• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
37 
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
40 long nr_swap_pages;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
44 
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
49 
50 static struct swap_list_t swap_list = {-1, -1};
51 
52 static struct swap_info_struct swap_info[MAX_SWAPFILES];
53 
54 static DEFINE_MUTEX(swapon_mutex);
55 
56 /*
57  * We need this because the bdev->unplug_fn can sleep and we cannot
58  * hold swap_lock while calling the unplug_fn. And swap_lock
59  * cannot be turned into a mutex.
60  */
61 static DECLARE_RWSEM(swap_unplug_sem);
62 
swap_unplug_io_fn(struct backing_dev_info * unused_bdi,struct page * page)63 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
64 {
65 	swp_entry_t entry;
66 
67 	down_read(&swap_unplug_sem);
68 	entry.val = page_private(page);
69 	if (PageSwapCache(page)) {
70 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
71 		struct backing_dev_info *bdi;
72 
73 		/*
74 		 * If the page is removed from swapcache from under us (with a
75 		 * racy try_to_unuse/swapoff) we need an additional reference
76 		 * count to avoid reading garbage from page_private(page) above.
77 		 * If the WARN_ON triggers during a swapoff it maybe the race
78 		 * condition and it's harmless. However if it triggers without
79 		 * swapoff it signals a problem.
80 		 */
81 		WARN_ON(page_count(page) <= 1);
82 
83 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
84 		blk_run_backing_dev(bdi, page);
85 	}
86 	up_read(&swap_unplug_sem);
87 }
88 
89 /*
90  * swapon tell device that all the old swap contents can be discarded,
91  * to allow the swap device to optimize its wear-levelling.
92  */
discard_swap(struct swap_info_struct * si)93 static int discard_swap(struct swap_info_struct *si)
94 {
95 	struct swap_extent *se;
96 	int err = 0;
97 
98 	list_for_each_entry(se, &si->extent_list, list) {
99 		sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
100 		sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
101 
102 		if (se->start_page == 0) {
103 			/* Do not discard the swap header page! */
104 			start_block += 1 << (PAGE_SHIFT - 9);
105 			nr_blocks -= 1 << (PAGE_SHIFT - 9);
106 			if (!nr_blocks)
107 				continue;
108 		}
109 
110 		err = blkdev_issue_discard(si->bdev, start_block,
111 						nr_blocks, GFP_KERNEL);
112 		if (err)
113 			break;
114 
115 		cond_resched();
116 	}
117 	return err;		/* That will often be -EOPNOTSUPP */
118 }
119 
120 /*
121  * swap allocation tell device that a cluster of swap can now be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)124 static void discard_swap_cluster(struct swap_info_struct *si,
125 				 pgoff_t start_page, pgoff_t nr_pages)
126 {
127 	struct swap_extent *se = si->curr_swap_extent;
128 	int found_extent = 0;
129 
130 	while (nr_pages) {
131 		struct list_head *lh;
132 
133 		if (se->start_page <= start_page &&
134 		    start_page < se->start_page + se->nr_pages) {
135 			pgoff_t offset = start_page - se->start_page;
136 			sector_t start_block = se->start_block + offset;
137 			sector_t nr_blocks = se->nr_pages - offset;
138 
139 			if (nr_blocks > nr_pages)
140 				nr_blocks = nr_pages;
141 			start_page += nr_blocks;
142 			nr_pages -= nr_blocks;
143 
144 			if (!found_extent++)
145 				si->curr_swap_extent = se;
146 
147 			start_block <<= PAGE_SHIFT - 9;
148 			nr_blocks <<= PAGE_SHIFT - 9;
149 			if (blkdev_issue_discard(si->bdev, start_block,
150 							nr_blocks, GFP_NOIO))
151 				break;
152 		}
153 
154 		lh = se->list.next;
155 		if (lh == &si->extent_list)
156 			lh = lh->next;
157 		se = list_entry(lh, struct swap_extent, list);
158 	}
159 }
160 
wait_for_discard(void * word)161 static int wait_for_discard(void *word)
162 {
163 	schedule();
164 	return 0;
165 }
166 
167 #define SWAPFILE_CLUSTER	256
168 #define LATENCY_LIMIT		256
169 
scan_swap_map(struct swap_info_struct * si)170 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
171 {
172 	unsigned long offset;
173 	unsigned long scan_base;
174 	unsigned long last_in_cluster = 0;
175 	int latency_ration = LATENCY_LIMIT;
176 	int found_free_cluster = 0;
177 
178 	/*
179 	 * We try to cluster swap pages by allocating them sequentially
180 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
181 	 * way, however, we resort to first-free allocation, starting
182 	 * a new cluster.  This prevents us from scattering swap pages
183 	 * all over the entire swap partition, so that we reduce
184 	 * overall disk seek times between swap pages.  -- sct
185 	 * But we do now try to find an empty cluster.  -Andrea
186 	 * And we let swap pages go all over an SSD partition.  Hugh
187 	 */
188 
189 	si->flags += SWP_SCANNING;
190 	scan_base = offset = si->cluster_next;
191 
192 	if (unlikely(!si->cluster_nr--)) {
193 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
194 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
195 			goto checks;
196 		}
197 		if (si->flags & SWP_DISCARDABLE) {
198 			/*
199 			 * Start range check on racing allocations, in case
200 			 * they overlap the cluster we eventually decide on
201 			 * (we scan without swap_lock to allow preemption).
202 			 * It's hardly conceivable that cluster_nr could be
203 			 * wrapped during our scan, but don't depend on it.
204 			 */
205 			if (si->lowest_alloc)
206 				goto checks;
207 			si->lowest_alloc = si->max;
208 			si->highest_alloc = 0;
209 		}
210 		spin_unlock(&swap_lock);
211 
212 		/*
213 		 * If seek is expensive, start searching for new cluster from
214 		 * start of partition, to minimize the span of allocated swap.
215 		 * But if seek is cheap, search from our current position, so
216 		 * that swap is allocated from all over the partition: if the
217 		 * Flash Translation Layer only remaps within limited zones,
218 		 * we don't want to wear out the first zone too quickly.
219 		 */
220 		if (!(si->flags & SWP_SOLIDSTATE))
221 			scan_base = offset = si->lowest_bit;
222 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
223 
224 		/* Locate the first empty (unaligned) cluster */
225 		for (; last_in_cluster <= si->highest_bit; offset++) {
226 			if (si->swap_map[offset])
227 				last_in_cluster = offset + SWAPFILE_CLUSTER;
228 			else if (offset == last_in_cluster) {
229 				spin_lock(&swap_lock);
230 				offset -= SWAPFILE_CLUSTER - 1;
231 				si->cluster_next = offset;
232 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
233 				found_free_cluster = 1;
234 				goto checks;
235 			}
236 			if (unlikely(--latency_ration < 0)) {
237 				cond_resched();
238 				latency_ration = LATENCY_LIMIT;
239 			}
240 		}
241 
242 		offset = si->lowest_bit;
243 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
244 
245 		/* Locate the first empty (unaligned) cluster */
246 		for (; last_in_cluster < scan_base; offset++) {
247 			if (si->swap_map[offset])
248 				last_in_cluster = offset + SWAPFILE_CLUSTER;
249 			else if (offset == last_in_cluster) {
250 				spin_lock(&swap_lock);
251 				offset -= SWAPFILE_CLUSTER - 1;
252 				si->cluster_next = offset;
253 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
254 				found_free_cluster = 1;
255 				goto checks;
256 			}
257 			if (unlikely(--latency_ration < 0)) {
258 				cond_resched();
259 				latency_ration = LATENCY_LIMIT;
260 			}
261 		}
262 
263 		offset = scan_base;
264 		spin_lock(&swap_lock);
265 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
266 		si->lowest_alloc = 0;
267 	}
268 
269 checks:
270 	if (!(si->flags & SWP_WRITEOK))
271 		goto no_page;
272 	if (!si->highest_bit)
273 		goto no_page;
274 	if (offset > si->highest_bit)
275 		scan_base = offset = si->lowest_bit;
276 	if (si->swap_map[offset])
277 		goto scan;
278 
279 	if (offset == si->lowest_bit)
280 		si->lowest_bit++;
281 	if (offset == si->highest_bit)
282 		si->highest_bit--;
283 	si->inuse_pages++;
284 	if (si->inuse_pages == si->pages) {
285 		si->lowest_bit = si->max;
286 		si->highest_bit = 0;
287 	}
288 	si->swap_map[offset] = 1;
289 	si->cluster_next = offset + 1;
290 	si->flags -= SWP_SCANNING;
291 
292 	if (si->lowest_alloc) {
293 		/*
294 		 * Only set when SWP_DISCARDABLE, and there's a scan
295 		 * for a free cluster in progress or just completed.
