• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * DECnet       An implementation of the DECnet protocol suite for the LINUX
3  *              operating system.  DECnet is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              DECnet Neighbour Functions (Adjacency Database and
7  *                                                        On-Ethernet Cache)
8  *
9  * Author:      Steve Whitehouse <SteveW@ACM.org>
10  *
11  *
12  * Changes:
13  *     Steve Whitehouse     : Fixed router listing routine
14  *     Steve Whitehouse     : Added error_report functions
15  *     Steve Whitehouse     : Added default router detection
16  *     Steve Whitehouse     : Hop counts in outgoing messages
17  *     Steve Whitehouse     : Fixed src/dst in outgoing messages so
18  *                            forwarding now stands a good chance of
19  *                            working.
20  *     Steve Whitehouse     : Fixed neighbour states (for now anyway).
21  *     Steve Whitehouse     : Made error_report functions dummies. This
22  *                            is not the right place to return skbs.
23  *     Steve Whitehouse     : Convert to seq_file
24  *
25  */
26 
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_ether.h>
32 #include <linux/init.h>
33 #include <linux/proc_fs.h>
34 #include <linux/string.h>
35 #include <linux/netfilter_decnet.h>
36 #include <linux/spinlock.h>
37 #include <linux/seq_file.h>
38 #include <linux/rcupdate.h>
39 #include <linux/jhash.h>
40 #include <asm/atomic.h>
41 #include <net/net_namespace.h>
42 #include <net/neighbour.h>
43 #include <net/dst.h>
44 #include <net/flow.h>
45 #include <net/dn.h>
46 #include <net/dn_dev.h>
47 #include <net/dn_neigh.h>
48 #include <net/dn_route.h>
49 
50 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev);
51 static int dn_neigh_construct(struct neighbour *);
52 static void dn_long_error_report(struct neighbour *, struct sk_buff *);
53 static void dn_short_error_report(struct neighbour *, struct sk_buff *);
54 static int dn_long_output(struct sk_buff *);
55 static int dn_short_output(struct sk_buff *);
56 static int dn_phase3_output(struct sk_buff *);
57 
58 
59 /*
60  * For talking to broadcast devices: Ethernet & PPP
61  */
62 static struct neigh_ops dn_long_ops = {
63 	.family =		AF_DECnet,
64 	.error_report =		dn_long_error_report,
65 	.output =		dn_long_output,
66 	.connected_output =	dn_long_output,
67 	.hh_output =		dev_queue_xmit,
68 	.queue_xmit =		dev_queue_xmit,
69 };
70 
71 /*
72  * For talking to pointopoint and multidrop devices: DDCMP and X.25
73  */
74 static struct neigh_ops dn_short_ops = {
75 	.family =		AF_DECnet,
76 	.error_report =		dn_short_error_report,
77 	.output =		dn_short_output,
78 	.connected_output =	dn_short_output,
79 	.hh_output =		dev_queue_xmit,
80 	.queue_xmit =		dev_queue_xmit,
81 };
82 
83 /*
84  * For talking to DECnet phase III nodes
85  */
86 static struct neigh_ops dn_phase3_ops = {
87 	.family =		AF_DECnet,
88 	.error_report =		dn_short_error_report, /* Can use short version here */
89 	.output =		dn_phase3_output,
90 	.connected_output =	dn_phase3_output,
91 	.hh_output =		dev_queue_xmit,
92 	.queue_xmit =		dev_queue_xmit
93 };
94 
95 struct neigh_table dn_neigh_table = {
96 	.family =			PF_DECnet,
97 	.entry_size =			sizeof(struct dn_neigh),
98 	.key_len =			sizeof(__le16),
99 	.hash =				dn_neigh_hash,
100 	.constructor =			dn_neigh_construct,
