• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/bootmem.h>
27 
28 #include <asm/atomic.h>
29 #include <asm/uaccess.h>
30 #include <asm/tlbflush.h>
31 
32 
33 /*** Page table manipulation functions ***/
34 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end)35 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
36 {
37 	pte_t *pte;
38 
39 	pte = pte_offset_kernel(pmd, addr);
40 	do {
41 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
42 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
43 	} while (pte++, addr += PAGE_SIZE, addr != end);
44 }
45 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end)46 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
47 {
48 	pmd_t *pmd;
49 	unsigned long next;
50 
51 	pmd = pmd_offset(pud, addr);
52 	do {
53 		next = pmd_addr_end(addr, end);
54 		if (pmd_none_or_clear_bad(pmd))
55 			continue;
56 		vunmap_pte_range(pmd, addr, next);
57 	} while (pmd++, addr = next, addr != end);
58 }
59 
vunmap_pud_range(pgd_t * pgd,unsigned long addr,unsigned long end)60 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
61 {
62 	pud_t *pud;
63 	unsigned long next;
64 
65 	pud = pud_offset(pgd, addr);
66 	do {
67 		next = pud_addr_end(addr, end);
68 		if (pud_none_or_clear_bad(pud))
69 			continue;
70 		vunmap_pmd_range(pud, addr, next);
71 	} while (pud++, addr = next, addr != end);
72 }
73 
vunmap_page_range(unsigned long addr,unsigned long end)74 static void vunmap_page_range(unsigned long addr, unsigned long end)
75 {
76 	pgd_t *pgd;
77 	unsigned long next;
78 
79 	BUG_ON(addr >= end);
80 	pgd = pgd_offset_k(addr);
81 	do {
82 		next = pgd_addr_end(addr, end);
83 		if (pgd_none_or_clear_bad(pgd))
84 			continue;
85 		vunmap_pud_range(pgd, addr, next);
86 	} while (pgd++, addr = next, addr != end);
87 }
88 
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
90 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
91 {
92 	pte_t *pte;
93 
94 	/*
95 	 * nr is a running index into the array which helps higher level
96 	 * callers keep track of where we're up to.
97 	 */
98 
99 	pte = pte_alloc_kernel(pmd, addr);
100 	if (!pte)
101 		return -ENOMEM;
102 	do {
103 		struct page *page = pages[*nr];
104 
105 		if (WARN_ON(!pte_none(*pte)))
106 			return -EBUSY;
107 		if (WARN_ON(!page))
108 			return -ENOMEM;
109 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110 		(*nr)++;
111 	} while (pte++, addr += PAGE_SIZE, addr != end);
112 	return 0;
113 }
114 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)115 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
117 {
118 	pmd_t *pmd;
119 	unsigned long next;
120 
121 	pmd = pmd_alloc(&init_mm, pud, addr);
122 	if (!pmd)
123 		return -ENOMEM;
124 	do {
125 		next = pmd_addr_end(addr, end);
126 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127 			return -ENOMEM;
128 	} while (pmd++, addr = next, addr != end);
129 	return 0;
130 }
131 
vmap_pud_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
134 {
135 	pud_t *pud;
136 	unsigned long next;
137 
138 	pud = pud_alloc(&init_mm, pgd, addr);
139 	if (!pud)
140 		return -ENOMEM;
141 	do {
142 		next = pud_addr_end(addr, end);
143 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144 			return -ENOMEM;
145 	} while (pud++, addr = next, addr != end);
146 	return 0;
147 }
148 
149 /*
150  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151  * will have pfns corresponding to the "pages" array.
152  *
153  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154  */
vmap_page_range(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)155 static int vmap_page_range(unsigned long start, unsigned long end,
156 				pgprot_t prot, struct page **pages)
157 {
158 	pgd_t *pgd;
159 	unsigned long next;
160 	unsigned long addr = start;
161 	int err = 0;
162 	int nr = 0;
163 
164 	BUG_ON(addr >= end);
165 	pgd = pgd_offset_k(addr);
166 	do {
167 		next = pgd_addr_end(addr, end);
168 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
169 		if (err)
170 			break;
171 	} while (pgd++, addr = next, addr != end);
172 	flush_cache_vmap(start, end);
173 
174 	if (unlikely(err))
175 		return err;
176 	return nr;
177 }
178 
is_vmalloc_or_module_addr(const void * x)179 static inline int is_vmalloc_or_module_addr(const void *x)
180 {
181 	/*
182 	 * ARM, x86-64 and sparc64 put modules in a special place,
183 	 * and fall back on vmalloc() if that fails. Others
184 	 * just put it in the vmalloc space.
185 	 */
186 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187 	unsigned long addr = (unsigned long)x;
188 	if (addr >= MODULES_VADDR && addr < MODULES_END)
189 		return 1;
190 #endif
191 	return is_vmalloc_addr(x);
192 }
193 
194 /*
195  * Walk a vmap address to the struct page it maps.
196  */
vmalloc_to_page(const void * vmalloc_addr)197 struct page *vmalloc_to_page(const void *vmalloc_addr)
198 {
199 	unsigned long addr = (unsigned long) vmalloc_addr;
200 	struct page *page = NULL;
201 	pgd_t *pgd = pgd_offset_k(addr);
202 
203 	/*
204 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205 	 * architectures that do not vmalloc module space
206 	 */
207 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
208 
209 	if (!pgd_none(*pgd)) {
210 		pud_t *pud = pud_offset(pgd, addr);
211 		if (!pud_none(*pud)) {
212 			pmd_t *pmd = pmd_offset(pud, addr);
213 			if (!pmd_none(*pmd)) {
214 				pte_t *ptep, pte;
215 
216 				ptep = pte_offset_map(pmd, addr);
217 				pte = *ptep;
218 				if (pte_present(pte))
219 					page = pte_page(pte);
220 				pte_unmap(ptep);
221 			}
222 		}
223 	}
224 	return page;
225 }
226 EXPORT_SYMBOL(vmalloc_to_page);
227 
228 /*
229  * Map a vmalloc()-space virtual address to the physical page frame number.
