we can wait.
933 	 * Charged back to the user(not to caller) when swap account is used.
934 	 * add_to_page_cache() will be called with GFP_NOWAIT.
935 	 */
936 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
937 	if (error)
938 		goto out;
939 	error = radix_tree_preload(GFP_KERNEL);
940 	if (error) {
941 		mem_cgroup_uncharge_cache_page(page);
942 		goto out;
943 	}
944 	error = 1;
945 
946 	spin_lock(&info->lock);
947 	ptr = shmem_swp_entry(info, idx, NULL);
948 	if (ptr && ptr->val == entry.val) {
949 		error = add_to_page_cache_locked(page, inode->i_mapping,
950 						idx, GFP_NOWAIT);
951 		/* does mem_cgroup_uncharge_cache_page on error */
952 	} else	/* we must compensate for our precharge above */
953 		mem_cgroup_uncharge_cache_page(page);
954 
955 	if (error == -EEXIST) {
956 		struct page *filepage = find_get_page(inode->i_mapping, idx);
957 		error = 1;
958 		if (filepage) {
959 			/*
960 			 * There might be a more uptodate page coming down
961 			 * from a stacked writepage: forget our swappage if so.
962 			 */
963 			if (PageUptodate(filepage))
964 				error = 0;
965 			page_cache_release(filepage);
966 		}
967 	}
968 	if (!error) {
969 		delete_from_swap_cache(page);
970 		set_page_dirty(page);
971 		info->flags |= SHMEM_PAGEIN;
972 		shmem_swp_set(info, ptr, 0);
973 		swap_free(entry);
974 		error = 1;	/* not an error, but entry was found */
975 	}
976 	if (ptr)
977 		shmem_swp_unmap(ptr);
978 	spin_unlock(&info->lock);
979 	radix_tree_preload_end();
980 out:
981 	unlock_page(page);
982 	page_cache_release(page);
983 	iput(inode);		/* allows for NULL */
984 	return error;
985 }
986 
987 /*
988  * shmem_unuse() search for an eventually swapped out shmem page.
989  */
shmem_unuse(swp_entry_t entry,struct page * page)990 int shmem_unuse(swp_entry_t entry, struct page *page)
991 {
992 	struct list_head *p, *next;
993 	struct shmem_inode_info *info;
994 	int found = 0;
995 
996 	mutex_lock(&shmem_swaplist_mutex);
997 	list_for_each_safe(p, next, &shmem_swaplist) {
998 		info = list_entry(p, struct shmem_inode_info, swaplist);
999 		found = shmem_unuse_inode(info, entry, page);
1000 		cond_resched();
1001 		if (found)
1002 			goto out;
1003 	}
1004 	mutex_unlock(&shmem_swaplist_mutex);
1005 out:	return found;	/* 0 or 1 or -ENOMEM */
1006 }
1007 
1008 /*
1009  * Move the page from the page cache to the swap cache.
1010  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1011 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1012 {
1013 	struct shmem_inode_info *info;
1014 	swp_entry_t *entry, swap;
1015 	struct address_space *mapping;
1016 	unsigned long index;
1017 	struct inode *inode;
1018 
1019 	BUG_ON(!PageLocked(page));
1020 	mapping = page->mapping;
1021 	index = page->index;
1022 	inode = mapping->host;
1023 	info = SHMEM_I(inode);
1024 	if (info->flags & VM_LOCKED)
1025 		goto redirty;
1026 	if (!total_swap_pages)
1027 		goto redirty;
1028 
1029 	/*
1030 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1031 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1032 	 * may use the ->writepage of its underlying filesystem, in which case
1033 	 * tmpfs should write out to swap only in response to memory pressure,
1034 	 * and not for pdflush or sync.  However, in those cases, we do still
1035 	 * want to check if there's a redundant swappage to be discarded.
1036 	 */
1037 	if (wbc->for_reclaim)
1038 		swap = get_swap_page();
1039 	else
1040 		swap.val = 0;
1041 
1042 	spin_lock(&info->lock);
1043 	if (index >= info->next_index) {
1044 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1045 		goto unlock;
1046 	}
1047 	entry = shmem_swp_entry(info, index, NULL);
1048 	if (entry->val) {
1049 		/*
1050 		 * The more uptodate page coming down from a stacked
1051 		 * writepage should replace our old swappage.
1052 		 */
1053 		free_swap_and_cache(*entry);
1054 		shmem_swp_set(info, entry, 0);
1055 	}
1056 	shmem_recalc_inode(inode);
1057 
1058 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1059 		remove_from_page_cache(page);
1060 		shmem_swp_set(info, entry, swap.val);
1061 		shmem_swp_unmap(entry);
1062 		if (list_empty(&info->swaplist))
1063 			inode = igrab(inode);
1064 		else
1065 			inode = NULL;
1066 		spin_unlock(&info->lock);
1067 		swap_duplicate(swap);
1068 		BUG_ON(page_mapped(page));
1069 		page_cache_release(page);	/* pagecache ref */
1070 		set_page_dirty(page);
1071 		unlock_page(page);
1072 		if (inode) {
1073 			mutex_lock(&shmem_swaplist_mutex);
1074 			/* move instead of add in case we're racing */
1075 			list_move_tail(&info->swaplist, &shmem_swaplist);
1076 			mutex_unlock(&shmem_swaplist_mutex);
1077 			iput(inode);
1078 		}
1079 		return 0;
1080 	}
1081 
1082 	shmem_swp_unmap(entry);
1083 unlock:
1084 	spin_unlock(&info->lock);
1085 	swap_free(swap);
1086 redirty:
1087 	set_page_dirty(page);
1088 	if (wbc->for_reclaim)
1089 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1090 	unlock_page(page);
1091 	return 0;
1092 }
1093 
1094 #ifdef CONFIG_NUMA
1095 #ifdef CONFIG_TMPFS
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1096 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1097 {
1098 	char buffer[64];
1099 
1100 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1101 		return;		/* show nothing */
1102 
1103 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1104 
1105 	seq_printf(seq, ",mpol=%s", buffer);
1106 }
1107 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1108 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1109 {
1110 	struct mempolicy *mpol = NULL;
1111 	if (sbinfo->mpol) {
1112 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1113 		mpol = sbinfo->mpol;
1114 		mpol_get(mpol);
1115 		spin_unlock(&sbinfo->stat_lock);
1116 	}
1117 	return mpol;
1118 }
1119 #endif /* CONFIG_TMPFS */
1120 
shmem_swapin(swp_entry_t entry,gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1121 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1122 			struct shmem_inode_info *info, unsigned long idx)
1123 {
1124 	struct mempolicy mpol, *spol;
1125 	struct vm_area_struct pvma;
1126 	struct page *page;
1127 
1128 	spol = mpol_cond_copy(&mpol,
1129 				mpol_shared_policy_lookup(&info->policy, idx));
1130 
1131 	/* Create a pseudo vma that just contains the policy */
1132 	pvma.vm_start = 0;
1133 	pvma.vm_pgoff = idx;
1134 	pvma.vm_ops = NULL;
1135 	pvma.vm_policy = spol;
1136 	page = swapin_readahead(entry, gfp, &pvma, 0);
1137 	return page;
1138 }
1139 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1140 static struct page *shmem_alloc_page(gfp_t gfp,
1141 			struct shmem_inode_info *info, unsigned long idx)
1142 {
1143 	struct vm_area_struct pvma;
1144 
1145 	/* Create a pseudo vma that just contains the policy */