101 	.id =				"dn_neigh_cache",
102 	.parms ={
103 		.tbl =			&dn_neigh_table,
104 		.base_reachable_time =	30 * HZ,
105 		.retrans_time =	1 * HZ,
106 		.gc_staletime =	60 * HZ,
107 		.reachable_time =		30 * HZ,
108 		.delay_probe_time =	5 * HZ,
109 		.queue_len =		3,
110 		.ucast_probes =	0,
111 		.app_probes =		0,
112 		.mcast_probes =	0,
113 		.anycast_delay =	0,
114 		.proxy_delay =		0,
115 		.proxy_qlen =		0,
116 		.locktime =		1 * HZ,
117 	},
118 	.gc_interval =			30 * HZ,
119 	.gc_thresh1 =			128,
120 	.gc_thresh2 =			512,
121 	.gc_thresh3 =			1024,
122 };
123 
dn_neigh_hash(const void * pkey,const struct net_device * dev)124 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev)
125 {
126 	return jhash_2words(*(__u16 *)pkey, 0, dn_neigh_table.hash_rnd);
127 }
128 
dn_neigh_construct(struct neighbour * neigh)129 static int dn_neigh_construct(struct neighbour *neigh)
130 {
131 	struct net_device *dev = neigh->dev;
132 	struct dn_neigh *dn = (struct dn_neigh *)neigh;
133 	struct dn_dev *dn_db;
134 	struct neigh_parms *parms;
135 
136 	rcu_read_lock();
137 	dn_db = rcu_dereference(dev->dn_ptr);
138 	if (dn_db == NULL) {
139 		rcu_read_unlock();
140 		return -EINVAL;
141 	}
142 
143 	parms = dn_db->neigh_parms;
144 	if (!parms) {
145 		rcu_read_unlock();
146 		return -EINVAL;
147 	}
148 
149 	__neigh_parms_put(neigh->parms);
150 	neigh->parms = neigh_parms_clone(parms);
151 
152 	if (dn_db->use_long)
153 		neigh->ops = &dn_long_ops;
154 	else
155 		neigh->ops = &dn_short_ops;
156 	rcu_read_unlock();
157 
158 	if (dn->flags & DN_NDFLAG_P3)
159 		neigh->ops = &dn_phase3_ops;
160 
161 	neigh->nud_state = NUD_NOARP;
162 	neigh->output = neigh->ops->connected_output;
163 
164 	if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
165 		memcpy(neigh->ha, dev->broadcast, dev->addr_len);
166 	else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
167 		dn_dn2eth(neigh->ha, dn->addr);
168 	else {
169 		if (net_ratelimit())
170 			printk(KERN_DEBUG "Trying to create neigh for hw %d\n",  dev->type);
171 		return -EINVAL;
172 	}
173 
174 	/*
175 	 * Make an estimate of the remote block size by assuming that its
176 	 * two less then the device mtu, which it true for ethernet (and
177 	 * other things which support long format headers) since there is
178 	 * an extra length field (of 16 bits) which isn't part of the
179 	 * ethernet headers and which the DECnet specs won't admit is part
180 	 * of the DECnet routing headers either.
181 	 *
182 	 * If we over estimate here its no big deal, the NSP negotiations
183 	 * will prevent us from sending packets which are too large for the
184 	 * remote node to handle. In any case this figure is normally updated
185 	 * by a hello message in most cases.
186 	 */
187 	dn->blksize = dev->mtu - 2;
188 
189 	return 0;
190 }
191 
dn_long_error_report(struct neighbour * neigh,struct sk_buff * skb)192 static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
193 {
194 	printk(KERN_DEBUG "dn_long_error_report: called\n");
195 	kfree_skb(skb);
196 }
197 
198 
dn_short_error_report(struct neighbour * neigh,struct sk_buff * skb)199 static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
200 {
201 	printk(KERN_DEBUG "dn_short_error_report: called\n");
202 	kfree_skb(skb);
203 }
204 
dn_neigh_output_packet(struct sk_buff * skb)205 static int dn_neigh_output_packet(struct sk_buff *skb)
206 {