230  */
vmalloc_to_pfn(const void * vmalloc_addr)231 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
232 {
233 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
234 }
235 EXPORT_SYMBOL(vmalloc_to_pfn);
236 
237 
238 /*** Global kva allocator ***/
239 
240 #define VM_LAZY_FREE	0x01
241 #define VM_LAZY_FREEING	0x02
242 #define VM_VM_AREA	0x04
243 
244 struct vmap_area {
245 	unsigned long va_start;
246 	unsigned long va_end;
247 	unsigned long flags;
248 	struct rb_node rb_node;		/* address sorted rbtree */
249 	struct list_head list;		/* address sorted list */
250 	struct list_head purge_list;	/* "lazy purge" list */
251 	void *private;
252 	struct rcu_head rcu_head;
253 };
254 
255 static DEFINE_SPINLOCK(vmap_area_lock);
256 static struct rb_root vmap_area_root = RB_ROOT;
257 static LIST_HEAD(vmap_area_list);
258 
__find_vmap_area(unsigned long addr)259 static struct vmap_area *__find_vmap_area(unsigned long addr)
260 {
261 	struct rb_node *n = vmap_area_root.rb_node;
262 
263 	while (n) {
264 		struct vmap_area *va;
265 
266 		va = rb_entry(n, struct vmap_area, rb_node);
267 		if (addr < va->va_start)
268 			n = n->rb_left;
269 		else if (addr > va->va_start)
270 			n = n->rb_right;
271 		else
272 			return va;
273 	}
274 
275 	return NULL;
276 }
277 
__insert_vmap_area(struct vmap_area * va)278 static void __insert_vmap_area(struct vmap_area *va)
279 {
280 	struct rb_node **p = &vmap_area_root.rb_node;
281 	struct rb_node *parent = NULL;
282 	struct rb_node *tmp;
283 
284 	while (*p) {
285 		struct vmap_area *tmp;
286 
287 		parent = *p;
288 		tmp = rb_entry(parent, struct vmap_area, rb_node);
289 		if (va->va_start < tmp->va_end)
290 			p = &(*p)->rb_left;
291 		else if (va->va_end > tmp->va_start)
292 			p = &(*p)->rb_right;
293 		else
294 			BUG();
295 	}
296 
297 	rb_link_node(&va->rb_node, parent, p);
298 	rb_insert_color(&va->rb_node, &vmap_area_root);
299 
300 	/* address-sort this list so it is usable like the vmlist */
301 	tmp = rb_prev(&va->rb_node);
302 	if (tmp) {
303 		struct vmap_area *prev;
304 		prev = rb_entry(tmp, struct vmap_area, rb_node);
305 		list_add_rcu(&va->list, &prev->list);
306 	} else
307 		list_add_rcu(&va->list, &vmap_area_list);
308 }
309 
310 static void purge_vmap_area_lazy(void);
311 
312 /*
313  * Allocate a region of KVA of the specified size and alignment, within the
314  * vstart and vend.
315  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)316 static struct vmap_area *alloc_vmap_area(unsigned long size,
317 				unsigned long align,
318 				unsigned long vstart, unsigned long vend,
319 				int node, gfp_t gfp_mask)
320 {
321 	struct vmap_area *va;
322 	struct rb_node *n;
323 	unsigned long addr;
324 	int purged = 0;
325 
326 	BUG_ON(!size);
327 	BUG_ON(size & ~PAGE_MASK);
328 
329 	va = kmalloc_node(sizeof(struct vmap_area),
330 			gfp_mask & GFP_RECLAIM_MASK, node);
331 	if (unlikely(!va))
332 		return ERR_PTR(-ENOMEM);
333 
334 retry:
335 	addr = ALIGN(vstart, align);
336 
337 	spin_lock(&vmap_area_lock);
338 	if (addr + size - 1 < addr)
339 		goto overflow;
340 
341 	/* XXX: could have a last_hole cache */
342 	n = vmap_area_root.rb_node;
343 	if (n) {
344 		struct vmap_area *first = NULL;
345 
346 		do {
347 			struct vmap_area *tmp;
348 			tmp = rb_entry(n, struct vmap_area, rb_node);
349 			if (tmp->va_end >= addr) {
350 				if (!first && tmp->va_start < addr + size)
351 					first = tmp;
352 				n = n->rb_left;
353 			} else {
354 				first = tmp;
355 				n = n->rb_right;
356 			}
357 		} while (n);
358 
359 		if (!first)
360 			goto found;
361 
362 		if (first->va_end < addr) {
363 			n = rb_next(&first->rb_node);
364 			if (n)
365 				first = rb_entry(n, struct vmap_area, rb_node);
366 			else
367 				goto found;
368 		}
369 
370 		while (addr + size > first->va_start && addr + size <= vend) {
371 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
372 			if (addr + size - 1 < addr)
373 				goto overflow;
374 
375 			n = rb_next(&first->rb_node);
376 			if (n)
377 				first = rb_entry(n, struct vmap_area, rb_node);
378 			else
379 				goto found;
380 		}
381 	}
382 found:
383 	if (addr + size > vend) {
384 overflow:
385 		spin_unlock(&vmap_area_lock);
386 		if (!purged) {
387 			purge_vmap_area_lazy();
388 			purged = 1;
389 			goto retry;
390 		}
391 		if (printk_ratelimit())
392 			printk(KERN_WARNING
393 				"vmap allocation for size %lu failed: "
394 				"use vmalloc=<size> to increase size.\n", size);
395 		return ERR_PTR(-EBUSY);
396 	}
397 
398 	BUG_ON(addr & (align-1));
399 
400 	va->va_start = addr;
401 	va->va_end = addr + size;
402 	va->flags = 0;
403 	__insert_vmap_area(va);
404 	spin_unlock(&vmap_area_lock);
405 
406 	return va;
407 }
408 
rcu_free_va(struct rcu_head * head)409 static void rcu_free_va(struct rcu_head *head)
410 {
411 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
412 
413 	kfree(va);
414 }
415 
__free_vmap_area(struct vmap_area * va)416 static void __free_vmap_area(struct vmap_area *va)
417 {
418 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
419 	rb_erase(&va->rb_node, &vmap_area_root);
420 	RB_CLEAR_NODE(&va->rb_node);
421 	list_del_rcu(&va->list);
422 
423 	call_rcu(&va->rcu_head, rcu_free_va);
424 }
425 
426 /*
427  * Free a region of KVA allocated by alloc_vmap_area
428  */
free_vmap_area(struct vmap_area * va)429 static void free_vmap_area(struct vmap_area *va)
430 {
431 	spin_lock(&vmap_area_lock);
432 	__free_vmap_area(va);
433 	spin_unlock(&vmap_area_lock);
434 }
435 
436 /*
437  * Clear the pagetable entries of a given vmap_area
438  */
unmap_vmap_area(struct vmap_area * va)439 static void unmap_vmap_area(struct vmap_area *va)
440 {
441 	vunmap_page_range(va->va_start, va->va_end);
442 }
443 
vmap_debug_free_range(unsigned long start,unsigned long end)444 static void vmap_debug_free_range(unsigned long start, unsigned long end)
445 {
446 	/*
447 	 * Unmap page tables and force a TLB flush immediately if
448 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
449 	 * bugs similarly to those in linear kernel virtual address
450 	 * space after a page has been freed.
451 	 *
452 	 * All the lazy freeing logic is still retained, in order to
453 	 * minimise intrusiveness of this debugging feature.
454 	 *
455 	 * This is going to be *slow* (linear kernel virtual address
456 	 * debugging doesn't do a broadcast TLB flush so it is a lot
457 	 * faster).
458 	 */
459 #ifdef CONFIG_DEBUG_PAGEALLOC
460 	vunmap_page_range(start, end);
461 	flush_tlb_kernel_range(start, end);
462 #endif
463 }
464 
465 /*
466  * lazy_max_pages is the maximum amount of virtual address space we gather up
467  * before attempting to purge with a TLB flush.
468  *
469  * There is a tradeoff here: a larger number will cover more kernel page tables
470  * and take slightly longer to purge, but it will linearly reduce the number of
471  * global TLB flushes that must be performed. It would seem natural to scale
472  * this number up linearly with the number of CPUs (because vmapping activity
473  * could also scale linearly with the number of CPUs), however it is likely
474  * that in practice, workloads might be constrained in other ways that mean
475  * vmap activity will not scale linearly with CPUs. Also, I want to be
476  * conservative and not introduce a big latency on huge systems, so go with
477  * a less aggressive log scale. It will still be an improvement over the old
478  * code, and it will be simple to change the scale factor if we find that it
479  * becomes a problem on bigger systems.