296 		 */
297 		if (found_free_cluster) {
298 			/*
299 			 * To optimize wear-levelling, discard the
300 			 * old data of the cluster, taking care not to
301 			 * discard any of its pages that have already
302 			 * been allocated by racing tasks (offset has
303 			 * already stepped over any at the beginning).
304 			 */
305 			if (offset < si->highest_alloc &&
306 			    si->lowest_alloc <= last_in_cluster)
307 				last_in_cluster = si->lowest_alloc - 1;
308 			si->flags |= SWP_DISCARDING;
309 			spin_unlock(&swap_lock);
310 
311 			if (offset < last_in_cluster)
312 				discard_swap_cluster(si, offset,
313 					last_in_cluster - offset + 1);
314 
315 			spin_lock(&swap_lock);
316 			si->lowest_alloc = 0;
317 			si->flags &= ~SWP_DISCARDING;
318 
319 			smp_mb();	/* wake_up_bit advises this */
320 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
321 
322 		} else if (si->flags & SWP_DISCARDING) {
323 			/*
324 			 * Delay using pages allocated by racing tasks
325 			 * until the whole discard has been issued. We
326 			 * could defer that delay until swap_writepage,
327 			 * but it's easier to keep this self-contained.
328 			 */
329 			spin_unlock(&swap_lock);
330 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
331 				wait_for_discard, TASK_UNINTERRUPTIBLE);
332 			spin_lock(&swap_lock);
333 		} else {
334 			/*
335 			 * Note pages allocated by racing tasks while
336 			 * scan for a free cluster is in progress, so
337 			 * that its final discard can exclude them.
338 			 */
339 			if (offset < si->lowest_alloc)
340 				si->lowest_alloc = offset;
341 			if (offset > si->highest_alloc)
342 				si->highest_alloc = offset;
343 		}
344 	}
345 	return offset;
346 
347 scan:
348 	spin_unlock(&swap_lock);
349 	while (++offset <= si->highest_bit) {
350 		if (!si->swap_map[offset]) {
351 			spin_lock(&swap_lock);
352 			goto checks;
353 		}
354 		if (unlikely(--latency_ration < 0)) {
355 			cond_resched();
356 			latency_ration = LATENCY_LIMIT;
357 		}
358 	}
359 	offset = si->lowest_bit;
360 	while (++offset < scan_base) {
361 		if (!si->swap_map[offset]) {
362 			spin_lock(&swap_lock);
363 			goto checks;
364 		}
365 		if (unlikely(--latency_ration < 0)) {
366 			cond_resched();
367 			latency_ration = LATENCY_LIMIT;
368 		}
369 	}
370 	spin_lock(&swap_lock);
371 
372 no_page:
373 	si->flags -= SWP_SCANNING;
374 	return 0;
375 }
376 
get_swap_page(void)377 swp_entry_t get_swap_page(void)
378 {
379 	struct swap_info_struct *si;
380 	pgoff_t offset;
381 	int type, next;
382 	int wrapped = 0;
383 
384 	spin_lock(&swap_lock);
385 	if (nr_swap_pages <= 0)
386 		goto noswap;
387 	nr_swap_pages--;
388 
389 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
390 		si = swap_info + type;
391 		next = si->next;
392 		if (next < 0 ||
393 		    (!wrapped && si->prio != swap_info[next].prio)) {
394 			next = swap_list.head;
395 			wrapped++;
396 		}
397 
398 		if (!si->highest_bit)
399 			continue;
400 		if (!(si->flags & SWP_WRITEOK))
401 			continue;
402 
403 		swap_list.next = next;
404 		offset = scan_swap_map(si);
405 		if (offset) {
406 			spin_unlock(&swap_lock);
407 			return swp_entry(type, offset);
408 		}
409 		next = swap_list.next;
410 	}
411 
412 	nr_swap_pages++;
413 noswap:
414 	spin_unlock(&swap_lock);
415 	return (swp_entry_t) {0};
416 }
417 
get_swap_page_of_type(int type)418 swp_entry_t get_swap_page_of_type(int type)
419 {
420 	struct swap_info_struct *si;
421 	pgoff_t offset;
422 
423 	spin_lock(&swap_lock);
424 	si = swap_info + type;
425 	if (si->flags & SWP_WRITEOK) {
426 		nr_swap_pages--;
427 		offset = scan_swap_map(si);
428 		if (offset) {
429 			spin_unlock(&swap_lock);
430 			return swp_entry(type, offset);
431 		}
432 		nr_swap_pages++;
433 	}
434 	spin_unlock(&swap_lock);
435 	return (swp_entry_t) {0};
436 }
437 
swap_info_get(swp_entry_t entry)438 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
439 {
440 	struct swap_info_struct * p;
441 	unsigned long offset, type;
442 
443 	if (!entry.val)
444 		goto out;
445 	type = swp_type(entry);
446 	if (type >= nr_swapfiles)
447 		goto bad_nofile;
448 	p = & swap_info[type];
449 	if (!(p->flags & SWP_USED))
450 		goto bad_device;
451 	offset = swp_offset(entry);
452 	if (offset >= p->max)
453 		goto bad_offset;
454 	if (!p->swap_map[offset])
455 		goto bad_free;
456 	spin_lock(&swap_lock);
457 	return p;
458 
459 bad_free:
460 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
461 	goto out;
462 bad_offset:
463 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
464 	goto out;
465 bad_device:
466 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
467 	goto out;
468 bad_nofile:
469 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
470 out:
471 	return NULL;
472 }
473 
swap_entry_free(struct swap_info_struct * p,swp_entry_t ent)474 static int swap_entry_free(struct swap_info_struct *p, swp_entry_t ent)
475 {
476 	unsigned long offset = swp_offset(ent);
477 	int count = p->swap_map[offset];
478 
479 	if (count < SWAP_MAP_MAX) {
480 		count--;
481 		p->swap_map[offset] = count;
482 		if (!count) {
483 			if (offset < p->lowest_bit)
484 				p->lowest_bit = offset;
485 			if (offset > p->highest_bit)
486 				p->highest_bit = offset;
487 			if (p->prio > swap_info[swap_list.next].prio)
488 				swap_list.next = p - swap_info;
489 			nr_swap_pages++;
490 			p->inuse_pages--;
491 			mem_cgroup_uncharge_swap(ent);
492 		}
493 	}
494 	return count;
495 }
496 
497 /*
498  * Caller has made sure that the swapdevice corresponding to entry
499  * is still around or has not been recycled.
500  */
swap_free(swp_entry_t entry)501 void swap_free(swp_entry_t entry)
502 {
503 	struct swap_info_struct * p;
504 
505 	p = swap_info_get(entry);
506 	if (p) {
507 		swap_entry_free(p, entry);
508 		spin_unlock(&swap_lock);
509 	}
510 }
511 
512 /*
513  * How many references to page are currently swapped out?
514  */
page_swapcount(struct page * page)515 static inline int page_swapcount(struct page *page)
516 {
517 	int count = 0;
518 	struct swap_info_struct *p;
519 	swp_entry_t entry;
520 
521 	entry.val = page_private(page);
522 	p = swap_info_get(entry);
523 	if (p) {
524 		/* Subtract the 1 for the swap cache itself */
525 		count = p->swap_map[swp_offset(entry)] - 1;
526 		spin_unlock(&swap_lock);
527 	}
528 	return count;
529 }
530 
531 /*
532  * We can write to an anon page without COW if there are no other references
533  * to it.  And as a side-effect, free up its swap: because the old content
534  * on disk will never be read, and seeking back there to write new content
535  * later would only waste time away from clustering.
536  */
reuse_swap_page(struct page * page)537 int reuse_swap_page(struct page *page)
538 {
539 	int count;
540 
541 	VM_BUG_ON(!PageLocked(page));
542 	count = page_mapcount(page);
543 	if (count <= 1 && PageSwapCache(page)) {
544 		count += page_swapcount(page);
545 		if (count == 1 && !PageWriteback(page)) {
546 			delete_from_swap_cache(page);
547 			SetPageDirty(page);
548 		}
549 	}
550 	return count == 1;
551 }
552 
553 /*
554  * If swap is getting full, or if there are no more mappings of this page,
555  * then try_to_free_swap is called to free its swap space.
