• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73 
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83 
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90 
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
108 
109 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114 
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117 
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123 	struct inet_connection_sock *icsk = inet_csk(sk);
124 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 	unsigned int len;
126 
127 	icsk->icsk_ack.last_seg_size = 0;
128 
129 	/* skb->len may jitter because of SACKs, even if peer
130 	 * sends good full-sized frames.
131 	 */
132 	len = skb_shinfo(skb)->gso_size ? : skb->len;
133 	if (len >= icsk->icsk_ack.rcv_mss) {
134 		icsk->icsk_ack.rcv_mss = len;
135 	} else {
136 		/* Otherwise, we make more careful check taking into account,
137 		 * that SACKs block is variable.
138 		 *
139 		 * "len" is invariant segment length, including TCP header.
140 		 */
141 		len += skb->data - skb_transport_header(skb);
142 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 		    /* If PSH is not set, packet should be
144 		     * full sized, provided peer TCP is not badly broken.
145 		     * This observation (if it is correct 8)) allows
146 		     * to handle super-low mtu links fairly.
147 		     */
148 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 			/* Subtract also invariant (if peer is RFC compliant),
151 			 * tcp header plus fixed timestamp option length.
152 			 * Resulting "len" is MSS free of SACK jitter.
153 			 */
154 			len -= tcp_sk(sk)->tcp_header_len;
155 			icsk->icsk_ack.last_seg_size = len;
156 			if (len == lss) {
157 				icsk->icsk_ack.rcv_mss = len;
158 				return;
159 			}
160 		}
161 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164 	}
165 }
166 
tcp_incr_quickack(struct sock * sk)167 static void tcp_incr_quickack(struct sock *sk)
168 {
169 	struct inet_connection_sock *icsk = inet_csk(sk);
170 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171 
172 	if (quickacks == 0)
173 		quickacks = 2;
174 	if (quickacks > icsk->icsk_ack.quick)
175 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177 
tcp_enter_quickack_mode(struct sock * sk)178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180 	struct inet_connection_sock *icsk = inet_csk(sk);
181 	tcp_incr_quickack(sk);
182 	icsk->icsk_ack.pingpong = 0;
183 	icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185 
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189 
tcp_in_quickack_mode(const struct sock * sk)190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192 	const struct inet_connection_sock *icsk = inet_csk(sk);
193 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195 
TCP_ECN_queue_cwr(struct tcp_sock * tp)196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198 	if (tp->ecn_flags & TCP_ECN_OK)
199 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201 
TCP_ECN_accept_cwr(struct tcp_sock * tp,struct sk_buff * skb)202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204 	if (tcp_hdr(skb)->cwr)
205 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207 
TCP_ECN_withdraw_cwr(struct tcp_sock * tp)208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212 
TCP_ECN_check_ce(struct tcp_sock * tp,struct sk_buff * skb)213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215 	if (tp->ecn_flags & TCP_ECN_OK) {
216 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 		/* Funny extension: if ECT is not set on a segment,
219 		 * it is surely retransmit. It is not in ECN RFC,
220 		 * but Linux follows this rule. */
221 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 			tcp_enter_quickack_mode((struct sock *)tp);
223 	}
224 }
225 
TCP_ECN_rcv_synack(struct tcp_sock * tp,struct tcphdr * th)226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 		tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231 
TCP_ECN_rcv_syn(struct tcp_sock * tp,struct tcphdr * th)232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 		tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237 
TCP_ECN_rcv_ecn_echo(struct tcp_sock * tp,struct tcphdr * th)238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 		return 1;
242 	return 0;
243 }
244 
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249 
tcp_fixup_sndbuf(struct sock * sk)250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 		     sizeof(struct sk_buff);
254 
255 	if (sk->sk_sndbuf < 3 * sndmem)
256 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258 
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283 
284 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287 	struct tcp_sock *tp = tcp_sk(sk);
288 	/* Optimize this! */
289 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291 
292 	while (tp->rcv_ssthresh <= window) {
293 		if (truesize <= skb->len)
294 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295 
296 		truesize >>= 1;
297 		window >>= 1;
298 	}
299 	return 0;
300 }
301 
tcp_grow_window(struct sock * sk,struct sk_buff * skb)302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304 	struct tcp_sock *tp = tcp_sk(sk);
305 
306 	/* Check #1 */
307 	if (tp->rcv_ssthresh < tp->window_clamp &&
308 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 	    !tcp_memory_pressure) {
310 		int incr;
311 
312 		/* Check #2. Increase window, if skb with such overhead
313 		 * will fit to rcvbuf in future.
314 		 */
315 		if (tcp_win_from_space(skb->truesize) <= skb->len)
316 			incr = 2 * tp->advmss;
317 		else
318 			incr = __tcp_grow_window(sk, skb);
319 
320 		if (incr) {
321 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 					       tp->window_clamp);
323 			inet_csk(sk)->icsk_ack.quick |= 1;
324 		}
325 	}
326 }
327 
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329 
tcp_fixup_rcvbuf(struct sock * sk)330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334 
335 	/* Try to select rcvbuf so that 4 mss-sized segments
336 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
338 	 */
339 	while (tcp_win_from_space(rcvmem) < tp->advmss)
340 		rcvmem += 128;
341 	if (sk->sk_rcvbuf < 4 * rcvmem)
342 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344 
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
tcp_init_buffer_space(struct sock * sk)348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350 	struct tcp_sock *tp = tcp_sk(sk);
351 	int maxwin;
352 
353 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 		tcp_fixup_rcvbuf(sk);
355 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 		tcp_fixup_sndbuf(sk);
357 
358 	tp->rcvq_space.space = tp->rcv_wnd;
359 
360 	maxwin = tcp_full_space(sk);
361 
362 	if (tp->window_clamp >= maxwin) {
363 		tp->window_clamp = maxwin;
364 
365 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 			tp->window_clamp = max(maxwin -
367 					       (maxwin >> sysctl_tcp_app_win),
368 					       4 * tp->advmss);
369 	}
370 
371 	/* Force reservation of one segment. */
372 	if (sysctl_tcp_app_win &&
373 	    tp->window_clamp > 2 * tp->advmss &&
374 	    tp->window_clamp + tp->advmss > maxwin)
375 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376 
377 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 	tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380 
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)382 static void tcp_clamp_window(struct sock *sk)
383 {
384 	struct tcp_sock *tp = tcp_sk(sk);
385 	struct inet_connection_sock *icsk = inet_csk(sk);
386 
387 	icsk->icsk_ack.quick = 0;
388 
389 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 	    !tcp_memory_pressure &&
392 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 				    sysctl_tcp_rmem[2]);
395 	}
396 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399 
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
tcp_initialize_rcv_mss(struct sock * sk)407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409 	struct tcp_sock *tp = tcp_sk(sk);
410 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411 
412 	hint = min(hint, tp->rcv_wnd / 2);
413 	hint = min(hint, TCP_MIN_RCVMSS);
414 	hint = max(hint, TCP_MIN_MSS);
415 
416 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418 
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432 	u32 new_sample = tp->rcv_rtt_est.rtt;
433 	long m = sample;
434 
435 	if (m == 0)
436 		m = 1;
437 
438 	if (new_sample != 0) {
439 		/* If we sample in larger samples in the non-timestamp
440 		 * case, we could grossly overestimate the RTT especially
441 		 * with chatty applications or bulk transfer apps which
442 		 * are stalled on filesystem I/O.
443 		 *
444 		 * Also, since we are only going for a minimum in the
445 		 * non-timestamp case, we do not smooth things out
446 		 * else with timestamps disabled convergence takes too
447 		 * long.
448 		 */
449 		if (!win_dep) {
450 			m -= (new_sample >> 3);
451 			new_sample += m;
452 		} else if (m < new_sample)
453 			new_sample = m << 3;
454 	} else {
455 		/* No previous measure. */
456 		new_sample = m << 3;
457 	}
458 
459 	if (tp->rcv_rtt_est.rtt != new_sample)
460 		tp->rcv_rtt_est.rtt = new_sample;
461 }
462 
tcp_rcv_rtt_measure(struct tcp_sock * tp)463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465 	if (tp->rcv_rtt_est.time == 0)
466 		goto new_measure;
467 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 		return;
469 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470 
471 new_measure:
472 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 	tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 					  const struct sk_buff *skb)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	if (tp->rx_opt.rcv_tsecr &&
481 	    (TCP_SKB_CB(skb)->end_seq -
482 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485 
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
tcp_rcv_space_adjust(struct sock * sk)490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492 	struct tcp_sock *tp = tcp_sk(sk);
493 	int time;
494 	int space;
495 
496 	if (tp->rcvq_space.time == 0)
497 		goto new_measure;
498 
499 	time = tcp_time_stamp - tp->rcvq_space.time;
500 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 		return;
502 
503 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504 
505 	space = max(tp->rcvq_space.space, space);
506 
507 	if (tp->rcvq_space.space != space) {
508 		int rcvmem;
509 
510 		tp->rcvq_space.space = space;
511 
512 		if (sysctl_tcp_moderate_rcvbuf &&
513 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 			int new_clamp = space;
515 
516 			/* Receive space grows, normalize in order to
517 			 * take into account packet headers and sk_buff
518 			 * structure overhead.
519 			 */
520 			space /= tp->advmss;
521 			if (!space)
522 				space = 1;
523 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 				  16 + sizeof(struct sk_buff));
525 			while (tcp_win_from_space(rcvmem) < tp->advmss)
526 				rcvmem += 128;
527 			space *= rcvmem;
528 			space = min(space, sysctl_tcp_rmem[2]);
529 			if (space > sk->sk_rcvbuf) {
530 				sk->sk_rcvbuf = space;
531 
532 				/* Make the window clamp follow along.  */
533 				tp->window_clamp = new_clamp;
534 			}
535 		}
536 	}
537 
538 new_measure:
539 	tp->rcvq_space.seq = tp->copied_seq;
540 	tp->rcvq_space.time = tcp_time_stamp;
541 }
542 
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555 	struct tcp_sock *tp = tcp_sk(sk);
556 	struct inet_connection_sock *icsk = inet_csk(sk);
557 	u32 now;
558 
559 	inet_csk_schedule_ack(sk);
560 
561 	tcp_measure_rcv_mss(sk, skb);
562 
563 	tcp_rcv_rtt_measure(tp);
564 
565 	now = tcp_time_stamp;
566 
567 	if (!icsk->icsk_ack.ato) {
568 		/* The _first_ data packet received, initialize
569 		 * delayed ACK engine.
570 		 */
571 		tcp_incr_quickack(sk);
572 		icsk->icsk_ack.ato = TCP_ATO_MIN;
573 	} else {
574 		int m = now - icsk->icsk_ack.lrcvtime;
575 
576 		if (m <= TCP_ATO_MIN / 2) {
577 			/* The fastest case is the first. */
578 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 		} else if (m < icsk->icsk_ack.ato) {
580 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 				icsk->icsk_ack.ato = icsk->icsk_rto;
583 		} else if (m > icsk->icsk_rto) {
584 			/* Too long gap. Apparently sender failed to
585 			 * restart window, so that we send ACKs quickly.
586 			 */
587 			tcp_incr_quickack(sk);
588 			sk_mem_reclaim(sk);
589 		}
590 	}
591 	icsk->icsk_ack.lrcvtime = now;
592 
593 	TCP_ECN_check_ce(tp, skb);
594 
595 	if (skb->len >= 128)
596 		tcp_grow_window(sk, skb);
597 }
598 
tcp_rto_min(struct sock * sk)599 static u32 tcp_rto_min(struct sock *sk)
600 {
601 	struct dst_entry *dst = __sk_dst_get(sk);
602 	u32 rto_min = TCP_RTO_MIN;
603 
604 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 	return rto_min;
607 }
608 
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
tcp_rtt_estimator(struct sock * sk,const __u32 mrtt)618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620 	struct tcp_sock *tp = tcp_sk(sk);
621 	long m = mrtt; /* RTT */
622 
623 	/*	The following amusing code comes from Jacobson's
624 	 *	article in SIGCOMM '88.  Note that rtt and mdev
625 	 *	are scaled versions of rtt and mean deviation.
626 	 *	This is designed to be as fast as possible
627 	 *	m stands for "measurement".
628 	 *
629 	 *	On a 1990 paper the rto value is changed to:
630 	 *	RTO = rtt + 4 * mdev
631 	 *
632 	 * Funny. This algorithm seems to be very broken.
633 	 * These formulae increase RTO, when it should be decreased, increase
634 	 * too slowly, when it should be increased quickly, decrease too quickly
635 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 	 * does not matter how to _calculate_ it. Seems, it was trap
637 	 * that VJ failed to avoid. 8)
638 	 */
639 	if (m == 0)
640 		m = 1;
641 	if (tp->srtt != 0) {
642 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
643 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
644 		if (m < 0) {
645 			m = -m;		/* m is now abs(error) */
646 			m -= (tp->mdev >> 2);   /* similar update on mdev */
647 			/* This is similar to one of Eifel findings.
648 			 * Eifel blocks mdev updates when rtt decreases.
649 			 * This solution is a bit different: we use finer gain
650 			 * for mdev in this case (alpha*beta).
651 			 * Like Eifel it also prevents growth of rto,
652 			 * but also it limits too fast rto decreases,
653 			 * happening in pure Eifel.
654 			 */
655 			if (m > 0)
656 				m >>= 3;
657 		} else {
658 			m -= (tp->mdev >> 2);   /* similar update on mdev */
659 		}
660 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
661 		if (tp->mdev > tp->mdev_max) {
662 			tp->mdev_max = tp->mdev;
663 			if (tp->mdev_max > tp->rttvar)
664 				tp->rttvar = tp->mdev_max;
665 		}
666 		if (after(tp->snd_una, tp->rtt_seq)) {
667 			if (tp->mdev_max < tp->rttvar)
668 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 			tp->rtt_seq = tp->snd_nxt;
670 			tp->mdev_max = tcp_rto_min(sk);
671 		}
672 	} else {
673 		/* no previous measure. */
674 		tp->srtt = m << 3;	/* take the measured time to be rtt */
675 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
676 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 		tp->rtt_seq = tp->snd_nxt;
678 	}
679 }
680 
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
tcp_set_rto(struct sock * sk)684 static inline void tcp_set_rto(struct sock *sk)
685 {
686 	const struct tcp_sock *tp = tcp_sk(sk);
687 	/* Old crap is replaced with new one. 8)
688 	 *
689 	 * More seriously:
690 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 	 *    It cannot be less due to utterly erratic ACK generation made
692 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
694 	 *    is invisible. Actually, Linux-2.4 also generates erratic
695 	 *    ACKs in some circumstances.