480  */
lazy_max_pages(void)481 static unsigned long lazy_max_pages(void)
482 {
483 	unsigned int log;
484 
485 	log = fls(num_online_cpus());
486 
487 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
488 }
489 
490 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
491 
492 /*
493  * Purges all lazily-freed vmap areas.
494  *
495  * If sync is 0 then don't purge if there is already a purge in progress.
496  * If force_flush is 1, then flush kernel TLBs between *start and *end even
497  * if we found no lazy vmap areas to unmap (callers can use this to optimise
498  * their own TLB flushing).
499  * Returns with *start = min(*start, lowest purged address)
500  *              *end = max(*end, highest purged address)
501  */
__purge_vmap_area_lazy(unsigned long * start,unsigned long * end,int sync,int force_flush)502 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
503 					int sync, int force_flush)
504 {
505 	static DEFINE_SPINLOCK(purge_lock);
506 	LIST_HEAD(valist);
507 	struct vmap_area *va;
508 	struct vmap_area *n_va;
509 	int nr = 0;
510 
511 	/*
512 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
513 	 * should not expect such behaviour. This just simplifies locking for
514 	 * the case that isn't actually used at the moment anyway.
515 	 */
516 	if (!sync && !force_flush) {
517 		if (!spin_trylock(&purge_lock))
518 			return;
519 	} else
520 		spin_lock(&purge_lock);
521 
522 	rcu_read_lock();
523 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
524 		if (va->flags & VM_LAZY_FREE) {
525 			if (va->va_start < *start)
526 				*start = va->va_start;
527 			if (va->va_end > *end)
528 				*end = va->va_end;
529 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
530 			unmap_vmap_area(va);
531 			list_add_tail(&va->purge_list, &valist);
532 			va->flags |= VM_LAZY_FREEING;
533 			va->flags &= ~VM_LAZY_FREE;
534 		}
535 	}
536 	rcu_read_unlock();
537 
538 	if (nr) {
539 		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
540 		atomic_sub(nr, &vmap_lazy_nr);
541 	}
542 
543 	if (nr || force_flush)
544 		flush_tlb_kernel_range(*start, *end);
545 
546 	if (nr) {
547 		spin_lock(&vmap_area_lock);
548 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
549 			__free_vmap_area(va);
550 		spin_unlock(&vmap_area_lock);
551 	}
552 	spin_unlock(&purge_lock);
553 }
554 
555 /*
556  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
557  * is already purging.
558  */
try_purge_vmap_area_lazy(void)559 static void try_purge_vmap_area_lazy(void)
560 {
561 	unsigned long start = ULONG_MAX, end = 0;
562 
563 	__purge_vmap_area_lazy(&start, &end, 0, 0);
564 }
565 
566 /*
567  * Kick off a purge of the outstanding lazy areas.
568  */
purge_vmap_area_lazy(void)569 static void purge_vmap_area_lazy(void)
570 {
571 	unsigned long start = ULONG_MAX, end = 0;
572 
573 	__purge_vmap_area_lazy(&start, &end, 1, 0);
574 }
575 
576 /*
577  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
578  * called for the correct range previously.
579  */
free_unmap_vmap_area_noflush(struct vmap_area * va)580 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
581 {
582 	va->flags |= VM_LAZY_FREE;
583 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
584 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
585 		try_purge_vmap_area_lazy();
586 }
587 
588 /*
589  * Free and unmap a vmap area
590  */
free_unmap_vmap_area(struct vmap_area * va)591 static void free_unmap_vmap_area(struct vmap_area *va)
592 {
593 	flush_cache_vunmap(va->va_start, va->va_end);
594 	free_unmap_vmap_area_noflush(va);
595 }
596 
find_vmap_area(unsigned long addr)597 static struct vmap_area *find_vmap_area(unsigned long addr)
598 {
599 	struct vmap_area *va;
600 
601 	spin_lock(&vmap_area_lock);
602 	va = __find_vmap_area(addr);
603 	spin_unlock(&vmap_area_lock);
604 
605 	return va;
606 }
607 
free_unmap_vmap_area_addr(unsigned long addr)608 static void free_unmap_vmap_area_addr(unsigned long addr)
609 {
610 	struct vmap_area *va;
611 
612 	va = find_vmap_area(addr);
613 	BUG_ON(!va);
614 	free_unmap_vmap_area(va);
615 }
616 
617 
618 /*** Per cpu kva allocator ***/
619 
620 /*
621  * vmap space is limited especially on 32 bit architectures. Ensure there is
622  * room for at least 16 percpu vmap blocks per CPU.
623  */
624 /*
625  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
626  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
627  * instead (we just need a rough idea)
628  */
629 #if BITS_PER_LONG == 32
630 #define VMALLOC_SPACE		(128UL*1024*1024)
631 #else
632 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
633 #endif
634 
635 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
636 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
637 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
638 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
639 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
640 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
641 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
642 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
643 						VMALLOC_PAGES / NR_CPUS / 16))
644 
645 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
646 
647 static bool vmap_initialized __read_mostly = false;
648 
649 struct vmap_block_queue {
650 	spinlock_t lock;
651 	struct list_head free;
652 	struct list_head dirty;
653 	unsigned int nr_dirty;
654 };
655 
656 struct vmap_block {
657 	spinlock_t lock;
658 	struct vmap_area *va;
659 	struct vmap_block_queue *vbq;
660 	unsigned long free, dirty;
661 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
662 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
663 	union {
664 		struct {
665 			struct list_head free_list;
666 			struct list_head dirty_list;
667 		};
668 		struct rcu_head rcu_head;
669 	};
670 };
671 
672 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
673 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
674 
675 /*
676  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
677  * in the free path. Could get rid of this if we change the API to return a
678  * "cookie" from alloc, to be passed to free. But no big deal yet.
679  */
680 static DEFINE_SPINLOCK(vmap_block_tree_lock);
681 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
682 
683 /*
684  * We should probably have a fallback mechanism to allocate virtual memory
685  * out of partially filled vmap blocks. However vmap block sizing should be
686  * fairly reasonable according to the vmalloc size, so it shouldn't be a
687  * big problem.
