1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "internal.h"
12 #include <asm/dma.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15
16 /*
17 * Permanent SPARSEMEM data:
18 *
19 * 1) mem_section - memory sections, mem_map's for valid memory
20 */
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section *mem_section[NR_SECTION_ROOTS]
23 ____cacheline_internodealigned_in_smp;
24 #else
25 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
26 ____cacheline_internodealigned_in_smp;
27 #endif
28 EXPORT_SYMBOL(mem_section);
29
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
31 /*
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
35 */
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38 #else
39 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40 #endif
41
page_to_nid(struct page * page)42 int page_to_nid(struct page *page)
43 {
44 return section_to_node_table[page_to_section(page)];
45 }
46 EXPORT_SYMBOL(page_to_nid);
47
set_section_nid(unsigned long section_nr,int nid)48 static void set_section_nid(unsigned long section_nr, int nid)
49 {
50 section_to_node_table[section_nr] = nid;
51 }
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)53 static inline void set_section_nid(unsigned long section_nr, int nid)
54 {
55 }
56 #endif
57
58 #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)59 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
60 {
61 struct mem_section *section = NULL;
62 unsigned long array_size = SECTIONS_PER_ROOT *
63 sizeof(struct mem_section);
64
65 if (slab_is_available())
66 section = kmalloc_node(array_size, GFP_KERNEL, nid);
67 else
68 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
69
70 if (section)
71 memset(section, 0, array_size);
72
73 return section;
74 }
75
sparse_index_init(unsigned long section_nr,int nid)76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 static DEFINE_SPINLOCK(index_init_lock);
79 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 struct mem_section *section;
81 int ret = 0;
82
83 if (mem_section[root])
84 return -EEXIST;
85
86 section = sparse_index_alloc(nid);
87 if (!section)
88 return -ENOMEM;
89 /*
90 * This lock keeps two different sections from
91 * reallocating for the same index
92 */
93 spin_lock(&index_init_lock);
94
95 if (mem_section[root]) {
96 ret = -EEXIST;
97 goto out;
98 }
99
100 mem_section[root] = section;
101 out:
102 spin_unlock(&index_init_lock);
103 return ret;
104 }
105 #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 return 0;
109 }
110 #endif
111
112 /*
113 * Although written for the SPARSEMEM_EXTREME case, this happens
114 * to also work for the flat array case because
115 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
116 */
__section_nr(struct mem_section * ms)117 int __section_nr(struct mem_section* ms)
118 {
119 unsigned long root_nr;
120 struct mem_section* root;
121
122 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
123 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
124 if (!root)
125 continue;
126
127 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
128 break;
129 }
130
131 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
132 }
133
134 /*
135 * During early boot, before section_mem_map is used for an actual
136 * mem_map, we use section_mem_map to store the section's NUMA
137 * node. This keeps us from having to use another data structure. The
138 * node information is cleared just before we store the real mem_map.
139 */
sparse_encode_early_nid(int nid)140 static inline unsigned long sparse_encode_early_nid(int nid)
141 {
142 return (nid << SECTION_NID_SHIFT);
143 }
144
sparse_early_nid(struct mem_section * section)145 static inline int sparse_early_nid(struct mem_section *section)
146 {
147 return (section->section_mem_map >> SECTION_NID_SHIFT);
148 }
149
150 /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)151 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
152 unsigned long *end_pfn)
153 {
154 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
155
156 /*
157 * Sanity checks - do not allow an architecture to pass
158 * in larger pfns than the maximum scope of sparsemem:
159 */
160 if (*start_pfn > max_sparsemem_pfn) {
161 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163 *start_pfn, *end_pfn, max_sparsemem_pfn);
164 WARN_ON_ONCE(1);
165 *start_pfn = max_sparsemem_pfn;
166 *end_pfn = max_sparsemem_pfn;
167 }
168
169 if (*end_pfn > max_sparsemem_pfn) {
170 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
171 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
172 *start_pfn, *end_pfn, max_sparsemem_pfn);
173 WARN_ON_ONCE(1);
174 *end_pfn = max_sparsemem_pfn;
175 }
176 }
177
178 /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)179 void __init memory_present(int nid, unsigned long start, unsigned long end)
180 {
181 unsigned long pfn;
182
183 start &= PAGE_SECTION_MASK;
184 mminit_validate_memmodel_limits(&start, &end);
185 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
186 unsigned long section = pfn_to_section_nr(pfn);
187 struct mem_section *ms;
188
189 sparse_index_init(section, nid);
190 set_section_nid(section, nid);
191
192 ms = __nr_to_section(section);
193 if (!ms->section_mem_map)
194 ms->section_mem_map = sparse_encode_early_nid(nid) |
195 SECTION_MARKED_PRESENT;
196 }
197 }
198
199 /*
200 * Only used by the i386 NUMA architecures, but relatively
201 * generic code.