696 	 */
697 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698 
699 	/* 2. Fixups made earlier cannot be right.
700 	 *    If we do not estimate RTO correctly without them,
701 	 *    all the algo is pure shit and should be replaced
702 	 *    with correct one. It is exactly, which we pretend to do.
703 	 */
704 
705 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
706 	 * guarantees that rto is higher.
707 	 */
708 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
709 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
710 }
711 
712 /* Save metrics learned by this TCP session.
713    This function is called only, when TCP finishes successfully
714    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715  */
tcp_update_metrics(struct sock * sk)716 void tcp_update_metrics(struct sock *sk)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 	struct dst_entry *dst = __sk_dst_get(sk);
720 
721 	if (sysctl_tcp_nometrics_save)
722 		return;
723 
724 	dst_confirm(dst);
725 
726 	if (dst && (dst->flags & DST_HOST)) {
727 		const struct inet_connection_sock *icsk = inet_csk(sk);
728 		int m;
729 		unsigned long rtt;
730 
731 		if (icsk->icsk_backoff || !tp->srtt) {
732 			/* This session failed to estimate rtt. Why?
733 			 * Probably, no packets returned in time.
734 			 * Reset our results.
735 			 */
736 			if (!(dst_metric_locked(dst, RTAX_RTT)))
737 				dst->metrics[RTAX_RTT - 1] = 0;
738 			return;
739 		}
740 
741 		rtt = dst_metric_rtt(dst, RTAX_RTT);
742 		m = rtt - tp->srtt;
743 
744 		/* If newly calculated rtt larger than stored one,
745 		 * store new one. Otherwise, use EWMA. Remember,
746 		 * rtt overestimation is always better than underestimation.
747 		 */
748 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 			if (m <= 0)
750 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 			else
752 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753 		}
754 
755 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 			unsigned long var;
757 			if (m < 0)
758 				m = -m;
759 
760 			/* Scale deviation to rttvar fixed point */
761 			m >>= 1;
762 			if (m < tp->mdev)
763 				m = tp->mdev;
764 
765 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 			if (m >= var)
767 				var = m;
768 			else
769 				var -= (var - m) >> 2;
770 
771 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772 		}
773 
774 		if (tp->snd_ssthresh >= 0xFFFF) {
775 			/* Slow start still did not finish. */
776 			if (dst_metric(dst, RTAX_SSTHRESH) &&
777 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
780 			if (!dst_metric_locked(dst, RTAX_CWND) &&
781 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
783 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 			   icsk->icsk_ca_state == TCP_CA_Open) {
785 			/* Cong. avoidance phase, cwnd is reliable. */
786 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 				dst->metrics[RTAX_SSTHRESH-1] =
788 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
789 			if (!dst_metric_locked(dst, RTAX_CWND))
790 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
791 		} else {
792 			/* Else slow start did not finish, cwnd is non-sense,
793 			   ssthresh may be also invalid.
794 			 */
795 			if (!dst_metric_locked(dst, RTAX_CWND))
796 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
797 			if (dst_metric(dst, RTAX_SSTHRESH) &&
798 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
799 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
800 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801 		}
802 
803 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
804 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
805 			    tp->reordering != sysctl_tcp_reordering)
806 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
807 		}
808 	}
809 }
810 
811 /* Numbers are taken from RFC3390.
812  *
813  * John Heffner states:
814  *
815  *	The RFC specifies a window of no more than 4380 bytes
816  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
817  *	is a bit misleading because they use a clamp at 4380 bytes
818  *	rather than use a multiplier in the relevant range.
819  */
tcp_init_cwnd(struct tcp_sock * tp,struct dst_entry * dst)820 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
821 {
822 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823 
824 	if (!cwnd) {
825 		if (tp->mss_cache > 1460)
826 			cwnd = 2;
827 		else
828 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
829 	}
830 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832 
833 /* Set slow start threshold and cwnd not falling to slow start */
tcp_enter_cwr(struct sock * sk,const int set_ssthresh)834 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
835 {
836 	struct tcp_sock *tp = tcp_sk(sk);
837 	const struct inet_connection_sock *icsk = inet_csk(sk);
838 
839 	tp->prior_ssthresh = 0;
840 	tp->bytes_acked = 0;
841 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
842 		tp->undo_marker = 0;
843 		if (set_ssthresh)
844 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
845 		tp->snd_cwnd = min(tp->snd_cwnd,
846 				   tcp_packets_in_flight(tp) + 1U);
847 		tp->snd_cwnd_cnt = 0;
848 		tp->high_seq = tp->snd_nxt;
849 		tp->snd_cwnd_stamp = tcp_time_stamp;
850 		TCP_ECN_queue_cwr(tp);
851 
852 		tcp_set_ca_state(sk, TCP_CA_CWR);
853 	}
854 }
855 
856 /*
857  * Packet counting of FACK is based on in-order assumptions, therefore TCP
858  * disables it when reordering is detected
859  */
tcp_disable_fack(struct tcp_sock * tp)860 static void tcp_disable_fack(struct tcp_sock *tp)
861 {
862 	/* RFC3517 uses different metric in lost marker => reset on change */
863 	if (tcp_is_fack(tp))
864 		tp->lost_skb_hint = NULL;
865 	tp->rx_opt.sack_ok &= ~2;
866 }
867 
868 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871 	tp->rx_opt.sack_ok |= 4;
872 }
873 
874 /* Initialize metrics on socket. */
875 
tcp_init_metrics(struct sock * sk)876 static void tcp_init_metrics(struct sock *sk)
877 {
878 	struct tcp_sock *tp = tcp_sk(sk);
879 	struct dst_entry *dst = __sk_dst_get(sk);
880 
881 	if (dst == NULL)
882 		goto reset;
883 
884 	dst_confirm(dst);
885 
886 	if (dst_metric_locked(dst, RTAX_CWND))
887 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888 	if (dst_metric(dst, RTAX_SSTHRESH)) {
889 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
892 	}
893 	if (dst_metric(dst, RTAX_REORDERING) &&
894 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
895 		tcp_disable_fack(tp);
896 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
897 	}
898 
899 	if (dst_metric(dst, RTAX_RTT) == 0)
900 		goto reset;
901 
902 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903 		goto reset;
904 
905 	/* Initial rtt is determined from SYN,SYN-ACK.
906 	 * The segment is small and rtt may appear much
907 	 * less than real one. Use per-dst memory
908 	 * to make it more realistic.
909 	 *
910 	 * A bit of theory. RTT is time passed after "normal" sized packet
911 	 * is sent until it is ACKed. In normal circumstances sending small
912 	 * packets force peer to delay ACKs and calculation is correct too.
913 	 * The algorithm is adaptive and, provided we follow specs, it
914 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 	 * tricks sort of "quick acks" for time long enough to decrease RTT
916 	 * to low value, and then abruptly stops to do it and starts to delay
917 	 * ACKs, wait for troubles.
918 	 */
919 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
920 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
921 		tp->rtt_seq = tp->snd_nxt;
922 	}
923 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
924 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
925 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
926 	}
927 	tcp_set_rto(sk);
928 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
929 		goto reset;
930 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
931 	tp->snd_cwnd_stamp = tcp_time_stamp;
932 	return;
933 
934 reset:
935 	/* Play conservative. If timestamps are not
936 	 * supported, TCP will fail to recalculate correct
937 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
938 	 */
939 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
940 		tp->srtt = 0;
941 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
942 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
943 	}
944 }
945 
tcp_update_reordering(struct sock * sk,const int metric,const int ts)946 static void tcp_update_reordering(struct sock *sk, const int metric,
947 				  const int ts)
948 {
949 	struct tcp_sock *tp = tcp_sk(sk);
950 	if (metric > tp->reordering) {
951 		int mib_idx;
952 
953 		tp->reordering = min(TCP_MAX_REORDERING, metric);
954 
955 		/* This exciting event is worth to be remembered. 8) */
956 		if (ts)
957 			mib_idx = LINUX_MIB_TCPTSREORDER;
958 		else if (tcp_is_reno(tp))
959 			mib_idx = LINUX_MIB_TCPRENOREORDER;
960 		else if (tcp_is_fack(tp))
961 			mib_idx = LINUX_MIB_TCPFACKREORDER;
962 		else
963 			mib_idx = LINUX_MIB_TCPSACKREORDER;
964 
965 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
966 #if FASTRETRANS_DEBUG > 1
967 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
968 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
969 		       tp->reordering,
970 		       tp->fackets_out,
971 		       tp->sacked_out,
972 		       tp->undo_marker ? tp->undo_retrans : 0);
973 #endif
974 		tcp_disable_fack(tp);
975 	}
976 }
977 
978 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)979 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
980 {
981 	if ((tp->retransmit_skb_hint == NULL) ||
982 	    before(TCP_SKB_CB(skb)->seq,
983 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
984 		tp->retransmit_skb_hint = skb;
985 
986 	if (!tp->lost_out ||
987 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
988 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
989 }
990 
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)991 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
992 {
993 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994 		tcp_verify_retransmit_hint(tp, skb);
995 
996 		tp->lost_out += tcp_skb_pcount(skb);
997 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998 	}
999 }
1000 
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)1001 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1002 					    struct sk_buff *skb)
1003 {
1004 	tcp_verify_retransmit_hint(tp, skb);
1005 
1006 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1007 		tp->lost_out += tcp_skb_pcount(skb);
1008 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009 	}
1010 }
1011 
1012 /* This procedure tags the retransmission queue when SACKs arrive.
1013  *
1014  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1015  * Packets in queue with these bits set are counted in variables
1016  * sacked_out, retrans_out and lost_out, correspondingly.
1017  *
1018  * Valid combinations are:
1019  * Tag  InFlight	Description
1020  * 0	1		- orig segment is in flight.
1021  * S	0		- nothing flies, orig reached receiver.
1022  * L	0		- nothing flies, orig lost by net.
1023  * R	2		- both orig and retransmit are in flight.
1024  * L|R	1		- orig is lost, retransmit is in flight.
1025  * S|R  1		- orig reached receiver, retrans is still in flight.
1026  * (L|S|R is logically valid, it could occur when L|R is sacked,
1027  *  but it is equivalent to plain S and code short-curcuits it to S.
1028  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1029  *
1030  * These 6 states form finite state machine, controlled by the following events:
1031  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1032  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1033  * 3. Loss detection event of one of three flavors:
1034  *	A. Scoreboard estimator decided the packet is lost.
1035  *	   A'. Reno "three dupacks" marks head of queue lost.
1036  *	   A''. Its FACK modfication, head until snd.fack is lost.
1037  *	B. SACK arrives sacking data transmitted after never retransmitted
1038  *	   hole was sent out.
1039  *	C. SACK arrives sacking SND.NXT at the moment, when the
1040  *	   segment was retransmitted.
1041  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1042  *
1043  * It is pleasant to note, that state diagram turns out to be commutative,
1044  * so that we are allowed not to be bothered by order of our actions,
1045  * when multiple events arrive simultaneously. (see the function below).
1046  *
1047  * Reordering detection.
1048  * --------------------
1049  * Reordering metric is maximal distance, which a packet can be displaced
1050  * in packet stream. With SACKs we can estimate it:
1051  *
1052  * 1. SACK fills old hole and the corresponding segment was not
1053  *    ever retransmitted -> reordering. Alas, we cannot use it
1054  *    when segment was retransmitted.
1055  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1056  *    for retransmitted and already SACKed segment -> reordering..
1057  * Both of these heuristics are not used in Loss state, when we cannot
1058  * account for retransmits accurately.
1059  *
1060  * SACK block validation.
1061  * ----------------------
1062  *
1063  * SACK block range validation checks that the received SACK block fits to
1064  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1065  * Note that SND.UNA is not included to the range though being valid because
1066  * it means that the receiver is rather inconsistent with itself reporting
1067  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1068  * perfectly valid, however, in light of RFC2018 which explicitly states
1069  * that "SACK block MUST reflect the newest segment.  Even if the newest
1070  * segment is going to be discarded ...", not that it looks very clever
1071  * in case of head skb. Due to potentional receiver driven attacks, we
1072  * choose to avoid immediate execution of a walk in write queue due to
1073  * reneging and defer head skb's loss recovery to standard loss recovery
1074  * procedure that will eventually trigger (nothing forbids us doing this).
1075  *
1076  * Implements also blockage to start_seq wrap-around. Problem lies in the
1077  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1078  * there's no guarantee that it will be before snd_nxt (n). The problem
1079  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1080  * wrap (s_w):
1081  *
1082  *         <- outs wnd ->                          <- wrapzone ->
1083  *         u     e      n                         u_w   e_w  s n_w
1084  *         |     |      |                          |     |   |  |
1085  * |<------------+------+----- TCP seqno space --------------+---------->|
1086  * ...-- <2^31 ->|                                           |<--------...
1087  * ...---- >2^31 ------>|                                    |<--------...
1088  *
1089  * Current code wouldn't be vulnerable but it's better still to discard such
1090  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1091  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1092  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1093  * equal to the ideal case (infinite seqno space without wrap caused issues).
1094  *
1095  * With D-SACK the lower bound is extended to cover sequence space below
1096  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1097  * again, D-SACK block must not to go across snd_una (for the same reason as
1098  * for the normal SACK blocks, explained above). But there all simplicity
1099  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1100  * fully below undo_marker they do not affect behavior in anyway and can
1101  * therefore be safely ignored. In rare cases (which are more or less
1102  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1103  * fragmentation and packet reordering past skb's retransmission. To consider
1104  * them correctly, the acceptable range must be extended even more though
1105  * the exact amount is rather hard to quantify. However, tp->max_window can
1106  * be used as an exaggerated estimate.
1107  */
tcp_is_sackblock_valid(struct tcp_sock * tp,int is_dsack,u32 start_seq,u32 end_seq)1108 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1109 				  u32 start_seq, u32 end_seq)
1110 {
1111 	/* Too far in future, or reversed (interpretation is ambiguous) */
1112 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1113 		return 0;
1114 
1115 	/* Nasty start_seq wrap-around check (see comments above) */
1116 	if (!before(start_seq, tp->snd_nxt))
1117 		return 0;
1118 
1119 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1120 	 * start_seq == snd_una is non-sensical (see comments above)
1121 	 */
1122 	if (after(start_seq, tp->snd_una))
1123 		return 1;
1124 
1125 	if (!is_dsack || !tp->undo_marker)
1126 		return 0;
1127 
1128 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1129 	if (!after(end_seq, tp->snd_una))
1130 		return 0;
1131 
1132 	if (!before(start_seq, tp->undo_marker))
1133 		return 1;
1134 
1135 	/* Too old */
1136 	if (!after(end_seq, tp->undo_marker))
1137 		return 0;
1138 
1139 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1140 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1141 	 */
1142 	return !before(start_seq, end_seq - tp->max_window);
1143 }
1144 
1145 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1146  * Event "C". Later note: FACK people cheated me again 8), we have to account
1147  * for reordering! Ugly, but should help.