688  */
689 
addr_to_vb_idx(unsigned long addr)690 static unsigned long addr_to_vb_idx(unsigned long addr)
691 {
692 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
693 	addr /= VMAP_BLOCK_SIZE;
694 	return addr;
695 }
696 
new_vmap_block(gfp_t gfp_mask)697 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
698 {
699 	struct vmap_block_queue *vbq;
700 	struct vmap_block *vb;
701 	struct vmap_area *va;
702 	unsigned long vb_idx;
703 	int node, err;
704 
705 	node = numa_node_id();
706 
707 	vb = kmalloc_node(sizeof(struct vmap_block),
708 			gfp_mask & GFP_RECLAIM_MASK, node);
709 	if (unlikely(!vb))
710 		return ERR_PTR(-ENOMEM);
711 
712 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
713 					VMALLOC_START, VMALLOC_END,
714 					node, gfp_mask);
715 	if (unlikely(IS_ERR(va))) {
716 		kfree(vb);
717 		return ERR_PTR(PTR_ERR(va));
718 	}
719 
720 	err = radix_tree_preload(gfp_mask);
721 	if (unlikely(err)) {
722 		kfree(vb);
723 		free_vmap_area(va);
724 		return ERR_PTR(err);
725 	}
726 
727 	spin_lock_init(&vb->lock);
728 	vb->va = va;
729 	vb->free = VMAP_BBMAP_BITS;
730 	vb->dirty = 0;
731 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
732 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
733 	INIT_LIST_HEAD(&vb->free_list);
734 	INIT_LIST_HEAD(&vb->dirty_list);
735 
736 	vb_idx = addr_to_vb_idx(va->va_start);
737 	spin_lock(&vmap_block_tree_lock);
738 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
739 	spin_unlock(&vmap_block_tree_lock);
740 	BUG_ON(err);
741 	radix_tree_preload_end();
742 
743 	vbq = &get_cpu_var(vmap_block_queue);
744 	vb->vbq = vbq;
745 	spin_lock(&vbq->lock);
746 	list_add(&vb->free_list, &vbq->free);
747 	spin_unlock(&vbq->lock);
748 	put_cpu_var(vmap_cpu_blocks);
749 
750 	return vb;
751 }
752 
rcu_free_vb(struct rcu_head * head)753 static void rcu_free_vb(struct rcu_head *head)
754 {
755 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
756 
757 	kfree(vb);
758 }
759 
free_vmap_block(struct vmap_block * vb)760 static void free_vmap_block(struct vmap_block *vb)
761 {
762 	struct vmap_block *tmp;
763 	unsigned long vb_idx;
764 
765 	spin_lock(&vb->vbq->lock);
766 	if (!list_empty(&vb->free_list))
767 		list_del(&vb->free_list);
768 	if (!list_empty(&vb->dirty_list))
769 		list_del(&vb->dirty_list);
770 	spin_unlock(&vb->vbq->lock);
771 
772 	vb_idx = addr_to_vb_idx(vb->va->va_start);
773 	spin_lock(&vmap_block_tree_lock);
774 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
775 	spin_unlock(&vmap_block_tree_lock);
776 	BUG_ON(tmp != vb);
777 
778 	free_unmap_vmap_area_noflush(vb->va);
779 	call_rcu(&vb->rcu_head, rcu_free_vb);
780 }
781 
vb_alloc(unsigned long size,gfp_t gfp_mask)782 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
783 {
784 	struct vmap_block_queue *vbq;
785 	struct vmap_block *vb;
786 	unsigned long addr = 0;
787 	unsigned int order;
788 
789 	BUG_ON(size & ~PAGE_MASK);
790 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
791 	order = get_order(size);
792 
793 again:
794 	rcu_read_lock();
795 	vbq = &get_cpu_var(vmap_block_queue);
796 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
797 		int i;
798 
799 		spin_lock(&vb->lock);
800 		i = bitmap_find_free_region(vb->alloc_map,
801 						VMAP_BBMAP_BITS, order);
802 
803 		if (i >= 0) {
804 			addr = vb->va->va_start + (i << PAGE_SHIFT);
805 			BUG_ON(addr_to_vb_idx(addr) !=
806 					addr_to_vb_idx(vb->va->va_start));
807 			vb->free -= 1UL << order;
808 			if (vb->free == 0) {
809 				spin_lock(&vbq->lock);
810 				list_del_init(&vb->free_list);
811 				spin_unlock(&vbq->lock);
812 			}
813 			spin_unlock(&vb->lock);
814 			break;
815 		}
816 		spin_unlock(&vb->lock);
817 	}
818 	put_cpu_var(vmap_cpu_blocks);
819 	rcu_read_unlock();
820 
821 	if (!addr) {
822 		vb = new_vmap_block(gfp_mask);
823 		if (IS_ERR(vb))
824 			return vb;
825 		goto again;
826 	}
827 
828 	return (void *)addr;
829 }
830 
vb_free(const void * addr,unsigned long size)831 static void vb_free(const void *addr, unsigned long size)
832 {
833 	unsigned long offset;
834 	unsigned long vb_idx;
835 	unsigned int order;
836 	struct vmap_block *vb;
837 
838 	BUG_ON(size & ~PAGE_MASK);
839 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
840 
841 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
842 
843 	order = get_order(size);
844 
845 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
846 
847 	vb_idx = addr_to_vb_idx((unsigned long)addr);
848 	rcu_read_lock();
849 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
850 	rcu_read_unlock();
851 	BUG_ON(!vb);
852 
853 	spin_lock(&vb->lock);
854 	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
855 	if (!vb->dirty) {
856 		spin_lock(&vb->vbq->lock);
857 		list_add(&vb->dirty_list, &vb->vbq->dirty);
858 		spin_unlock(&vb->vbq->lock);
859 	}
860 	vb->dirty += 1UL << order;
861 	if (vb->dirty == VMAP_BBMAP_BITS) {
862 		BUG_ON(vb->free || !list_empty(&vb->free_list));
863 		spin_unlock(&vb->lock);
864 		free_vmap_block(vb);
865 	} else
866 		spin_unlock(&vb->lock);
867 }
868 
869 /**
870  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
871  *
872  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
873  * to amortize TLB flushing overheads. What this means is that any page you
874  * have now, may, in a former life, have been mapped into kernel virtual
875  * address by the vmap layer and so there might be some CPUs with TLB entries
876  * still referencing that page (additional to the regular 1:1 kernel mapping).
877  *
878  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
879  * be sure that none of the pages we have control over will have any aliases
880  * from the vmap layer.