1146 	pvma.vm_start = 0;
1147 	pvma.vm_pgoff = idx;
1148 	pvma.vm_ops = NULL;
1149 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1150 
1151 	/*
1152 	 * alloc_page_vma() will drop the shared policy reference
1153 	 */
1154 	return alloc_page_vma(gfp, &pvma, 0);
1155 }
1156 #else /* !CONFIG_NUMA */
1157 #ifdef CONFIG_TMPFS
shmem_show_mpol(struct seq_file * seq,struct mempolicy * p)1158 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1159 {
1160 }
1161 #endif /* CONFIG_TMPFS */
1162 
shmem_swapin(swp_entry_t entry,gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1163 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1164 			struct shmem_inode_info *info, unsigned long idx)
1165 {
1166 	return swapin_readahead(entry, gfp, NULL, 0);
1167 }
1168 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,unsigned long idx)1169 static inline struct page *shmem_alloc_page(gfp_t gfp,
1170 			struct shmem_inode_info *info, unsigned long idx)
1171 {
1172 	return alloc_page(gfp);
1173 }
1174 #endif /* CONFIG_NUMA */
1175 
1176 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1177 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1178 {
1179 	return NULL;
1180 }
1181 #endif
1182 
1183 /*
1184  * shmem_getpage - either get the page from swap or allocate a new one
1185  *
1186  * If we allocate a new one we do not mark it dirty. That's up to the
1187  * vm. If we swap it in we mark it dirty since we also free the swap
1188  * entry since a page cannot live in both the swap and page cache
1189  */
shmem_getpage(struct inode * inode,unsigned long idx,struct page ** pagep,enum sgp_type sgp,int * type)1190 static int shmem_getpage(struct inode *inode, unsigned long idx,
1191 			struct page **pagep, enum sgp_type sgp, int *type)
1192 {
1193 	struct address_space *mapping = inode->i_mapping;
1194 	struct shmem_inode_info *info = SHMEM_I(inode);
1195 	struct shmem_sb_info *sbinfo;
1196 	struct page *filepage = *pagep;
1197 	struct page *swappage;
1198 	swp_entry_t *entry;
1199 	swp_entry_t swap;
1200 	gfp_t gfp;
1201 	int error;
1202 
1203 	if (idx >= SHMEM_MAX_INDEX)
1204 		return -EFBIG;
1205 
1206 	if (type)
1207 		*type = 0;
1208 
1209 	/*
1210 	 * Normally, filepage is NULL on entry, and either found
1211 	 * uptodate immediately, or allocated and zeroed, or read
1212 	 * in under swappage, which is then assigned to filepage.
1213 	 * But shmem_readpage (required for splice) passes in a locked
1214 	 * filepage, which may be found not uptodate by other callers
1215 	 * too, and may need to be copied from the swappage read in.
1216 	 */
1217 repeat:
1218 	if (!filepage)
1219 		filepage = find_lock_page(mapping, idx);
1220 	if (filepage && PageUptodate(filepage))
1221 		goto done;
1222 	error = 0;
1223 	gfp = mapping_gfp_mask(mapping);
1224 	if (!filepage) {
1225 		/*
1226 		 * Try to preload while we can wait, to not make a habit of
1227 		 * draining atomic reserves; but don't latch on to this cpu.
1228 		 */
1229 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1230 		if (error)
1231 			goto failed;
1232 		radix_tree_preload_end();
1233 	}
1234 
1235 	spin_lock(&info->lock);
1236 	shmem_recalc_inode(inode);
1237 	entry = shmem_swp_alloc(info, idx, sgp);
1238 	if (IS_ERR(entry)) {
1239 		spin_unlock(&info->lock);
1240 		error = PTR_ERR(entry);
1241 		goto failed;
1242 	}
1243 	swap = *entry;
1244 
1245 	if (swap.val) {
1246 		/* Look it up and read it in.. */
1247 		swappage = lookup_swap_cache(swap);
1248 		if (!swappage) {
1249 			shmem_swp_unmap(entry);
1250 			/* here we actually do the io */
1251 			if (type && !(*type & VM_FAULT_MAJOR)) {
1252 				__count_vm_event(PGMAJFAULT);
1253 				*type |= VM_FAULT_MAJOR;
1254 			}
1255 			spin_unlock(&info->lock);
1256 			swappage = shmem_swapin(swap, gfp, info, idx);
1257 			if (!swappage) {
1258 				spin_lock(&info->lock);
1259 				entry = shmem_swp_alloc(info, idx, sgp);
1260 				if (IS_ERR(entry))
1261 					error = PTR_ERR(entry);
1262 				else {
1263 					if (entry->val == swap.val)
1264 						error = -ENOMEM;
1265 					shmem_swp_unmap(entry);
1266 				}
1267 				spin_unlock(&info->lock);
1268 				if (error)
1269 					goto failed;
1270 				goto repeat;
1271 			}
1272 			wait_on_page_locked(swappage);
1273 			page_cache_release(swappage);
1274 			goto repeat;
1275 		}
1276 
1277 		/* We have to do this with page locked to prevent races */
1278 		if (!trylock_page(swappage)) {
1279 			shmem_swp_unmap(entry);
1280 			spin_unlock(&info->lock);
1281 			wait_on_page_locked(swappage);
1282 			page_cache_release(swappage);
1283 			goto repeat;
1284 		}
1285 		if (PageWriteback(swappage)) {
1286 			shmem_swp_unmap(entry);
1287 			spin_unlock(&info->lock);
1288 			wait_on_page_writeback(swappage);
1289 			unlock_page(swappage);
1290 			page_cache_release(swappage);
1291 			goto repeat;
1292 		}
1293 		if (!PageUptodate(swappage)) {
1294 			shmem_swp_unmap(entry);
1295 			spin_unlock(&info->lock);
1296 			unlock_page(swappage);
1297 			page_cache_release(swappage);
1298 			error = -EIO;
1299 			goto failed;
1300 		}
1301 
1302 		if (filepage) {
1303 			shmem_swp_set(info, entry, 0);
1304 			shmem_swp_unmap(entry);
1305 			delete_from_swap_cache(swappage);
1306 			spin_unlock(&info->lock);
1307 			copy_highpage(filepage, swappage);
1308 			unlock_page(swappage);
1309 			page_cache_release(swappage);
1310 			flush_dcache_page(filepage);
1311 			SetPageUptodate(filepage);
1312 			set_page_dirty(filepage);
1313 			swap_free(swap);
1314 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1315 					idx, GFP_NOWAIT))) {
1316 			info->flags |= SHMEM_PAGEIN;
1317 			shmem_swp_set(info, entry, 0);
1318 			shmem_swp_unmap(entry);
1319 			delete_from_swap_cache(swappage);
1320 			spin_unlock(&info->lock);
1321 			filepage = swappage;
1322 			set_page_dirty(filepage);
1323 			swap_free(swap);
1324 		} else {
1325 			shmem_swp_unmap(entry);
1326 			spin_unlock(&info->lock);
1327 			if (error == -ENOMEM) {
1328 				/* allow reclaim from this memory cgroup */
1329 				error = mem_cgroup_shrink_usage(swappage,
1330 								current->mm,
1331 								gfp);
1332 				if (error) {
1333 					unlock_page(swappage);
1334 					page_cache_release(swappage);
1335 					goto failed;
1336 				}
1337 			}
1338 			unlock_page(swappage);
1339 			page_cache_release(swappage);
1340 			goto repeat;
1341 		}
1342 	} else if (sgp == SGP_READ && !filepage) {
1343 		shmem_swp_unmap(entry);
1344 		filepage = find_get_page(mapping, idx);
1345 		if (filepage &&
1346 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1347 			spin_unlock(&info->lock);
1348 			wait_on_page_locked(filepage);
1349 			page_cache_release(filepage);
1350 			filepage = NULL;
1351 			goto repeat;
1352 		}