202 */
node_memmap_size_bytes(int nid,unsigned long start_pfn,unsigned long end_pfn)203 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
204 unsigned long end_pfn)
205 {
206 unsigned long pfn;
207 unsigned long nr_pages = 0;
208
209 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
210 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
211 if (nid != early_pfn_to_nid(pfn))
212 continue;
213
214 if (pfn_present(pfn))
215 nr_pages += PAGES_PER_SECTION;
216 }
217
218 return nr_pages * sizeof(struct page);
219 }
220
221 /*
222 * Subtle, we encode the real pfn into the mem_map such that
223 * the identity pfn - section_mem_map will return the actual
224 * physical page frame number.
225 */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)226 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
227 {
228 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
229 }
230
231 /*
232 * Decode mem_map from the coded memmap
233 */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)234 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
235 {
236 /* mask off the extra low bits of information */
237 coded_mem_map &= SECTION_MAP_MASK;
238 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
239 }
240
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,unsigned long * pageblock_bitmap)241 static int __meminit sparse_init_one_section(struct mem_section *ms,
242 unsigned long pnum, struct page *mem_map,
243 unsigned long *pageblock_bitmap)
244 {
245 if (!present_section(ms))
246 return -EINVAL;
247
248 ms->section_mem_map &= ~SECTION_MAP_MASK;
249 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
250 SECTION_HAS_MEM_MAP;
251 ms->pageblock_flags = pageblock_bitmap;
252
253 return 1;
254 }
255
usemap_size(void)256 unsigned long usemap_size(void)
257 {
258 unsigned long size_bytes;
259 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
260 size_bytes = roundup(size_bytes, sizeof(unsigned long));
261 return size_bytes;
262 }
263
264 #ifdef CONFIG_MEMORY_HOTPLUG
__kmalloc_section_usemap(void)265 static unsigned long *__kmalloc_section_usemap(void)
266 {
267 return kmalloc(usemap_size(), GFP_KERNEL);
268 }
269 #endif /* CONFIG_MEMORY_HOTPLUG */
270
271 #ifdef CONFIG_MEMORY_HOTREMOVE
272 static unsigned long * __init
sparse_early_usemap_alloc_pgdat_section(struct pglist_data * pgdat)273 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
274 {
275 unsigned long section_nr;
276
277 /*
278 * A page may contain usemaps for other sections preventing the
279 * page being freed and making a section unremovable while
280 * other sections referencing the usemap retmain active. Similarly,
281 * a pgdat can prevent a section being removed. If section A
282 * contains a pgdat and section B contains the usemap, both
283 * sections become inter-dependent. This allocates usemaps
284 * from the same section as the pgdat where possible to avoid
285 * this problem.
286 */
287 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
288 return alloc_bootmem_section(usemap_size(), section_nr);
289 }
290
check_usemap_section_nr(int nid,unsigned long * usemap)291 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
292 {
293 unsigned long usemap_snr, pgdat_snr;
294 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
295 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
296 struct pglist_data *pgdat = NODE_DATA(nid);
297 int usemap_nid;
298
299 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
300 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
301 if (usemap_snr == pgdat_snr)
302 return;
303
304 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
305 /* skip redundant message */
306 return;
307
308 old_usemap_snr = usemap_snr;
309 old_pgdat_snr = pgdat_snr;
310
311 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
312 if (usemap_nid != nid) {
313 printk(KERN_INFO
314 "node %d must be removed before remove section %ld\n",
315 nid, usemap_snr);
316 return;
317 }
318 /*
319 * There is a circular dependency.
320 * Some platforms allow un-removable section because they will just
321 * gather other removable sections for dynamic partitioning.
322 * Just notify un-removable section's number here.