1148  *
1149  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1150  * less than what is now known to be received by the other end (derived from
1151  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1152  * retransmitted skbs to avoid some costly processing per ACKs.
1153  */
tcp_mark_lost_retrans(struct sock * sk)1154 static void tcp_mark_lost_retrans(struct sock *sk)
1155 {
1156 	const struct inet_connection_sock *icsk = inet_csk(sk);
1157 	struct tcp_sock *tp = tcp_sk(sk);
1158 	struct sk_buff *skb;
1159 	int cnt = 0;
1160 	u32 new_low_seq = tp->snd_nxt;
1161 	u32 received_upto = tcp_highest_sack_seq(tp);
1162 
1163 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1164 	    !after(received_upto, tp->lost_retrans_low) ||
1165 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1166 		return;
1167 
1168 	tcp_for_write_queue(skb, sk) {
1169 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1170 
1171 		if (skb == tcp_send_head(sk))
1172 			break;
1173 		if (cnt == tp->retrans_out)
1174 			break;
1175 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1176 			continue;
1177 
1178 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1179 			continue;
1180 
1181 		if (after(received_upto, ack_seq) &&
1182 		    (tcp_is_fack(tp) ||
1183 		     !before(received_upto,
1184 			     ack_seq + tp->reordering * tp->mss_cache))) {
1185 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1186 			tp->retrans_out -= tcp_skb_pcount(skb);
1187 
1188 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1189 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1190 		} else {
1191 			if (before(ack_seq, new_low_seq))
1192 				new_low_seq = ack_seq;
1193 			cnt += tcp_skb_pcount(skb);
1194 		}
1195 	}
1196 
1197 	if (tp->retrans_out)
1198 		tp->lost_retrans_low = new_low_seq;
1199 }
1200 
tcp_check_dsack(struct sock * sk,struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1201 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1202 			   struct tcp_sack_block_wire *sp, int num_sacks,
1203 			   u32 prior_snd_una)
1204 {
1205 	struct tcp_sock *tp = tcp_sk(sk);
1206 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1207 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1208 	int dup_sack = 0;
1209 
1210 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1211 		dup_sack = 1;
1212 		tcp_dsack_seen(tp);
1213 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1214 	} else if (num_sacks > 1) {
1215 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1216 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1217 
1218 		if (!after(end_seq_0, end_seq_1) &&
1219 		    !before(start_seq_0, start_seq_1)) {
1220 			dup_sack = 1;
1221 			tcp_dsack_seen(tp);
1222 			NET_INC_STATS_BH(sock_net(sk),
1223 					LINUX_MIB_TCPDSACKOFORECV);
1224 		}
1225 	}
1226 
1227 	/* D-SACK for already forgotten data... Do dumb counting. */
1228 	if (dup_sack &&
1229 	    !after(end_seq_0, prior_snd_una) &&
1230 	    after(end_seq_0, tp->undo_marker))
1231 		tp->undo_retrans--;
1232 
1233 	return dup_sack;
1234 }
1235 
1236 struct tcp_sacktag_state {
1237 	int reord;
1238 	int fack_count;
1239 	int flag;
1240 };
1241 
1242 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1243  * the incoming SACK may not exactly match but we can find smaller MSS
1244  * aligned portion of it that matches. Therefore we might need to fragment
1245  * which may fail and creates some hassle (caller must handle error case
1246  * returns).
1247  *
1248  * FIXME: this could be merged to shift decision code
1249  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1250 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1251 				 u32 start_seq, u32 end_seq)
1252 {
1253 	int in_sack, err;
1254 	unsigned int pkt_len;
1255 	unsigned int mss;
1256 
1257 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1258 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1259 
1260 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1261 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1262 		mss = tcp_skb_mss(skb);
1263 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1264 
1265 		if (!in_sack) {
1266 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1267 			if (pkt_len < mss)
1268 				pkt_len = mss;
1269 		} else {
1270 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1271 			if (pkt_len < mss)
1272 				return -EINVAL;
1273 		}
1274 
1275 		/* Round if necessary so that SACKs cover only full MSSes
1276 		 * and/or the remaining small portion (if present)
1277 		 */
1278 		if (pkt_len > mss) {
1279 			unsigned int new_len = (pkt_len / mss) * mss;
1280 			if (!in_sack && new_len < pkt_len) {
1281 				new_len += mss;
1282 				if (new_len > skb->len)
1283 					return 0;
1284 			}
1285 			pkt_len = new_len;
1286 		}
1287 		err = tcp_fragment(sk, skb, pkt_len, mss);
1288 		if (err < 0)
1289 			return err;
1290 	}
1291 
1292 	return in_sack;
1293 }
1294 
tcp_sacktag_one(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,int dup_sack,int pcount)1295 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1296 			  struct tcp_sacktag_state *state,
1297 			  int dup_sack, int pcount)
1298 {
1299 	struct tcp_sock *tp = tcp_sk(sk);
1300 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1301 	int fack_count = state->fack_count;
1302 
1303 	/* Account D-SACK for retransmitted packet. */
1304 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1305 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1306 			tp->undo_retrans--;
1307 		if (sacked & TCPCB_SACKED_ACKED)
1308 			state->reord = min(fack_count, state->reord);
1309 	}
1310 
1311 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1312 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1313 		return sacked;
1314 
1315 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1316 		if (sacked & TCPCB_SACKED_RETRANS) {
1317 			/* If the segment is not tagged as lost,
1318 			 * we do not clear RETRANS, believing
1319 			 * that retransmission is still in flight.
1320 			 */
1321 			if (sacked & TCPCB_LOST) {
1322 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1323 				tp->lost_out -= pcount;
1324 				tp->retrans_out -= pcount;
1325 			}
1326 		} else {
1327 			if (!(sacked & TCPCB_RETRANS)) {
1328 				/* New sack for not retransmitted frame,
1329 				 * which was in hole. It is reordering.
1330 				 */
1331 				if (before(TCP_SKB_CB(skb)->seq,
1332 					   tcp_highest_sack_seq(tp)))
1333 					state->reord = min(fack_count,
1334 							   state->reord);
1335 
1336 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1337 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1338 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1339 			}
1340 
1341 			if (sacked & TCPCB_LOST) {
1342 				sacked &= ~TCPCB_LOST;
1343 				tp->lost_out -= pcount;
1344 			}
1345 		}
1346 
1347 		sacked |= TCPCB_SACKED_ACKED;
1348 		state->flag |= FLAG_DATA_SACKED;
1349 		tp->sacked_out += pcount;
1350 
1351 		fack_count += pcount;
1352 
1353 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1354 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1355 		    before(TCP_SKB_CB(skb)->seq,
1356 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1357 			tp->lost_cnt_hint += pcount;
1358 
1359 		if (fack_count > tp->fackets_out)
1360 			tp->fackets_out = fack_count;
1361 	}
1362 
1363 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1364 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1365 	 * are accounted above as well.
1366 	 */
1367 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1368 		sacked &= ~TCPCB_SACKED_RETRANS;
1369 		tp->retrans_out -= pcount;
1370 	}
1371 
1372 	return sacked;
1373 }
1374 
tcp_shifted_skb(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,int dup_sack)1375 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1376 			   struct tcp_sacktag_state *state,
1377 			   unsigned int pcount, int shifted, int mss,
1378 			   int dup_sack)
1379 {
1380 	struct tcp_sock *tp = tcp_sk(sk);
1381 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1382 
1383 	BUG_ON(!pcount);
1384 
1385 	/* Tweak before seqno plays */
1386 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1387 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1388 		tp->lost_cnt_hint += pcount;
1389 
1390 	TCP_SKB_CB(prev)->end_seq += shifted;
1391 	TCP_SKB_CB(skb)->seq += shifted;
1392 
1393 	skb_shinfo(prev)->gso_segs += pcount;
1394 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1395 	skb_shinfo(skb)->gso_segs -= pcount;
1396 
1397 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1398 	 * in theory this shouldn't be necessary but as long as DSACK
1399 	 * code can come after this skb later on it's better to keep
1400 	 * setting gso_size to something.
1401 	 */
1402 	if (!skb_shinfo(prev)->gso_size) {
1403 		skb_shinfo(prev)->gso_size = mss;
1404 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1405 	}
1406 
1407 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1408 	if (skb_shinfo(skb)->gso_segs <= 1) {
1409 		skb_shinfo(skb)->gso_size = 0;
1410 		skb_shinfo(skb)->gso_type = 0;
1411 	}
1412 
1413 	/* We discard results */
1414 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1415 
1416 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1417 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1418 
1419 	if (skb->len > 0) {
1420 		BUG_ON(!tcp_skb_pcount(skb));
1421 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1422 		return 0;
1423 	}
1424 
1425 	/* Whole SKB was eaten :-) */
1426 
1427 	if (skb == tp->retransmit_skb_hint)
1428 		tp->retransmit_skb_hint = prev;
1429 	if (skb == tp->scoreboard_skb_hint)
1430 		tp->scoreboard_skb_hint = prev;
1431 	if (skb == tp->lost_skb_hint) {
1432 		tp->lost_skb_hint = prev;
1433 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1434 	}
1435 
1436 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1437 	if (skb == tcp_highest_sack(sk))
1438 		tcp_advance_highest_sack(sk, skb);
1439 
1440 	tcp_unlink_write_queue(skb, sk);
1441 	sk_wmem_free_skb(sk, skb);
1442 
1443 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1444 
1445 	return 1;
1446 }
1447 
1448 /* I wish gso_size would have a bit more sane initialization than
1449  * something-or-zero which complicates things
1450  */
tcp_skb_seglen(struct sk_buff * skb)1451 static int tcp_skb_seglen(struct sk_buff *skb)
1452 {
1453 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1454 }
1455 
1456 /* Shifting pages past head area doesn't work */
skb_can_shift(struct sk_buff * skb)1457 static int skb_can_shift(struct sk_buff *skb)
1458 {
1459 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1460 }
1461 
1462 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1463  * skb.
1464  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,int dup_sack)1465 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1466 					  struct tcp_sacktag_state *state,
1467 					  u32 start_seq, u32 end_seq,
1468 					  int dup_sack)
1469 {
1470 	struct tcp_sock *tp = tcp_sk(sk);
1471 	struct sk_buff *prev;
1472 	int mss;
1473 	int pcount = 0;
1474 	int len;
1475 	int in_sack;
1476 
1477 	if (!sk_can_gso(sk))
1478 		goto fallback;
1479 
1480 	/* Normally R but no L won't result in plain S */
1481 	if (!dup_sack &&
1482 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1483 		goto fallback;
1484 	if (!skb_can_shift(skb))
1485 		goto fallback;
1486 	/* This frame is about to be dropped (was ACKed). */
1487 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1488 		goto fallback;
1489 
1490 	/* Can only happen with delayed DSACK + discard craziness */
1491 	if (unlikely(skb == tcp_write_queue_head(sk)))
1492 		goto fallback;
1493 	prev = tcp_write_queue_prev(sk, skb);
1494 
1495 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1496 		goto fallback;
1497 
1498 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1499 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1500 
1501 	if (in_sack) {
1502 		len = skb->len;
1503 		pcount = tcp_skb_pcount(skb);
1504 		mss = tcp_skb_seglen(skb);
1505 
1506 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1507 		 * drop this restriction as unnecessary
1508 		 */
1509 		if (mss != tcp_skb_seglen(prev))
1510 			goto fallback;
1511 	} else {
1512 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1513 			goto noop;
1514 		/* CHECKME: This is non-MSS split case only?, this will
1515 		 * cause skipped skbs due to advancing loop btw, original
1516 		 * has that feature too
1517 		 */
1518 		if (tcp_skb_pcount(skb) <= 1)
1519 			goto noop;
1520 
1521 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1522 		if (!in_sack) {
1523 			/* TODO: head merge to next could be attempted here
1524 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1525 			 * though it might not be worth of the additional hassle
1526 			 *
1527 			 * ...we can probably just fallback to what was done
1528 			 * previously. We could try merging non-SACKed ones
1529 			 * as well but it probably isn't going to buy off
1530 			 * because later SACKs might again split them, and
1531 			 * it would make skb timestamp tracking considerably
1532 			 * harder problem.
1533 			 */
1534 			goto fallback;
1535 		}
1536 
1537 		len = end_seq - TCP_SKB_CB(skb)->seq;
1538 		BUG_ON(len < 0);
1539 		BUG_ON(len > skb->len);
1540 
1541 		/* MSS boundaries should be honoured or else pcount will
1542 		 * severely break even though it makes things bit trickier.
1543 		 * Optimize common case to avoid most of the divides
1544 		 */
1545 		mss = tcp_skb_mss(skb);
1546 
1547 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1548 		 * drop this restriction as unnecessary
1549 		 */
1550 		if (mss != tcp_skb_seglen(prev))
1551 			goto fallback;
1552 
1553 		if (len == mss) {
1554 			pcount = 1;
1555 		} else if (len < mss) {
1556 			goto noop;
1557 		} else {
1558 			pcount = len / mss;
1559 			len = pcount * mss;
1560 		}
1561 	}
1562 
1563 	if (!skb_shift(prev, skb, len))
1564 		goto fallback;
1565 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1566 		goto out;
1567 
1568 	/* Hole filled allows collapsing with the next as well, this is very
1569 	 * useful when hole on every nth skb pattern happens
1570 	 */
1571 	if (prev == tcp_write_queue_tail(sk))
1572 		goto out;
1573 	skb = tcp_write_queue_next(sk, prev);
1574 
1575 	if (!skb_can_shift(skb) ||
1576 	    (skb == tcp_send_head(sk)) ||
1577 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1578 	    (mss != tcp_skb_seglen(skb)))
1579 		goto out;
1580 
1581 	len = skb->len;
1582 	if (skb_shift(prev, skb, len)) {
1583 		pcount += tcp_skb_pcount(skb);
1584 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1585 	}
1586 
1587 out:
1588 	state->fack_count += pcount;
1589 	return prev;
1590 
1591 noop:
1592 	return skb;
1593 
1594 fallback:
1595 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1596 	return NULL;
1597 }
1598 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,int dup_sack_in)1599 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1600 					struct tcp_sack_block *next_dup,
1601 					struct tcp_sacktag_state *state,
1602 					u32 start_seq, u32 end_seq,
1603 					int dup_sack_in)
1604 {
1605 	struct tcp_sock *tp = tcp_sk(sk);
1606 	struct sk_buff *tmp;
1607 
1608 	tcp_for_write_queue_from(skb, sk) {
1609 		int in_sack = 0;
1610 		int dup_sack = dup_sack_in;
1611 
1612 		if (skb == tcp_send_head(sk))
1613 			break;
1614 
1615 		/* queue is in-order => we can short-circuit the walk early */
1616 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1617 			break;
1618 
1619 		if ((next_dup != NULL) &&
1620 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1621 			in_sack = tcp_match_skb_to_sack(sk, skb,
1622 							next_dup->start_seq,
1623 							next_dup->end_seq);
1624 			if (in_sack > 0)
1625 				dup_sack = 1;
1626 		}
1627 
1628 		/* skb reference here is a bit tricky to get right, since
1629 		 * shifting can eat and free both this skb and the next,
1630 		 * so not even _safe variant of the loop is enough.