881  */
vm_unmap_aliases(void)882 void vm_unmap_aliases(void)
883 {
884 	unsigned long start = ULONG_MAX, end = 0;
885 	int cpu;
886 	int flush = 0;
887 
888 	if (unlikely(!vmap_initialized))
889 		return;
890 
891 	for_each_possible_cpu(cpu) {
892 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
893 		struct vmap_block *vb;
894 
895 		rcu_read_lock();
896 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
897 			int i;
898 
899 			spin_lock(&vb->lock);
900 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
901 			while (i < VMAP_BBMAP_BITS) {
902 				unsigned long s, e;
903 				int j;
904 				j = find_next_zero_bit(vb->dirty_map,
905 					VMAP_BBMAP_BITS, i);
906 
907 				s = vb->va->va_start + (i << PAGE_SHIFT);
908 				e = vb->va->va_start + (j << PAGE_SHIFT);
909 				vunmap_page_range(s, e);
910 				flush = 1;
911 
912 				if (s < start)
913 					start = s;
914 				if (e > end)
915 					end = e;
916 
917 				i = j;
918 				i = find_next_bit(vb->dirty_map,
919 							VMAP_BBMAP_BITS, i);
920 			}
921 			spin_unlock(&vb->lock);
922 		}
923 		rcu_read_unlock();
924 	}
925 
926 	__purge_vmap_area_lazy(&start, &end, 1, flush);
927 }
928 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
929 
930 /**
931  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
932  * @mem: the pointer returned by vm_map_ram
933  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
934  */
vm_unmap_ram(const void * mem,unsigned int count)935 void vm_unmap_ram(const void *mem, unsigned int count)
936 {
937 	unsigned long size = count << PAGE_SHIFT;
938 	unsigned long addr = (unsigned long)mem;
939 
940 	BUG_ON(!addr);
941 	BUG_ON(addr < VMALLOC_START);
942 	BUG_ON(addr > VMALLOC_END);
943 	BUG_ON(addr & (PAGE_SIZE-1));
944 
945 	debug_check_no_locks_freed(mem, size);
946 	vmap_debug_free_range(addr, addr+size);
947 
948 	if (likely(count <= VMAP_MAX_ALLOC))
949 		vb_free(mem, size);
950 	else
951 		free_unmap_vmap_area_addr(addr);
952 }
953 EXPORT_SYMBOL(vm_unmap_ram);
954 
955 /**
956  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
957  * @pages: an array of pointers to the pages to be mapped
958  * @count: number of pages
959  * @node: prefer to allocate data structures on this node
960  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
961  *
962  * Returns: a pointer to the address that has been mapped, or %NULL on failure
963  */
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)964 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
965 {
966 	unsigned long size = count << PAGE_SHIFT;
967 	unsigned long addr;
968 	void *mem;
969 
970 	if (likely(count <= VMAP_MAX_ALLOC)) {
971 		mem = vb_alloc(size, GFP_KERNEL);
972 		if (IS_ERR(mem))
973 			return NULL;
974 		addr = (unsigned long)mem;
975 	} else {
976 		struct vmap_area *va;
977 		va = alloc_vmap_area(size, PAGE_SIZE,
978 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
979 		if (IS_ERR(va))
980 			return NULL;
981 
982 		addr = va->va_start;
983 		mem = (void *)addr;
984 	}
985 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
986 		vm_unmap_ram(mem, count);
987 		return NULL;
988 	}
989 	return mem;
990 }
991 EXPORT_SYMBOL(vm_map_ram);
992 
vmalloc_init(void)993 void __init vmalloc_init(void)
994 {
995 	struct vmap_area *va;
996 	struct vm_struct *tmp;
997 	int i;
998 
999 	for_each_possible_cpu(i) {
1000 		struct vmap_block_queue *vbq;
1001 
1002 		vbq = &per_cpu(vmap_block_queue, i);
1003 		spin_lock_init(&vbq->lock);
1004 		INIT_LIST_HEAD(&vbq->free);
1005 		INIT_LIST_HEAD(&vbq->dirty);
1006 		vbq->nr_dirty = 0;
1007 	}
1008 
1009 	/* Import existing vmlist entries. */
1010 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1011 		va = alloc_bootmem(sizeof(struct vmap_area));
1012 		va->flags = tmp->flags | VM_VM_AREA;
1013 		va->va_start = (unsigned long)tmp->addr;
1014 		va->va_end = va->va_start + tmp->size;
1015 		__insert_vmap_area(va);
1016 	}
1017 	vmap_initialized = true;
1018 }
1019 
unmap_kernel_range(unsigned long addr,unsigned long size)1020 void unmap_kernel_range(unsigned long addr, unsigned long size)
1021 {
1022 	unsigned long end = addr + size;
1023 
1024 	flush_cache_vunmap(addr, end);
1025 	vunmap_page_range(addr, end);
1026 	flush_tlb_kernel_range(addr, end);
1027 }
1028 
map_vm_area(struct vm_struct * area,pgprot_t prot,struct page *** pages)1029 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1030 {
1031 	unsigned long addr = (unsigned long)area->addr;
1032 	unsigned long end = addr + area->size - PAGE_SIZE;
1033 	int err;
1034 
1035 	err = vmap_page_range(addr, end, prot, *pages);
1036 	if (err > 0) {
1037 		*pages += err;
1038 		err = 0;
1039 	}
1040 
1041 	return err;
1042 }
1043 EXPORT_SYMBOL_GPL(map_vm_area);
1044 
1045 /*** Old vmalloc interfaces ***/
1046 DEFINE_RWLOCK(vmlist_lock);
1047 struct vm_struct *vmlist;
1048 
__get_vm_area_node(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,void * caller)1049 static struct vm_struct *__get_vm_area_node(unsigned long size,
1050 		unsigned long flags, unsigned long start, unsigned long end,
1051 		int node, gfp_t gfp_mask, void *caller)
1052 {
1053 	static struct vmap_area *va;
1054 	struct vm_struct *area;
1055 	struct vm_struct *tmp, **p;
1056 	unsigned long align = 1;
1057 
1058 	BUG_ON(in_interrupt());
1059 	if (flags & VM_IOREMAP) {
1060 		int bit = fls(size);
1061 
1062 		if (bit > IOREMAP_MAX_ORDER)
1063 			bit = IOREMAP_MAX_ORDER;
1064 		else if (bit < PAGE_SHIFT)
1065 			bit = PAGE_SHIFT;
1066 
1067 		align = 1ul << bit;
1068 	}
1069 
1070 	size = PAGE_ALIGN(size);
1071 	if (unlikely(!size))
1072 		return NULL;
1073 
1074 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1075 	if (unlikely(!area))
1076 		return NULL;
1077 
1078 	/*
1079 	 * We always allocate a guard page.
1080 	 */
1081 	size += PAGE_SIZE;
1082 
1083 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1084 	if (IS_ERR(va)) {
1085 		kfree(area);
1086 		return NULL;
1087 	}
1088 
1089 	area->flags = flags;
1090 	area->addr = (void *)va->va_start;
1091 	area->size = size;
1092 	area->pages = NULL;
1093 	area->nr_pages = 0;
1094 	area->phys_addr = 0;
1095 	area->caller = caller;
1096 	va->private = area;
1097 	va->flags |= VM_VM_AREA;
1098 
1099 	write_lock(&vmlist_lock);
1100 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1101 		if (tmp->addr >= area->addr)
1102 			break;
1103 	}
1104 	area->next = *p;
1105 	*p = area;
1106 	write_unlock(&vmlist_lock);
1107 
1108 	return area;
1109 }
1110 
__get_vm_area(unsigned long size,unsigned long flags,unsigned long start,unsigned long end)1111 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1112 				unsigned long start, unsigned long end)
1113 {
1114 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1115 						__builtin_return_address(0));
1116 }
1117 EXPORT_SYMBOL_GPL(__get_vm_area);
1118 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,void * caller)1119 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1120 				       unsigned long start, unsigned long end,
1121 				       void *caller)
1122 {
1123 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1124 				  caller);
1125 }
1126 
1127 /**
1128  *	get_vm_area  -  reserve a contiguous kernel virtual area
1129  *	@size:		size of the area
1130  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1131  *
1132  *	Search an area of @size in the kernel virtual mapping area,
1133  *	and reserved it for out purposes.  Returns the area descriptor
1134  *	on success or %NULL on failure.
1135  */
get_vm_area(unsigned long size,unsigned long flags)1136 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1137 {
1138 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1139 				-1, GFP_KERNEL, __builtin_return_address(0));
1140 }
1141 
get_vm_area_caller(unsigned long size,unsigned long flags,void * caller)1142 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1143 				void *caller)
1144 {
1145 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1146 						-1, GFP_KERNEL, caller);
1147 }
1148 
get_vm_area_node(unsigned long size,unsigned long flags,int node,gfp_t gfp_mask)1149 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1150 				   int node, gfp_t gfp_mask)
1151 {
1152 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1153 				  gfp_mask, __builtin_return_address(0));
1154 }
1155 
find_vm_area(const void * addr)1156 static struct vm_struct *find_vm_area(const void *addr)
1157 {
1158 	struct vmap_area *va;
1159 
1160 	va = find_vmap_area((unsigned long)addr);
1161 	if (va && va->flags & VM_VM_AREA)
1162 		return va->private;
1163 
1164 	return NULL;
1165 }
1166 
1167 /**
1168  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1169  *	@addr:		base address
1170  *
1171  *	Search for the kernel VM area starting at @addr, and remove it.