207 	struct dst_entry *dst = skb->dst;
208 	struct dn_route *rt = (struct dn_route *)dst;
209 	struct neighbour *neigh = dst->neighbour;
210 	struct net_device *dev = neigh->dev;
211 	char mac_addr[ETH_ALEN];
212 
213 	dn_dn2eth(mac_addr, rt->rt_local_src);
214 	if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
215 			    mac_addr, skb->len) >= 0)
216 		return neigh->ops->queue_xmit(skb);
217 
218 	if (net_ratelimit())
219 		printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
220 
221 	kfree_skb(skb);
222 	return -EINVAL;
223 }
224 
dn_long_output(struct sk_buff * skb)225 static int dn_long_output(struct sk_buff *skb)
226 {
227 	struct dst_entry *dst = skb->dst;
228 	struct neighbour *neigh = dst->neighbour;
229 	struct net_device *dev = neigh->dev;
230 	int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
231 	unsigned char *data;
232 	struct dn_long_packet *lp;
233 	struct dn_skb_cb *cb = DN_SKB_CB(skb);
234 
235 
236 	if (skb_headroom(skb) < headroom) {
237 		struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
238 		if (skb2 == NULL) {
239 			if (net_ratelimit())
240 				printk(KERN_CRIT "dn_long_output: no memory\n");
241 			kfree_skb(skb);
242 			return -ENOBUFS;
243 		}
244 		kfree_skb(skb);
245 		skb = skb2;
246 		if (net_ratelimit())
247 			printk(KERN_INFO "dn_long_output: Increasing headroom\n");
248 	}
249 
250 	data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
251 	lp = (struct dn_long_packet *)(data+3);
252 
253 	*((__le16 *)data) = cpu_to_le16(skb->len - 2);
254 	*(data + 2) = 1 | DN_RT_F_PF; /* Padding */
255 
256 	lp->msgflg   = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
257 	lp->d_area   = lp->d_subarea = 0;
258 	dn_dn2eth(lp->d_id, cb->dst);
259 	lp->s_area   = lp->s_subarea = 0;
260 	dn_dn2eth(lp->s_id, cb->src);
261 	lp->nl2      = 0;
262 	lp->visit_ct = cb->hops & 0x3f;
263 	lp->s_class  = 0;
264 	lp->pt       = 0;
265 
266 	skb_reset_network_header(skb);
267 
268 	return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
269 }
270 
dn_short_output(struct sk_buff * skb)271 static int dn_short_output(struct sk_buff *skb)
272 {
273 	struct dst_entry *dst = skb->dst;
274 	struct neighbour *neigh = dst->neighbour;
275 	struct net_device *dev = neigh->dev;
276 	int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
277 	struct dn_short_packet *sp;
278 	unsigned char *data;
279 	struct dn_skb_cb *cb = DN_SKB_CB(skb);
280 
281 
282 	if (skb_headroom(skb) < headroom) {
283 		struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
284 		if (skb2 == NULL) {
285 			if (net_ratelimit())
286 				printk(KERN_CRIT "dn_short_output: no memory\n");
287 			kfree_skb(skb);
288 			return -ENOBUFS;
289 		}
290 		kfree_skb(skb);
291 		skb = skb2;
292 		if (net_ratelimit())
293 			printk(KERN_INFO "dn_short_output: Increasing headroom\n");
294 	}
295 
296 	data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
297 	*((__le16 *)data) = cpu_to_le16(skb->len - 2);
298 	sp = (struct dn_short_packet *)(data+2);
299 
300 	sp->msgflg     = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
301 	sp->dstnode    = cb->dst;
302 	sp->srcnode    = cb->src;
303 	sp->forward    = cb->hops & 0x3f;
304 
305 	skb_reset_network_header(skb);
306 
307 	return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
308 }
309 
310 /*
311  * Phase 3 output is the same is short output, execpt that
312  * it clears the area bits before transmission.