1631 		 */
1632 		if (in_sack <= 0) {
1633 			tmp = tcp_shift_skb_data(sk, skb, state,
1634 						 start_seq, end_seq, dup_sack);
1635 			if (tmp != NULL) {
1636 				if (tmp != skb) {
1637 					skb = tmp;
1638 					continue;
1639 				}
1640 
1641 				in_sack = 0;
1642 			} else {
1643 				in_sack = tcp_match_skb_to_sack(sk, skb,
1644 								start_seq,
1645 								end_seq);
1646 			}
1647 		}
1648 
1649 		if (unlikely(in_sack < 0))
1650 			break;
1651 
1652 		if (in_sack) {
1653 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1654 								  state,
1655 								  dup_sack,
1656 								  tcp_skb_pcount(skb));
1657 
1658 			if (!before(TCP_SKB_CB(skb)->seq,
1659 				    tcp_highest_sack_seq(tp)))
1660 				tcp_advance_highest_sack(sk, skb);
1661 		}
1662 
1663 		state->fack_count += tcp_skb_pcount(skb);
1664 	}
1665 	return skb;
1666 }
1667 
1668 /* Avoid all extra work that is being done by sacktag while walking in
1669  * a normal way
1670  */
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1671 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1672 					struct tcp_sacktag_state *state,
1673 					u32 skip_to_seq)
1674 {
1675 	tcp_for_write_queue_from(skb, sk) {
1676 		if (skb == tcp_send_head(sk))
1677 			break;
1678 
1679 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1680 			break;
1681 
1682 		state->fack_count += tcp_skb_pcount(skb);
1683 	}
1684 	return skb;
1685 }
1686 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1687 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1688 						struct sock *sk,
1689 						struct tcp_sack_block *next_dup,
1690 						struct tcp_sacktag_state *state,
1691 						u32 skip_to_seq)
1692 {
1693 	if (next_dup == NULL)
1694 		return skb;
1695 
1696 	if (before(next_dup->start_seq, skip_to_seq)) {
1697 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1698 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1699 				       next_dup->start_seq, next_dup->end_seq,
1700 				       1);
1701 	}
1702 
1703 	return skb;
1704 }
1705 
tcp_sack_cache_ok(struct tcp_sock * tp,struct tcp_sack_block * cache)1706 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1707 {
1708 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1709 }
1710 
1711 static int
tcp_sacktag_write_queue(struct sock * sk,struct sk_buff * ack_skb,u32 prior_snd_una)1712 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1713 			u32 prior_snd_una)
1714 {
1715 	const struct inet_connection_sock *icsk = inet_csk(sk);
1716 	struct tcp_sock *tp = tcp_sk(sk);
1717 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1718 			      TCP_SKB_CB(ack_skb)->sacked);
1719 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1720 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1721 	struct tcp_sack_block *cache;
1722 	struct tcp_sacktag_state state;
1723 	struct sk_buff *skb;
1724 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1725 	int used_sacks;
1726 	int found_dup_sack = 0;
1727 	int i, j;
1728 	int first_sack_index;
1729 
1730 	state.flag = 0;
1731 	state.reord = tp->packets_out;
1732 
1733 	if (!tp->sacked_out) {
1734 		if (WARN_ON(tp->fackets_out))
1735 			tp->fackets_out = 0;
1736 		tcp_highest_sack_reset(sk);
1737 	}
1738 
1739 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1740 					 num_sacks, prior_snd_una);
1741 	if (found_dup_sack)
1742 		state.flag |= FLAG_DSACKING_ACK;
1743 
1744 	/* Eliminate too old ACKs, but take into
1745 	 * account more or less fresh ones, they can
1746 	 * contain valid SACK info.
1747 	 */
1748 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1749 		return 0;
1750 
1751 	if (!tp->packets_out)
1752 		goto out;
1753 
1754 	used_sacks = 0;
1755 	first_sack_index = 0;
1756 	for (i = 0; i < num_sacks; i++) {
1757 		int dup_sack = !i && found_dup_sack;
1758 
1759 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1760 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1761 
1762 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1763 					    sp[used_sacks].start_seq,
1764 					    sp[used_sacks].end_seq)) {
1765 			int mib_idx;
1766 
1767 			if (dup_sack) {
1768 				if (!tp->undo_marker)
1769 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1770 				else
1771 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1772 			} else {
1773 				/* Don't count olds caused by ACK reordering */
1774 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1775 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1776 					continue;
1777 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1778 			}
1779 
1780 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1781 			if (i == 0)
1782 				first_sack_index = -1;
1783 			continue;
1784 		}
1785 
1786 		/* Ignore very old stuff early */
1787 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1788 			continue;
1789 
1790 		used_sacks++;
1791 	}
1792 
1793 	/* order SACK blocks to allow in order walk of the retrans queue */
1794 	for (i = used_sacks - 1; i > 0; i--) {
1795 		for (j = 0; j < i; j++) {
1796 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1797 				struct tcp_sack_block tmp;
1798 
1799 				tmp = sp[j];
1800 				sp[j] = sp[j + 1];
1801 				sp[j + 1] = tmp;
1802 
1803 				/* Track where the first SACK block goes to */
1804 				if (j == first_sack_index)
1805 					first_sack_index = j + 1;
1806 			}
1807 		}
1808 	}
1809 
1810 	skb = tcp_write_queue_head(sk);
1811 	state.fack_count = 0;
1812 	i = 0;
1813 
1814 	if (!tp->sacked_out) {
1815 		/* It's already past, so skip checking against it */
1816 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1817 	} else {
1818 		cache = tp->recv_sack_cache;
1819 		/* Skip empty blocks in at head of the cache */
1820 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1821 		       !cache->end_seq)
1822 			cache++;
1823 	}
1824 
1825 	while (i < used_sacks) {
1826 		u32 start_seq = sp[i].start_seq;
1827 		u32 end_seq = sp[i].end_seq;
1828 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1829 		struct tcp_sack_block *next_dup = NULL;
1830 
1831 		if (found_dup_sack && ((i + 1) == first_sack_index))
1832 			next_dup = &sp[i + 1];
1833 
1834 		/* Event "B" in the comment above. */
1835 		if (after(end_seq, tp->high_seq))
1836 			state.flag |= FLAG_DATA_LOST;
1837 
1838 		/* Skip too early cached blocks */
1839 		while (tcp_sack_cache_ok(tp, cache) &&
1840 		       !before(start_seq, cache->end_seq))
1841 			cache++;
1842 
1843 		/* Can skip some work by looking recv_sack_cache? */
1844 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1845 		    after(end_seq, cache->start_seq)) {
1846 
1847 			/* Head todo? */
1848 			if (before(start_seq, cache->start_seq)) {
1849 				skb = tcp_sacktag_skip(skb, sk, &state,
1850 						       start_seq);
1851 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1852 						       &state,
1853 						       start_seq,
1854 						       cache->start_seq,
1855 						       dup_sack);
1856 			}
1857 
1858 			/* Rest of the block already fully processed? */
1859 			if (!after(end_seq, cache->end_seq))
1860 				goto advance_sp;
1861 
1862 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1863 						       &state,
1864 						       cache->end_seq);
1865 
1866 			/* ...tail remains todo... */
1867 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1868 				/* ...but better entrypoint exists! */
1869 				skb = tcp_highest_sack(sk);
1870 				if (skb == NULL)
1871 					break;
1872 				state.fack_count = tp->fackets_out;
1873 				cache++;
1874 				goto walk;
1875 			}
1876 
1877 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1878 			/* Check overlap against next cached too (past this one already) */
1879 			cache++;
1880 			continue;
1881 		}
1882 
1883 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1884 			skb = tcp_highest_sack(sk);
1885 			if (skb == NULL)
1886 				break;
1887 			state.fack_count = tp->fackets_out;
1888 		}
1889 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1890 
1891 walk:
1892 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1893 				       start_seq, end_seq, dup_sack);
1894 
1895 advance_sp:
1896 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1897 		 * due to in-order walk
1898 		 */
1899 		if (after(end_seq, tp->frto_highmark))
1900 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1901 
1902 		i++;
1903 	}
1904 
1905 	/* Clear the head of the cache sack blocks so we can skip it next time */
1906 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1907 		tp->recv_sack_cache[i].start_seq = 0;
1908 		tp->recv_sack_cache[i].end_seq = 0;
1909 	}
1910 	for (j = 0; j < used_sacks; j++)
1911 		tp->recv_sack_cache[i++] = sp[j];
1912 
1913 	tcp_mark_lost_retrans(sk);
1914 
1915 	tcp_verify_left_out(tp);
1916 
1917 	if ((state.reord < tp->fackets_out) &&
1918 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1919 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1920 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1921 
1922 out:
1923 
1924 #if FASTRETRANS_DEBUG > 0
1925 	WARN_ON((int)tp->sacked_out < 0);
1926 	WARN_ON((int)tp->lost_out < 0);
1927 	WARN_ON((int)tp->retrans_out < 0);
1928 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1929 #endif
1930 	return state.flag;
1931 }
1932 
1933 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1934  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1935  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1936 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1937 {
1938 	u32 holes;
1939 
1940 	holes = max(tp->lost_out, 1U);
1941 	holes = min(holes, tp->packets_out);
1942 
1943 	if ((tp->sacked_out + holes) > tp->packets_out) {
1944 		tp->sacked_out = tp->packets_out - holes;
1945 		return 1;
1946 	}
1947 	return 0;
1948 }
1949 
1950 /* If we receive more dupacks than we expected counting segments
1951  * in assumption of absent reordering, interpret this as reordering.
1952  * The only another reason could be bug in receiver TCP.
1953  */
tcp_check_reno_reordering(struct sock * sk,const int addend)1954 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1955 {
1956 	struct tcp_sock *tp = tcp_sk(sk);
1957 	if (tcp_limit_reno_sacked(tp))
1958 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1959 }
1960 
1961 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1962 
tcp_add_reno_sack(struct sock * sk)1963 static void tcp_add_reno_sack(struct sock *sk)
1964 {
1965 	struct tcp_sock *tp = tcp_sk(sk);
1966 	tp->sacked_out++;
1967 	tcp_check_reno_reordering(sk, 0);
1968 	tcp_verify_left_out(tp);
1969 }
1970 
1971 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1972 
tcp_remove_reno_sacks(struct sock * sk,int acked)1973 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1974 {
1975 	struct tcp_sock *tp = tcp_sk(sk);
1976 
1977 	if (acked > 0) {
1978 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1979 		if (acked - 1 >= tp->sacked_out)
1980 			tp->sacked_out = 0;
1981 		else
1982 			tp->sacked_out -= acked - 1;
1983 	}
1984 	tcp_check_reno_reordering(sk, acked);
1985 	tcp_verify_left_out(tp);
1986 }
1987 
tcp_reset_reno_sack(struct tcp_sock * tp)1988 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1989 {
1990 	tp->sacked_out = 0;
1991 }
1992 
tcp_is_sackfrto(const struct tcp_sock * tp)1993 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1994 {
1995 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1996 }
1997 
1998 /* F-RTO can only be used if TCP has never retransmitted anything other than
1999  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2000  */
tcp_use_frto(struct sock * sk)2001 int tcp_use_frto(struct sock *sk)
2002 {
2003 	const struct tcp_sock *tp = tcp_sk(sk);
2004 	const struct inet_connection_sock *icsk = inet_csk(sk);
2005 	struct sk_buff *skb;
2006 
2007 	if (!sysctl_tcp_frto)
2008 		return 0;
2009 
2010 	/* MTU probe and F-RTO won't really play nicely along currently */
2011 	if (icsk->icsk_mtup.probe_size)
2012 		return 0;
2013 
2014 	if (tcp_is_sackfrto(tp))
2015 		return 1;
2016 
2017 	/* Avoid expensive walking of rexmit queue if possible */
2018 	if (tp->retrans_out > 1)
2019 		return 0;
2020 
2021 	skb = tcp_write_queue_head(sk);
2022 	if (tcp_skb_is_last(sk, skb))
2023 		return 1;
2024 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2025 	tcp_for_write_queue_from(skb, sk) {
2026 		if (skb == tcp_send_head(sk))
2027 			break;
2028 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2029 			return 0;
2030 		/* Short-circuit when first non-SACKed skb has been checked */
2031 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2032 			break;
2033 	}
2034 	return 1;
2035 }
2036 
2037 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2038  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2039  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2040  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2041  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2042  * bits are handled if the Loss state is really to be entered (in
2043  * tcp_enter_frto_loss).
2044  *
2045  * Do like tcp_enter_loss() would; when RTO expires the second time it
2046  * does:
2047  *  "Reduce ssthresh if it has not yet been made inside this window."
2048  */
tcp_enter_frto(struct sock * sk)2049 void tcp_enter_frto(struct sock *sk)
2050 {
2051 	const struct inet_connection_sock *icsk = inet_csk(sk);
2052 	struct tcp_sock *tp = tcp_sk(sk);
2053 	struct sk_buff *skb;
2054 
2055 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2056 	    tp->snd_una == tp->high_seq ||
2057 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2058 	     !icsk->icsk_retransmits)) {
2059 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2060 		/* Our state is too optimistic in ssthresh() call because cwnd
2061 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2062 		 * recovery has not yet completed. Pattern would be this: RTO,
2063 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2064 		 * up here twice).