1353 		spin_unlock(&info->lock);
1354 	} else {
1355 		shmem_swp_unmap(entry);
1356 		sbinfo = SHMEM_SB(inode->i_sb);
1357 		if (sbinfo->max_blocks) {
1358 			spin_lock(&sbinfo->stat_lock);
1359 			if (sbinfo->free_blocks == 0 ||
1360 			    shmem_acct_block(info->flags)) {
1361 				spin_unlock(&sbinfo->stat_lock);
1362 				spin_unlock(&info->lock);
1363 				error = -ENOSPC;
1364 				goto failed;
1365 			}
1366 			sbinfo->free_blocks--;
1367 			inode->i_blocks += BLOCKS_PER_PAGE;
1368 			spin_unlock(&sbinfo->stat_lock);
1369 		} else if (shmem_acct_block(info->flags)) {
1370 			spin_unlock(&info->lock);
1371 			error = -ENOSPC;
1372 			goto failed;
1373 		}
1374 
1375 		if (!filepage) {
1376 			int ret;
1377 
1378 			spin_unlock(&info->lock);
1379 			filepage = shmem_alloc_page(gfp, info, idx);
1380 			if (!filepage) {
1381 				shmem_unacct_blocks(info->flags, 1);
1382 				shmem_free_blocks(inode, 1);
1383 				error = -ENOMEM;
1384 				goto failed;
1385 			}
1386 			SetPageSwapBacked(filepage);
1387 
1388 			/* Precharge page while we can wait, compensate after */
1389 			error = mem_cgroup_cache_charge(filepage, current->mm,
1390 					GFP_KERNEL);
1391 			if (error) {
1392 				page_cache_release(filepage);
1393 				shmem_unacct_blocks(info->flags, 1);
1394 				shmem_free_blocks(inode, 1);
1395 				filepage = NULL;
1396 				goto failed;
1397 			}
1398 
1399 			spin_lock(&info->lock);
1400 			entry = shmem_swp_alloc(info, idx, sgp);
1401 			if (IS_ERR(entry))
1402 				error = PTR_ERR(entry);
1403 			else {
1404 				swap = *entry;
1405 				shmem_swp_unmap(entry);
1406 			}
1407 			ret = error || swap.val;
1408 			if (ret)
1409 				mem_cgroup_uncharge_cache_page(filepage);
1410 			else
1411 				ret = add_to_page_cache_lru(filepage, mapping,
1412 						idx, GFP_NOWAIT);
1413 			/*
1414 			 * At add_to_page_cache_lru() failure, uncharge will
1415 			 * be done automatically.
1416 			 */
1417 			if (ret) {
1418 				spin_unlock(&info->lock);
1419 				page_cache_release(filepage);
1420 				shmem_unacct_blocks(info->flags, 1);
1421 				shmem_free_blocks(inode, 1);
1422 				filepage = NULL;
1423 				if (error)
1424 					goto failed;
1425 				goto repeat;
1426 			}
1427 			info->flags |= SHMEM_PAGEIN;
1428 		}
1429 
1430 		info->alloced++;
1431 		spin_unlock(&info->lock);
1432 		clear_highpage(filepage);
1433 		flush_dcache_page(filepage);
1434 		SetPageUptodate(filepage);
1435 		if (sgp == SGP_DIRTY)
1436 			set_page_dirty(filepage);
1437 	}
1438 done:
1439 	*pagep = filepage;
1440 	return 0;
1441 
1442 failed:
1443 	if (*pagep != filepage) {
1444 		unlock_page(filepage);
1445 		page_cache_release(filepage);
1446 	}
1447 	return error;
1448 }
1449 
shmem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1450 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1451 {
1452 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1453 	int error;
1454 	int ret;
1455 
1456 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1457 		return VM_FAULT_SIGBUS;
1458 
1459 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1460 	if (error)
1461 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1462 
1463 	return ret | VM_FAULT_LOCKED;
1464 }
1465 
1466 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * new)1467 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1468 {
1469 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1470 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1471 }
1472 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)1473 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1474 					  unsigned long addr)
1475 {
1476 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1477 	unsigned long idx;
1478 
1479 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1480 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1481 }
1482 #endif
1483 
shmem_lock(struct file * file,int lock,struct user_struct * user)1484 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1485 {
1486 	struct inode *inode = file->f_path.dentry->d_inode;
1487 	struct shmem_inode_info *info = SHMEM_I(inode);
1488 	int retval = -ENOMEM;
1489 
1490 	spin_lock(&info->lock);
1491 	if (lock && !(info->flags & VM_LOCKED)) {
1492 		if (!user_shm_lock(inode->i_size, user))
1493 			goto out_nomem;
1494 		info->flags |= VM_LOCKED;
1495 		mapping_set_unevictable(file->f_mapping);
1496 	}
1497 	if (!lock && (info->flags & VM_LOCKED) && user) {
1498 		user_shm_unlock(inode->i_size, user);
1499 		info->flags &= ~VM_LOCKED;
1500 		mapping_clear_unevictable(file->f_mapping);
1501 		scan_mapping_unevictable_pages(file->f_mapping);
1502 	}
1503 	retval = 0;
1504 
1505 out_nomem:
1506 	spin_unlock(&info->lock);
1507 	return retval;
1508 }
1509 
shmem_mmap(struct file * file,struct vm_area_struct * vma)1510 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1511 {
1512 	file_accessed(file);
1513 	vma->vm_ops = &shmem_vm_ops;
1514 	vma->vm_flags |= VM_CAN_NONLINEAR;
1515 	return 0;
1516 }
1517 
shmem_get_inode(struct super_block * sb,int mode,dev_t dev,unsigned long flags)1518 static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1519 					dev_t dev, unsigned long flags)
1520 {
1521 	struct inode *inode;
1522 	struct shmem_inode_info *info;
1523 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1524 
1525 	if (shmem_reserve_inode(sb))
1526 		return NULL;
1527 
1528 	inode = new_inode(sb);
1529 	if (inode) {
1530 		inode->i_mode = mode;
1531 		inode->i_uid = current_fsuid();
1532 		inode->i_gid = current_fsgid();
1533 		inode->i_blocks = 0;
1534 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1535 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1536 		inode->i_generation = get_seconds();
1537 		info = SHMEM_I(inode);
1538 		memset(info, 0, (char *)inode - (char *)info);
1539 		spin_lock_init(&info->lock);
1540 		info->flags = flags & VM_NORESERVE;
1541 		INIT_LIST_HEAD(&info->swaplist);
1542 
1543 		switch (mode & S_IFMT) {
1544 		default:
1545 			inode->i_op = &shmem_special_inode_operations;
1546 			init_special_inode(inode, mode, dev);
1547 			break;
1548 		case S_IFREG:
1549 			inode->i_mapping->a_ops = &shmem_aops;
1550 			inode->i_op = &shmem_inode_operations;
1551 			inode->i_fop = &shmem_file_operations;
1552 			mpol_shared_policy_init(&info->policy,
1553 						 shmem_get_sbmpol(sbinfo));
1554 			break;
1555 		case S_IFDIR:
1556 			inc_nlink(inode);
1557 			/* Some things misbehave if size == 0 on a directory */
1558 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1559 			inode->i_op = &shmem_dir_inode_operations;
1560 			inode->i_fop = &simple_dir_operations;
1561 			break;
1562 		case S_IFLNK:
1563 			/*
1564 			 * Must not load anything in the rbtree,
1565 			 * mpol_free_shared_policy will not be called.