1172  *	This function returns the found VM area, but using it is NOT safe
1173  *	on SMP machines, except for its size or flags.
1174  */
remove_vm_area(const void * addr)1175 struct vm_struct *remove_vm_area(const void *addr)
1176 {
1177 	struct vmap_area *va;
1178 
1179 	va = find_vmap_area((unsigned long)addr);
1180 	if (va && va->flags & VM_VM_AREA) {
1181 		struct vm_struct *vm = va->private;
1182 		struct vm_struct *tmp, **p;
1183 
1184 		vmap_debug_free_range(va->va_start, va->va_end);
1185 		free_unmap_vmap_area(va);
1186 		vm->size -= PAGE_SIZE;
1187 
1188 		write_lock(&vmlist_lock);
1189 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1190 			;
1191 		*p = tmp->next;
1192 		write_unlock(&vmlist_lock);
1193 
1194 		return vm;
1195 	}
1196 	return NULL;
1197 }
1198 
__vunmap(const void * addr,int deallocate_pages)1199 static void __vunmap(const void *addr, int deallocate_pages)
1200 {
1201 	struct vm_struct *area;
1202 
1203 	if (!addr)
1204 		return;
1205 
1206 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1207 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1208 		return;
1209 	}
1210 
1211 	area = remove_vm_area(addr);
1212 	if (unlikely(!area)) {
1213 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1214 				addr);
1215 		return;
1216 	}
1217 
1218 	debug_check_no_locks_freed(addr, area->size);
1219 	debug_check_no_obj_freed(addr, area->size);
1220 
1221 	if (deallocate_pages) {
1222 		int i;
1223 
1224 		for (i = 0; i < area->nr_pages; i++) {
1225 			struct page *page = area->pages[i];
1226 
1227 			BUG_ON(!page);
1228 			__free_page(page);
1229 		}
1230 
1231 		if (area->flags & VM_VPAGES)
1232 			vfree(area->pages);
1233 		else
1234 			kfree(area->pages);
1235 	}
1236 
1237 	kfree(area);
1238 	return;
1239 }
1240 
1241 /**
1242  *	vfree  -  release memory allocated by vmalloc()
1243  *	@addr:		memory base address
1244  *
1245  *	Free the virtually continuous memory area starting at @addr, as
1246  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1247  *	NULL, no operation is performed.
1248  *
1249  *	Must not be called in interrupt context.
1250  */
vfree(const void * addr)1251 void vfree(const void *addr)
1252 {
1253 	BUG_ON(in_interrupt());
1254 	__vunmap(addr, 1);
1255 }
1256 EXPORT_SYMBOL(vfree);
1257 
1258 /**
1259  *	vunmap  -  release virtual mapping obtained by vmap()
1260  *	@addr:		memory base address
1261  *
1262  *	Free the virtually contiguous memory area starting at @addr,
1263  *	which was created from the page array passed to vmap().
1264  *
1265  *	Must not be called in interrupt context.
1266  */
vunmap(const void * addr)1267 void vunmap(const void *addr)
1268 {
1269 	BUG_ON(in_interrupt());
1270 	__vunmap(addr, 0);
1271 }
1272 EXPORT_SYMBOL(vunmap);
1273 
1274 /**
1275  *	vmap  -  map an array of pages into virtually contiguous space
1276  *	@pages:		array of page pointers
1277  *	@count:		number of pages to map
1278  *	@flags:		vm_area->flags
1279  *	@prot:		page protection for the mapping
1280  *
1281  *	Maps @count pages from @pages into contiguous kernel virtual
1282  *	space.
1283  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)1284 void *vmap(struct page **pages, unsigned int count,
1285 		unsigned long flags, pgprot_t prot)
1286 {
1287 	struct vm_struct *area;
1288 
1289 	if (count > num_physpages)
1290 		return NULL;
1291 
1292 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1293 					__builtin_return_address(0));
1294 	if (!area)
1295 		return NULL;
1296 
1297 	if (map_vm_area(area, prot, &pages)) {
1298 		vunmap(area->addr);
1299 		return NULL;
1300 	}
1301 
1302 	return area->addr;
1303 }
1304 EXPORT_SYMBOL(vmap);
1305 
1306 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1307 			    int node, void *caller);
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node,void * caller)1308 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1309 				 pgprot_t prot, int node, void *caller)
1310 {
1311 	struct page **pages;
1312 	unsigned int nr_pages, array_size, i;
1313 
1314 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1315 	array_size = (nr_pages * sizeof(struct page *));
1316 
1317 	area->nr_pages = nr_pages;
1318 	/* Please note that the recursion is strictly bounded. */
1319 	if (array_size > PAGE_SIZE) {
1320 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1321 				PAGE_KERNEL, node, caller);
1322 		area->flags |= VM_VPAGES;
1323 	} else {
1324 		pages = kmalloc_node(array_size,
1325 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1326 				node);
1327 	}
1328 	area->pages = pages;
1329 	area->caller = caller;
1330 	if (!area->pages) {
1331 		remove_vm_area(area->addr);
1332 		kfree(area);
1333 		return NULL;
1334 	}
1335 
1336 	for (i = 0; i < area->nr_pages; i++) {
1337 		struct page *page;
1338 
1339 		if (node < 0)
1340 			page = alloc_page(gfp_mask);
1341 		else
1342 			page = alloc_pages_node(node, gfp_mask, 0);
1343 
1344 		if (unlikely(!page)) {
1345 			/* Successfully allocated i pages, free them in __vunmap() */
1346 			area->nr_pages = i;
1347 			goto fail;
1348 		}
1349 		area->pages[i] = page;
1350 	}
1351 
1352 	if (map_vm_area(area, prot, &pages))
1353 		goto fail;
1354 	return area->addr;
1355 
1356 fail:
1357 	vfree(area->addr);
1358 	return NULL;
1359 }
1360 
__vmalloc_area(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot)1361 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1362 {
1363 	return __vmalloc_area_node(area, gfp_mask, prot, -1,
1364 					__builtin_return_address(0));
1365 }
1366 
1367 /**
1368  *	__vmalloc_node  -  allocate virtually contiguous memory
1369  *	@size:		allocation size
1370  *	@gfp_mask:	flags for the page level allocator
1371  *	@prot:		protection mask for the allocated pages
1372  *	@node:		node to use for allocation or -1
1373  *	@caller:	caller's return address
1374  *
1375  *	Allocate enough pages to cover @size from the page level
1376  *	allocator with @gfp_mask flags.  Map them into contiguous
1377  *	kernel virtual space, using a pagetable protection of @prot.