2065 		 * RFC4138 should be more specific on what to do, even though
2066 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2067 		 * due to back-off and complexity of triggering events ...
2068 		 */
2069 		if (tp->frto_counter) {
2070 			u32 stored_cwnd;
2071 			stored_cwnd = tp->snd_cwnd;
2072 			tp->snd_cwnd = 2;
2073 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074 			tp->snd_cwnd = stored_cwnd;
2075 		} else {
2076 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2077 		}
2078 		/* ... in theory, cong.control module could do "any tricks" in
2079 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2080 		 * counter would have to be faked before the call occurs. We
2081 		 * consider that too expensive, unlikely and hacky, so modules
2082 		 * using these in ssthresh() must deal these incompatibility
2083 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2084 		 */
2085 		tcp_ca_event(sk, CA_EVENT_FRTO);
2086 	}
2087 
2088 	tp->undo_marker = tp->snd_una;
2089 	tp->undo_retrans = 0;
2090 
2091 	skb = tcp_write_queue_head(sk);
2092 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2093 		tp->undo_marker = 0;
2094 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2095 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2096 		tp->retrans_out -= tcp_skb_pcount(skb);
2097 	}
2098 	tcp_verify_left_out(tp);
2099 
2100 	/* Too bad if TCP was application limited */
2101 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2102 
2103 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2104 	 * The last condition is necessary at least in tp->frto_counter case.
2105 	 */
2106 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2107 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2108 	    after(tp->high_seq, tp->snd_una)) {
2109 		tp->frto_highmark = tp->high_seq;
2110 	} else {
2111 		tp->frto_highmark = tp->snd_nxt;
2112 	}
2113 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2114 	tp->high_seq = tp->snd_nxt;
2115 	tp->frto_counter = 1;
2116 }
2117 
2118 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2119  * which indicates that we should follow the traditional RTO recovery,
2120  * i.e. mark everything lost and do go-back-N retransmission.
2121  */
tcp_enter_frto_loss(struct sock * sk,int allowed_segments,int flag)2122 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2123 {
2124 	struct tcp_sock *tp = tcp_sk(sk);
2125 	struct sk_buff *skb;
2126 
2127 	tp->lost_out = 0;
2128 	tp->retrans_out = 0;
2129 	if (tcp_is_reno(tp))
2130 		tcp_reset_reno_sack(tp);
2131 
2132 	tcp_for_write_queue(skb, sk) {
2133 		if (skb == tcp_send_head(sk))
2134 			break;
2135 
2136 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2137 		/*
2138 		 * Count the retransmission made on RTO correctly (only when
2139 		 * waiting for the first ACK and did not get it)...
2140 		 */
2141 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2142 			/* For some reason this R-bit might get cleared? */
2143 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2144 				tp->retrans_out += tcp_skb_pcount(skb);
2145 			/* ...enter this if branch just for the first segment */
2146 			flag |= FLAG_DATA_ACKED;
2147 		} else {
2148 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2149 				tp->undo_marker = 0;
2150 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2151 		}
2152 
2153 		/* Marking forward transmissions that were made after RTO lost
2154 		 * can cause unnecessary retransmissions in some scenarios,
2155 		 * SACK blocks will mitigate that in some but not in all cases.
2156 		 * We used to not mark them but it was causing break-ups with
2157 		 * receivers that do only in-order receival.
2158 		 *
2159 		 * TODO: we could detect presence of such receiver and select
2160 		 * different behavior per flow.
2161 		 */
2162 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2163 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2164 			tp->lost_out += tcp_skb_pcount(skb);
2165 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2166 		}
2167 	}
2168 	tcp_verify_left_out(tp);
2169 
2170 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2171 	tp->snd_cwnd_cnt = 0;
2172 	tp->snd_cwnd_stamp = tcp_time_stamp;
2173 	tp->frto_counter = 0;
2174 	tp->bytes_acked = 0;
2175 
2176 	tp->reordering = min_t(unsigned int, tp->reordering,
2177 			       sysctl_tcp_reordering);
2178 	tcp_set_ca_state(sk, TCP_CA_Loss);
2179 	tp->high_seq = tp->snd_nxt;
2180 	TCP_ECN_queue_cwr(tp);
2181 
2182 	tcp_clear_all_retrans_hints(tp);
2183 }
2184 
tcp_clear_retrans_partial(struct tcp_sock * tp)2185 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2186 {
2187 	tp->retrans_out = 0;
2188 	tp->lost_out = 0;
2189 
2190 	tp->undo_marker = 0;
2191 	tp->undo_retrans = 0;
2192 }
2193 
tcp_clear_retrans(struct tcp_sock * tp)2194 void tcp_clear_retrans(struct tcp_sock *tp)
2195 {
2196 	tcp_clear_retrans_partial(tp);
2197 
2198 	tp->fackets_out = 0;
2199 	tp->sacked_out = 0;
2200 }
2201 
2202 /* Enter Loss state. If "how" is not zero, forget all SACK information
2203  * and reset tags completely, otherwise preserve SACKs. If receiver
2204  * dropped its ofo queue, we will know this due to reneging detection.
2205  */
tcp_enter_loss(struct sock * sk,int how)2206 void tcp_enter_loss(struct sock *sk, int how)
2207 {
2208 	const struct inet_connection_sock *icsk = inet_csk(sk);
2209 	struct tcp_sock *tp = tcp_sk(sk);
2210 	struct sk_buff *skb;
2211 
2212 	/* Reduce ssthresh if it has not yet been made inside this window. */
2213 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2214 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2215 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2216 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2217 		tcp_ca_event(sk, CA_EVENT_LOSS);
2218 	}
2219 	tp->snd_cwnd	   = 1;
2220 	tp->snd_cwnd_cnt   = 0;
2221 	tp->snd_cwnd_stamp = tcp_time_stamp;
2222 
2223 	tp->bytes_acked = 0;
2224 	tcp_clear_retrans_partial(tp);
2225 
2226 	if (tcp_is_reno(tp))
2227 		tcp_reset_reno_sack(tp);
2228 
2229 	if (!how) {
2230 		/* Push undo marker, if it was plain RTO and nothing
2231 		 * was retransmitted. */
2232 		tp->undo_marker = tp->snd_una;
2233 	} else {
2234 		tp->sacked_out = 0;
2235 		tp->fackets_out = 0;
2236 	}
2237 	tcp_clear_all_retrans_hints(tp);
2238 
2239 	tcp_for_write_queue(skb, sk) {
2240 		if (skb == tcp_send_head(sk))
2241 			break;
2242 
2243 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2244 			tp->undo_marker = 0;
2245 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2246 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2247 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2248 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2249 			tp->lost_out += tcp_skb_pcount(skb);
2250 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2251 		}
2252 	}
2253 	tcp_verify_left_out(tp);
2254 
2255 	tp->reordering = min_t(unsigned int, tp->reordering,
2256 			       sysctl_tcp_reordering);
2257 	tcp_set_ca_state(sk, TCP_CA_Loss);
2258 	tp->high_seq = tp->snd_nxt;
2259 	TCP_ECN_queue_cwr(tp);
2260 	/* Abort F-RTO algorithm if one is in progress */
2261 	tp->frto_counter = 0;
2262 }
2263 
2264 /* If ACK arrived pointing to a remembered SACK, it means that our
2265  * remembered SACKs do not reflect real state of receiver i.e.
2266  * receiver _host_ is heavily congested (or buggy).
2267  *
2268  * Do processing similar to RTO timeout.
2269  */
tcp_check_sack_reneging(struct sock * sk,int flag)2270 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2271 {
2272 	if (flag & FLAG_SACK_RENEGING) {
2273 		struct inet_connection_sock *icsk = inet_csk(sk);
2274 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2275 
2276 		tcp_enter_loss(sk, 1);
2277 		icsk->icsk_retransmits++;
2278 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2279 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2280 					  icsk->icsk_rto, TCP_RTO_MAX);
2281 		return 1;
2282 	}
2283 	return 0;
2284 }
2285 
tcp_fackets_out(struct tcp_sock * tp)2286 static inline int tcp_fackets_out(struct tcp_sock *tp)
2287 {
2288 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2289 }
2290 
2291 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2292  * counter when SACK is enabled (without SACK, sacked_out is used for
2293  * that purpose).
2294  *
2295  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2296  * segments up to the highest received SACK block so far and holes in
2297  * between them.
2298  *
2299  * With reordering, holes may still be in flight, so RFC3517 recovery
2300  * uses pure sacked_out (total number of SACKed segments) even though
2301  * it violates the RFC that uses duplicate ACKs, often these are equal
2302  * but when e.g. out-of-window ACKs or packet duplication occurs,
2303  * they differ. Since neither occurs due to loss, TCP should really
2304  * ignore them.
2305  */
tcp_dupack_heurestics(struct tcp_sock * tp)2306 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2307 {
2308 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2309 }
2310 
tcp_skb_timedout(struct sock * sk,struct sk_buff * skb)2311 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2312 {
2313 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2314 }
2315 
tcp_head_timedout(struct sock * sk)2316 static inline int tcp_head_timedout(struct sock *sk)
2317 {
2318 	struct tcp_sock *tp = tcp_sk(sk);
2319 
2320 	return tp->packets_out &&
2321 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2322 }
2323 
2324 /* Linux NewReno/SACK/FACK/ECN state machine.
2325  * --------------------------------------
2326  *
2327  * "Open"	Normal state, no dubious events, fast path.
2328  * "Disorder"   In all the respects it is "Open",
2329  *		but requires a bit more attention. It is entered when
2330  *		we see some SACKs or dupacks. It is split of "Open"
2331  *		mainly to move some processing from fast path to slow one.
2332  * "CWR"	CWND was reduced due to some Congestion Notification event.
2333  *		It can be ECN, ICMP source quench, local device congestion.
2334  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2335  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2336  *
2337  * tcp_fastretrans_alert() is entered:
2338  * - each incoming ACK, if state is not "Open"
2339  * - when arrived ACK is unusual, namely:
2340  *	* SACK
2341  *	* Duplicate ACK.
2342  *	* ECN ECE.
2343  *
2344  * Counting packets in flight is pretty simple.
2345  *
2346  *	in_flight = packets_out - left_out + retrans_out
2347  *
2348  *	packets_out is SND.NXT-SND.UNA counted in packets.
2349  *
2350  *	retrans_out is number of retransmitted segments.
2351  *
2352  *	left_out is number of segments left network, but not ACKed yet.
2353  *
2354  *		left_out = sacked_out + lost_out
2355  *
2356  *     sacked_out: Packets, which arrived to receiver out of order
2357  *		   and hence not ACKed. With SACKs this number is simply
2358  *		   amount of SACKed data. Even without SACKs
2359  *		   it is easy to give pretty reliable estimate of this number,
2360  *		   counting duplicate ACKs.
2361  *
2362  *       lost_out: Packets lost by network. TCP has no explicit
2363  *		   "loss notification" feedback from network (for now).
2364  *		   It means that this number can be only _guessed_.
2365  *		   Actually, it is the heuristics to predict lossage that
2366  *		   distinguishes different algorithms.
2367  *
2368  *	F.e. after RTO, when all the queue is considered as lost,
2369  *	lost_out = packets_out and in_flight = retrans_out.
2370  *
2371  *		Essentially, we have now two algorithms counting
2372  *		lost packets.
2373  *
2374  *		FACK: It is the simplest heuristics. As soon as we decided
2375  *		that something is lost, we decide that _all_ not SACKed
2376  *		packets until the most forward SACK are lost. I.e.
2377  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2378  *		It is absolutely correct estimate, if network does not reorder
2379  *		packets. And it loses any connection to reality when reordering
2380  *		takes place. We use FACK by default until reordering
2381  *		is suspected on the path to this destination.
2382  *
2383  *		NewReno: when Recovery is entered, we assume that one segment
2384  *		is lost (classic Reno). While we are in Recovery and
2385  *		a partial ACK arrives, we assume that one more packet
2386  *		is lost (NewReno). This heuristics are the same in NewReno
2387  *		and SACK.
2388  *
2389  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2390  *  deflation etc. CWND is real congestion window, never inflated, changes
2391  *  only according to classic VJ rules.
2392  *
2393  * Really tricky (and requiring careful tuning) part of algorithm
2394  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2395  * The first determines the moment _when_ we should reduce CWND and,
2396  * hence, slow down forward transmission. In fact, it determines the moment
2397  * when we decide that hole is caused by loss, rather than by a reorder.
2398  *
2399  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2400  * holes, caused by lost packets.
2401  *
2402  * And the most logically complicated part of algorithm is undo
2403  * heuristics. We detect false retransmits due to both too early
2404  * fast retransmit (reordering) and underestimated RTO, analyzing
2405  * timestamps and D-SACKs. When we detect that some segments were
2406  * retransmitted by mistake and CWND reduction was wrong, we undo
2407  * window reduction and abort recovery phase. This logic is hidden
2408  * inside several functions named tcp_try_undo_<something>.
2409  */
2410 
2411 /* This function decides, when we should leave Disordered state
2412  * and enter Recovery phase, reducing congestion window.
2413  *
2414  * Main question: may we further continue forward transmission
2415  * with the same cwnd?
2416  */
tcp_time_to_recover(struct sock * sk)2417 static int tcp_time_to_recover(struct sock *sk)
2418 {
2419 	struct tcp_sock *tp = tcp_sk(sk);
2420 	__u32 packets_out;
2421 
2422 	/* Do not perform any recovery during F-RTO algorithm */
2423 	if (tp->frto_counter)
2424 		return 0;
2425 
2426 	/* Trick#1: The loss is proven. */
2427 	if (tp->lost_out)
2428 		return 1;
2429 
2430 	/* Not-A-Trick#2 : Classic rule... */
2431 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2432 		return 1;
2433 
2434 	/* Trick#3 : when we use RFC2988 timer restart, fast
2435 	 * retransmit can be triggered by timeout of queue head.
2436 	 */
2437 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2438 		return 1;
2439 
2440 	/* Trick#4: It is still not OK... But will it be useful to delay
2441 	 * recovery more?
2442 	 */
2443 	packets_out = tp->packets_out;
2444 	if (packets_out <= tp->reordering &&
2445 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2446 	    !tcp_may_send_now(sk)) {
2447 		/* We have nothing to send. This connection is limited
2448 		 * either by receiver window or by application.