323 */
324 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
325 pgdat_snr, nid);
326 printk(KERN_CONT
327 " have a circular dependency on usemap and pgdat allocations\n");
328 }
329 #else
330 static unsigned long * __init
sparse_early_usemap_alloc_pgdat_section(struct pglist_data * pgdat)331 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
332 {
333 return NULL;
334 }
335
check_usemap_section_nr(int nid,unsigned long * usemap)336 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
337 {
338 }
339 #endif /* CONFIG_MEMORY_HOTREMOVE */
340
sparse_early_usemap_alloc(unsigned long pnum)341 static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
342 {
343 unsigned long *usemap;
344 struct mem_section *ms = __nr_to_section(pnum);
345 int nid = sparse_early_nid(ms);
346
347 usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
348 if (usemap)
349 return usemap;
350
351 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
352 if (usemap) {
353 check_usemap_section_nr(nid, usemap);
354 return usemap;
355 }
356
357 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
358 nid = 0;
359
360 printk(KERN_WARNING "%s: allocation failed\n", __func__);
361 return NULL;
362 }
363
364 #ifndef CONFIG_SPARSEMEM_VMEMMAP
sparse_mem_map_populate(unsigned long pnum,int nid)365 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
366 {
367 struct page *map;
368
369 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
370 if (map)
371 return map;
372
373 map = alloc_bootmem_pages_node(NODE_DATA(nid),
374 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
375 return map;
376 }
377 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
378
sparse_early_mem_map_alloc(unsigned long pnum)379 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
380 {
381 struct page *map;
382 struct mem_section *ms = __nr_to_section(pnum);
383 int nid = sparse_early_nid(ms);
384
385 map = sparse_mem_map_populate(pnum, nid);
386 if (map)
387 return map;
388
389 printk(KERN_ERR "%s: sparsemem memory map backing failed "
390 "some memory will not be available.\n", __func__);
391 ms->section_mem_map = 0;
392 return NULL;
393 }
394
vmemmap_populate_print_last(void)395 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
396 {
397 }
398 /*
399 * Allocate the accumulated non-linear sections, allocate a mem_map
400 * for each and record the physical to section mapping.
401 */
sparse_init(void)402 void __init sparse_init(void)
403 {
404 unsigned long pnum;
405 struct page *map;
406 unsigned long *usemap;
407 unsigned long **usemap_map;
408 int size;
409
410 /*
411 * map is using big page (aka 2M in x86 64 bit)
412 * usemap is less one page (aka 24 bytes)
413 * so alloc 2M (with 2M align) and 24 bytes in turn will
414 * make next 2M slip to one more 2M later.
415 * then in big system, the memory will have a lot of holes...
416 * here try to allocate 2M pages continously.
417 *
418 * powerpc need to call sparse_init_one_section right after each
419 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
420 */
421 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
422 usemap_map = alloc_bootmem(size);
423 if (!usemap_map)
424 panic("can not allocate usemap_map\n");
425
426 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
427 if (!present_section_nr(pnum))
428 continue;
429 usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
430 }
431
432 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
433 if (!present_section_nr(pnum))
434 continue;
435
436 usemap = usemap_map[pnum];
437 if (!usemap)
438 continue;
439
440 map = sparse_early_mem_map_alloc(pnum);
441 if (!map)
442 continue;
443
444 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
445 usemap);
446 }
447
448 vmemmap_populate_print_last();
449
450 free_bootmem(__pa(usemap_map), size);
451 }
452
453 #ifdef CONFIG_MEMORY_HOTPLUG
454 #ifdef CONFIG_SPARSEMEM_VMEMMAP
kmalloc_section_memmap(unsigned long pnum,int nid,unsigned long nr_pages)455 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
456 unsigned long nr_pages)
457 {
458 /* This will make the necessary allocations eventually. */
459 return sparse_mem_map_populate(pnum, nid);
460 }
__kfree_section_memmap(struct page * memmap,unsigned long nr_pages)461 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
462 {
463 return; /* XXX: Not implemented yet */
464 }
free_map_bootmem(struct page * page,unsigned long nr_pages)465 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
466 {
467 }
468 #else
__kmalloc_section_memmap(unsigned long nr_pages)469 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
470 {
471 struct page *page, *ret;
472 unsigned long memmap_size = sizeof(struct page) * nr_pages;
473
474 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
475 if (page)
476 goto got_map_page;
477
478 ret = vmalloc(memmap_size);
479 if (ret)
480 goto got_map_ptr;
481
482 return NULL;
483 got_map_page:
484 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
485 got_map_ptr:
486 memset(ret, 0, memmap_size);
487
488 return ret;
489 }
490
kmalloc_section_memmap(unsigned long pnum,int nid,unsigned long nr_pages)491 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
492 unsigned long nr_pages)
493 {
494 return __kmalloc_section_memmap(nr_pages);
495 }
496
__kfree_section_memmap(struct page * memmap,unsigned long nr_pages)497 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
498 {
499 if (is_vmalloc_addr(memmap))
500 vfree(memmap);
501 else
502 free_pages((unsigned long)memmap,
503 get_order(sizeof(struct page) * nr_pages));
504 }
505
free_map_bootmem(struct page * page,unsigned long nr_pages)506 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
507 {
508 unsigned long maps_section_nr, removing_section_nr, i;
509 int magic;
510
511 for (i = 0; i < nr_pages; i++, page++) {
512 magic = atomic_read(&page->_mapcount);
513
514 BUG_ON(magic == NODE_INFO);
515
516 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
517 removing_section_nr = page->private;
518
519 /*
520 * When this function is called, the removing section is
521 * logical offlined state. This means all pages are isolated
522 * from page allocator. If removing section's memmap is placed
523 * on the same section, it must not be freed.
