• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "internal.h"
12 #include <asm/dma.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 
16 /*
17  * Permanent SPARSEMEM data:
18  *
19  * 1) mem_section	- memory sections, mem_map's for valid memory
20  */
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section *mem_section[NR_SECTION_ROOTS]
23 	____cacheline_internodealigned_in_smp;
24 #else
25 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
26 	____cacheline_internodealigned_in_smp;
27 #endif
28 EXPORT_SYMBOL(mem_section);
29 
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
31 /*
32  * If we did not store the node number in the page then we have to
33  * do a lookup in the section_to_node_table in order to find which
34  * node the page belongs to.
35  */
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38 #else
39 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40 #endif
41 
page_to_nid(struct page * page)42 int page_to_nid(struct page *page)
43 {
44 	return section_to_node_table[page_to_section(page)];
45 }
46 EXPORT_SYMBOL(page_to_nid);
47 
set_section_nid(unsigned long section_nr,int nid)48 static void set_section_nid(unsigned long section_nr, int nid)
49 {
50 	section_to_node_table[section_nr] = nid;
51 }
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)53 static inline void set_section_nid(unsigned long section_nr, int nid)
54 {
55 }
56 #endif
57 
58 #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)59 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
60 {
61 	struct mem_section *section = NULL;
62 	unsigned long array_size = SECTIONS_PER_ROOT *
63 				   sizeof(struct mem_section);
64 
65 	if (slab_is_available())
66 		section = kmalloc_node(array_size, GFP_KERNEL, nid);
67 	else
68 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
69 
70 	if (section)
71 		memset(section, 0, array_size);
72 
73 	return section;
74 }
75 
sparse_index_init(unsigned long section_nr,int nid)76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 	static DEFINE_SPINLOCK(index_init_lock);
79 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 	struct mem_section *section;
81 	int ret = 0;
82 
83 	if (mem_section[root])
84 		return -EEXIST;
85 
86 	section = sparse_index_alloc(nid);
87 	if (!section)
88 		return -ENOMEM;
89 	/*
90 	 * This lock keeps two different sections from
91 	 * reallocating for the same index
92 	 */
93 	spin_lock(&index_init_lock);
94 
95 	if (mem_section[root]) {
96 		ret = -EEXIST;
97 		goto out;
98 	}
99 
100 	mem_section[root] = section;
101 out:
102 	spin_unlock(&index_init_lock);
103 	return ret;
104 }
105 #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 	return 0;
109 }
110 #endif
111 
112 /*
113  * Although written for the SPARSEMEM_EXTREME case, this happens
114  * to also work for the flat array case because
115  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
116  */
__section_nr(struct mem_section * ms)117 int __section_nr(struct mem_section* ms)
118 {
119 	unsigned long root_nr;
120 	struct mem_section* root;
121 
122 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
123 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
124 		if (!root)
125 			continue;
126 
127 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
128 		     break;
129 	}
130 
131 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
132 }
133 
134 /*
135  * During early boot, before section_mem_map is used for an actual
136  * mem_map, we use section_mem_map to store the section's NUMA
137  * node.  This keeps us from having to use another data structure.  The
138  * node information is cleared just before we store the real mem_map.
139  */
sparse_encode_early_nid(int nid)140 static inline unsigned long sparse_encode_early_nid(int nid)
141 {
142 	return (nid << SECTION_NID_SHIFT);
143 }
144 
sparse_early_nid(struct mem_section * section)145 static inline int sparse_early_nid(struct mem_section *section)
146 {
147 	return (section->section_mem_map >> SECTION_NID_SHIFT);
148 }
149 
150 /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)151 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
152 						unsigned long *end_pfn)
153 {
154 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
155 
156 	/*
157 	 * Sanity checks - do not allow an architecture to pass
158 	 * in larger pfns than the maximum scope of sparsemem:
159 	 */
160 	if (*start_pfn > max_sparsemem_pfn) {
161 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 			*start_pfn, *end_pfn, max_sparsemem_pfn);
164 		WARN_ON_ONCE(1);
165 		*start_pfn = max_sparsemem_pfn;
166 		*end_pfn = max_sparsemem_pfn;
167 	}
168 
169 	if (*end_pfn > max_sparsemem_pfn) {
170 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
171 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
172 			*start_pfn, *end_pfn, max_sparsemem_pfn);
173 		WARN_ON_ONCE(1);
174 		*end_pfn = max_sparsemem_pfn;
175 	}
176 }
177 
178 /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)179 void __init memory_present(int nid, unsigned long start, unsigned long end)
180 {
181 	unsigned long pfn;
182 
183 	start &= PAGE_SECTION_MASK;
184 	mminit_validate_memmodel_limits(&start, &end);
185 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
186 		unsigned long section = pfn_to_section_nr(pfn);
187 		struct mem_section *ms;
188 
189 		sparse_index_init(section, nid);
190 		set_section_nid(section, nid);
191 
192 		ms = __nr_to_section(section);
193 		if (!ms->section_mem_map)
194 			ms->section_mem_map = sparse_encode_early_nid(nid) |
195 							SECTION_MARKED_PRESENT;
196 	}
197 }
198 
199 /*
200  * Only used by the i386 NUMA architecures, but relatively
201  * generic code.