1566 			 */
1567 			mpol_shared_policy_init(&info->policy, NULL);
1568 			break;
1569 		}
1570 	} else
1571 		shmem_free_inode(sb);
1572 	return inode;
1573 }
1574 
1575 #ifdef CONFIG_TMPFS
1576 static const struct inode_operations shmem_symlink_inode_operations;
1577 static const struct inode_operations shmem_symlink_inline_operations;
1578 
1579 /*
1580  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1581  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1582  * below the loop driver, in the generic fashion that many filesystems support.
1583  */
shmem_readpage(struct file * file,struct page * page)1584 static int shmem_readpage(struct file *file, struct page *page)
1585 {
1586 	struct inode *inode = page->mapping->host;
1587 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1588 	unlock_page(page);
1589 	return error;
1590 }
1591 
1592 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1593 shmem_write_begin(struct file *file, struct address_space *mapping,
1594 			loff_t pos, unsigned len, unsigned flags,
1595 			struct page **pagep, void **fsdata)
1596 {
1597 	struct inode *inode = mapping->host;
1598 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1599 	*pagep = NULL;
1600 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1601 }
1602 
1603 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1604 shmem_write_end(struct file *file, struct address_space *mapping,
1605 			loff_t pos, unsigned len, unsigned copied,
1606 			struct page *page, void *fsdata)
1607 {
1608 	struct inode *inode = mapping->host;
1609 
1610 	if (pos + copied > inode->i_size)
1611 		i_size_write(inode, pos + copied);
1612 
1613 	unlock_page(page);
1614 	set_page_dirty(page);
1615 	page_cache_release(page);
1616 
1617 	return copied;
1618 }
1619 
do_shmem_file_read(struct file * filp,loff_t * ppos,read_descriptor_t * desc,read_actor_t actor)1620 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1621 {
1622 	struct inode *inode = filp->f_path.dentry->d_inode;
1623 	struct address_space *mapping = inode->i_mapping;
1624 	unsigned long index, offset;
1625 	enum sgp_type sgp = SGP_READ;
1626 
1627 	/*
1628 	 * Might this read be for a stacking filesystem?  Then when reading
1629 	 * holes of a sparse file, we actually need to allocate those pages,
1630 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1631 	 */
1632 	if (segment_eq(get_fs(), KERNEL_DS))
1633 		sgp = SGP_DIRTY;
1634 
1635 	index = *ppos >> PAGE_CACHE_SHIFT;
1636 	offset = *ppos & ~PAGE_CACHE_MASK;
1637 
1638 	for (;;) {
1639 		struct page *page = NULL;
1640 		unsigned long end_index, nr, ret;
1641 		loff_t i_size = i_size_read(inode);
1642 
1643 		end_index = i_size >> PAGE_CACHE_SHIFT;
1644 		if (index > end_index)
1645 			break;
1646 		if (index == end_index) {
1647 			nr = i_size & ~PAGE_CACHE_MASK;
1648 			if (nr <= offset)
1649 				break;
1650 		}
1651 
1652 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1653 		if (desc->error) {
1654 			if (desc->error == -EINVAL)
1655 				desc->error = 0;
1656 			break;
1657 		}
1658 		if (page)
1659 			unlock_page(page);
1660 
1661 		/*
1662 		 * We must evaluate after, since reads (unlike writes)
1663 		 * are called without i_mutex protection against truncate
1664 		 */
1665 		nr = PAGE_CACHE_SIZE;
1666 		i_size = i_size_read(inode);
1667 		end_index = i_size >> PAGE_CACHE_SHIFT;
1668 		if (index == end_index) {
1669 			nr = i_size & ~PAGE_CACHE_MASK;
1670 			if (nr <= offset) {
1671 				if (page)
1672 					page_cache_release(page);
1673 				break;
1674 			}
1675 		}
1676 		nr -= offset;
1677 
1678 		if (page) {
1679 			/*
1680 			 * If users can be writing to this page using arbitrary
1681 			 * virtual addresses, take care about potential aliasing
1682 			 * before reading the page on the kernel side.
1683 			 */
1684 			if (mapping_writably_mapped(mapping))
1685 				flush_dcache_page(page);
1686 			/*
1687 			 * Mark the page accessed if we read the beginning.
1688 			 */
1689 			if (!offset)
1690 				mark_page_accessed(page);
1691 		} else {
1692 			page = ZERO_PAGE(0);
1693 			page_cache_get(page);
1694 		}
1695 
1696 		/*
1697 		 * Ok, we have the page, and it's up-to-date, so
1698 		 * now we can copy it to user space...
1699 		 *
1700 		 * The actor routine returns how many bytes were actually used..
1701 		 * NOTE! This may not be the same as how much of a user buffer
1702 		 * we filled up (we may be padding etc), so we can only update
1703 		 * "pos" here (the actor routine has to update the user buffer
1704 		 * pointers and the remaining count).
1705 		 */
1706 		ret = actor(desc, page, offset, nr);
1707 		offset += ret;
1708 		index += offset >> PAGE_CACHE_SHIFT;
1709 		offset &= ~PAGE_CACHE_MASK;
1710 
1711 		page_cache_release(page);
1712 		if (ret != nr || !desc->count)
1713 			break;
1714 
1715 		cond_resched();
1716 	}
1717 
1718 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1719 	file_accessed(filp);
1720 }
1721 
shmem_file_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1722 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1723 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1724 {
1725 	struct file *filp = iocb->ki_filp;
1726 	ssize_t retval;
1727 	unsigned long seg;
1728 	size_t count;
1729 	loff_t *ppos = &iocb->ki_pos;
1730 
1731 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1732 	if (retval)
1733 		return retval;
1734 
1735 	for (seg = 0; seg < nr_segs; seg++) {
1736 		read_descriptor_t desc;
1737 
1738 		desc.written = 0;
1739 		desc.arg.buf = iov[seg].iov_base;
1740 		desc.count = iov[seg].iov_len;
1741 		if (desc.count == 0)
1742 			continue;
1743 		desc.error = 0;
1744 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1745 		retval += desc.written;
1746 		if (desc.error) {
1747 			retval = retval ?: desc.error;
1748 			break;
1749 		}
1750 		if (desc.count > 0)
1751 			break;
1752 	}
1753 	return retval;
1754 }
1755 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)1756 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1757 {
1758 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1759 
1760 	buf->f_type = TMPFS_MAGIC;
1761 	buf->f_bsize = PAGE_CACHE_SIZE;
1762 	buf->f_namelen = NAME_MAX;
1763 	spin_lock(&sbinfo->stat_lock);
1764 	if (sbinfo->max_blocks) {
1765 		buf->f_blocks = sbinfo->max_blocks;
1766 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1767 	}
1768 	if (sbinfo->max_inodes) {
1769 		buf->f_files = sbinfo->max_inodes;
1770 		buf->f_ffree = sbinfo->free_inodes;
1771 	}
1772 	/* else leave those fields 0 like simple_statfs */
1773 	spin_unlock(&sbinfo->stat_lock);
1774 	return 0;
1775 }
1776 
1777 /*
1778  * File creation. Allocate an inode, and we're done..