556  */
try_to_free_swap(struct page * page)557 int try_to_free_swap(struct page *page)
558 {
559 	VM_BUG_ON(!PageLocked(page));
560 
561 	if (!PageSwapCache(page))
562 		return 0;
563 	if (PageWriteback(page))
564 		return 0;
565 	if (page_swapcount(page))
566 		return 0;
567 
568 	delete_from_swap_cache(page);
569 	SetPageDirty(page);
570 	return 1;
571 }
572 
573 /*
574  * Free the swap entry like above, but also try to
575  * free the page cache entry if it is the last user.
576  */
free_swap_and_cache(swp_entry_t entry)577 int free_swap_and_cache(swp_entry_t entry)
578 {
579 	struct swap_info_struct *p;
580 	struct page *page = NULL;
581 
582 	if (is_migration_entry(entry))
583 		return 1;
584 
585 	p = swap_info_get(entry);
586 	if (p) {
587 		if (swap_entry_free(p, entry) == 1) {
588 			page = find_get_page(&swapper_space, entry.val);
589 			if (page && !trylock_page(page)) {
590 				page_cache_release(page);
591 				page = NULL;
592 			}
593 		}
594 		spin_unlock(&swap_lock);
595 	}
596 	if (page) {
597 		/*
598 		 * Not mapped elsewhere, or swap space full? Free it!
599 		 * Also recheck PageSwapCache now page is locked (above).
600 		 */
601 		if (PageSwapCache(page) && !PageWriteback(page) &&
602 				(!page_mapped(page) || vm_swap_full())) {
603 			delete_from_swap_cache(page);
604 			SetPageDirty(page);
605 		}
606 		unlock_page(page);
607 		page_cache_release(page);
608 	}
609 	return p != NULL;
610 }
611 
612 #ifdef CONFIG_HIBERNATION
613 /*
614  * Find the swap type that corresponds to given device (if any).
615  *
616  * @offset - number of the PAGE_SIZE-sized block of the device, starting
617  * from 0, in which the swap header is expected to be located.
618  *
619  * This is needed for the suspend to disk (aka swsusp).
620  */
swap_type_of(dev_t device,sector_t offset,struct block_device ** bdev_p)621 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
622 {
623 	struct block_device *bdev = NULL;
624 	int i;
625 
626 	if (device)
627 		bdev = bdget(device);
628 
629 	spin_lock(&swap_lock);
630 	for (i = 0; i < nr_swapfiles; i++) {
631 		struct swap_info_struct *sis = swap_info + i;
632 
633 		if (!(sis->flags & SWP_WRITEOK))
634 			continue;
635 
636 		if (!bdev) {
637 			if (bdev_p)
638 				*bdev_p = bdget(sis->bdev->bd_dev);
639 
640 			spin_unlock(&swap_lock);
641 			return i;
642 		}
643 		if (bdev == sis->bdev) {
644 			struct swap_extent *se;
645 
646 			se = list_entry(sis->extent_list.next,
647 					struct swap_extent, list);
648 			if (se->start_block == offset) {
649 				if (bdev_p)
650 					*bdev_p = bdget(sis->bdev->bd_dev);
651 
652 				spin_unlock(&swap_lock);
653 				bdput(bdev);
654 				return i;
655 			}
656 		}
657 	}
658 	spin_unlock(&swap_lock);
659 	if (bdev)
660 		bdput(bdev);
661 
662 	return -ENODEV;
663 }
664 
665 /*
666  * Return either the total number of swap pages of given type, or the number
667  * of free pages of that type (depending on @free)
668  *
669  * This is needed for software suspend
670  */
count_swap_pages(int type,int free)671 unsigned int count_swap_pages(int type, int free)
672 {
673 	unsigned int n = 0;
674 
675 	if (type < nr_swapfiles) {
676 		spin_lock(&swap_lock);
677 		if (swap_info[type].flags & SWP_WRITEOK) {
678 			n = swap_info[type].pages;
679 			if (free)
680 				n -= swap_info[type].inuse_pages;
681 		}
682 		spin_unlock(&swap_lock);
683 	}
684 	return n;
685 }
686 #endif
687 
688 /*
689  * No need to decide whether this PTE shares the swap entry with others,
690  * just let do_wp_page work it out if a write is requested later - to
691  * force COW, vm_page_prot omits write permission from any private vma.
692  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)693 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
694 		unsigned long addr, swp_entry_t entry, struct page *page)
695 {
696 	struct mem_cgroup *ptr = NULL;
697 	spinlock_t *ptl;
698 	pte_t *pte;
699 	int ret = 1;
700 
701 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
702 		ret = -ENOMEM;
703 		goto out_nolock;
704 	}
705 
706 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
707 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
708 		if (ret > 0)
709 			mem_cgroup_cancel_charge_swapin(ptr);
710 		ret = 0;
711 		goto out;
712 	}
713 
714 	inc_mm_counter(vma->vm_mm, anon_rss);
715 	get_page(page);
716 	set_pte_at(vma->vm_mm, addr, pte,
717 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
718 	page_add_anon_rmap(page, vma, addr);
719 	mem_cgroup_commit_charge_swapin(page, ptr);
720 	swap_free(entry);
721 	/*
722 	 * Move the page to the active list so it is not
723 	 * immediately swapped out again after swapon.
724 	 */
725 	activate_page(page);
726 out:
727 	pte_unmap_unlock(pte, ptl);
728 out_nolock:
729 	return ret;
730 }
731 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)732 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
733 				unsigned long addr, unsigned long end,
734 				swp_entry_t entry, struct page *page)
735 {
736 	pte_t swp_pte = swp_entry_to_pte(entry);
737 	pte_t *pte;
738 	int ret = 0;
739 
740 	/*
741 	 * We don't actually need pte lock while scanning for swp_pte: since
742 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
743 	 * page table while we're scanning; though it could get zapped, and on
744 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
745 	 * of unmatched parts which look like swp_pte, so unuse_pte must
746 	 * recheck under pte lock.  Scanning without pte lock lets it be
747 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
748 	 */
749 	pte = pte_offset_map(pmd, addr);
750 	do {
751 		/*
752 		 * swapoff spends a _lot_ of time in this loop!
753 		 * Test inline before going to call unuse_pte.
754 		 */
755 		if (unlikely(pte_same(*pte, swp_pte))) {
756 			pte_unmap(pte);
757 			ret = unuse_pte(vma, pmd, addr, entry, page);
758 			if (ret)
759 				goto out;
760 			pte = pte_offset_map(pmd, addr);
761 		}
762 	} while (pte++, addr += PAGE_SIZE, addr != end);
763 	pte_unmap(pte - 1);
764 out:
765 	return ret;
766 }
767 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)768 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
769 				unsigned long addr, unsigned long end,
770 				swp_entry_t entry, struct page *page)
771 {
772 	pmd_t *pmd;
773 	unsigned long next;
774 	int ret;
775 
776 	pmd = pmd_offset(pud, addr);
777 	do {
778 		next = pmd_addr_end(addr, end);
779 		if (pmd_none_or_clear_bad(pmd))
780 			continue;
781 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
782 		if (ret)
783 			return ret;
784 	} while (pmd++, addr = next, addr != end);
785 	return 0;
786 }
787 
unuse_pud_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)788 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
789 				unsigned long addr, unsigned long end,
790 				swp_entry_t entry, struct page *page)
791 {
792 	pud_t *pud;
793 	unsigned long next;
794 	int ret;
795 
796 	pud = pud_offset(pgd, addr);
797 	do {
798 		next = pud_addr_end(addr, end);
799 		if (pud_none_or_clear_bad(pud))
800 			continue;
801 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
802 		if (ret)
803 			return ret;
804 	} while (pud++, addr = next, addr != end);
805 	return 0;
806 }
807 
unuse_vma(struct vm_area_struct * vma,swp_entry_t entry,struct page * page)808 static int unuse_vma(struct vm_area_struct *vma,
809 				swp_entry_t entry, struct page *page)
810 {
811 	pgd_t *pgd;
812 	unsigned long addr, end, next;
813 	int ret;
814 
815 	if (page->mapping) {
816 		addr = page_address_in_vma(page, vma);
817 		if (addr == -EFAULT)
818 			return 0;
819 		else
820 			end = addr + PAGE_SIZE;
821 	} else {
822 		addr = vma->vm_start;
823 		end = vma->vm_end;
824 	}
825 
826 	pgd = pgd_offset(vma->vm_mm, addr);
827 	do {
828 		next = pgd_addr_end(addr, end);
829 		if (pgd_none_or_clear_bad(pgd))
830 			continue;
831 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
832 		if (ret)
833 			return ret;
834 	} while (pgd++, addr = next, addr != end);
835 	return 0;
836 }
837 
unuse_mm(struct mm_struct * mm,swp_entry_t entry,struct page * page)838 static int unuse_mm(struct mm_struct *mm,
839 				swp_entry_t entry, struct page *page)
840 {
841 	struct vm_area_struct *vma;
842 	int ret = 0;
843 
844 	if (!down_read_trylock(&mm->mmap_sem)) {
845 		/*
846 		 * Activate page so shrink_inactive_list is unlikely to unmap
847 		 * its ptes while lock is dropped, so swapoff can make progress.