313  */
dn_phase3_output(struct sk_buff * skb)314 static int dn_phase3_output(struct sk_buff *skb)
315 {
316 	struct dst_entry *dst = skb->dst;
317 	struct neighbour *neigh = dst->neighbour;
318 	struct net_device *dev = neigh->dev;
319 	int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
320 	struct dn_short_packet *sp;
321 	unsigned char *data;
322 	struct dn_skb_cb *cb = DN_SKB_CB(skb);
323 
324 	if (skb_headroom(skb) < headroom) {
325 		struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
326 		if (skb2 == NULL) {
327 			if (net_ratelimit())
328 				printk(KERN_CRIT "dn_phase3_output: no memory\n");
329 			kfree_skb(skb);
330 			return -ENOBUFS;
331 		}
332 		kfree_skb(skb);
333 		skb = skb2;
334 		if (net_ratelimit())
335 			printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
336 	}
337 
338 	data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
339 	*((__le16 *)data) = cpu_to_le16(skb->len - 2);
340 	sp = (struct dn_short_packet *)(data + 2);
341 
342 	sp->msgflg   = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
343 	sp->dstnode  = cb->dst & cpu_to_le16(0x03ff);
344 	sp->srcnode  = cb->src & cpu_to_le16(0x03ff);
345 	sp->forward  = cb->hops & 0x3f;
346 
347 	skb_reset_network_header(skb);
348 
349 	return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
350 }
351 
352 /*
353  * Unfortunately, the neighbour code uses the device in its hash
354  * function, so we don't get any advantage from it. This function
355  * basically does a neigh_lookup(), but without comparing the device
356  * field. This is required for the On-Ethernet cache
357  */
358 
359 /*
360  * Pointopoint link receives a hello message
361  */
dn_neigh_pointopoint_hello(struct sk_buff * skb)362 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
363 {
364 	kfree_skb(skb);
365 }
366 
367 /*
368  * Ethernet router hello message received
369  */
dn_neigh_router_hello(struct sk_buff * skb)370 int dn_neigh_router_hello(struct sk_buff *skb)
371 {
372 	struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
373 
374 	struct neighbour *neigh;
375 	struct dn_neigh *dn;
376 	struct dn_dev *dn_db;
377 	__le16 src;
378 
379 	src = dn_eth2dn(msg->id);
380 
381 	neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
382 
383 	dn = (struct dn_neigh *)neigh;
384 
385 	if (neigh) {
386 		write_lock(&neigh->lock);
387 
388 		neigh->used = jiffies;
389 		dn_db = (struct dn_dev *)neigh->dev->dn_ptr;
390 
391 		if (!(neigh->nud_state & NUD_PERMANENT)) {
392 			neigh->updated = jiffies;
393 
394 			if (neigh->dev->type == ARPHRD_ETHER)
395 				memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
396 
397 			dn->blksize  = le16_to_cpu(msg->blksize);
398 			dn->priority = msg->priority;
399 
400 			dn->flags &= ~DN_NDFLAG_P3;
401 
402 			switch(msg->iinfo & DN_RT_INFO_TYPE) {
403 				case DN_RT_INFO_L1RT:
404 					dn->flags &=~DN_NDFLAG_R2;
405 					dn->flags |= DN_NDFLAG_R1;
406 					break;
407 				case DN_RT_INFO_L2RT:
408 					dn->flags |= DN_NDFLAG_R2;
409 			}
410 		}
411 
412 		/* Only use routers in our area */
413 		if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
414 			if (!dn_db->router) {
415 				dn_db->router = neigh_clone(neigh);
416 			} else {
417 				if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
418 					neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
419 			}
420 		}
421 		write_unlock(&neigh->lock);
422 		neigh_release(neigh);
423 	}
424 
425 	kfree_skb(skb);
426 	return 0;
427 }
428 
429 /*
430  * Endnode hello message received
431  */
dn_neigh_endnode_hello(struct sk_buff * skb)432 int dn_neigh_endnode_hello(struct sk_buff *skb)
433 {
434 	struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
435 	struct neighbour *neigh;
436 	struct dn_neigh *dn;
437 	__le16 src;
438 
439 	src = dn_eth2dn(msg->id);
440 
441 	neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
442 
443 	dn = (struct dn_neigh *)neigh;
444 
445 	if (neigh) {
446 		write_lock(&neigh->lock);
447 
448 		neigh->used = jiffies;
449 
450 		if (!(neigh->nud_state & NUD_PERMANENT)) {
451 			neigh->updated = jiffies;
452 
453 			if (neigh->dev->type == ARPHRD_ETHER)
454 				memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