1779  */
1780 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t dev)1781 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1782 {
1783 	struct inode *inode;
1784 	int error = -ENOSPC;
1785 
1786 	inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1787 	if (inode) {
1788 		error = security_inode_init_security(inode, dir, NULL, NULL,
1789 						     NULL);
1790 		if (error) {
1791 			if (error != -EOPNOTSUPP) {
1792 				iput(inode);
1793 				return error;
1794 			}
1795 		}
1796 		error = shmem_acl_init(inode, dir);
1797 		if (error) {
1798 			iput(inode);
1799 			return error;
1800 		}
1801 		if (dir->i_mode & S_ISGID) {
1802 			inode->i_gid = dir->i_gid;
1803 			if (S_ISDIR(mode))
1804 				inode->i_mode |= S_ISGID;
1805 		}
1806 		dir->i_size += BOGO_DIRENT_SIZE;
1807 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1808 		d_instantiate(dentry, inode);
1809 		dget(dentry); /* Extra count - pin the dentry in core */
1810 	}
1811 	return error;
1812 }
1813 
shmem_mkdir(struct inode * dir,struct dentry * dentry,int mode)1814 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1815 {
1816 	int error;
1817 
1818 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1819 		return error;
1820 	inc_nlink(dir);
1821 	return 0;
1822 }
1823 
shmem_create(struct inode * dir,struct dentry * dentry,int mode,struct nameidata * nd)1824 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1825 		struct nameidata *nd)
1826 {
1827 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1828 }
1829 
1830 /*
1831  * Link a file..
1832  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)1833 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1834 {
1835 	struct inode *inode = old_dentry->d_inode;
1836 	int ret;
1837 
1838 	/*
1839 	 * No ordinary (disk based) filesystem counts links as inodes;
1840 	 * but each new link needs a new dentry, pinning lowmem, and
1841 	 * tmpfs dentries cannot be pruned until they are unlinked.
1842 	 */
1843 	ret = shmem_reserve_inode(inode->i_sb);
1844 	if (ret)
1845 		goto out;
1846 
1847 	dir->i_size += BOGO_DIRENT_SIZE;
1848 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1849 	inc_nlink(inode);
1850 	atomic_inc(&inode->i_count);	/* New dentry reference */
1851 	dget(dentry);		/* Extra pinning count for the created dentry */
1852 	d_instantiate(dentry, inode);
1853 out:
1854 	return ret;
1855 }
1856 
shmem_unlink(struct inode * dir,struct dentry * dentry)1857 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1858 {
1859 	struct inode *inode = dentry->d_inode;
1860 
1861 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1862 		shmem_free_inode(inode->i_sb);
1863 
1864 	dir->i_size -= BOGO_DIRENT_SIZE;
1865 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1866 	drop_nlink(inode);
1867 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1868 	return 0;
1869 }
1870 
shmem_rmdir(struct inode * dir,struct dentry * dentry)1871 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1872 {
1873 	if (!simple_empty(dentry))
1874 		return -ENOTEMPTY;
1875 
1876 	drop_nlink(dentry->d_inode);
1877 	drop_nlink(dir);
1878 	return shmem_unlink(dir, dentry);
1879 }
1880 
1881 /*
1882  * The VFS layer already does all the dentry stuff for rename,
1883  * we just have to decrement the usage count for the target if
1884  * it exists so that the VFS layer correctly free's it when it
1885  * gets overwritten.
1886  */
shmem_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1887 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1888 {
1889 	struct inode *inode = old_dentry->d_inode;
1890 	int they_are_dirs = S_ISDIR(inode->i_mode);
1891 
1892 	if (!simple_empty(new_dentry))
1893 		return -ENOTEMPTY;
1894 
1895 	if (new_dentry->d_inode) {
1896 		(void) shmem_unlink(new_dir, new_dentry);
1897 		if (they_are_dirs)
1898 			drop_nlink(old_dir);
1899 	} else if (they_are_dirs) {
1900 		drop_nlink(old_dir);
1901 		inc_nlink(new_dir);
1902 	}
1903 
1904 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1905 	new_dir->i_size += BOGO_DIRENT_SIZE;
1906 	old_dir->i_ctime = old_dir->i_mtime =
1907 	new_dir->i_ctime = new_dir->i_mtime =
1908 	inode->i_ctime = CURRENT_TIME;
1909 	return 0;
1910 }
1911 
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)1912 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1913 {
1914 	int error;
1915 	int len;
1916 	struct inode *inode;
1917 	struct page *page = NULL;
1918 	char *kaddr;
1919 	struct shmem_inode_info *info;
1920 
1921 	len = strlen(symname) + 1;
1922 	if (len > PAGE_CACHE_SIZE)
1923 		return -ENAMETOOLONG;
1924 
1925 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1926 	if (!inode)
1927 		return -ENOSPC;
1928 
1929 	error = security_inode_init_security(inode, dir, NULL, NULL,
1930 					     NULL);
1931 	if (error) {
1932 		if (error != -EOPNOTSUPP) {
1933 			iput(inode);
1934 			return error;
1935 		}
1936 		error = 0;
1937 	}
1938 
1939 	info = SHMEM_I(inode);
1940 	inode->i_size = len-1;
1941 	if (len <= (char *)inode - (char *)info) {
1942 		/* do it inline */
1943 		memcpy(info, symname, len);
1944 		inode->i_op = &shmem_symlink_inline_operations;
1945 	} else {
1946 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1947 		if (error) {
1948 			iput(inode);
1949 			return error;
1950 		}
1951 		unlock_page(page);
1952 		inode->i_mapping->a_ops = &shmem_aops;
1953 		inode->i_op = &shmem_symlink_inode_operations;
1954 		kaddr = kmap_atomic(page, KM_USER0);
1955 		memcpy(kaddr, symname, len);
1956 		kunmap_atomic(kaddr, KM_USER0);
1957 		set_page_dirty(page);
1958 		page_cache_release(page);
1959 	}
1960 	if (dir->i_mode & S_ISGID)
1961 		inode->i_gid = dir->i_gid;
1962 	dir->i_size += BOGO_DIRENT_SIZE;
1963 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1964 	d_instantiate(dentry, inode);
1965 	dget(dentry);
1966 	return 0;
1967 }
1968 
shmem_follow_link_inline(struct dentry * dentry,struct nameidata * nd)1969 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1970 {
1971 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1972 	return NULL;
1973 }
1974 
shmem_follow_link(struct dentry * dentry,struct nameidata * nd)1975 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1976 {
1977 	struct page *page = NULL;
1978 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1979 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1980 	if (page)
1981 		unlock_page(page);
1982 	return page;
1983 }
1984 
shmem_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)1985 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1986 {
1987 	if (!IS_ERR(nd_get_link(nd))) {
1988 		struct page *page = cookie;
1989 		kunmap(page);
1990 		mark_page_accessed(page);
1991 		page_cache_release(page);
1992 	}
1993 }
1994 
1995 static const struct inode_operations shmem_symlink_inline_operations = {
1996 	.readlink	= generic_readlink,
1997 	.follow_link	= shmem_follow_link_inline,
1998 };
1999 
2000 static const struct inode_operations shmem_symlink_inode_operations = {
2001 	.truncate	= shmem_truncate,
2002 	.readlink	= generic_readlink,
2003 	.follow_link	= shmem_follow_link,
2004 	.put_link	= shmem_put_link,
2005 };
2006 
2007 #ifdef CONFIG_TMPFS_POSIX_ACL
2008 /*
2009  * Superblocks without xattr inode operations will get security.* xattr
2010  * support from the VFS "for free". As soon as we have any other xattrs
2011  * like ACLs, we also need to implement the security.* handlers at
2012  * filesystem level, though.