2449 		 */
2450 		return 1;
2451 	}
2452 
2453 	return 0;
2454 }
2455 
2456 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2457  * is against sacked "cnt", otherwise it's against facked "cnt"
2458  */
tcp_mark_head_lost(struct sock * sk,int packets)2459 static void tcp_mark_head_lost(struct sock *sk, int packets)
2460 {
2461 	struct tcp_sock *tp = tcp_sk(sk);
2462 	struct sk_buff *skb;
2463 	int cnt, oldcnt;
2464 	int err;
2465 	unsigned int mss;
2466 
2467 	WARN_ON(packets > tp->packets_out);
2468 	if (tp->lost_skb_hint) {
2469 		skb = tp->lost_skb_hint;
2470 		cnt = tp->lost_cnt_hint;
2471 	} else {
2472 		skb = tcp_write_queue_head(sk);
2473 		cnt = 0;
2474 	}
2475 
2476 	tcp_for_write_queue_from(skb, sk) {
2477 		if (skb == tcp_send_head(sk))
2478 			break;
2479 		/* TODO: do this better */
2480 		/* this is not the most efficient way to do this... */
2481 		tp->lost_skb_hint = skb;
2482 		tp->lost_cnt_hint = cnt;
2483 
2484 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2485 			break;
2486 
2487 		oldcnt = cnt;
2488 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2489 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2490 			cnt += tcp_skb_pcount(skb);
2491 
2492 		if (cnt > packets) {
2493 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2494 				break;
2495 
2496 			mss = skb_shinfo(skb)->gso_size;
2497 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2498 			if (err < 0)
2499 				break;
2500 			cnt = packets;
2501 		}
2502 
2503 		tcp_skb_mark_lost(tp, skb);
2504 	}
2505 	tcp_verify_left_out(tp);
2506 }
2507 
2508 /* Account newly detected lost packet(s) */
2509 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2510 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2511 {
2512 	struct tcp_sock *tp = tcp_sk(sk);
2513 
2514 	if (tcp_is_reno(tp)) {
2515 		tcp_mark_head_lost(sk, 1);
2516 	} else if (tcp_is_fack(tp)) {
2517 		int lost = tp->fackets_out - tp->reordering;
2518 		if (lost <= 0)
2519 			lost = 1;
2520 		tcp_mark_head_lost(sk, lost);
2521 	} else {
2522 		int sacked_upto = tp->sacked_out - tp->reordering;
2523 		if (sacked_upto < fast_rexmit)
2524 			sacked_upto = fast_rexmit;
2525 		tcp_mark_head_lost(sk, sacked_upto);
2526 	}
2527 
2528 	/* New heuristics: it is possible only after we switched
2529 	 * to restart timer each time when something is ACKed.
2530 	 * Hence, we can detect timed out packets during fast
2531 	 * retransmit without falling to slow start.
2532 	 */
2533 	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2534 		struct sk_buff *skb;
2535 
2536 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2537 			: tcp_write_queue_head(sk);
2538 
2539 		tcp_for_write_queue_from(skb, sk) {
2540 			if (skb == tcp_send_head(sk))
2541 				break;
2542 			if (!tcp_skb_timedout(sk, skb))
2543 				break;
2544 
2545 			tcp_skb_mark_lost(tp, skb);
2546 		}
2547 
2548 		tp->scoreboard_skb_hint = skb;
2549 
2550 		tcp_verify_left_out(tp);
2551 	}
2552 }
2553 
2554 /* CWND moderation, preventing bursts due to too big ACKs
2555  * in dubious situations.
2556  */
tcp_moderate_cwnd(struct tcp_sock * tp)2557 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2558 {
2559 	tp->snd_cwnd = min(tp->snd_cwnd,
2560 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2561 	tp->snd_cwnd_stamp = tcp_time_stamp;
2562 }
2563 
2564 /* Lower bound on congestion window is slow start threshold
2565  * unless congestion avoidance choice decides to overide it.
2566  */
tcp_cwnd_min(const struct sock * sk)2567 static inline u32 tcp_cwnd_min(const struct sock *sk)
2568 {
2569 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2570 
2571 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2572 }
2573 
2574 /* Decrease cwnd each second ack. */
tcp_cwnd_down(struct sock * sk,int flag)2575 static void tcp_cwnd_down(struct sock *sk, int flag)
2576 {
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 	int decr = tp->snd_cwnd_cnt + 1;
2579 
2580 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2581 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2582 		tp->snd_cwnd_cnt = decr & 1;
2583 		decr >>= 1;
2584 
2585 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2586 			tp->snd_cwnd -= decr;
2587 
2588 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2589 		tp->snd_cwnd_stamp = tcp_time_stamp;
2590 	}
2591 }
2592 
2593 /* Nothing was retransmitted or returned timestamp is less
2594  * than timestamp of the first retransmission.
2595  */
tcp_packet_delayed(struct tcp_sock * tp)2596 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2597 {
2598 	return !tp->retrans_stamp ||
2599 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2600 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2601 }
2602 
2603 /* Undo procedures. */
2604 
2605 #if FASTRETRANS_DEBUG > 1
DBGUNDO(struct sock * sk,const char * msg)2606 static void DBGUNDO(struct sock *sk, const char *msg)
2607 {
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 	struct inet_sock *inet = inet_sk(sk);
2610 
2611 	if (sk->sk_family == AF_INET) {
2612 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2613 		       msg,
2614 		       &inet->daddr, ntohs(inet->dport),
2615 		       tp->snd_cwnd, tcp_left_out(tp),
2616 		       tp->snd_ssthresh, tp->prior_ssthresh,
2617 		       tp->packets_out);
2618 	}
2619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2620 	else if (sk->sk_family == AF_INET6) {
2621 		struct ipv6_pinfo *np = inet6_sk(sk);
2622 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2623 		       msg,
2624 		       &np->daddr, ntohs(inet->dport),
2625 		       tp->snd_cwnd, tcp_left_out(tp),
2626 		       tp->snd_ssthresh, tp->prior_ssthresh,
2627 		       tp->packets_out);
2628 	}
2629 #endif
2630 }
2631 #else
2632 #define DBGUNDO(x...) do { } while (0)
2633 #endif
2634 
tcp_undo_cwr(struct sock * sk,const int undo)2635 static void tcp_undo_cwr(struct sock *sk, const int undo)
2636 {
2637 	struct tcp_sock *tp = tcp_sk(sk);
2638 
2639 	if (tp->prior_ssthresh) {
2640 		const struct inet_connection_sock *icsk = inet_csk(sk);
2641 
2642 		if (icsk->icsk_ca_ops->undo_cwnd)
2643 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2644 		else
2645 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2646 
2647 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2648 			tp->snd_ssthresh = tp->prior_ssthresh;
2649 			TCP_ECN_withdraw_cwr(tp);
2650 		}
2651 	} else {
2652 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2653 	}
2654 	tcp_moderate_cwnd(tp);
2655 	tp->snd_cwnd_stamp = tcp_time_stamp;
2656 }
2657 
tcp_may_undo(struct tcp_sock * tp)2658 static inline int tcp_may_undo(struct tcp_sock *tp)
2659 {
2660 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2661 }
2662 
2663 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2664 static int tcp_try_undo_recovery(struct sock *sk)
2665 {
2666 	struct tcp_sock *tp = tcp_sk(sk);
2667 
2668 	if (tcp_may_undo(tp)) {
2669 		int mib_idx;
2670 
2671 		/* Happy end! We did not retransmit anything
2672 		 * or our original transmission succeeded.
2673 		 */
2674 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2675 		tcp_undo_cwr(sk, 1);
2676 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2677 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2678 		else
2679 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2680 
2681 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2682 		tp->undo_marker = 0;
2683 	}
2684 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2685 		/* Hold old state until something *above* high_seq
2686 		 * is ACKed. For Reno it is MUST to prevent false
2687 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2688 		tcp_moderate_cwnd(tp);
2689 		return 1;
2690 	}
2691 	tcp_set_ca_state(sk, TCP_CA_Open);
2692 	return 0;
2693 }
2694 
2695 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2696 static void tcp_try_undo_dsack(struct sock *sk)
2697 {
2698 	struct tcp_sock *tp = tcp_sk(sk);
2699 
2700 	if (tp->undo_marker && !tp->undo_retrans) {
2701 		DBGUNDO(sk, "D-SACK");
2702 		tcp_undo_cwr(sk, 1);
2703 		tp->undo_marker = 0;
2704 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2705 	}
2706 }
2707 
2708 /* Undo during fast recovery after partial ACK. */
2709 
tcp_try_undo_partial(struct sock * sk,int acked)2710 static int tcp_try_undo_partial(struct sock *sk, int acked)
2711 {
2712 	struct tcp_sock *tp = tcp_sk(sk);
2713 	/* Partial ACK arrived. Force Hoe's retransmit. */
2714 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2715 
2716 	if (tcp_may_undo(tp)) {
2717 		/* Plain luck! Hole if filled with delayed
2718 		 * packet, rather than with a retransmit.
2719 		 */
2720 		if (tp->retrans_out == 0)
2721 			tp->retrans_stamp = 0;
2722 
2723 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2724 
2725 		DBGUNDO(sk, "Hoe");
2726 		tcp_undo_cwr(sk, 0);
2727 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2728 
2729 		/* So... Do not make Hoe's retransmit yet.
2730 		 * If the first packet was delayed, the rest
2731 		 * ones are most probably delayed as well.
2732 		 */
2733 		failed = 0;
2734 	}
2735 	return failed;
2736 }
2737 
2738 /* Undo during loss recovery after partial ACK. */
tcp_try_undo_loss(struct sock * sk)2739 static int tcp_try_undo_loss(struct sock *sk)
2740 {
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 
2743 	if (tcp_may_undo(tp)) {
2744 		struct sk_buff *skb;
2745 		tcp_for_write_queue(skb, sk) {
2746 			if (skb == tcp_send_head(sk))
2747 				break;
2748 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2749 		}
2750 
2751 		tcp_clear_all_retrans_hints(tp);
2752 
2753 		DBGUNDO(sk, "partial loss");
2754 		tp->lost_out = 0;
2755 		tcp_undo_cwr(sk, 1);
2756 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2757 		inet_csk(sk)->icsk_retransmits = 0;
2758 		tp->undo_marker = 0;
2759 		if (tcp_is_sack(tp))
2760 			tcp_set_ca_state(sk, TCP_CA_Open);
2761 		return 1;
2762 	}
2763 	return 0;
2764 }
2765 
tcp_complete_cwr(struct sock * sk)2766 static inline void tcp_complete_cwr(struct sock *sk)
2767 {
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2770 	tp->snd_cwnd_stamp = tcp_time_stamp;
2771 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2772 }
2773 
tcp_try_keep_open(struct sock * sk)2774 static void tcp_try_keep_open(struct sock *sk)
2775 {
2776 	struct tcp_sock *tp = tcp_sk(sk);
2777 	int state = TCP_CA_Open;
2778 
2779 	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2780 		state = TCP_CA_Disorder;
2781 
2782 	if (inet_csk(sk)->icsk_ca_state != state) {
2783 		tcp_set_ca_state(sk, state);
2784 		tp->high_seq = tp->snd_nxt;
2785 	}
2786 }
2787 
tcp_try_to_open(struct sock * sk,int flag)2788 static void tcp_try_to_open(struct sock *sk, int flag)
2789 {
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 
2792 	tcp_verify_left_out(tp);
2793 
2794 	if (!tp->frto_counter && tp->retrans_out == 0)
2795 		tp->retrans_stamp = 0;
2796 
2797 	if (flag & FLAG_ECE)
2798 		tcp_enter_cwr(sk, 1);
2799 
2800 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2801 		tcp_try_keep_open(sk);
2802 		tcp_moderate_cwnd(tp);
2803 	} else {
2804 		tcp_cwnd_down(sk, flag);
2805 	}
2806 }
2807 
tcp_mtup_probe_failed(struct sock * sk)2808 static void tcp_mtup_probe_failed(struct sock *sk)
2809 {
2810 	struct inet_connection_sock *icsk = inet_csk(sk);
2811 
2812 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2813 	icsk->icsk_mtup.probe_size = 0;
2814 }
2815 
tcp_mtup_probe_success(struct sock * sk,struct sk_buff * skb)2816 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2817 {
2818 	struct tcp_sock *tp = tcp_sk(sk);
2819 	struct inet_connection_sock *icsk = inet_csk(sk);
2820 
2821 	/* FIXME: breaks with very large cwnd */
2822 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2823 	tp->snd_cwnd = tp->snd_cwnd *
2824 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2825 		       icsk->icsk_mtup.probe_size;
2826 	tp->snd_cwnd_cnt = 0;
2827 	tp->snd_cwnd_stamp = tcp_time_stamp;
2828 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2829 
2830 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2831 	icsk->icsk_mtup.probe_size = 0;
2832 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2833 }
2834 
2835 /* Do a simple retransmit without using the backoff mechanisms in
2836  * tcp_timer. This is used for path mtu discovery.
2837  * The socket is already locked here.
2838  */
tcp_simple_retransmit(struct sock * sk)2839 void tcp_simple_retransmit(struct sock *sk)
2840 {
2841 	const struct inet_connection_sock *icsk = inet_csk(sk);
2842 	struct tcp_sock *tp = tcp_sk(sk);
2843 	struct sk_buff *skb;
2844 	unsigned int mss = tcp_current_mss(sk, 0);
2845 	u32 prior_lost = tp->lost_out;
2846 
2847 	tcp_for_write_queue(skb, sk) {
2848 		if (skb == tcp_send_head(sk))
2849 			break;
2850 		if (tcp_skb_seglen(skb) > mss &&
2851 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2852 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2853 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2854 				tp->retrans_out -= tcp_skb_pcount(skb);
2855 			}
2856 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2857 		}
2858 	}
2859 
2860 	tcp_clear_retrans_hints_partial(tp);
2861 
2862 	if (prior_lost == tp->lost_out)
2863 		return;
2864 
2865 	if (tcp_is_reno(tp))
2866 		tcp_limit_reno_sacked(tp);
2867 
2868 	tcp_verify_left_out(tp);
2869 
2870 	/* Don't muck with the congestion window here.
2871 	 * Reason is that we do not increase amount of _data_
2872 	 * in network, but units changed and effective
2873 	 * cwnd/ssthresh really reduced now.
2874 	 */
2875 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2876 		tp->high_seq = tp->snd_nxt;
2877 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2878 		tp->prior_ssthresh = 0;
2879 		tp->undo_marker = 0;
2880 		tcp_set_ca_state(sk, TCP_CA_Loss);
2881 	}
2882 	tcp_xmit_retransmit_queue(sk);
2883 }
2884 
2885 /* Process an event, which can update packets-in-flight not trivially.