455 			dn->flags   &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
456 			dn->blksize  = le16_to_cpu(msg->blksize);
457 			dn->priority = 0;
458 		}
459 
460 		write_unlock(&neigh->lock);
461 		neigh_release(neigh);
462 	}
463 
464 	kfree_skb(skb);
465 	return 0;
466 }
467 
dn_find_slot(char * base,int max,int priority)468 static char *dn_find_slot(char *base, int max, int priority)
469 {
470 	int i;
471 	unsigned char *min = NULL;
472 
473 	base += 6; /* skip first id */
474 
475 	for(i = 0; i < max; i++) {
476 		if (!min || (*base < *min))
477 			min = base;
478 		base += 7; /* find next priority */
479 	}
480 
481 	if (!min)
482 		return NULL;
483 
484 	return (*min < priority) ? (min - 6) : NULL;
485 }
486 
487 struct elist_cb_state {
488 	struct net_device *dev;
489 	unsigned char *ptr;
490 	unsigned char *rs;
491 	int t, n;
492 };
493 
neigh_elist_cb(struct neighbour * neigh,void * _info)494 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
495 {
496 	struct elist_cb_state *s = _info;
497 	struct dn_neigh *dn;
498 
499 	if (neigh->dev != s->dev)
500 		return;
501 
502 	dn = (struct dn_neigh *) neigh;
503 	if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
504 		return;
505 
506 	if (s->t == s->n)
507 		s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
508 	else
509 		s->t++;
510 	if (s->rs == NULL)
511 		return;
512 
513 	dn_dn2eth(s->rs, dn->addr);
514 	s->rs += 6;
515 	*(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
516 	*(s->rs) |= dn->priority;
517 	s->rs++;
518 }
519 
dn_neigh_elist(struct net_device * dev,unsigned char * ptr,int n)520 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
521 {
522 	struct elist_cb_state state;
523 
524 	state.dev = dev;
525 	state.t = 0;
526 	state.n = n;
527 	state.ptr = ptr;
528 	state.rs = ptr;
529 
530 	neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
531 
532 	return state.t;
533 }
534 
535 
536 #ifdef CONFIG_PROC_FS
537 
dn_neigh_format_entry(struct seq_file * seq,struct neighbour * n)538 static inline void dn_neigh_format_entry(struct seq_file *seq,
539 					 struct neighbour *n)
540 {
541 	struct dn_neigh *dn = (struct dn_neigh *) n;
542 	char buf[DN_ASCBUF_LEN];
543 
544 	read_lock(&n->lock);
545 	seq_printf(seq, "%-7s %s%s%s   %02x    %02d  %07ld %-8s\n",
546 		   dn_addr2asc(le16_to_cpu(dn->addr), buf),
547 		   (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
548 		   (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
549 		   (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
550 		   dn->n.nud_state,
551 		   atomic_read(&dn->n.refcnt),
552 		   dn->blksize,
553 		   (dn->n.dev) ? dn->n.dev->name : "?");
554 	read_unlock(&n->lock);
555 }
556 
dn_neigh_seq_show(struct seq_file * seq,void * v)557 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
558 {
559 	if (v == SEQ_START_TOKEN) {
560 		seq_puts(seq, "Addr    Flags State Use Blksize Dev\n");
561 	} else {
562 		dn_neigh_format_entry(seq, v);
563 	}
564 
565 	return 0;
566 }
567 
dn_neigh_seq_start(struct seq_file * seq,loff_t * pos)568 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
569 {
570 	return neigh_seq_start(seq, pos, &dn_neigh_table,
571 			       NEIGH_SEQ_NEIGH_ONLY);
572 }
573 
574 static const struct seq_operations dn_neigh_seq_ops = {
575 	.start = dn_neigh_seq_start,
576 	.next  = neigh_seq_next,
577 	.stop  = neigh_seq_stop,
578 	.show  = dn_neigh_seq_show,
579 };
580 
dn_neigh_seq_open(struct inode * inode,struct file * file)581 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
582 {
583 	return seq_open_net(inode, file, &dn_neigh_seq_ops,
584 			    sizeof(struct neigh_seq_state));
585 }
586 
587 static const struct file_operations dn_neigh_seq_fops = {
588 	.owner		= THIS_MODULE,
589 	.open		= dn_neigh_seq_open,
590 	.read		= seq_read,
591 	.llseek		= seq_lseek,
592 	.release	= seq_release_net,
593 };
594 
595 #endif
596 
dn_neigh_init(void)597 void __init dn_neigh_init(void)
598 {
599 	neigh_table_init(&dn_neigh_table);
600 	proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
601 }
602 
dn_neigh_cleanup(void)603 void __exit dn_neigh_cleanup(void)
604 {
605 	proc_net_remove(&init_net, "decnet_neigh");
606 	neigh_table_clear(&dn_neigh_table);
607 }
608