2013  */
2014 
shmem_xattr_security_list(struct inode * inode,char * list,size_t list_len,const char * name,size_t name_len)2015 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2016 					size_t list_len, const char *name,
2017 					size_t name_len)
2018 {
2019 	return security_inode_listsecurity(inode, list, list_len);
2020 }
2021 
shmem_xattr_security_get(struct inode * inode,const char * name,void * buffer,size_t size)2022 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2023 				    void *buffer, size_t size)
2024 {
2025 	if (strcmp(name, "") == 0)
2026 		return -EINVAL;
2027 	return xattr_getsecurity(inode, name, buffer, size);
2028 }
2029 
shmem_xattr_security_set(struct inode * inode,const char * name,const void * value,size_t size,int flags)2030 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2031 				    const void *value, size_t size, int flags)
2032 {
2033 	if (strcmp(name, "") == 0)
2034 		return -EINVAL;
2035 	return security_inode_setsecurity(inode, name, value, size, flags);
2036 }
2037 
2038 static struct xattr_handler shmem_xattr_security_handler = {
2039 	.prefix = XATTR_SECURITY_PREFIX,
2040 	.list   = shmem_xattr_security_list,
2041 	.get    = shmem_xattr_security_get,
2042 	.set    = shmem_xattr_security_set,
2043 };
2044 
2045 static struct xattr_handler *shmem_xattr_handlers[] = {
2046 	&shmem_xattr_acl_access_handler,
2047 	&shmem_xattr_acl_default_handler,
2048 	&shmem_xattr_security_handler,
2049 	NULL
2050 };
2051 #endif
2052 
shmem_get_parent(struct dentry * child)2053 static struct dentry *shmem_get_parent(struct dentry *child)
2054 {
2055 	return ERR_PTR(-ESTALE);
2056 }
2057 
shmem_match(struct inode * ino,void * vfh)2058 static int shmem_match(struct inode *ino, void *vfh)
2059 {
2060 	__u32 *fh = vfh;
2061 	__u64 inum = fh[2];
2062 	inum = (inum << 32) | fh[1];
2063 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2064 }
2065 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2066 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2067 		struct fid *fid, int fh_len, int fh_type)
2068 {
2069 	struct inode *inode;
2070 	struct dentry *dentry = NULL;
2071 	u64 inum = fid->raw[2];
2072 	inum = (inum << 32) | fid->raw[1];
2073 
2074 	if (fh_len < 3)
2075 		return NULL;
2076 
2077 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2078 			shmem_match, fid->raw);
2079 	if (inode) {
2080 		dentry = d_find_alias(inode);
2081 		iput(inode);
2082 	}
2083 
2084 	return dentry;
2085 }
2086 
shmem_encode_fh(struct dentry * dentry,__u32 * fh,int * len,int connectable)2087 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2088 				int connectable)
2089 {
2090 	struct inode *inode = dentry->d_inode;
2091 
2092 	if (*len < 3)
2093 		return 255;
2094 
2095 	if (hlist_unhashed(&inode->i_hash)) {
2096 		/* Unfortunately insert_inode_hash is not idempotent,
2097 		 * so as we hash inodes here rather than at creation
2098 		 * time, we need a lock to ensure we only try
2099 		 * to do it once
2100 		 */
2101 		static DEFINE_SPINLOCK(lock);
2102 		spin_lock(&lock);
2103 		if (hlist_unhashed(&inode->i_hash))
2104 			__insert_inode_hash(inode,
2105 					    inode->i_ino + inode->i_generation);
2106 		spin_unlock(&lock);
2107 	}
2108 
2109 	fh[0] = inode->i_generation;
2110 	fh[1] = inode->i_ino;
2111 	fh[2] = ((__u64)inode->i_ino) >> 32;
2112 
2113 	*len = 3;
2114 	return 1;
2115 }
2116 
2117 static const struct export_operations shmem_export_ops = {
2118 	.get_parent     = shmem_get_parent,
2119 	.encode_fh      = shmem_encode_fh,
2120 	.fh_to_dentry	= shmem_fh_to_dentry,
2121 };
2122 
shmem_parse_options(char * options,struct shmem_sb_info * sbinfo,bool remount)2123 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2124 			       bool remount)
2125 {
2126 	char *this_char, *value, *rest;
2127 
2128 	while (options != NULL) {
2129 		this_char = options;
2130 		for (;;) {
2131 			/*
2132 			 * NUL-terminate this option: unfortunately,
2133 			 * mount options form a comma-separated list,
2134 			 * but mpol's nodelist may also contain commas.
2135 			 */
2136 			options = strchr(options, ',');
2137 			if (options == NULL)
2138 				break;
2139 			options++;
2140 			if (!isdigit(*options)) {
2141 				options[-1] = '\0';
2142 				break;
2143 			}
2144 		}
2145 		if (!*this_char)
2146 			continue;
2147 		if ((value = strchr(this_char,'=')) != NULL) {
2148 			*value++ = 0;
2149 		} else {
2150 			printk(KERN_ERR
2151 			    "tmpfs: No value for mount option '%s'\n",
2152 			    this_char);
2153 			return 1;
2154 		}
2155 
2156 		if (!strcmp(this_char,"size")) {
2157 			unsigned long long size;
2158 			size = memparse(value,&rest);
2159 			if (*rest == '%') {
2160 				size <<= PAGE_SHIFT;
2161 				size *= totalram_pages;
2162 				do_div(size, 100);
2163 				rest++;
2164 			}
2165 			if (*rest)
2166 				goto bad_val;
2167 			sbinfo->max_blocks =
2168 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2169 		} else if (!strcmp(this_char,"nr_blocks")) {
2170 			sbinfo->max_blocks = memparse(value, &rest);
2171 			if (*rest)
2172 				goto bad_val;
2173 		} else if (!strcmp(this_char,"nr_inodes")) {
2174 			sbinfo->max_inodes = memparse(value, &rest);
2175 			if (*rest)
2176 				goto bad_val;
2177 		} else if (!strcmp(this_char,"mode")) {
2178 			if (remount)
2179 				continue;
2180 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2181 			if (*rest)
2182 				goto bad_val;
2183 		} else if (!strcmp(this_char,"uid")) {
2184 			if (remount)
2185 				continue;
2186 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2187 			if (*rest)
2188 				goto bad_val;
2189 		} else if (!strcmp(this_char,"gid")) {
2190 			if (remount)
2191 				continue;
2192 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2193 			if (*rest)
2194 				goto bad_val;
2195 		} else if (!strcmp(this_char,"mpol")) {
2196 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2197 				goto bad_val;
2198 		} else {
2199 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2200 			       this_char);
2201 			return 1;
2202 		}
2203 	}
2204 	return 0;
2205 
2206 bad_val:
2207 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2208 	       value, this_char);
2209 	return 1;
2210 
2211 }
2212 
shmem_remount_fs(struct super_block * sb,int * flags,char * data)2213 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2214 {
2215 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2216 	struct shmem_sb_info config = *sbinfo;
2217 	unsigned long blocks;
2218 	unsigned long inodes;
2219 	int error = -EINVAL;
2220 
2221 	if (shmem_parse_options(data, &config, true))
2222 		return error;
2223 
2224 	spin_lock(&sbinfo->stat_lock);
2225 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2226 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2227 	if (config.max_blocks < blocks)
2228 		goto out;
2229 	if (config.max_inodes < inodes)
2230 		goto out;
2231 	/*
2232 	 * Those tests also disallow limited->unlimited while any are in
2233 	 * use, so i_blocks will always be zero when max_blocks is zero;
2234 	 * but we must separately disallow unlimited->limited, because
2235 	 * in that case we have no record of how much is already in use.