1378  */
__vmalloc_node(unsigned long size,gfp_t gfp_mask,pgprot_t prot,int node,void * caller)1379 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1380 						int node, void *caller)
1381 {
1382 	struct vm_struct *area;
1383 
1384 	size = PAGE_ALIGN(size);
1385 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
1386 		return NULL;
1387 
1388 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1389 						node, gfp_mask, caller);
1390 
1391 	if (!area)
1392 		return NULL;
1393 
1394 	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1395 }
1396 
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)1397 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1398 {
1399 	return __vmalloc_node(size, gfp_mask, prot, -1,
1400 				__builtin_return_address(0));
1401 }
1402 EXPORT_SYMBOL(__vmalloc);
1403 
1404 /**
1405  *	vmalloc  -  allocate virtually contiguous memory
1406  *	@size:		allocation size
1407  *	Allocate enough pages to cover @size from the page level
1408  *	allocator and map them into contiguous kernel virtual space.
1409  *
1410  *	For tight control over page level allocator and protection flags
1411  *	use __vmalloc() instead.
1412  */
vmalloc(unsigned long size)1413 void *vmalloc(unsigned long size)
1414 {
1415 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1416 					-1, __builtin_return_address(0));
1417 }
1418 EXPORT_SYMBOL(vmalloc);
1419 
1420 /**
1421  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1422  * @size: allocation size
1423  *
1424  * The resulting memory area is zeroed so it can be mapped to userspace
1425  * without leaking data.
1426  */
vmalloc_user(unsigned long size)1427 void *vmalloc_user(unsigned long size)
1428 {
1429 	struct vm_struct *area;
1430 	void *ret;
1431 
1432 	ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1433 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1434 	if (ret) {
1435 		area = find_vm_area(ret);
1436 		area->flags |= VM_USERMAP;
1437 	}
1438 	return ret;
1439 }
1440 EXPORT_SYMBOL(vmalloc_user);
1441 
1442 /**
1443  *	vmalloc_node  -  allocate memory on a specific node
1444  *	@size:		allocation size
1445  *	@node:		numa node
1446  *
1447  *	Allocate enough pages to cover @size from the page level
1448  *	allocator and map them into contiguous kernel virtual space.
1449  *
1450  *	For tight control over page level allocator and protection flags
1451  *	use __vmalloc() instead.
1452  */
vmalloc_node(unsigned long size,int node)1453 void *vmalloc_node(unsigned long size, int node)
1454 {
1455 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1456 					node, __builtin_return_address(0));
1457 }
1458 EXPORT_SYMBOL(vmalloc_node);
1459 
1460 #ifndef PAGE_KERNEL_EXEC
1461 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1462 #endif
1463 
1464 /**
1465  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1466  *	@size:		allocation size
1467  *
1468  *	Kernel-internal function to allocate enough pages to cover @size
1469  *	the page level allocator and map them into contiguous and
1470  *	executable kernel virtual space.
1471  *
1472  *	For tight control over page level allocator and protection flags
1473  *	use __vmalloc() instead.
1474  */
1475 
vmalloc_exec(unsigned long size)1476 void *vmalloc_exec(unsigned long size)
1477 {
1478 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1479 			      -1, __builtin_return_address(0));
1480 }
1481 
1482 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1483 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1484 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1485 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1486 #else
1487 #define GFP_VMALLOC32 GFP_KERNEL
1488 #endif
1489 
1490 /**
1491  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1492  *	@size:		allocation size
1493  *
1494  *	Allocate enough 32bit PA addressable pages to cover @size from the
1495  *	page level allocator and map them into contiguous kernel virtual space.
1496  */
vmalloc_32(unsigned long size)1497 void *vmalloc_32(unsigned long size)
1498 {
1499 	return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1500 			      -1, __builtin_return_address(0));
1501 }
1502 EXPORT_SYMBOL(vmalloc_32);
1503 
1504 /**
1505  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1506  *	@size:		allocation size
1507  *
1508  * The resulting memory area is 32bit addressable and zeroed so it can be
1509  * mapped to userspace without leaking data.
1510  */
vmalloc_32_user(unsigned long size)1511 void *vmalloc_32_user(unsigned long size)
1512 {
1513 	struct vm_struct *area;
1514 	void *ret;
1515 
1516 	ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1517 			     -1, __builtin_return_address(0));
1518 	if (ret) {
1519 		area = find_vm_area(ret);
1520 		area->flags |= VM_USERMAP;
1521 	}
1522 	return ret;
1523 }
1524 EXPORT_SYMBOL(vmalloc_32_user);
1525 
vread(char * buf,char * addr,unsigned long count)1526 long vread(char *buf, char *addr, unsigned long count)
1527 {
1528 	struct vm_struct *tmp;
1529 	char *vaddr, *buf_start = buf;
1530 	unsigned long n;
1531 
1532 	/* Don't allow overflow */
1533 	if ((unsigned long) addr + count < count)
1534 		count = -(unsigned long) addr;
1535 
1536 	read_lock(&vmlist_lock);
1537 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1538 		vaddr = (char *) tmp->addr;
1539 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1540 			continue;
1541 		while (addr < vaddr) {
1542 			if (count == 0)
1543 				goto finished;
1544 			*buf = '\0';
1545 			buf++;
1546 			addr++;
1547 			count--;
1548 		}
1549 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1550 		do {
1551 			if (count == 0)
1552 				goto finished;
1553 			*buf = *addr;
1554 			buf++;
1555 			addr++;
1556 			count--;
1557 		} while (--n > 0);
1558 	}
1559 finished:
1560 	read_unlock(&vmlist_lock);
1561 	return buf - buf_start;
1562 }
1563 
vwrite(char * buf,char * addr,unsigned long count)1564 long vwrite(char *buf, char *addr, unsigned long count)
1565 {
1566 	struct vm_struct *tmp;
1567 	char *vaddr, *buf_start = buf;
1568 	unsigned long n;
1569 
1570 	/* Don't allow overflow */
1571 	if ((unsigned long) addr + count < count)
1572 		count = -(unsigned long) addr;
1573 
1574 	read_lock(&vmlist_lock);
1575 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1576 		vaddr = (char *) tmp->addr;
1577 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1578 			continue;
1579 		while (addr < vaddr) {
1580 			if (count == 0)
1581 				goto finished;
1582 			buf++;
1583 			addr++;
1584 			count--;
1585 		}
1586 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1587 		do {
1588 			if (count == 0)
1589 				goto finished;
1590 			*addr = *buf;
1591 			buf++;
1592 			addr++;
1593 			count--;
1594 		} while (--n > 0);
1595 	}
1596 finished:
1597 	read_unlock(&vmlist_lock);
1598 	return buf - buf_start;
1599 }
1600 
1601 /**
1602  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1603  *	@vma:		vma to cover (map full range of vma)
1604  *	@addr:		vmalloc memory
1605  *	@pgoff:		number of pages into addr before first page to map
1606  *
1607  *	Returns:	0 for success, -Exxx on failure
1608  *
1609  *	This function checks that addr is a valid vmalloc'ed area, and
1610  *	that it is big enough to cover the vma. Will return failure if
1611  *	that criteria isn't met.