202  */
node_memmap_size_bytes(int nid,unsigned long start_pfn,unsigned long end_pfn)203 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
204 						     unsigned long end_pfn)
205 {
206 	unsigned long pfn;
207 	unsigned long nr_pages = 0;
208 
209 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
210 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
211 		if (nid != early_pfn_to_nid(pfn))
212 			continue;
213 
214 		if (pfn_present(pfn))
215 			nr_pages += PAGES_PER_SECTION;
216 	}
217 
218 	return nr_pages * sizeof(struct page);
219 }
220 
221 /*
222  * Subtle, we encode the real pfn into the mem_map such that
223  * the identity pfn - section_mem_map will return the actual
224  * physical page frame number.
225  */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)226 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
227 {
228 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
229 }
230 
231 /*
232  * Decode mem_map from the coded memmap
233  */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)234 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
235 {
236 	/* mask off the extra low bits of information */
237 	coded_mem_map &= SECTION_MAP_MASK;
238 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
239 }
240 
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,unsigned long * pageblock_bitmap)241 static int __meminit sparse_init_one_section(struct mem_section *ms,
242 		unsigned long pnum, struct page *mem_map,
243 		unsigned long *pageblock_bitmap)
244 {
245 	if (!present_section(ms))
246 		return -EINVAL;
247 
248 	ms->section_mem_map &= ~SECTION_MAP_MASK;
249 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
250 							SECTION_HAS_MEM_MAP;
251  	ms->pageblock_flags = pageblock_bitmap;
252 
253 	return 1;
254 }
255 
usemap_size(void)256 unsigned long usemap_size(void)
257 {
258 	unsigned long size_bytes;
259 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
260 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
261 	return size_bytes;
262 }
263 
264 #ifdef CONFIG_MEMORY_HOTPLUG
__kmalloc_section_usemap(void)265 static unsigned long *__kmalloc_section_usemap(void)
266 {
267 	return kmalloc(usemap_size(), GFP_KERNEL);
268 }
269 #endif /* CONFIG_MEMORY_HOTPLUG */
270 
271 #ifdef CONFIG_MEMORY_HOTREMOVE
272 static unsigned long * __init
sparse_early_usemap_alloc_pgdat_section(struct pglist_data * pgdat)273 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
274 {
275 	unsigned long section_nr;
276 
277 	/*
278 	 * A page may contain usemaps for other sections preventing the
279 	 * page being freed and making a section unremovable while
280 	 * other sections referencing the usemap retmain active. Similarly,
281 	 * a pgdat can prevent a section being removed. If section A
282 	 * contains a pgdat and section B contains the usemap, both
283 	 * sections become inter-dependent. This allocates usemaps
284 	 * from the same section as the pgdat where possible to avoid
285 	 * this problem.
286 	 */
287 	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
288 	return alloc_bootmem_section(usemap_size(), section_nr);
289 }
290 
check_usemap_section_nr(int nid,unsigned long * usemap)291 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
292 {
293 	unsigned long usemap_snr, pgdat_snr;
294 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
295 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
296 	struct pglist_data *pgdat = NODE_DATA(nid);
297 	int usemap_nid;
298 
299 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
300 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
301 	if (usemap_snr == pgdat_snr)
302 		return;
303 
304 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
305 		/* skip redundant message */
306 		return;
307 
308 	old_usemap_snr = usemap_snr;
309 	old_pgdat_snr = pgdat_snr;
310 
311 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
312 	if (usemap_nid != nid) {
313 		printk(KERN_INFO
314 		       "node %d must be removed before remove section %ld\n",
315 		       nid, usemap_snr);
316 		return;
317 	}
318 	/*
319 	 * There is a circular dependency.
320 	 * Some platforms allow un-removable section because they will just
321 	 * gather other removable sections for dynamic partitioning.
322 	 * Just notify un-removable section's number here.