2236 	 */
2237 	if (config.max_blocks && !sbinfo->max_blocks)
2238 		goto out;
2239 	if (config.max_inodes && !sbinfo->max_inodes)
2240 		goto out;
2241 
2242 	error = 0;
2243 	sbinfo->max_blocks  = config.max_blocks;
2244 	sbinfo->free_blocks = config.max_blocks - blocks;
2245 	sbinfo->max_inodes  = config.max_inodes;
2246 	sbinfo->free_inodes = config.max_inodes - inodes;
2247 
2248 	mpol_put(sbinfo->mpol);
2249 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2250 out:
2251 	spin_unlock(&sbinfo->stat_lock);
2252 	return error;
2253 }
2254 
shmem_show_options(struct seq_file * seq,struct vfsmount * vfs)2255 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2256 {
2257 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2258 
2259 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2260 		seq_printf(seq, ",size=%luk",
2261 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2262 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2263 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2264 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2265 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2266 	if (sbinfo->uid != 0)
2267 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2268 	if (sbinfo->gid != 0)
2269 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2270 	shmem_show_mpol(seq, sbinfo->mpol);
2271 	return 0;
2272 }
2273 #endif /* CONFIG_TMPFS */
2274 
shmem_put_super(struct super_block * sb)2275 static void shmem_put_super(struct super_block *sb)
2276 {
2277 	kfree(sb->s_fs_info);
2278 	sb->s_fs_info = NULL;
2279 }
2280 
shmem_fill_super(struct super_block * sb,void * data,int silent)2281 static int shmem_fill_super(struct super_block *sb,
2282 			    void *data, int silent)
2283 {
2284 	struct inode *inode;
2285 	struct dentry *root;
2286 	struct shmem_sb_info *sbinfo;
2287 	int err = -ENOMEM;
2288 
2289 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2290 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2291 				L1_CACHE_BYTES), GFP_KERNEL);
2292 	if (!sbinfo)
2293 		return -ENOMEM;
2294 
2295 	sbinfo->max_blocks = 0;
2296 	sbinfo->max_inodes = 0;
2297 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2298 	sbinfo->uid = current_fsuid();
2299 	sbinfo->gid = current_fsgid();
2300 	sbinfo->mpol = NULL;
2301 	sb->s_fs_info = sbinfo;
2302 
2303 #ifdef CONFIG_TMPFS
2304 	/*
2305 	 * Per default we only allow half of the physical ram per
2306 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2307 	 * but the internal instance is left unlimited.
2308 	 */
2309 	if (!(sb->s_flags & MS_NOUSER)) {
2310 		sbinfo->max_blocks = shmem_default_max_blocks();
2311 		sbinfo->max_inodes = shmem_default_max_inodes();
2312 		if (shmem_parse_options(data, sbinfo, false)) {
2313 			err = -EINVAL;
2314 			goto failed;
2315 		}
2316 	}
2317 	sb->s_export_op = &shmem_export_ops;
2318 #else
2319 	sb->s_flags |= MS_NOUSER;
2320 #endif
2321 
2322 	spin_lock_init(&sbinfo->stat_lock);
2323 	sbinfo->free_blocks = sbinfo->max_blocks;
2324 	sbinfo->free_inodes = sbinfo->max_inodes;
2325 
2326 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2327 	sb->s_blocksize = PAGE_CACHE_SIZE;
2328 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2329 	sb->s_magic = TMPFS_MAGIC;
2330 	sb->s_op = &shmem_ops;
2331 	sb->s_time_gran = 1;
2332 #ifdef CONFIG_TMPFS_POSIX_ACL
2333 	sb->s_xattr = shmem_xattr_handlers;
2334 	sb->s_flags |= MS_POSIXACL;
2335 #endif
2336 
2337 	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2338 	if (!inode)
2339 		goto failed;
2340 	inode->i_uid = sbinfo->uid;
2341 	inode->i_gid = sbinfo->gid;
2342 	root = d_alloc_root(inode);
2343 	if (!root)
2344 		goto failed_iput;
2345 	sb->s_root = root;
2346 	return 0;
2347 
2348 failed_iput:
2349 	iput(inode);
2350 failed:
2351 	shmem_put_super(sb);
2352 	return err;
2353 }
2354 
2355 static struct kmem_cache *shmem_inode_cachep;
2356 
shmem_alloc_inode(struct super_block * sb)2357 static struct inode *shmem_alloc_inode(struct super_block *sb)
2358 {
2359 	struct shmem_inode_info *p;
2360 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2361 	if (!p)
2362 		return NULL;
2363 	return &p->vfs_inode;
2364 }
2365 
shmem_destroy_inode(struct inode * inode)2366 static void shmem_destroy_inode(struct inode *inode)
2367 {
2368 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2369 		/* only struct inode is valid if it's an inline symlink */
2370 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2371 	}
2372 	shmem_acl_destroy_inode(inode);
2373 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2374 }
2375 
init_once(void * foo)2376 static void init_once(void *foo)
2377 {
2378 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2379 
2380 	inode_init_once(&p->vfs_inode);
2381 #ifdef CONFIG_TMPFS_POSIX_ACL
2382 	p->i_acl = NULL;
2383 	p->i_default_acl = NULL;
2384 #endif
2385 }
2386 
init_inodecache(void)2387 static int init_inodecache(void)
2388 {
2389 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2390 				sizeof(struct shmem_inode_info),
2391 				0, SLAB_PANIC, init_once);
2392 	return 0;
2393 }
2394 
destroy_inodecache(void)2395 static void destroy_inodecache(void)
2396 {
2397 	kmem_cache_destroy(shmem_inode_cachep);
2398 }
2399 
2400 static const struct address_space_operations shmem_aops = {
2401 	.writepage	= shmem_writepage,
2402 	.set_page_dirty	= __set_page_dirty_no_writeback,
2403 #ifdef CONFIG_TMPFS
2404 	.readpage	= shmem_readpage,
2405 	.write_begin	= shmem_write_begin,
2406 	.write_end	= shmem_write_end,
2407 #endif
2408 	.migratepage	= migrate_page,
2409 };
2410 
2411 static const struct file_operations shmem_file_operations = {
2412 	.mmap		= shmem_mmap,
2413 #ifdef CONFIG_TMPFS
2414 	.llseek		= generic_file_llseek,
2415 	.read		= do_sync_read,
2416 	.write		= do_sync_write,
2417 	.aio_read	= shmem_file_aio_read,
2418 	.aio_write	= generic_file_aio_write,
2419 	.fsync		= simple_sync_file,
2420 	.splice_read	= generic_file_splice_read,
2421 	.splice_write	= generic_file_splice_write,
2422 #endif
2423 };
2424 
2425 static const struct inode_operations shmem_inode_operations = {
2426 	.truncate	= shmem_truncate,
2427 	.setattr	= shmem_notify_change,
2428 	.truncate_range	= shmem_truncate_range,
2429 #ifdef CONFIG_TMPFS_POSIX_ACL
2430 	.setxattr	= generic_setxattr,
2431 	.getxattr	= generic_getxattr,
2432 	.listxattr	= generic_listxattr,
2433 	.removexattr	= generic_removexattr,
2434 	.permission	= shmem_permission,
2435 #endif
2436 
2437 };
2438 
2439 static const struct inode_operations shmem_dir_inode_operations = {
2440 #ifdef CONFIG_TMPFS
2441 	.create		= shmem_create,
2442 	.lookup		= simple_lookup,
2443 	.link		= shmem_link,
2444 	.unlink		= shmem_unlink,
2445 	.symlink	= shmem_symlink,
2446 	.mkdir		= shmem_mkdir,