848 		 */
849 		activate_page(page);
850 		unlock_page(page);
851 		down_read(&mm->mmap_sem);
852 		lock_page(page);
853 	}
854 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
855 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
856 			break;
857 	}
858 	up_read(&mm->mmap_sem);
859 	return (ret < 0)? ret: 0;
860 }
861 
862 /*
863  * Scan swap_map from current position to next entry still in use.
864  * Recycle to start on reaching the end, returning 0 when empty.
865  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)866 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
867 					unsigned int prev)
868 {
869 	unsigned int max = si->max;
870 	unsigned int i = prev;
871 	int count;
872 
873 	/*
874 	 * No need for swap_lock here: we're just looking
875 	 * for whether an entry is in use, not modifying it; false
876 	 * hits are okay, and sys_swapoff() has already prevented new
877 	 * allocations from this area (while holding swap_lock).
878 	 */
879 	for (;;) {
880 		if (++i >= max) {
881 			if (!prev) {
882 				i = 0;
883 				break;
884 			}
885 			/*
886 			 * No entries in use at top of swap_map,
887 			 * loop back to start and recheck there.
888 			 */
889 			max = prev + 1;
890 			prev = 0;
891 			i = 1;
892 		}
893 		count = si->swap_map[i];
894 		if (count && count != SWAP_MAP_BAD)
895 			break;
896 	}
897 	return i;
898 }
899 
900 /*
901  * We completely avoid races by reading each swap page in advance,
902  * and then search for the process using it.  All the necessary
903  * page table adjustments can then be made atomically.
904  */
try_to_unuse(unsigned int type)905 static int try_to_unuse(unsigned int type)
906 {
907 	struct swap_info_struct * si = &swap_info[type];
908 	struct mm_struct *start_mm;
909 	unsigned short *swap_map;
910 	unsigned short swcount;
911 	struct page *page;
912 	swp_entry_t entry;
913 	unsigned int i = 0;
914 	int retval = 0;
915 	int reset_overflow = 0;
916 	int shmem;
917 
918 	/*
919 	 * When searching mms for an entry, a good strategy is to
920 	 * start at the first mm we freed the previous entry from
921 	 * (though actually we don't notice whether we or coincidence
922 	 * freed the entry).  Initialize this start_mm with a hold.
923 	 *
924 	 * A simpler strategy would be to start at the last mm we
925 	 * freed the previous entry from; but that would take less
926 	 * advantage of mmlist ordering, which clusters forked mms
927 	 * together, child after parent.  If we race with dup_mmap(), we
928 	 * prefer to resolve parent before child, lest we miss entries
929 	 * duplicated after we scanned child: using last mm would invert
930 	 * that.  Though it's only a serious concern when an overflowed
931 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
932 	 */
933 	start_mm = &init_mm;
934 	atomic_inc(&init_mm.mm_users);
935 
936 	/*
937 	 * Keep on scanning until all entries have gone.  Usually,
938 	 * one pass through swap_map is enough, but not necessarily:
939 	 * there are races when an instance of an entry might be missed.
940 	 */
941 	while ((i = find_next_to_unuse(si, i)) != 0) {
942 		if (signal_pending(current)) {
943 			retval = -EINTR;
944 			break;
945 		}
946 
947 		/*
948 		 * Get a page for the entry, using the existing swap
949 		 * cache page if there is one.  Otherwise, get a clean
950 		 * page and read the swap into it.
951 		 */
952 		swap_map = &si->swap_map[i];
953 		entry = swp_entry(type, i);
954 		page = read_swap_cache_async(entry,
955 					GFP_HIGHUSER_MOVABLE, NULL, 0);
956 		if (!page) {
957 			/*
958 			 * Either swap_duplicate() failed because entry
959 			 * has been freed independently, and will not be
960 			 * reused since sys_swapoff() already disabled
961 			 * allocation from here, or alloc_page() failed.
962 			 */
963 			if (!*swap_map)
964 				continue;
965 			retval = -ENOMEM;
966 			break;
967 		}
968 
969 		/*
970 		 * Don't hold on to start_mm if it looks like exiting.
971 		 */
972 		if (atomic_read(&start_mm->mm_users) == 1) {
973 			mmput(start_mm);
974 			start_mm = &init_mm;
975 			atomic_inc(&init_mm.mm_users);
976 		}
977 
978 		/*
979 		 * Wait for and lock page.  When do_swap_page races with
980 		 * try_to_unuse, do_swap_page can handle the fault much
981 		 * faster than try_to_unuse can locate the entry.  This
982 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
983 		 * defer to do_swap_page in such a case - in some tests,
984 		 * do_swap_page and try_to_unuse repeatedly compete.
985 		 */
986 		wait_on_page_locked(page);
987 		wait_on_page_writeback(page);
988 		lock_page(page);
989 		wait_on_page_writeback(page);
990 
991 		/*
992 		 * Remove all references to entry.
993 		 * Whenever we reach init_mm, there's no address space
994 		 * to search, but use it as a reminder to search shmem.
995 		 */
996 		shmem = 0;
997 		swcount = *swap_map;
998 		if (swcount > 1) {
999 			if (start_mm == &init_mm)
1000 				shmem = shmem_unuse(entry, page);
1001 			else
1002 				retval = unuse_mm(start_mm, entry, page);
1003 		}
1004 		if (*swap_map > 1) {
1005 			int set_start_mm = (*swap_map >= swcount);
1006 			struct list_head *p = &start_mm->mmlist;
1007 			struct mm_struct *new_start_mm = start_mm;
1008 			struct mm_struct *prev_mm = start_mm;
1009 			struct mm_struct *mm;
1010 
1011 			atomic_inc(&new_start_mm->mm_users);
1012 			atomic_inc(&prev_mm->mm_users);
1013 			spin_lock(&mmlist_lock);
1014 			while (*swap_map > 1 && !retval && !shmem &&
1015 					(p = p->next) != &start_mm->mmlist) {
1016 				mm = list_entry(p, struct mm_struct, mmlist);
1017 				if (!atomic_inc_not_zero(&mm->mm_users))
1018 					continue;
1019 				spin_unlock(&mmlist_lock);
1020 				mmput(prev_mm);
1021 				prev_mm = mm;
1022 
1023 				cond_resched();
1024 
1025 				swcount = *swap_map;
1026 				if (swcount <= 1)
1027 					;
1028 				else if (mm == &init_mm) {
1029 					set_start_mm = 1;
1030 					shmem = shmem_unuse(entry, page);
1031 				} else
1032 					retval = unuse_mm(mm, entry, page);
1033 				if (set_start_mm && *swap_map < swcount) {
1034 					mmput(new_start_mm);
1035 					atomic_inc(&mm->mm_users);
1036 					new_start_mm = mm;
1037 					set_start_mm = 0;
1038 				}
1039 				spin_lock(&mmlist_lock);
1040 			}
1041 			spin_unlock(&mmlist_lock);
1042 			mmput(prev_mm);
1043 			mmput(start_mm);
1044 			start_mm = new_start_mm;
1045 		}
1046 		if (shmem) {
1047 			/* page has already been unlocked and released */
1048 			if (shmem > 0)
1049 				continue;
1050 			retval = shmem;
1051 			break;
1052 		}
1053 		if (retval) {
1054 			unlock_page(page);
1055 			page_cache_release(page);
1056 			break;
1057 		}
1058 
1059 		/*
1060 		 * How could swap count reach 0x7fff when the maximum
1061 		 * pid is 0x7fff, and there's no way to repeat a swap
1062 		 * page within an mm (except in shmem, where it's the
1063 		 * shared object which takes the reference count)?