524 * If it is freed, page allocator may allocate it which will
525 * be removed physically soon.
526 */
527 if (maps_section_nr != removing_section_nr)
528 put_page_bootmem(page);
529 }
530 }
531 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
532
free_section_usemap(struct page * memmap,unsigned long * usemap)533 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
534 {
535 struct page *usemap_page;
536 unsigned long nr_pages;
537
538 if (!usemap)
539 return;
540
541 usemap_page = virt_to_page(usemap);
542 /*
543 * Check to see if allocation came from hot-plug-add
544 */
545 if (PageSlab(usemap_page)) {
546 kfree(usemap);
547 if (memmap)
548 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
549 return;
550 }
551
552 /*
553 * The usemap came from bootmem. This is packed with other usemaps
554 * on the section which has pgdat at boot time. Just keep it as is now.
555 */
556
557 if (memmap) {
558 struct page *memmap_page;
559 memmap_page = virt_to_page(memmap);
560
561 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
562 >> PAGE_SHIFT;
563
564 free_map_bootmem(memmap_page, nr_pages);
565 }
566 }
567
568 /*
569 * returns the number of sections whose mem_maps were properly
570 * set. If this is <=0, then that means that the passed-in
571 * map was not consumed and must be freed.
572 */
sparse_add_one_section(struct zone * zone,unsigned long start_pfn,int nr_pages)573 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
574 int nr_pages)
575 {
576 unsigned long section_nr = pfn_to_section_nr(start_pfn);
577 struct pglist_data *pgdat = zone->zone_pgdat;
578 struct mem_section *ms;
579 struct page *memmap;
580 unsigned long *usemap;
581 unsigned long flags;
582 int ret;
583
584 /*
585 * no locking for this, because it does its own
586 * plus, it does a kmalloc
587 */
588 ret = sparse_index_init(section_nr, pgdat->node_id);
589 if (ret < 0 && ret != -EEXIST)
590 return ret;
591 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
592 if (!memmap)
593 return -ENOMEM;
594 usemap = __kmalloc_section_usemap();
595 if (!usemap) {
596 __kfree_section_memmap(memmap, nr_pages);
597 return -ENOMEM;
598 }
599
600 pgdat_resize_lock(pgdat, &flags);
601
602 ms = __pfn_to_section(start_pfn);
603 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
604 ret = -EEXIST;
605 goto out;
606 }
607
608 ms->section_mem_map |= SECTION_MARKED_PRESENT;
609
610 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
611
612 out:
613 pgdat_resize_unlock(pgdat, &flags);
614 if (ret <= 0) {
615 kfree(usemap);
616 __kfree_section_memmap(memmap, nr_pages);
617 }
618 return ret;
619 }
620
sparse_remove_one_section(struct zone * zone,struct mem_section * ms)621 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
622 {
623 struct page *memmap = NULL;
624 unsigned long *usemap = NULL;
625
626 if (ms->section_mem_map) {
627 usemap = ms->pageblock_flags;
628 memmap = sparse_decode_mem_map(ms->section_mem_map,
629 __section_nr(ms));
630 ms->section_mem_map = 0;
631 ms->pageblock_flags = NULL;
632 }
633
634 free_section_usemap(memmap, usemap);
635 }
636 #endif
637