2447 	.rmdir		= shmem_rmdir,
2448 	.mknod		= shmem_mknod,
2449 	.rename		= shmem_rename,
2450 #endif
2451 #ifdef CONFIG_TMPFS_POSIX_ACL
2452 	.setattr	= shmem_notify_change,
2453 	.setxattr	= generic_setxattr,
2454 	.getxattr	= generic_getxattr,
2455 	.listxattr	= generic_listxattr,
2456 	.removexattr	= generic_removexattr,
2457 	.permission	= shmem_permission,
2458 #endif
2459 };
2460 
2461 static const struct inode_operations shmem_special_inode_operations = {
2462 #ifdef CONFIG_TMPFS_POSIX_ACL
2463 	.setattr	= shmem_notify_change,
2464 	.setxattr	= generic_setxattr,
2465 	.getxattr	= generic_getxattr,
2466 	.listxattr	= generic_listxattr,
2467 	.removexattr	= generic_removexattr,
2468 	.permission	= shmem_permission,
2469 #endif
2470 };
2471 
2472 static const struct super_operations shmem_ops = {
2473 	.alloc_inode	= shmem_alloc_inode,
2474 	.destroy_inode	= shmem_destroy_inode,
2475 #ifdef CONFIG_TMPFS
2476 	.statfs		= shmem_statfs,
2477 	.remount_fs	= shmem_remount_fs,
2478 	.show_options	= shmem_show_options,
2479 #endif
2480 	.delete_inode	= shmem_delete_inode,
2481 	.drop_inode	= generic_delete_inode,
2482 	.put_super	= shmem_put_super,
2483 };
2484 
2485 static struct vm_operations_struct shmem_vm_ops = {
2486 	.fault		= shmem_fault,
2487 #ifdef CONFIG_NUMA
2488 	.set_policy     = shmem_set_policy,
2489 	.get_policy     = shmem_get_policy,
2490 #endif
2491 };
2492 
2493 
shmem_get_sb(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,struct vfsmount * mnt)2494 static int shmem_get_sb(struct file_system_type *fs_type,
2495 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2496 {
2497 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2498 }
2499 
2500 static struct file_system_type tmpfs_fs_type = {
2501 	.owner		= THIS_MODULE,
2502 	.name		= "tmpfs",
2503 	.get_sb		= shmem_get_sb,
2504 	.kill_sb	= kill_litter_super,
2505 };
2506 
init_tmpfs(void)2507 static int __init init_tmpfs(void)
2508 {
2509 	int error;
2510 
2511 	error = bdi_init(&shmem_backing_dev_info);
2512 	if (error)
2513 		goto out4;
2514 
2515 	error = init_inodecache();
2516 	if (error)
2517 		goto out3;
2518 
2519 	error = register_filesystem(&tmpfs_fs_type);
2520 	if (error) {
2521 		printk(KERN_ERR "Could not register tmpfs\n");
2522 		goto out2;
2523 	}
2524 
2525 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2526 				tmpfs_fs_type.name, NULL);
2527 	if (IS_ERR(shm_mnt)) {
2528 		error = PTR_ERR(shm_mnt);
2529 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2530 		goto out1;
2531 	}
2532 	return 0;
2533 
2534 out1:
2535 	unregister_filesystem(&tmpfs_fs_type);
2536 out2:
2537 	destroy_inodecache();
2538 out3:
2539 	bdi_destroy(&shmem_backing_dev_info);
2540 out4:
2541 	shm_mnt = ERR_PTR(error);
2542 	return error;
2543 }
2544 
2545 #else /* !CONFIG_SHMEM */
2546 
2547 /*
2548  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2549  *
2550  * This is intended for small system where the benefits of the full
2551  * shmem code (swap-backed and resource-limited) are outweighed by
2552  * their complexity. On systems without swap this code should be
2553  * effectively equivalent, but much lighter weight.
2554  */
2555 
2556 #include <linux/ramfs.h>
2557 
2558 static struct file_system_type tmpfs_fs_type = {
2559 	.name		= "tmpfs",
2560 	.get_sb		= ramfs_get_sb,
2561 	.kill_sb	= kill_litter_super,
2562 };
2563 
init_tmpfs(void)2564 static int __init init_tmpfs(void)
2565 {
2566 	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2567 
2568 	shm_mnt = kern_mount(&tmpfs_fs_type);
2569 	BUG_ON(IS_ERR(shm_mnt));
2570 
2571 	return 0;
2572 }
2573 
shmem_unuse(swp_entry_t entry,struct page * page)2574 int shmem_unuse(swp_entry_t entry, struct page *page)
2575 {
2576 	return 0;
2577 }
2578 
2579 #define shmem_vm_ops				generic_file_vm_ops
2580 #define shmem_file_operations			ramfs_file_operations
2581 #define shmem_get_inode(sb, mode, dev, flags)	ramfs_get_inode(sb, mode, dev)
2582 #define shmem_acct_size(flags, size)		0
2583 #define shmem_unacct_size(flags, size)		do {} while (0)
2584 #define SHMEM_MAX_BYTES				LLONG_MAX
2585 
2586 #endif /* CONFIG_SHMEM */
2587 
2588 /* common code */
2589 
2590 /**
2591  * shmem_file_setup - get an unlinked file living in tmpfs
2592  * @name: name for dentry (to be seen in /proc/<pid>/maps
2593  * @size: size to be set for the file
2594  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2595  */
shmem_file_setup(char * name,loff_t size,unsigned long flags)2596 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2597 {
2598 	int error;
2599 	struct file *file;
2600 	struct inode *inode;
2601 	struct dentry *dentry, *root;
2602 	struct qstr this;
2603 
2604 	if (IS_ERR(shm_mnt))
2605 		return (void *)shm_mnt;
2606 
2607 	if (size < 0 || size > SHMEM_MAX_BYTES)
2608 		return ERR_PTR(-EINVAL);
2609 
2610 	if (shmem_acct_size(flags, size))
2611 		return ERR_PTR(-ENOMEM);
2612 
2613 	error = -ENOMEM;
2614 	this.name = name;
2615 	this.len = strlen(name);
2616 	this.hash = 0; /* will go */
2617 	root = shm_mnt->mnt_root;
2618 	dentry = d_alloc(root, &this);
2619 	if (!dentry)
2620 		goto put_memory;
2621 
2622 	error = -ENFILE;
2623 	file = get_empty_filp();
2624 	if (!file)
2625 		goto put_dentry;
2626 
2627 	error = -ENOSPC;
2628 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2629 	if (!inode)
2630 		goto close_file;
2631 
2632 	d_instantiate(dentry, inode);
2633 	inode->i_size = size;
2634 	inode->i_nlink = 0;	/* It is unlinked */
2635 	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2636 		  &shmem_file_operations);
2637 
2638 #ifndef CONFIG_MMU
2639 	error = ramfs_nommu_expand_for_mapping(inode, size);
2640 	if (error)
2641 		goto close_file;
2642 #endif
2643 	return file;
2644 
2645 close_file:
2646 	put_filp(file);
2647 put_dentry:
2648 	dput(dentry);
2649 put_memory:
2650 	shmem_unacct_size(flags, size);
2651 	return ERR_PTR(error);
2652 }
2653 EXPORT_SYMBOL_GPL(shmem_file_setup);
2654 
shmem_set_file(struct vm_area_struct * vma,struct file * file)2655 void shmem_set_file(struct vm_area_struct *vma, struct file *file)
2656 {
2657 	if (vma->vm_file)
2658 		fput(vma->vm_file);
2659 	vma->vm_file = file;
2660 	vma->vm_ops = &shmem_vm_ops;
2661 }
2662 
2663 /**
2664  * shmem_zero_setup - setup a shared anonymous mapping
2665  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2666  */
shmem_zero_setup(struct vm_area_struct * vma)2667 int shmem_zero_setup(struct vm_area_struct *vma)
2668 {
2669 	struct file *file;
2670 	loff_t size = vma->vm_end - vma->vm_start;
2671 
2672 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2673 	if (IS_ERR(file))
2674 		return PTR_ERR(file);
2675 	shmem_set_file(vma, file);
2676 
2677 	return 0;
2678 }
2679 
2680 module_init(init_tmpfs)
2681