2886  * Main goal of this function is to calculate new estimate for left_out,
2887  * taking into account both packets sitting in receiver's buffer and
2888  * packets lost by network.
2889  *
2890  * Besides that it does CWND reduction, when packet loss is detected
2891  * and changes state of machine.
2892  *
2893  * It does _not_ decide what to send, it is made in function
2894  * tcp_xmit_retransmit_queue().
2895  */
tcp_fastretrans_alert(struct sock * sk,int pkts_acked,int flag)2896 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2897 {
2898 	struct inet_connection_sock *icsk = inet_csk(sk);
2899 	struct tcp_sock *tp = tcp_sk(sk);
2900 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2901 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2902 				    (tcp_fackets_out(tp) > tp->reordering));
2903 	int fast_rexmit = 0, mib_idx;
2904 
2905 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2906 		tp->sacked_out = 0;
2907 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2908 		tp->fackets_out = 0;
2909 
2910 	/* Now state machine starts.
2911 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2912 	if (flag & FLAG_ECE)
2913 		tp->prior_ssthresh = 0;
2914 
2915 	/* B. In all the states check for reneging SACKs. */
2916 	if (tcp_check_sack_reneging(sk, flag))
2917 		return;
2918 
2919 	/* C. Process data loss notification, provided it is valid. */
2920 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2921 	    before(tp->snd_una, tp->high_seq) &&
2922 	    icsk->icsk_ca_state != TCP_CA_Open &&
2923 	    tp->fackets_out > tp->reordering) {
2924 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2925 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2926 	}
2927 
2928 	/* D. Check consistency of the current state. */
2929 	tcp_verify_left_out(tp);
2930 
2931 	/* E. Check state exit conditions. State can be terminated
2932 	 *    when high_seq is ACKed. */
2933 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2934 		WARN_ON(tp->retrans_out != 0);
2935 		tp->retrans_stamp = 0;
2936 	} else if (!before(tp->snd_una, tp->high_seq)) {
2937 		switch (icsk->icsk_ca_state) {
2938 		case TCP_CA_Loss:
2939 			icsk->icsk_retransmits = 0;
2940 			if (tcp_try_undo_recovery(sk))
2941 				return;
2942 			break;
2943 
2944 		case TCP_CA_CWR:
2945 			/* CWR is to be held something *above* high_seq
2946 			 * is ACKed for CWR bit to reach receiver. */
2947 			if (tp->snd_una != tp->high_seq) {
2948 				tcp_complete_cwr(sk);
2949 				tcp_set_ca_state(sk, TCP_CA_Open);
2950 			}
2951 			break;
2952 
2953 		case TCP_CA_Disorder:
2954 			tcp_try_undo_dsack(sk);
2955 			if (!tp->undo_marker ||
2956 			    /* For SACK case do not Open to allow to undo
2957 			     * catching for all duplicate ACKs. */
2958 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2959 				tp->undo_marker = 0;
2960 				tcp_set_ca_state(sk, TCP_CA_Open);
2961 			}
2962 			break;
2963 
2964 		case TCP_CA_Recovery:
2965 			if (tcp_is_reno(tp))
2966 				tcp_reset_reno_sack(tp);
2967 			if (tcp_try_undo_recovery(sk))
2968 				return;
2969 			tcp_complete_cwr(sk);
2970 			break;
2971 		}
2972 	}
2973 
2974 	/* F. Process state. */
2975 	switch (icsk->icsk_ca_state) {
2976 	case TCP_CA_Recovery:
2977 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2978 			if (tcp_is_reno(tp) && is_dupack)
2979 				tcp_add_reno_sack(sk);
2980 		} else
2981 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2982 		break;
2983 	case TCP_CA_Loss:
2984 		if (flag & FLAG_DATA_ACKED)
2985 			icsk->icsk_retransmits = 0;
2986 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2987 			tcp_reset_reno_sack(tp);
2988 		if (!tcp_try_undo_loss(sk)) {
2989 			tcp_moderate_cwnd(tp);
2990 			tcp_xmit_retransmit_queue(sk);
2991 			return;
2992 		}
2993 		if (icsk->icsk_ca_state != TCP_CA_Open)
2994 			return;
2995 		/* Loss is undone; fall through to processing in Open state. */
2996 	default:
2997 		if (tcp_is_reno(tp)) {
2998 			if (flag & FLAG_SND_UNA_ADVANCED)
2999 				tcp_reset_reno_sack(tp);
3000 			if (is_dupack)
3001 				tcp_add_reno_sack(sk);
3002 		}
3003 
3004 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3005 			tcp_try_undo_dsack(sk);
3006 
3007 		if (!tcp_time_to_recover(sk)) {
3008 			tcp_try_to_open(sk, flag);
3009 			return;
3010 		}
3011 
3012 		/* MTU probe failure: don't reduce cwnd */
3013 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3014 		    icsk->icsk_mtup.probe_size &&
3015 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3016 			tcp_mtup_probe_failed(sk);
3017 			/* Restores the reduction we did in tcp_mtup_probe() */
3018 			tp->snd_cwnd++;
3019 			tcp_simple_retransmit(sk);
3020 			return;
3021 		}
3022 
3023 		/* Otherwise enter Recovery state */
3024 
3025 		if (tcp_is_reno(tp))
3026 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3027 		else
3028 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3029 
3030 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3031 
3032 		tp->high_seq = tp->snd_nxt;
3033 		tp->prior_ssthresh = 0;
3034 		tp->undo_marker = tp->snd_una;
3035 		tp->undo_retrans = tp->retrans_out;
3036 
3037 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3038 			if (!(flag & FLAG_ECE))
3039 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3040 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3041 			TCP_ECN_queue_cwr(tp);
3042 		}
3043 
3044 		tp->bytes_acked = 0;
3045 		tp->snd_cwnd_cnt = 0;
3046 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3047 		fast_rexmit = 1;
3048 	}
3049 
3050 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3051 		tcp_update_scoreboard(sk, fast_rexmit);
3052 	tcp_cwnd_down(sk, flag);
3053 	tcp_xmit_retransmit_queue(sk);
3054 }
3055 
tcp_valid_rtt_meas(struct sock * sk,u32 seq_rtt)3056 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3057 {
3058 	tcp_rtt_estimator(sk, seq_rtt);
3059 	tcp_set_rto(sk);
3060 	inet_csk(sk)->icsk_backoff = 0;
3061 }
3062 
3063 /* Read draft-ietf-tcplw-high-performance before mucking
3064  * with this code. (Supersedes RFC1323)
3065  */
tcp_ack_saw_tstamp(struct sock * sk,int flag)3066 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3067 {
3068 	/* RTTM Rule: A TSecr value received in a segment is used to
3069 	 * update the averaged RTT measurement only if the segment
3070 	 * acknowledges some new data, i.e., only if it advances the
3071 	 * left edge of the send window.
3072 	 *
3073 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3074 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3075 	 *
3076 	 * Changed: reset backoff as soon as we see the first valid sample.
3077 	 * If we do not, we get strongly overestimated rto. With timestamps
3078 	 * samples are accepted even from very old segments: f.e., when rtt=1
3079 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3080 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3081 	 * in window is lost... Voila.	 			--ANK (010210)
3082 	 */
3083 	struct tcp_sock *tp = tcp_sk(sk);
3084 
3085 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3086 }
3087 
tcp_ack_no_tstamp(struct sock * sk,u32 seq_rtt,int flag)3088 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3089 {
3090 	/* We don't have a timestamp. Can only use
3091 	 * packets that are not retransmitted to determine
3092 	 * rtt estimates. Also, we must not reset the
3093 	 * backoff for rto until we get a non-retransmitted
3094 	 * packet. This allows us to deal with a situation
3095 	 * where the network delay has increased suddenly.
3096 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3097 	 */
3098 
3099 	if (flag & FLAG_RETRANS_DATA_ACKED)
3100 		return;
3101 
3102 	tcp_valid_rtt_meas(sk, seq_rtt);
3103 }
3104 
tcp_ack_update_rtt(struct sock * sk,const int flag,const s32 seq_rtt)3105 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3106 				      const s32 seq_rtt)
3107 {
3108 	const struct tcp_sock *tp = tcp_sk(sk);
3109 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3110 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3111 		tcp_ack_saw_tstamp(sk, flag);
3112 	else if (seq_rtt >= 0)
3113 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3114 }
3115 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 in_flight)3116 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3117 {
3118 	const struct inet_connection_sock *icsk = inet_csk(sk);
3119 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3120 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3121 }
3122 
3123 /* Restart timer after forward progress on connection.
3124  * RFC2988 recommends to restart timer to now+rto.
3125  */
tcp_rearm_rto(struct sock * sk)3126 static void tcp_rearm_rto(struct sock *sk)
3127 {
3128 	struct tcp_sock *tp = tcp_sk(sk);
3129 
3130 	if (!tp->packets_out) {
3131 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3132 	} else {
3133 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3134 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3135 	}
3136 }
3137 
3138 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3139 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3140 {
3141 	struct tcp_sock *tp = tcp_sk(sk);
3142 	u32 packets_acked;
3143 
3144 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3145 
3146 	packets_acked = tcp_skb_pcount(skb);
3147 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3148 		return 0;
3149 	packets_acked -= tcp_skb_pcount(skb);
3150 
3151 	if (packets_acked) {
3152 		BUG_ON(tcp_skb_pcount(skb) == 0);
3153 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3154 	}
3155 
3156 	return packets_acked;
3157 }
3158 
3159 /* Remove acknowledged frames from the retransmission queue. If our packet
3160  * is before the ack sequence we can discard it as it's confirmed to have
3161  * arrived at the other end.
3162  */
tcp_clean_rtx_queue(struct sock * sk,int prior_fackets,u32 prior_snd_una)3163 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3164 			       u32 prior_snd_una)
3165 {
3166 	struct tcp_sock *tp = tcp_sk(sk);
3167 	const struct inet_connection_sock *icsk = inet_csk(sk);
3168 	struct sk_buff *skb;
3169 	u32 now = tcp_time_stamp;
3170 	int fully_acked = 1;
3171 	int flag = 0;
3172 	u32 pkts_acked = 0;
3173 	u32 reord = tp->packets_out;
3174 	u32 prior_sacked = tp->sacked_out;
3175 	s32 seq_rtt = -1;
3176 	s32 ca_seq_rtt = -1;
3177 	ktime_t last_ackt = net_invalid_timestamp();
3178 
3179 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3180 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3181 		u32 end_seq;
3182 		u32 acked_pcount;
3183 		u8 sacked = scb->sacked;
3184 
3185 		/* Determine how many packets and what bytes were acked, tso and else */
3186 		if (after(scb->end_seq, tp->snd_una)) {
3187 			if (tcp_skb_pcount(skb) == 1 ||
3188 			    !after(tp->snd_una, scb->seq))
3189 				break;
3190 
3191 			acked_pcount = tcp_tso_acked(sk, skb);
3192 			if (!acked_pcount)
3193 				break;
3194 
3195 			fully_acked = 0;
3196 			end_seq = tp->snd_una;
3197 		} else {
3198 			acked_pcount = tcp_skb_pcount(skb);
3199 			end_seq = scb->end_seq;
3200 		}
3201 
3202 		/* MTU probing checks */
3203 		if (fully_acked && icsk->icsk_mtup.probe_size &&
3204 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
3205 			tcp_mtup_probe_success(sk, skb);
3206 		}
3207 
3208 		if (sacked & TCPCB_RETRANS) {
3209 			if (sacked & TCPCB_SACKED_RETRANS)
3210 				tp->retrans_out -= acked_pcount;
3211 			flag |= FLAG_RETRANS_DATA_ACKED;
3212 			ca_seq_rtt = -1;
3213 			seq_rtt = -1;
3214 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3215 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3216 		} else {
3217 			ca_seq_rtt = now - scb->when;
3218 			last_ackt = skb->tstamp;
3219 			if (seq_rtt < 0) {
3220 				seq_rtt = ca_seq_rtt;
3221 			}
3222 			if (!(sacked & TCPCB_SACKED_ACKED))
3223 				reord = min(pkts_acked, reord);
3224 		}
3225 
3226 		if (sacked & TCPCB_SACKED_ACKED)
3227 			tp->sacked_out -= acked_pcount;
3228 		if (sacked & TCPCB_LOST)
3229 			tp->lost_out -= acked_pcount;
3230 
3231 		tp->packets_out -= acked_pcount;
3232 		pkts_acked += acked_pcount;
3233 
3234 		/* Initial outgoing SYN's get put onto the write_queue
3235 		 * just like anything else we transmit.  It is not
3236 		 * true data, and if we misinform our callers that
3237 		 * this ACK acks real data, we will erroneously exit
3238 		 * connection startup slow start one packet too
3239 		 * quickly.  This is severely frowned upon behavior.