1064 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
1065 		 *
1066 		 * If that's wrong, then we should worry more about
1067 		 * exit_mmap() and do_munmap() cases described above:
1068 		 * we might be resetting SWAP_MAP_MAX too early here.
1069 		 * We know "Undead"s can happen, they're okay, so don't
1070 		 * report them; but do report if we reset SWAP_MAP_MAX.
1071 		 */
1072 		if (*swap_map == SWAP_MAP_MAX) {
1073 			spin_lock(&swap_lock);
1074 			*swap_map = 1;
1075 			spin_unlock(&swap_lock);
1076 			reset_overflow = 1;
1077 		}
1078 
1079 		/*
1080 		 * If a reference remains (rare), we would like to leave
1081 		 * the page in the swap cache; but try_to_unmap could
1082 		 * then re-duplicate the entry once we drop page lock,
1083 		 * so we might loop indefinitely; also, that page could
1084 		 * not be swapped out to other storage meanwhile.  So:
1085 		 * delete from cache even if there's another reference,
1086 		 * after ensuring that the data has been saved to disk -
1087 		 * since if the reference remains (rarer), it will be
1088 		 * read from disk into another page.  Splitting into two
1089 		 * pages would be incorrect if swap supported "shared
1090 		 * private" pages, but they are handled by tmpfs files.
1091 		 */
1092 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
1093 			struct writeback_control wbc = {
1094 				.sync_mode = WB_SYNC_NONE,
1095 			};
1096 
1097 			swap_writepage(page, &wbc);
1098 			lock_page(page);
1099 			wait_on_page_writeback(page);
1100 		}
1101 
1102 		/*
1103 		 * It is conceivable that a racing task removed this page from
1104 		 * swap cache just before we acquired the page lock at the top,
1105 		 * or while we dropped it in unuse_mm().  The page might even
1106 		 * be back in swap cache on another swap area: that we must not
1107 		 * delete, since it may not have been written out to swap yet.
1108 		 */
1109 		if (PageSwapCache(page) &&
1110 		    likely(page_private(page) == entry.val))
1111 			delete_from_swap_cache(page);
1112 
1113 		/*
1114 		 * So we could skip searching mms once swap count went
1115 		 * to 1, we did not mark any present ptes as dirty: must
1116 		 * mark page dirty so shrink_page_list will preserve it.
1117 		 */
1118 		SetPageDirty(page);
1119 		unlock_page(page);
1120 		page_cache_release(page);
1121 
1122 		/*
1123 		 * Make sure that we aren't completely killing
1124 		 * interactive performance.
1125 		 */
1126 		cond_resched();
1127 	}
1128 
1129 	mmput(start_mm);
1130 	if (reset_overflow) {
1131 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1132 		swap_overflow = 0;
1133 	}
1134 	return retval;
1135 }
1136 
1137 /*
1138  * After a successful try_to_unuse, if no swap is now in use, we know
1139  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1140  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1141  * added to the mmlist just after page_duplicate - before would be racy.
1142  */
drain_mmlist(void)1143 static void drain_mmlist(void)
1144 {
1145 	struct list_head *p, *next;
1146 	unsigned int i;
1147 
1148 	for (i = 0; i < nr_swapfiles; i++)
1149 		if (swap_info[i].inuse_pages)
1150 			return;
1151 	spin_lock(&mmlist_lock);
1152 	list_for_each_safe(p, next, &init_mm.mmlist)
1153 		list_del_init(p);
1154 	spin_unlock(&mmlist_lock);
1155 }
1156 
1157 /*
1158  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1159  * corresponds to page offset `offset'.
1160  */
map_swap_page(struct swap_info_struct * sis,pgoff_t offset)1161 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1162 {
1163 	struct swap_extent *se = sis->curr_swap_extent;
1164 	struct swap_extent *start_se = se;
1165 
1166 	for ( ; ; ) {
1167 		struct list_head *lh;
1168 
1169 		if (se->start_page <= offset &&
1170 				offset < (se->start_page + se->nr_pages)) {
1171 			return se->start_block + (offset - se->start_page);
1172 		}
1173 		lh = se->list.next;
1174 		if (lh == &sis->extent_list)
1175 			lh = lh->next;
1176 		se = list_entry(lh, struct swap_extent, list);
1177 		sis->curr_swap_extent = se;
1178 		BUG_ON(se == start_se);		/* It *must* be present */
1179 	}
1180 }
1181 
1182 #ifdef CONFIG_HIBERNATION
1183 /*
1184  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1185  * corresponding to given index in swap_info (swap type).
1186  */
swapdev_block(int swap_type,pgoff_t offset)1187 sector_t swapdev_block(int swap_type, pgoff_t offset)
1188 {
1189 	struct swap_info_struct *sis;
1190 
1191 	if (swap_type >= nr_swapfiles)
1192 		return 0;
1193 
1194 	sis = swap_info + swap_type;
1195 	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1196 }
1197 #endif /* CONFIG_HIBERNATION */
1198 
1199 /*
1200  * Free all of a swapdev's extent information
1201  */
destroy_swap_extents(struct swap_info_struct * sis)1202 static void destroy_swap_extents(struct swap_info_struct *sis)
1203 {
1204 	while (!list_empty(&sis->extent_list)) {
1205 		struct swap_extent *se;
1206 
1207 		se = list_entry(sis->extent_list.next,
1208 				struct swap_extent, list);
1209 		list_del(&se->list);
1210 		kfree(se);
1211 	}
1212 }
1213 
1214 /*
1215  * Add a block range (and the corresponding page range) into this swapdev's
1216  * extent list.  The extent list is kept sorted in page order.
1217  *
1218  * This function rather assumes that it is called in ascending page order.
1219  */
1220 static int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)1221 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1222 		unsigned long nr_pages, sector_t start_block)
1223 {
1224 	struct swap_extent *se;
1225 	struct swap_extent *new_se;
1226 	struct list_head *lh;
1227 
1228 	lh = sis->extent_list.prev;	/* The highest page extent */
1229 	if (lh != &sis->extent_list) {
1230 		se = list_entry(lh, struct swap_extent, list);
1231 		BUG_ON(se->start_page + se->nr_pages != start_page);
1232 		if (se->start_block + se->nr_pages == start_block) {
1233 			/* Merge it */
1234 			se->nr_pages += nr_pages;
1235 			return 0;
1236 		}
1237 	}
1238 
1239 	/*
1240 	 * No merge.  Insert a new extent, preserving ordering.
1241 	 */
1242 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1243 	if (new_se == NULL)
1244 		return -ENOMEM;
1245 	new_se->start_page = start_page;
1246 	new_se->nr_pages = nr_pages;
1247 	new_se->start_block = start_block;
1248 
1249 	list_add_tail(&new_se->list, &sis->extent_list);
1250 	return 1;
1251 }
1252 
1253 /*
1254  * A `swap extent' is a simple thing which maps a contiguous range of pages
1255  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1256  * is built at swapon time and is then used at swap_writepage/swap_readpage
1257  * time for locating where on disk a page belongs.
1258  *
1259  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1260  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1261  * swap files identically.
1262  *
1263  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1264  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1265  * swapfiles are handled *identically* after swapon time.
1266  *
1267  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1268  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1269  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1270  * requirements, they are simply tossed out - we will never use those blocks
1271  * for swapping.
1272  *
1273  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1274  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1275  * which will scribble on the fs.
1276  *
1277  * The amount of disk space which a single swap extent represents varies.
1278  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1279  * extents in the list.  To avoid much list walking, we cache the previous
1280  * search location in `curr_swap_extent', and start new searches from there.
1281  * This is extremely effective.  The average number of iterations in
1282  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1283  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)1284 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1285 {
1286 	struct inode *inode;
1287 	unsigned blocks_per_page;
1288 	unsigned long page_no;
1289 	unsigned blkbits;
1290 	sector_t probe_block;
1291 	sector_t last_block;
1292 	sector_t lowest_block = -1;
1293 	sector_t highest_block = 0;
1294 	int nr_extents = 0;
1295 	int ret;
1296 
1297 	inode = sis->swap_file->f_mapping->host;
1298 	if (S_ISBLK(inode->i_mode)) {
1299 		ret = add_swap_extent(sis, 0, sis->max, 0);
1300 		*span = sis->pages;
1301 		goto done;
1302 	}
1303 
1304 	blkbits = inode->i_blkbits;
1305 	blocks_per_page = PAGE_SIZE >> blkbits;
1306 
1307 	/*
1308 	 * Map all the blocks into the extent list.  This code doesn't try
1309 	 * to be very smart.
