• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21 
22 #include <asm/pgtable.h>
23 
24 /*
25  * swapper_space is a fiction, retained to simplify the path through
26  * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27  * future use of radix_tree tags in the swap cache.
28  */
29 static const struct address_space_operations swap_aops = {
30 	.writepage	= swap_writepage,
31 	.sync_page	= block_sync_page,
32 	.set_page_dirty	= __set_page_dirty_nobuffers,
33 	.migratepage	= migrate_page,
34 };
35 
36 static struct backing_dev_info swap_backing_dev_info = {
37 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
38 	.unplug_io_fn	= swap_unplug_io_fn,
39 };
40 
41 struct address_space swapper_space = {
42 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
43 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
44 	.a_ops		= &swap_aops,
45 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
46 	.backing_dev_info = &swap_backing_dev_info,
47 };
48 
49 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
50 
51 static struct {
52 	unsigned long add_total;
53 	unsigned long del_total;
54 	unsigned long find_success;
55 	unsigned long find_total;
56 } swap_cache_info;
57 
show_swap_cache_info(void)58 void show_swap_cache_info(void)
59 {
60 	printk("%lu pages in swap cache\n", total_swapcache_pages);
61 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
62 		swap_cache_info.add_total, swap_cache_info.del_total,
63 		swap_cache_info.find_success, swap_cache_info.find_total);
64 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
65 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
66 }
67 
68 /*
69  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
70  * but sets SwapCache flag and private instead of mapping and index.
71  */
add_to_swap_cache(struct page * page,swp_entry_t entry,gfp_t gfp_mask)72 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
73 {
74 	int error;
75 
76 	VM_BUG_ON(!PageLocked(page));
77 	VM_BUG_ON(PageSwapCache(page));
78 	VM_BUG_ON(!PageSwapBacked(page));
79 
80 	error = radix_tree_preload(gfp_mask);
81 	if (!error) {
82 		page_cache_get(page);
83 		SetPageSwapCache(page);
84 		set_page_private(page, entry.val);
85 
86 		spin_lock_irq(&swapper_space.tree_lock);
87 		error = radix_tree_insert(&swapper_space.page_tree,
88 						entry.val, page);
89 		if (likely(!error)) {
90 			total_swapcache_pages++;
91 			__inc_zone_page_state(page, NR_FILE_PAGES);
92 			INC_CACHE_INFO(add_total);
93 		}
94 		spin_unlock_irq(&swapper_space.tree_lock);
95 		radix_tree_preload_end();
96 
97 		if (unlikely(error)) {
98 			set_page_private(page, 0UL);
99 			ClearPageSwapCache(page);
100 			page_cache_release(page);
101 		}
102 	}
103 	return error;
104 }
105 
106 /*
107  * This must be called only on pages that have
108  * been verified to be in the swap cache.
109  */
__delete_from_swap_cache(struct page * page)110 void __delete_from_swap_cache(struct page *page)
111 {
112 	swp_entry_t ent = {.val = page_private(page)};
113 
114 	VM_BUG_ON(!PageLocked(page));
115 	VM_BUG_ON(!PageSwapCache(page));
116 	VM_BUG_ON(PageWriteback(page));
117 
118 	radix_tree_delete(&swapper_space.page_tree, page_private(page));
119 	set_page_private(page, 0);
120 	ClearPageSwapCache(page);
121 	total_swapcache_pages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	INC_CACHE_INFO(del_total);
124 	mem_cgroup_uncharge_swapcache(page, ent);
125 }
126 
127 /**
128  * add_to_swap - allocate swap space for a page
129  * @page: page we want to move to swap
130  * @gfp_mask: memory allocation flags
131  *
132  * Allocate swap space for the page and add the page to the
133  * swap cache.  Caller needs to hold the page lock.