323 	 */
324 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
325 	       pgdat_snr, nid);
326 	printk(KERN_CONT
327 	       " have a circular dependency on usemap and pgdat allocations\n");
328 }
329 #else
330 static unsigned long * __init
sparse_early_usemap_alloc_pgdat_section(struct pglist_data * pgdat)331 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
332 {
333 	return NULL;
334 }
335 
check_usemap_section_nr(int nid,unsigned long * usemap)336 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
337 {
338 }
339 #endif /* CONFIG_MEMORY_HOTREMOVE */
340 
sparse_early_usemap_alloc(unsigned long pnum)341 static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
342 {
343 	unsigned long *usemap;
344 	struct mem_section *ms = __nr_to_section(pnum);
345 	int nid = sparse_early_nid(ms);
346 
347 	usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
348 	if (usemap)
349 		return usemap;
350 
351 	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
352 	if (usemap) {
353 		check_usemap_section_nr(nid, usemap);
354 		return usemap;
355 	}
356 
357 	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
358 	nid = 0;
359 
360 	printk(KERN_WARNING "%s: allocation failed\n", __func__);
361 	return NULL;
362 }
363 
364 #ifndef CONFIG_SPARSEMEM_VMEMMAP
sparse_mem_map_populate(unsigned long pnum,int nid)365 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
366 {
367 	struct page *map;
368 
369 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
370 	if (map)
371 		return map;
372 
373 	map = alloc_bootmem_pages_node(NODE_DATA(nid),
374 		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
375 	return map;
376 }
377 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
378 
sparse_early_mem_map_alloc(unsigned long pnum)379 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
380 {
381 	struct page *map;
382 	struct mem_section *ms = __nr_to_section(pnum);
383 	int nid = sparse_early_nid(ms);
384 
385 	map = sparse_mem_map_populate(pnum, nid);
386 	if (map)
387 		return map;
388 
389 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
390 			"some memory will not be available.\n", __func__);
391 	ms->section_mem_map = 0;
392 	return NULL;
393 }
394 
vmemmap_populate_print_last(void)395 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
396 {
397 }
398 /*
399  * Allocate the accumulated non-linear sections, allocate a mem_map
400  * for each and record the physical to section mapping.
401  */
sparse_init(void)402 void __init sparse_init(void)
403 {
404 	unsigned long pnum;
405 	struct page *map;
406 	unsigned long *usemap;
407 	unsigned long **usemap_map;
408 	int size;
409 
410 	/*
411 	 * map is using big page (aka 2M in x86 64 bit)
412 	 * usemap is less one page (aka 24 bytes)
413 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
414 	 * make next 2M slip to one more 2M later.
415 	 * then in big system, the memory will have a lot of holes...
416 	 * here try to allocate 2M pages continously.
417 	 *
418 	 * powerpc need to call sparse_init_one_section right after each
419 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
420 	 */
421 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
422 	usemap_map = alloc_bootmem(size);
423 	if (!usemap_map)
424 		panic("can not allocate usemap_map\n");
425 
426 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
427 		if (!present_section_nr(pnum))
428 			continue;
429 		usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
430 	}
431 
432 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
433 		if (!present_section_nr(pnum))
434 			continue;
435 
436 		usemap = usemap_map[pnum];
437 		if (!usemap)
438 			continue;
439 
440 		map = sparse_early_mem_map_alloc(pnum);
441 		if (!map)
442 			continue;
443 
444 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
445 								usemap);
446 	}
447 
448 	vmemmap_populate_print_last();
449 
450 	free_bootmem(__pa(usemap_map), size);
451 }
452 
453 #ifdef CONFIG_MEMORY_HOTPLUG
454 #ifdef CONFIG_SPARSEMEM_VMEMMAP
kmalloc_section_memmap(unsigned long pnum,int nid,unsigned long nr_pages)455 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
456 						 unsigned long nr_pages)
457 {
458 	/* This will make the necessary allocations eventually. */
459 	return sparse_mem_map_populate(pnum, nid);
460 }
__kfree_section_memmap(struct page * memmap,unsigned long nr_pages)461 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
462 {
463 	return; /* XXX: Not implemented yet */
464 }
free_map_bootmem(struct page * page,unsigned long nr_pages)465 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
466 {
467 }
468 #else
__kmalloc_section_memmap(unsigned long nr_pages)469 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
470 {
471 	struct page *page, *ret;
472 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
473 
474 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
475 	if (page)
476 		goto got_map_page;
477 
478 	ret = vmalloc(memmap_size);
479 	if (ret)
480 		goto got_map_ptr;
481 
482 	return NULL;
483 got_map_page:
484 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
485 got_map_ptr:
486 	memset(ret, 0, memmap_size);
487 
488 	return ret;
489 }
490 
kmalloc_section_memmap(unsigned long pnum,int nid,unsigned long nr_pages)491 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
492 						  unsigned long nr_pages)
493 {
494 	return __kmalloc_section_memmap(nr_pages);
495 }
496 
__kfree_section_memmap(struct page * memmap,unsigned long nr_pages)497 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
498 {
499 	if (is_vmalloc_addr(memmap))
500 		vfree(memmap);
501 	else
502 		free_pages((unsigned long)memmap,
503 			   get_order(sizeof(struct page) * nr_pages));
504 }
505 
free_map_bootmem(struct page * page,unsigned long nr_pages)506 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
507 {
508 	unsigned long maps_section_nr, removing_section_nr, i;
509 	int magic;
510 
511 	for (i = 0; i < nr_pages; i++, page++) {
512 		magic = atomic_read(&page->_mapcount);
513 
514 		BUG_ON(magic == NODE_INFO);
515 
516 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
517 		removing_section_nr = page->private;
518 
519 		/*
520 		 * When this function is called, the removing section is
521 		 * logical offlined state. This means all pages are isolated
522 		 * from page allocator. If removing section's memmap is placed
523 		 * on the same section, it must not be freed.