1310 	 */
1311 	probe_block = 0;
1312 	page_no = 0;
1313 	last_block = i_size_read(inode) >> blkbits;
1314 	while ((probe_block + blocks_per_page) <= last_block &&
1315 			page_no < sis->max) {
1316 		unsigned block_in_page;
1317 		sector_t first_block;
1318 
1319 		first_block = bmap(inode, probe_block);
1320 		if (first_block == 0)
1321 			goto bad_bmap;
1322 
1323 		/*
1324 		 * It must be PAGE_SIZE aligned on-disk
1325 		 */
1326 		if (first_block & (blocks_per_page - 1)) {
1327 			probe_block++;
1328 			goto reprobe;
1329 		}
1330 
1331 		for (block_in_page = 1; block_in_page < blocks_per_page;
1332 					block_in_page++) {
1333 			sector_t block;
1334 
1335 			block = bmap(inode, probe_block + block_in_page);
1336 			if (block == 0)
1337 				goto bad_bmap;
1338 			if (block != first_block + block_in_page) {
1339 				/* Discontiguity */
1340 				probe_block++;
1341 				goto reprobe;
1342 			}
1343 		}
1344 
1345 		first_block >>= (PAGE_SHIFT - blkbits);
1346 		if (page_no) {	/* exclude the header page */
1347 			if (first_block < lowest_block)
1348 				lowest_block = first_block;
1349 			if (first_block > highest_block)
1350 				highest_block = first_block;
1351 		}
1352 
1353 		/*
1354 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1355 		 */
1356 		ret = add_swap_extent(sis, page_no, 1, first_block);
1357 		if (ret < 0)
1358 			goto out;
1359 		nr_extents += ret;
1360 		page_no++;
1361 		probe_block += blocks_per_page;
1362 reprobe:
1363 		continue;
1364 	}
1365 	ret = nr_extents;
1366 	*span = 1 + highest_block - lowest_block;
1367 	if (page_no == 0)
1368 		page_no = 1;	/* force Empty message */
1369 	sis->max = page_no;
1370 	sis->pages = page_no - 1;
1371 	sis->highest_bit = page_no - 1;
1372 done:
1373 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1374 					struct swap_extent, list);
1375 	goto out;
1376 bad_bmap:
1377 	printk(KERN_ERR "swapon: swapfile has holes\n");
1378 	ret = -EINVAL;
1379 out:
1380 	return ret;
1381 }
1382 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)1383 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1384 {
1385 	struct swap_info_struct * p = NULL;
1386 	unsigned short *swap_map;
1387 	struct file *swap_file, *victim;
1388 	struct address_space *mapping;
1389 	struct inode *inode;
1390 	char * pathname;
1391 	int i, type, prev;
1392 	int err;
1393 
1394 	if (!capable(CAP_SYS_ADMIN))
1395 		return -EPERM;
1396 
1397 	pathname = getname(specialfile);
1398 	err = PTR_ERR(pathname);
1399 	if (IS_ERR(pathname))
1400 		goto out;
1401 
1402 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1403 	putname(pathname);
1404 	err = PTR_ERR(victim);
1405 	if (IS_ERR(victim))
1406 		goto out;
1407 
1408 	mapping = victim->f_mapping;
1409 	prev = -1;
1410 	spin_lock(&swap_lock);
1411 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1412 		p = swap_info + type;
1413 		if (p->flags & SWP_WRITEOK) {
1414 			if (p->swap_file->f_mapping == mapping)
1415 				break;
1416 		}
1417 		prev = type;
1418 	}
1419 	if (type < 0) {
1420 		err = -EINVAL;
1421 		spin_unlock(&swap_lock);
1422 		goto out_dput;
1423 	}
1424 	if (!security_vm_enough_memory(p->pages))
1425 		vm_unacct_memory(p->pages);
1426 	else {
1427 		err = -ENOMEM;
1428 		spin_unlock(&swap_lock);
1429 		goto out_dput;
1430 	}
1431 	if (prev < 0) {
1432 		swap_list.head = p->next;
1433 	} else {
1434 		swap_info[prev].next = p->next;
1435 	}
1436 	if (type == swap_list.next) {
1437 		/* just pick something that's safe... */
1438 		swap_list.next = swap_list.head;
1439 	}
1440 	if (p->prio < 0) {
1441 		for (i = p->next; i >= 0; i = swap_info[i].next)
1442 			swap_info[i].prio = p->prio--;
1443 		least_priority++;
1444 	}
1445 	nr_swap_pages -= p->pages;
1446 	total_swap_pages -= p->pages;
1447 	p->flags &= ~SWP_WRITEOK;
1448 	spin_unlock(&swap_lock);
1449 
1450 	current->flags |= PF_SWAPOFF;
1451 	err = try_to_unuse(type);
1452 	current->flags &= ~PF_SWAPOFF;
1453 
1454 	if (err) {
1455 		/* re-insert swap space back into swap_list */
1456 		spin_lock(&swap_lock);
1457 		if (p->prio < 0)
1458 			p->prio = --least_priority;
1459 		prev = -1;
1460 		for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1461 			if (p->prio >= swap_info[i].prio)
1462 				break;
1463 			prev = i;
1464 		}
1465 		p->next = i;
1466 		if (prev < 0)
1467 			swap_list.head = swap_list.next = p - swap_info;
1468 		else
1469 			swap_info[prev].next = p - swap_info;
1470 		nr_swap_pages += p->pages;
1471 		total_swap_pages += p->pages;
1472 		p->flags |= SWP_WRITEOK;
1473 		spin_unlock(&swap_lock);
1474 		goto out_dput;
1475 	}
1476 
1477 	/* wait for any unplug function to finish */
1478 	down_write(&swap_unplug_sem);
1479 	up_write(&swap_unplug_sem);
1480 
1481 	destroy_swap_extents(p);
1482 	mutex_lock(&swapon_mutex);
1483 	spin_lock(&swap_lock);
1484 	drain_mmlist();
1485 
1486 	/* wait for anyone still in scan_swap_map */
1487 	p->highest_bit = 0;		/* cuts scans short */
1488 	while (p->flags >= SWP_SCANNING) {
1489 		spin_unlock(&swap_lock);
1490 		schedule_timeout_uninterruptible(1);
1491 		spin_lock(&swap_lock);
1492 	}
1493 
1494 	swap_file = p->swap_file;
1495 	p->swap_file = NULL;
1496 	p->max = 0;
1497 	swap_map = p->swap_map;
1498 	p->swap_map = NULL;
1499 	p->flags = 0;
1500 	spin_unlock(&swap_lock);
1501 	mutex_unlock(&swapon_mutex);
1502 	vfree(swap_map);
1503 	/* Destroy swap account informatin */
1504 	swap_cgroup_swapoff(type);
1505 
1506 	inode = mapping->host;
1507 	if (S_ISBLK(inode->i_mode)) {
1508 		struct block_device *bdev = I_BDEV(inode);
1509 		set_blocksize(bdev, p->old_block_size);
1510 		bd_release(bdev);
1511 	} else {
1512 		mutex_lock(&inode->i_mutex);
1513 		inode->i_flags &= ~S_SWAPFILE;
1514 		mutex_unlock(&inode->i_mutex);
1515 	}
1516 	filp_close(swap_file, NULL);
1517 	err = 0;
1518 
1519 out_dput:
1520 	filp_close(victim, NULL);
1521 out:
1522 	return err;
1523 }
1524 
1525 #ifdef CONFIG_PROC_FS
1526 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)1527 static void *swap_start(struct seq_file *swap, loff_t *pos)
1528 {
1529 	struct swap_info_struct *ptr = swap_info;
1530 	int i;
1531 	loff_t l = *pos;
1532 
1533 	mutex_lock(&swapon_mutex);
1534 
1535 	if (!l)
1536 		return SEQ_START_TOKEN;
1537 
1538 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1539 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1540 			continue;
1541 		if (!--l)
1542 			return ptr;
1543 	}
1544 
1545 	return NULL;
1546 }
1547 
swap_next(struct seq_file * swap,void * v,loff_t * pos)1548 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1549 {
1550 	struct swap_info_struct *ptr;
1551 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1552 
1553 	if (v == SEQ_START_TOKEN)
1554 		ptr = swap_info;
1555 	else {
1556 		ptr = v;
1557 		ptr++;