134  */
add_to_swap(struct page * page)135 int add_to_swap(struct page *page)
136 {
137 	swp_entry_t entry;
138 	int err;
139 
140 	VM_BUG_ON(!PageLocked(page));
141 	VM_BUG_ON(!PageUptodate(page));
142 
143 	for (;;) {
144 		entry = get_swap_page();
145 		if (!entry.val)
146 			return 0;
147 
148 		/*
149 		 * Radix-tree node allocations from PF_MEMALLOC contexts could
150 		 * completely exhaust the page allocator. __GFP_NOMEMALLOC
151 		 * stops emergency reserves from being allocated.
152 		 *
153 		 * TODO: this could cause a theoretical memory reclaim
154 		 * deadlock in the swap out path.
155 		 */
156 		/*
157 		 * Add it to the swap cache and mark it dirty
158 		 */
159 		err = add_to_swap_cache(page, entry,
160 				__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
161 
162 		switch (err) {
163 		case 0:				/* Success */
164 			SetPageDirty(page);
165 			return 1;
166 		case -EEXIST:
167 			/* Raced with "speculative" read_swap_cache_async */
168 			swap_free(entry);
169 			continue;
170 		default:
171 			/* -ENOMEM radix-tree allocation failure */
172 			swap_free(entry);
173 			return 0;
174 		}
175 	}
176 }
177 
178 /*
179  * This must be called only on pages that have
180  * been verified to be in the swap cache and locked.
181  * It will never put the page into the free list,
182  * the caller has a reference on the page.
183  */
delete_from_swap_cache(struct page * page)184 void delete_from_swap_cache(struct page *page)
185 {
186 	swp_entry_t entry;
187 
188 	entry.val = page_private(page);
189 
190 	spin_lock_irq(&swapper_space.tree_lock);
191 	__delete_from_swap_cache(page);
192 	spin_unlock_irq(&swapper_space.tree_lock);
193 
194 	swap_free(entry);
195 	page_cache_release(page);
196 }
197 
198 /*
199  * If we are the only user, then try to free up the swap cache.
200  *
201  * Its ok to check for PageSwapCache without the page lock
202  * here because we are going to recheck again inside
203  * try_to_free_swap() _with_ the lock.
204  * 					- Marcelo
205  */
free_swap_cache(struct page * page)206 static inline void free_swap_cache(struct page *page)
207 {
208 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
209 		try_to_free_swap(page);
210 		unlock_page(page);
211 	}
212 }
213 
214 /*
215  * Perform a free_page(), also freeing any swap cache associated with
216  * this page if it is the last user of the page.
217  */
free_page_and_swap_cache(struct page * page)218 void free_page_and_swap_cache(struct page *page)
219 {
220 	free_swap_cache(page);
221 	page_cache_release(page);
222 }
223 
224 /*
225  * Passed an array of pages, drop them all from swapcache and then release
226  * them.  They are removed from the LRU and freed if this is their last use.
227  */
free_pages_and_swap_cache(struct page ** pages,int nr)228 void free_pages_and_swap_cache(struct page **pages, int nr)
229 {
230 	struct page **pagep = pages;
231 
232 	lru_add_drain();
233 	while (nr) {
234 		int todo = min(nr, PAGEVEC_SIZE);
235 		int i;
236 
237 		for (i = 0; i < todo; i++)
238 			free_swap_cache(pagep[i]);
239 		release_pages(pagep, todo, 0);
240 		pagep += todo;
241 		nr -= todo;
242 	}
243 }
244 
245 /*
246  * Lookup a swap entry in the swap cache. A found page will be returned
247  * unlocked and with its refcount incremented - we rely on the kernel
248  * lock getting page table operations atomic even if we drop the page
249  * lock before returning.
250  */
lookup_swap_cache(swp_entry_t entry)251 struct page * lookup_swap_cache(swp_entry_t entry)
252 {
253 	struct page *page;
254 
255 	page = find_get_page(&swapper_space, entry.val);
256 
257 	if (page)
258 		INC_CACHE_INFO(find_success);
259 
260 	INC_CACHE_INFO(find_total);
261 	return page;
262 }
263 
264 /*
265  * Locate a page of swap in physical memory, reserving swap cache space
266  * and reading the disk if it is not already cached.