524 		 * If it is freed, page allocator may allocate it which will
525 		 * be removed physically soon.
526 		 */
527 		if (maps_section_nr != removing_section_nr)
528 			put_page_bootmem(page);
529 	}
530 }
531 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
532 
free_section_usemap(struct page * memmap,unsigned long * usemap)533 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
534 {
535 	struct page *usemap_page;
536 	unsigned long nr_pages;
537 
538 	if (!usemap)
539 		return;
540 
541 	usemap_page = virt_to_page(usemap);
542 	/*
543 	 * Check to see if allocation came from hot-plug-add
544 	 */
545 	if (PageSlab(usemap_page)) {
546 		kfree(usemap);
547 		if (memmap)
548 			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
549 		return;
550 	}
551 
552 	/*
553 	 * The usemap came from bootmem. This is packed with other usemaps
554 	 * on the section which has pgdat at boot time. Just keep it as is now.
555 	 */
556 
557 	if (memmap) {
558 		struct page *memmap_page;
559 		memmap_page = virt_to_page(memmap);
560 
561 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
562 			>> PAGE_SHIFT;
563 
564 		free_map_bootmem(memmap_page, nr_pages);
565 	}
566 }
567 
568 /*
569  * returns the number of sections whose mem_maps were properly
570  * set.  If this is <=0, then that means that the passed-in
571  * map was not consumed and must be freed.
572  */
sparse_add_one_section(struct zone * zone,unsigned long start_pfn,int nr_pages)573 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
574 			   int nr_pages)
575 {
576 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
577 	struct pglist_data *pgdat = zone->zone_pgdat;
578 	struct mem_section *ms;
579 	struct page *memmap;
580 	unsigned long *usemap;
581 	unsigned long flags;
582 	int ret;
583 
584 	/*
585 	 * no locking for this, because it does its own
586 	 * plus, it does a kmalloc
587 	 */
588 	ret = sparse_index_init(section_nr, pgdat->node_id);
589 	if (ret < 0 && ret != -EEXIST)
590 		return ret;
591 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
592 	if (!memmap)
593 		return -ENOMEM;
594 	usemap = __kmalloc_section_usemap();
595 	if (!usemap) {
596 		__kfree_section_memmap(memmap, nr_pages);
597 		return -ENOMEM;
598 	}
599 
600 	pgdat_resize_lock(pgdat, &flags);
601 
602 	ms = __pfn_to_section(start_pfn);
603 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
604 		ret = -EEXIST;
605 		goto out;
606 	}
607 
608 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
609 
610 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
611 
612 out:
613 	pgdat_resize_unlock(pgdat, &flags);
614 	if (ret <= 0) {
615 		kfree(usemap);
616 		__kfree_section_memmap(memmap, nr_pages);
617 	}
618 	return ret;
619 }
620 
sparse_remove_one_section(struct zone * zone,struct mem_section * ms)621 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
622 {
623 	struct page *memmap = NULL;
624 	unsigned long *usemap = NULL;
625 
626 	if (ms->section_mem_map) {
627 		usemap = ms->pageblock_flags;
628 		memmap = sparse_decode_mem_map(ms->section_mem_map,
629 						__section_nr(ms));
630 		ms->section_mem_map = 0;
631 		ms->pageblock_flags = NULL;
632 	}
633 
634 	free_section_usemap(memmap, usemap);
635 }
636 #endif
637