1558 	}
1559 
1560 	for (; ptr < endptr; ptr++) {
1561 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1562 			continue;
1563 		++*pos;
1564 		return ptr;
1565 	}
1566 
1567 	return NULL;
1568 }
1569 
swap_stop(struct seq_file * swap,void * v)1570 static void swap_stop(struct seq_file *swap, void *v)
1571 {
1572 	mutex_unlock(&swapon_mutex);
1573 }
1574 
swap_show(struct seq_file * swap,void * v)1575 static int swap_show(struct seq_file *swap, void *v)
1576 {
1577 	struct swap_info_struct *ptr = v;
1578 	struct file *file;
1579 	int len;
1580 
1581 	if (ptr == SEQ_START_TOKEN) {
1582 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1583 		return 0;
1584 	}
1585 
1586 	file = ptr->swap_file;
1587 	len = seq_path(swap, &file->f_path, " \t\n\\");
1588 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1589 			len < 40 ? 40 - len : 1, " ",
1590 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1591 				"partition" : "file\t",
1592 			ptr->pages << (PAGE_SHIFT - 10),
1593 			ptr->inuse_pages << (PAGE_SHIFT - 10),
1594 			ptr->prio);
1595 	return 0;
1596 }
1597 
1598 static const struct seq_operations swaps_op = {
1599 	.start =	swap_start,
1600 	.next =		swap_next,
1601 	.stop =		swap_stop,
1602 	.show =		swap_show
1603 };
1604 
swaps_open(struct inode * inode,struct file * file)1605 static int swaps_open(struct inode *inode, struct file *file)
1606 {
1607 	return seq_open(file, &swaps_op);
1608 }
1609 
1610 static const struct file_operations proc_swaps_operations = {
1611 	.open		= swaps_open,
1612 	.read		= seq_read,
1613 	.llseek		= seq_lseek,
1614 	.release	= seq_release,
1615 };
1616 
procswaps_init(void)1617 static int __init procswaps_init(void)
1618 {
1619 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1620 	return 0;
1621 }
1622 __initcall(procswaps_init);
1623 #endif /* CONFIG_PROC_FS */
1624 
1625 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)1626 static int __init max_swapfiles_check(void)
1627 {
1628 	MAX_SWAPFILES_CHECK();
1629 	return 0;
1630 }
1631 late_initcall(max_swapfiles_check);
1632 #endif
1633 
1634 /*
1635  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1636  *
1637  * The swapon system call
1638  */
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)1639 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1640 {
1641 	struct swap_info_struct * p;
1642 	char *name = NULL;
1643 	struct block_device *bdev = NULL;
1644 	struct file *swap_file = NULL;
1645 	struct address_space *mapping;
1646 	unsigned int type;
1647 	int i, prev;
1648 	int error;
1649 	union swap_header *swap_header = NULL;
1650 	unsigned int nr_good_pages = 0;
1651 	int nr_extents = 0;
1652 	sector_t span;
1653 	unsigned long maxpages = 1;
1654 	unsigned long swapfilepages;
1655 	unsigned short *swap_map = NULL;
1656 	struct page *page = NULL;
1657 	struct inode *inode = NULL;
1658 	int did_down = 0;
1659 
1660 	if (!capable(CAP_SYS_ADMIN))
1661 		return -EPERM;
1662 	spin_lock(&swap_lock);
1663 	p = swap_info;
1664 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1665 		if (!(p->flags & SWP_USED))
1666 			break;
1667 	error = -EPERM;
1668 	if (type >= MAX_SWAPFILES) {
1669 		spin_unlock(&swap_lock);
1670 		goto out;
1671 	}
1672 	if (type >= nr_swapfiles)
1673 		nr_swapfiles = type+1;
1674 	memset(p, 0, sizeof(*p));
1675 	INIT_LIST_HEAD(&p->extent_list);
1676 	p->flags = SWP_USED;
1677 	p->next = -1;
1678 	spin_unlock(&swap_lock);
1679 	name = getname(specialfile);
1680 	error = PTR_ERR(name);
1681 	if (IS_ERR(name)) {
1682 		name = NULL;
1683 		goto bad_swap_2;
1684 	}
1685 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1686 	error = PTR_ERR(swap_file);
1687 	if (IS_ERR(swap_file)) {
1688 		swap_file = NULL;
1689 		goto bad_swap_2;
1690 	}
1691 
1692 	p->swap_file = swap_file;
1693 	mapping = swap_file->f_mapping;
1694 	inode = mapping->host;
1695 
1696 	error = -EBUSY;
1697 	for (i = 0; i < nr_swapfiles; i++) {
1698 		struct swap_info_struct *q = &swap_info[i];
1699 
1700 		if (i == type || !q->swap_file)
1701 			continue;
1702 		if (mapping == q->swap_file->f_mapping)
1703 			goto bad_swap;
1704 	}
1705 
1706 	error = -EINVAL;
1707 	if (S_ISBLK(inode->i_mode)) {
1708 		bdev = I_BDEV(inode);
1709 		error = bd_claim(bdev, sys_swapon);
1710 		if (error < 0) {
1711 			bdev = NULL;
1712 			error = -EINVAL;
1713 			goto bad_swap;
1714 		}
1715 		p->old_block_size = block_size(bdev);
1716 		error = set_blocksize(bdev, PAGE_SIZE);
1717 		if (error < 0)
1718 			goto bad_swap;
1719 		p->bdev = bdev;
1720 	} else if (S_ISREG(inode->i_mode)) {
1721 		p->bdev = inode->i_sb->s_bdev;
1722 		mutex_lock(&inode->i_mutex);
1723 		did_down = 1;
1724 		if (IS_SWAPFILE(inode)) {
1725 			error = -EBUSY;
1726 			goto bad_swap;
1727 		}
1728 	} else {
1729 		goto bad_swap;
1730 	}
1731 
1732 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1733 
1734 	/*
1735 	 * Read the swap header.
1736 	 */
1737 	if (!mapping->a_ops->readpage) {
1738 		error = -EINVAL;
1739 		goto bad_swap;
1740 	}
1741 	page = read_mapping_page(mapping, 0, swap_file);
1742 	if (IS_ERR(page)) {
1743 		error = PTR_ERR(page);
1744 		goto bad_swap;
1745 	}
1746 	swap_header = kmap(page);
1747 
1748 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1749 		printk(KERN_ERR "Unable to find swap-space signature\n");
1750 		error = -EINVAL;
1751 		goto bad_swap;
1752 	}
1753 
1754 	/* swap partition endianess hack... */
1755 	if (swab32(swap_header->info.version) == 1) {
1756 		swab32s(&swap_header->info.version);
1757 		swab32s(&swap_header->info.last_page);
1758 		swab32s(&swap_header->info.nr_badpages);
1759 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1760 			swab32s(&swap_header->info.badpages[i]);
1761 	}
1762 	/* Check the swap header's sub-version */
1763 	if (swap_header->info.version != 1) {
1764 		printk(KERN_WARNING
1765 		       "Unable to handle swap header version %d\n",
1766 		       swap_header->info.version);
1767 		error = -EINVAL;
1768 		goto bad_swap;
1769 	}
1770 
1771 	p->lowest_bit  = 1;
1772 	p->cluster_next = 1;
1773 
1774 	/*
1775 	 * Find out how many pages are allowed for a single swap
1776 	 * device. There are two limiting factors: 1) the number of
1777 	 * bits for the swap offset in the swp_entry_t type and
1778 	 * 2) the number of bits in the a swap pte as defined by
1779 	 * the different architectures. In order to find the
1780 	 * largest possible bit mask a swap entry with swap type 0
1781 	 * and swap offset ~0UL is created, encoded to a swap pte,
1782 	 * decoded to a swp_entry_t again and finally the swap
1783 	 * offset is extracted. This will mask all the bits from
1784 	 * the initial ~0UL mask that can't be encoded in either
1785 	 * the swp_entry_t or the architecture definition of a
1786 	 * swap pte.