267  * A failure return means that either the page allocation failed or that
268  * the swap entry is no longer in use.
269  */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr)270 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
271 			struct vm_area_struct *vma, unsigned long addr)
272 {
273 	struct page *found_page, *new_page = NULL;
274 	int err;
275 
276 	do {
277 		/*
278 		 * First check the swap cache.  Since this is normally
279 		 * called after lookup_swap_cache() failed, re-calling
280 		 * that would confuse statistics.
281 		 */
282 		found_page = find_get_page(&swapper_space, entry.val);
283 		if (found_page)
284 			break;
285 
286 		/*
287 		 * Get a new page to read into from swap.
288 		 */
289 		if (!new_page) {
290 			new_page = alloc_page_vma(gfp_mask, vma, addr);
291 			if (!new_page)
292 				break;		/* Out of memory */
293 		}
294 
295 		/*
296 		 * Swap entry may have been freed since our caller observed it.
297 		 */
298 		if (!swap_duplicate(entry))
299 			break;
300 
301 		/*
302 		 * Associate the page with swap entry in the swap cache.
303 		 * May fail (-EEXIST) if there is already a page associated
304 		 * with this entry in the swap cache: added by a racing
305 		 * read_swap_cache_async, or add_to_swap or shmem_writepage
306 		 * re-using the just freed swap entry for an existing page.
307 		 * May fail (-ENOMEM) if radix-tree node allocation failed.
308 		 */
309 		__set_page_locked(new_page);
310 		SetPageSwapBacked(new_page);
311 		err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
312 		if (likely(!err)) {
313 			/*
314 			 * Initiate read into locked page and return.
315 			 */
316 			lru_cache_add_anon(new_page);
317 			swap_readpage(NULL, new_page);
318 			return new_page;
319 		}
320 		ClearPageSwapBacked(new_page);
321 		__clear_page_locked(new_page);
322 		swap_free(entry);
323 	} while (err != -ENOMEM);
324 
325 	if (new_page)
326 		page_cache_release(new_page);
327 	return found_page;
328 }
329 
330 /**
331  * swapin_readahead - swap in pages in hope we need them soon
332  * @entry: swap entry of this memory
333  * @gfp_mask: memory allocation flags
334  * @vma: user vma this address belongs to
335  * @addr: target address for mempolicy
336  *
337  * Returns the struct page for entry and addr, after queueing swapin.
338  *
339  * Primitive swap readahead code. We simply read an aligned block of
340  * (1 << page_cluster) entries in the swap area. This method is chosen
341  * because it doesn't cost us any seek time.  We also make sure to queue
342  * the 'original' request together with the readahead ones...
343  *
344  * This has been extended to use the NUMA policies from the mm triggering
345  * the readahead.
346  *
347  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
348  */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr)349 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
350 			struct vm_area_struct *vma, unsigned long addr)
351 {
352 	int nr_pages;
353 	struct page *page;
354 	unsigned long offset;
355 	unsigned long end_offset;
356 
357 	/*
358 	 * Get starting offset for readaround, and number of pages to read.
359 	 * Adjust starting address by readbehind (for NUMA interleave case)?
360 	 * No, it's very unlikely that swap layout would follow vma layout,
361 	 * more likely that neighbouring swap pages came from the same node:
362 	 * so use the same "addr" to choose the same node for each swap read.
363 	 */
364 	nr_pages = valid_swaphandles(entry, &offset);
365 	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
366 		/* Ok, do the async read-ahead now */
367 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
368 						gfp_mask, vma, addr);
369 		if (!page)
370 			break;
371 		page_cache_release(page);
372 	}
373 	lru_add_drain();	/* Push any new pages onto the LRU now */
374 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
375 }
376