1612  *
1613  *	Similar to remap_pfn_range() (see mm/memory.c)
1614  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1615 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1616 						unsigned long pgoff)
1617 {
1618 	struct vm_struct *area;
1619 	unsigned long uaddr = vma->vm_start;
1620 	unsigned long usize = vma->vm_end - vma->vm_start;
1621 
1622 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1623 		return -EINVAL;
1624 
1625 	area = find_vm_area(addr);
1626 	if (!area)
1627 		return -EINVAL;
1628 
1629 	if (!(area->flags & VM_USERMAP))
1630 		return -EINVAL;
1631 
1632 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1633 		return -EINVAL;
1634 
1635 	addr += pgoff << PAGE_SHIFT;
1636 	do {
1637 		struct page *page = vmalloc_to_page(addr);
1638 		int ret;
1639 
1640 		ret = vm_insert_page(vma, uaddr, page);
1641 		if (ret)
1642 			return ret;
1643 
1644 		uaddr += PAGE_SIZE;
1645 		addr += PAGE_SIZE;
1646 		usize -= PAGE_SIZE;
1647 	} while (usize > 0);
1648 
1649 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1650 	vma->vm_flags |= VM_RESERVED;
1651 
1652 	return 0;
1653 }
1654 EXPORT_SYMBOL(remap_vmalloc_range);
1655 
1656 /*
1657  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1658  * have one.
1659  */
vmalloc_sync_all(void)1660 void  __attribute__((weak)) vmalloc_sync_all(void)
1661 {
1662 }
1663 
1664 
f(pte_t * pte,pgtable_t table,unsigned long addr,void * data)1665 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1666 {
1667 	/* apply_to_page_range() does all the hard work. */
1668 	return 0;
1669 }
1670 
1671 /**
1672  *	alloc_vm_area - allocate a range of kernel address space
1673  *	@size:		size of the area
1674  *
1675  *	Returns:	NULL on failure, vm_struct on success
1676  *
1677  *	This function reserves a range of kernel address space, and
1678  *	allocates pagetables to map that range.  No actual mappings
1679  *	are created.  If the kernel address space is not shared
1680  *	between processes, it syncs the pagetable across all
1681  *	processes.
1682  */
alloc_vm_area(size_t size)1683 struct vm_struct *alloc_vm_area(size_t size)
1684 {
1685 	struct vm_struct *area;
1686 
1687 	area = get_vm_area_caller(size, VM_IOREMAP,
1688 				__builtin_return_address(0));
1689 	if (area == NULL)
1690 		return NULL;
1691 
1692 	/*
1693 	 * This ensures that page tables are constructed for this region
1694 	 * of kernel virtual address space and mapped into init_mm.
1695 	 */
1696 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1697 				area->size, f, NULL)) {
1698 		free_vm_area(area);
1699 		return NULL;
1700 	}
1701 
1702 	/* Make sure the pagetables are constructed in process kernel
1703 	   mappings */
1704 	vmalloc_sync_all();
1705 
1706 	return area;
1707 }
1708 EXPORT_SYMBOL_GPL(alloc_vm_area);
1709 
free_vm_area(struct vm_struct * area)1710 void free_vm_area(struct vm_struct *area)
1711 {
1712 	struct vm_struct *ret;
1713 	ret = remove_vm_area(area->addr);
1714 	BUG_ON(ret != area);
1715 	kfree(area);
1716 }
1717 EXPORT_SYMBOL_GPL(free_vm_area);
1718 
1719 
1720 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)1721 static void *s_start(struct seq_file *m, loff_t *pos)
1722 {
1723 	loff_t n = *pos;
1724 	struct vm_struct *v;
1725 
1726 	read_lock(&vmlist_lock);
1727 	v = vmlist;
1728 	while (n > 0 && v) {
1729 		n--;
1730 		v = v->next;
1731 	}
1732 	if (!n)
1733 		return v;
1734 
1735 	return NULL;
1736 
1737 }
1738 
s_next(struct seq_file * m,void * p,loff_t * pos)1739 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1740 {
1741 	struct vm_struct *v = p;
1742 
1743 	++*pos;
1744 	return v->next;
1745 }
1746 
s_stop(struct seq_file * m,void * p)1747 static void s_stop(struct seq_file *m, void *p)
1748 {
1749 	read_unlock(&vmlist_lock);
1750 }
1751 
show_numa_info(struct seq_file * m,struct vm_struct * v)1752 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1753 {
1754 	if (NUMA_BUILD) {
1755 		unsigned int nr, *counters = m->private;
1756 
1757 		if (!counters)
1758 			return;
1759 
1760 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1761 
1762 		for (nr = 0; nr < v->nr_pages; nr++)
1763 			counters[page_to_nid(v->pages[nr])]++;
1764 
1765 		for_each_node_state(nr, N_HIGH_MEMORY)
1766 			if (counters[nr])
1767 				seq_printf(m, " N%u=%u", nr, counters[nr]);
1768 	}
1769 }
1770 
s_show(struct seq_file * m,void * p)1771 static int s_show(struct seq_file *m, void *p)
1772 {
1773 	struct vm_struct *v = p;
1774 
1775 	seq_printf(m, "0x%p-0x%p %7ld",
1776 		v->addr, v->addr + v->size, v->size);
1777 
1778 	if (v->caller) {
1779 		char buff[KSYM_SYMBOL_LEN];
1780 
1781 		seq_putc(m, ' ');
1782 		sprint_symbol(buff, (unsigned long)v->caller);
1783 		seq_puts(m, buff);
1784 	}
1785 
1786 	if (v->nr_pages)
1787 		seq_printf(m, " pages=%d", v->nr_pages);
1788 
1789 	if (v->phys_addr)
1790 		seq_printf(m, " phys=%lx", v->phys_addr);
1791 
1792 	if (v->flags & VM_IOREMAP)
1793 		seq_printf(m, " ioremap");
1794 
1795 	if (v->flags & VM_ALLOC)
1796 		seq_printf(m, " vmalloc");
1797 
1798 	if (v->flags & VM_MAP)
1799 		seq_printf(m, " vmap");
1800 
1801 	if (v->flags & VM_USERMAP)
1802 		seq_printf(m, " user");
1803 
1804 	if (v->flags & VM_VPAGES)
1805 		seq_printf(m, " vpages");
1806 
1807 	show_numa_info(m, v);
1808 	seq_putc(m, '\n');
1809 	return 0;
1810 }
1811 
1812 static const struct seq_operations vmalloc_op = {
1813 	.start = s_start,
1814 	.next = s_next,
1815 	.stop = s_stop,
1816 	.show = s_show,
1817 };
1818 
vmalloc_open(struct inode * inode,struct file * file)1819 static int vmalloc_open(struct inode *inode, struct file *file)
1820 {
1821 	unsigned int *ptr = NULL;
1822 	int ret;
1823 
1824 	if (NUMA_BUILD)
1825 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1826 	ret = seq_open(file, &vmalloc_op);
1827 	if (!ret) {
1828 		struct seq_file *m = file->private_data;
1829 		m->private = ptr;
1830 	} else
1831 		kfree(ptr);
1832 	return ret;
1833 }
1834 
1835 static const struct file_operations proc_vmalloc_operations = {
1836 	.open		= vmalloc_open,
1837 	.read		= seq_read,
1838 	.llseek		= seq_lseek,
1839 	.release	= seq_release_private,
1840 };
1841 
proc_vmalloc_init(void)1842 static int __init proc_vmalloc_init(void)
1843 {
1844 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1845 	return 0;
1846 }
1847 module_init(proc_vmalloc_init);
1848 #endif
1849 
1850