1787 	 */
1788 	maxpages = swp_offset(pte_to_swp_entry(
1789 			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1790 	if (maxpages > swap_header->info.last_page)
1791 		maxpages = swap_header->info.last_page;
1792 	p->highest_bit = maxpages - 1;
1793 
1794 	error = -EINVAL;
1795 	if (!maxpages)
1796 		goto bad_swap;
1797 	if (swapfilepages && maxpages > swapfilepages) {
1798 		printk(KERN_WARNING
1799 		       "Swap area shorter than signature indicates\n");
1800 		goto bad_swap;
1801 	}
1802 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1803 		goto bad_swap;
1804 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1805 		goto bad_swap;
1806 
1807 	/* OK, set up the swap map and apply the bad block list */
1808 	swap_map = vmalloc(maxpages * sizeof(short));
1809 	if (!swap_map) {
1810 		error = -ENOMEM;
1811 		goto bad_swap;
1812 	}
1813 
1814 	memset(swap_map, 0, maxpages * sizeof(short));
1815 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1816 		int page_nr = swap_header->info.badpages[i];
1817 		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1818 			error = -EINVAL;
1819 			goto bad_swap;
1820 		}
1821 		swap_map[page_nr] = SWAP_MAP_BAD;
1822 	}
1823 
1824 	error = swap_cgroup_swapon(type, maxpages);
1825 	if (error)
1826 		goto bad_swap;
1827 
1828 	nr_good_pages = swap_header->info.last_page -
1829 			swap_header->info.nr_badpages -
1830 			1 /* header page */;
1831 
1832 	if (nr_good_pages) {
1833 		swap_map[0] = SWAP_MAP_BAD;
1834 		p->max = maxpages;
1835 		p->pages = nr_good_pages;
1836 		nr_extents = setup_swap_extents(p, &span);
1837 		if (nr_extents < 0) {
1838 			error = nr_extents;
1839 			goto bad_swap;
1840 		}
1841 		nr_good_pages = p->pages;
1842 	}
1843 	if (!nr_good_pages) {
1844 		printk(KERN_WARNING "Empty swap-file\n");
1845 		error = -EINVAL;
1846 		goto bad_swap;
1847 	}
1848 
1849 	if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1850 		p->flags |= SWP_SOLIDSTATE;
1851 		p->cluster_next = 1 + (random32() % p->highest_bit);
1852 	}
1853 	if (discard_swap(p) == 0)
1854 		p->flags |= SWP_DISCARDABLE;
1855 
1856 	mutex_lock(&swapon_mutex);
1857 	spin_lock(&swap_lock);
1858 	if (swap_flags & SWAP_FLAG_PREFER)
1859 		p->prio =
1860 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1861 	else
1862 		p->prio = --least_priority;
1863 	p->swap_map = swap_map;
1864 	p->flags |= SWP_WRITEOK;
1865 	nr_swap_pages += nr_good_pages;
1866 	total_swap_pages += nr_good_pages;
1867 
1868 	printk(KERN_INFO "Adding %uk swap on %s.  "
1869 			"Priority:%d extents:%d across:%lluk %s%s\n",
1870 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1871 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1872 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1873 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
1874 
1875 	/* insert swap space into swap_list: */
1876 	prev = -1;
1877 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1878 		if (p->prio >= swap_info[i].prio) {
1879 			break;
1880 		}
1881 		prev = i;
1882 	}
1883 	p->next = i;
1884 	if (prev < 0) {
1885 		swap_list.head = swap_list.next = p - swap_info;
1886 	} else {
1887 		swap_info[prev].next = p - swap_info;
1888 	}
1889 	spin_unlock(&swap_lock);
1890 	mutex_unlock(&swapon_mutex);
1891 	error = 0;
1892 	goto out;
1893 bad_swap:
1894 	if (bdev) {
1895 		set_blocksize(bdev, p->old_block_size);
1896 		bd_release(bdev);
1897 	}
1898 	destroy_swap_extents(p);
1899 	swap_cgroup_swapoff(type);
1900 bad_swap_2:
1901 	spin_lock(&swap_lock);
1902 	p->swap_file = NULL;
1903 	p->flags = 0;
1904 	spin_unlock(&swap_lock);
1905 	vfree(swap_map);
1906 	if (swap_file)
1907 		filp_close(swap_file, NULL);
1908 out:
1909 	if (page && !IS_ERR(page)) {
1910 		kunmap(page);
1911 		page_cache_release(page);
1912 	}
1913 	if (name)
1914 		putname(name);
1915 	if (did_down) {
1916 		if (!error)
1917 			inode->i_flags |= S_SWAPFILE;
1918 		mutex_unlock(&inode->i_mutex);
1919 	}
1920 	return error;
1921 }
1922 
si_swapinfo(struct sysinfo * val)1923 void si_swapinfo(struct sysinfo *val)
1924 {
1925 	unsigned int i;
1926 	unsigned long nr_to_be_unused = 0;
1927 
1928 	spin_lock(&swap_lock);
1929 	for (i = 0; i < nr_swapfiles; i++) {
1930 		if (!(swap_info[i].flags & SWP_USED) ||
1931 		     (swap_info[i].flags & SWP_WRITEOK))
1932 			continue;
1933 		nr_to_be_unused += swap_info[i].inuse_pages;
1934 	}
1935 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1936 	val->totalswap = total_swap_pages + nr_to_be_unused;
1937 	spin_unlock(&swap_lock);
1938 }
1939 
1940 /*
1941  * Verify that a swap entry is valid and increment its swap map count.
1942  *
1943  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1944  * "permanent", but will be reclaimed by the next swapoff.
1945  */
swap_duplicate(swp_entry_t entry)1946 int swap_duplicate(swp_entry_t entry)
1947 {
1948 	struct swap_info_struct * p;
1949 	unsigned long offset, type;
1950 	int result = 0;
1951 
1952 	if (is_migration_entry(entry))
1953 		return 1;
1954 
1955 	type = swp_type(entry);
1956 	if (type >= nr_swapfiles)
1957 		goto bad_file;
1958 	p = type + swap_info;
1959 	offset = swp_offset(entry);
1960 
1961 	spin_lock(&swap_lock);
1962 	if (offset < p->max && p->swap_map[offset]) {
1963 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1964 			p->swap_map[offset]++;
1965 			result = 1;
1966 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1967 			if (swap_overflow++ < 5)
1968 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1969 			p->swap_map[offset] = SWAP_MAP_MAX;
1970 			result = 1;
1971 		}
1972 	}
1973 	spin_unlock(&swap_lock);
1974 out:
1975 	return result;
1976 
1977 bad_file:
1978 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1979 	goto out;
1980 }
1981 
1982 struct swap_info_struct *
get_swap_info_struct(unsigned type)1983 get_swap_info_struct(unsigned type)
1984 {
1985 	return &swap_info[type];
1986 }
1987 
1988 /*
1989  * swap_lock prevents swap_map being freed. Don't grab an extra
1990  * reference on the swaphandle, it doesn't matter if it becomes unused.
1991  */
valid_swaphandles(swp_entry_t entry,unsigned long * offset)1992 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1993 {
1994 	struct swap_info_struct *si;
1995 	int our_page_cluster = page_cluster;
1996 	pgoff_t target, toff;
1997 	pgoff_t base, end;
1998 	int nr_pages = 0;
1999 
2000 	if (!our_page_cluster)	/* no readahead */
2001 		return 0;
2002 
2003 	si = &swap_info[swp_type(entry)];
2004 	target = swp_offset(entry);
2005 	base = (target >> our_page_cluster) << our_page_cluster;
2006 	end = base + (1 << our_page_cluster);
2007 	if (!base)		/* first page is swap header */
2008 		base++;
2009 
2010 	spin_lock(&swap_lock);
2011 	if (end > si->max)	/* don't go beyond end of map */
2012 		end = si->max;
2013 
2014 	/* Count contiguous allocated slots above our target */
2015 	for (toff = target; ++toff < end; nr_pages++) {
2016 		/* Don't read in free or bad pages */
2017 		if (!si->swap_map[toff])
2018 			break;
2019 		if (si->swap_map[toff] == SWAP_MAP_BAD)
2020 			break;
2021 	}
2022 	/* Count contiguous allocated slots below our target */
2023 	for (toff = target; --toff >= base; nr_pages++) {
2024 		/* Don't read in free or bad pages */
2025 		if (!si->swap_map[toff])
2026 			break;
2027 		if (si->swap_map[toff] == SWAP_MAP_BAD)
2028 			break;
2029 	}
2030 	spin_unlock(&swap_lock);
2031 
2032 	/*
2033 	 * Indicate starting offset, and return number of pages to get:
2034 	 * if only 1, say 0, since there's then no readahead to be done.
2035 	 */
2036 	*offset = ++toff;
2037 	return nr_pages? ++nr_pages: 0;
2038 }
2039