3240 		 */
3241 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3242 			flag |= FLAG_DATA_ACKED;
3243 		} else {
3244 			flag |= FLAG_SYN_ACKED;
3245 			tp->retrans_stamp = 0;
3246 		}
3247 
3248 		if (!fully_acked)
3249 			break;
3250 
3251 		tcp_unlink_write_queue(skb, sk);
3252 		sk_wmem_free_skb(sk, skb);
3253 		tp->scoreboard_skb_hint = NULL;
3254 		if (skb == tp->retransmit_skb_hint)
3255 			tp->retransmit_skb_hint = NULL;
3256 		if (skb == tp->lost_skb_hint)
3257 			tp->lost_skb_hint = NULL;
3258 	}
3259 
3260 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3261 		tp->snd_up = tp->snd_una;
3262 
3263 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3264 		flag |= FLAG_SACK_RENEGING;
3265 
3266 	if (flag & FLAG_ACKED) {
3267 		const struct tcp_congestion_ops *ca_ops
3268 			= inet_csk(sk)->icsk_ca_ops;
3269 
3270 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3271 		tcp_rearm_rto(sk);
3272 
3273 		if (tcp_is_reno(tp)) {
3274 			tcp_remove_reno_sacks(sk, pkts_acked);
3275 		} else {
3276 			/* Non-retransmitted hole got filled? That's reordering */
3277 			if (reord < prior_fackets)
3278 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3279 
3280 			/* No need to care for underflows here because
3281 			 * the lost_skb_hint gets NULLed if we're past it
3282 			 * (or something non-trivial happened)
3283 			 */
3284 			if (tcp_is_fack(tp))
3285 				tp->lost_cnt_hint -= pkts_acked;
3286 			else
3287 				tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
3288 		}
3289 
3290 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3291 
3292 		if (ca_ops->pkts_acked) {
3293 			s32 rtt_us = -1;
3294 
3295 			/* Is the ACK triggering packet unambiguous? */
3296 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3297 				/* High resolution needed and available? */
3298 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3299 				    !ktime_equal(last_ackt,
3300 						 net_invalid_timestamp()))
3301 					rtt_us = ktime_us_delta(ktime_get_real(),
3302 								last_ackt);
3303 				else if (ca_seq_rtt > 0)
3304 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3305 			}
3306 
3307 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3308 		}
3309 	}
3310 
3311 #if FASTRETRANS_DEBUG > 0
3312 	WARN_ON((int)tp->sacked_out < 0);
3313 	WARN_ON((int)tp->lost_out < 0);
3314 	WARN_ON((int)tp->retrans_out < 0);
3315 	if (!tp->packets_out && tcp_is_sack(tp)) {
3316 		icsk = inet_csk(sk);
3317 		if (tp->lost_out) {
3318 			printk(KERN_DEBUG "Leak l=%u %d\n",
3319 			       tp->lost_out, icsk->icsk_ca_state);
3320 			tp->lost_out = 0;
3321 		}
3322 		if (tp->sacked_out) {
3323 			printk(KERN_DEBUG "Leak s=%u %d\n",
3324 			       tp->sacked_out, icsk->icsk_ca_state);
3325 			tp->sacked_out = 0;
3326 		}
3327 		if (tp->retrans_out) {
3328 			printk(KERN_DEBUG "Leak r=%u %d\n",
3329 			       tp->retrans_out, icsk->icsk_ca_state);
3330 			tp->retrans_out = 0;
3331 		}
3332 	}
3333 #endif
3334 	return flag;
3335 }
3336 
tcp_ack_probe(struct sock * sk)3337 static void tcp_ack_probe(struct sock *sk)
3338 {
3339 	const struct tcp_sock *tp = tcp_sk(sk);
3340 	struct inet_connection_sock *icsk = inet_csk(sk);
3341 
3342 	/* Was it a usable window open? */
3343 
3344 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3345 		icsk->icsk_backoff = 0;
3346 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3347 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3348 		 * This function is not for random using!
3349 		 */
3350 	} else {
3351 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3352 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3353 					  TCP_RTO_MAX);
3354 	}
3355 }
3356 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3357 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3358 {
3359 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3360 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3361 }
3362 
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3363 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3364 {
3365 	const struct tcp_sock *tp = tcp_sk(sk);
3366 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3367 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3368 }
3369 
3370 /* Check that window update is acceptable.
3371  * The function assumes that snd_una<=ack<=snd_next.
3372  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3373 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3374 					const u32 ack, const u32 ack_seq,
3375 					const u32 nwin)
3376 {
3377 	return (after(ack, tp->snd_una) ||
3378 		after(ack_seq, tp->snd_wl1) ||
3379 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3380 }
3381 
3382 /* Update our send window.
3383  *
3384  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3385  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3386  */
tcp_ack_update_window(struct sock * sk,struct sk_buff * skb,u32 ack,u32 ack_seq)3387 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3388 				 u32 ack_seq)
3389 {
3390 	struct tcp_sock *tp = tcp_sk(sk);
3391 	int flag = 0;
3392 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3393 
3394 	if (likely(!tcp_hdr(skb)->syn))
3395 		nwin <<= tp->rx_opt.snd_wscale;
3396 
3397 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3398 		flag |= FLAG_WIN_UPDATE;
3399 		tcp_update_wl(tp, ack, ack_seq);
3400 
3401 		if (tp->snd_wnd != nwin) {
3402 			tp->snd_wnd = nwin;
3403 
3404 			/* Note, it is the only place, where
3405 			 * fast path is recovered for sending TCP.
3406 			 */
3407 			tp->pred_flags = 0;
3408 			tcp_fast_path_check(sk);
3409 
3410 			if (nwin > tp->max_window) {
3411 				tp->max_window = nwin;
3412 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3413 			}
3414 		}
3415 	}
3416 
3417 	tp->snd_una = ack;
3418 
3419 	return flag;
3420 }
3421 
3422 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3423  * continue in congestion avoidance.
3424  */
tcp_conservative_spur_to_response(struct tcp_sock * tp)3425 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3426 {
3427 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3428 	tp->snd_cwnd_cnt = 0;
3429 	tp->bytes_acked = 0;
3430 	TCP_ECN_queue_cwr(tp);
3431 	tcp_moderate_cwnd(tp);
3432 }
3433 
3434 /* A conservative spurious RTO response algorithm: reduce cwnd using
3435  * rate halving and continue in congestion avoidance.
3436  */
tcp_ratehalving_spur_to_response(struct sock * sk)3437 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3438 {
3439 	tcp_enter_cwr(sk, 0);
3440 }
3441 
tcp_undo_spur_to_response(struct sock * sk,int flag)3442 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3443 {
3444 	if (flag & FLAG_ECE)
3445 		tcp_ratehalving_spur_to_response(sk);
3446 	else
3447 		tcp_undo_cwr(sk, 1);
3448 }
3449 
3450 /* F-RTO spurious RTO detection algorithm (RFC4138)
3451  *
3452  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3453  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3454  * window (but not to or beyond highest sequence sent before RTO):
3455  *   On First ACK,  send two new segments out.
3456  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3457  *                  algorithm is not part of the F-RTO detection algorithm
3458  *                  given in RFC4138 but can be selected separately).
3459  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3460  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3461  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3462  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3463  *
3464  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3465  * original window even after we transmit two new data segments.
3466  *
3467  * SACK version:
3468  *   on first step, wait until first cumulative ACK arrives, then move to
3469  *   the second step. In second step, the next ACK decides.
3470  *
3471  * F-RTO is implemented (mainly) in four functions:
3472  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3473  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3474  *     called when tcp_use_frto() showed green light
3475  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3476  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3477  *     to prove that the RTO is indeed spurious. It transfers the control
3478  *     from F-RTO to the conventional RTO recovery
3479  */
tcp_process_frto(struct sock * sk,int flag)3480 static int tcp_process_frto(struct sock *sk, int flag)
3481 {
3482 	struct tcp_sock *tp = tcp_sk(sk);
3483 
3484 	tcp_verify_left_out(tp);
3485 
3486 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3487 	if (flag & FLAG_DATA_ACKED)
3488 		inet_csk(sk)->icsk_retransmits = 0;
3489 
3490 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3491 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3492 		tp->undo_marker = 0;
3493 
3494 	if (!before(tp->snd_una, tp->frto_highmark)) {
3495 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3496 		return 1;
3497 	}
3498 
3499 	if (!tcp_is_sackfrto(tp)) {
3500 		/* RFC4138 shortcoming in step 2; should also have case c):
3501 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3502 		 * data, winupdate
3503 		 */
3504 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3505 			return 1;
3506 
3507 		if (!(flag & FLAG_DATA_ACKED)) {
3508 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3509 					    flag);
3510 			return 1;
3511 		}
3512 	} else {
3513 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3514 			/* Prevent sending of new data. */
3515 			tp->snd_cwnd = min(tp->snd_cwnd,
3516 					   tcp_packets_in_flight(tp));
3517 			return 1;
3518 		}
3519 
3520 		if ((tp->frto_counter >= 2) &&
3521 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3522 		     ((flag & FLAG_DATA_SACKED) &&
3523 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3524 			/* RFC4138 shortcoming (see comment above) */
3525 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3526 			    (flag & FLAG_NOT_DUP))
3527 				return 1;
3528 
3529 			tcp_enter_frto_loss(sk, 3, flag);
3530 			return 1;
3531 		}
3532 	}
3533 
3534 	if (tp->frto_counter == 1) {
3535 		/* tcp_may_send_now needs to see updated state */
3536 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3537 		tp->frto_counter = 2;
3538 
3539 		if (!tcp_may_send_now(sk))
3540 			tcp_enter_frto_loss(sk, 2, flag);
3541 
3542 		return 1;
3543 	} else {
3544 		switch (sysctl_tcp_frto_response) {
3545 		case 2:
3546 			tcp_undo_spur_to_response(sk, flag);
3547 			break;
3548 		case 1:
3549 			tcp_conservative_spur_to_response(tp);
3550 			break;
3551 		default:
3552 			tcp_ratehalving_spur_to_response(sk);
3553 			break;
3554 		}
3555 		tp->frto_counter = 0;
3556 		tp->undo_marker = 0;
3557 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3558 	}
3559 	return 0;
3560 }
3561 
3562 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,struct sk_buff * skb,int flag)3563 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3564 {
3565 	struct inet_connection_sock *icsk = inet_csk(sk);
3566 	struct tcp_sock *tp = tcp_sk(sk);
3567 	u32 prior_snd_una = tp->snd_una;
3568 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3569 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3570 	u32 prior_in_flight;
3571 	u32 prior_fackets;
3572 	int prior_packets;
3573 	int frto_cwnd = 0;
3574 
3575 	/* If the ack is newer than sent or older than previous acks
3576 	 * then we can probably ignore it.
3577 	 */
3578 	if (after(ack, tp->snd_nxt))
3579 		goto uninteresting_ack;
3580 
3581 	if (before(ack, prior_snd_una))
3582 		goto old_ack;
3583 
3584 	if (after(ack, prior_snd_una))
3585 		flag |= FLAG_SND_UNA_ADVANCED;
3586 
3587 	if (sysctl_tcp_abc) {
3588 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3589 			tp->bytes_acked += ack - prior_snd_una;
3590 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3591 			/* we assume just one segment left network */
3592 			tp->bytes_acked += min(ack - prior_snd_una,
3593 					       tp->mss_cache);
3594 	}
3595 
3596 	prior_fackets = tp->fackets_out;
3597 	prior_in_flight = tcp_packets_in_flight(tp);
3598 
3599 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3600 		/* Window is constant, pure forward advance.
3601 		 * No more checks are required.
3602 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3603 		 */
3604 		tcp_update_wl(tp, ack, ack_seq);
3605 		tp->snd_una = ack;
3606 		flag |= FLAG_WIN_UPDATE;
3607 
3608 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3609 
3610 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3611 	} else {
3612 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3613 			flag |= FLAG_DATA;
3614 		else
3615 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3616 
3617 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3618 
3619 		if (TCP_SKB_CB(skb)->sacked)
3620 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3621 
3622 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3623 			flag |= FLAG_ECE;
3624 
3625 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3626 	}
3627 
3628 	/* We passed data and got it acked, remove any soft error
3629 	 * log. Something worked...
3630 	 */
3631 	sk->sk_err_soft = 0;
3632 	icsk->icsk_probes_out = 0;
3633 	tp->rcv_tstamp = tcp_time_stamp;
3634 	prior_packets = tp->packets_out;
3635 	if (!prior_packets)
3636 		goto no_queue;
3637 
3638 	/* See if we can take anything off of the retransmit queue. */
3639 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3640 
3641 	if (tp->frto_counter)
3642 		frto_cwnd = tcp_process_frto(sk, flag);
3643 	/* Guarantee sacktag reordering detection against wrap-arounds */
3644 	if (before(tp->frto_highmark, tp->snd_una))
3645 		tp->frto_highmark = 0;
3646 
3647 	if (tcp_ack_is_dubious(sk, flag)) {
3648 		/* Advance CWND, if state allows this. */
3649 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3650 		    tcp_may_raise_cwnd(sk, flag))
3651 			tcp_cong_avoid(sk, ack, prior_in_flight);
3652 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3653 				      flag);
3654 	} else {
3655 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3656 			tcp_cong_avoid(sk, ack, prior_in_flight);
3657 	}
3658 
3659 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3660 		dst_confirm(sk->sk_dst_cache);
3661 
3662 	return 1;
3663 
3664 no_queue:
3665 	/* If this ack opens up a zero window, clear backoff.  It was
3666 	 * being used to time the probes, and is probably far higher than
3667 	 * it needs to be for normal retransmission.
3668 	 */
3669 	if (tcp_send_head(sk))
3670 		tcp_ack_probe(sk);
3671 	return 1;
3672 
3673 old_ack:
3674 	if (TCP_SKB_CB(skb)->sacked) {
3675 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3676 		if (icsk->icsk_ca_state == TCP_CA_Open)
3677 			tcp_try_keep_open(sk);
3678 	}
3679 
3680 uninteresting_ack:
3681 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3682 	return 0;
3683 }
3684 
3685 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3686  * But, this can also be called on packets in the established flow when
3687  * the fast version below fails.
3688  */
tcp_parse_options(struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab)3689 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3690 		       int estab)
3691 {
3692 	unsigned char *ptr;
3693 	struct tcphdr *th = tcp_hdr(skb);
3694 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3695 
3696 	ptr = (unsigned char *)(th + 1);
3697 	opt_rx->saw_tstamp = 0;
3698 
3699 	while (length > 0) {
3700 		int opcode = *ptr++;
3701 		int opsize;
3702 
3703 		switch (opcode) {
3704 		case TCPOPT_EOL:
3705 			return;
3706 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3707 			length--;
3708 			continue;
3709 		default:
3710 			opsize = *ptr++;
3711 			if (opsize < 2) /* "silly options" */
3712 				return;
3713 			if (opsize > length)
3714 				return;	/* don't parse partial options */
3715 			switch (opcode) {
3716 			case TCPOPT_MSS:
3717 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3718 					u16 in_mss = get_unaligned_be16(ptr);
3719 					if (in_mss) {
3720 						if (opt_rx->user_mss &&
3721 						    opt_rx->user_mss < in_mss)
3722 							in_mss = opt_rx->user_mss;
3723 						opt_rx->mss_clamp = in_mss;
3724 					}
3725 				}
3726 				break;
3727 			case TCPOPT_WINDOW:
3728 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3729 				    !estab && sysctl_tcp_window_scaling) {
3730 					__u8 snd_wscale = *(__u8 *)ptr;
3731 					opt_rx->wscale_ok = 1;
3732 					if (snd_wscale > 14) {
3733 						if (net_ratelimit())
3734 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3735 							       "scaling value %d >14 received.\n",
3736 							       snd_wscale);
3737 						snd_wscale = 14;
3738 					}
3739 					opt_rx->snd_wscale = snd_wscale;
3740 				}
3741 				break;
3742 			case TCPOPT_TIMESTAMP:
3743 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3744 				    ((estab && opt_rx->tstamp_ok) ||
3745 				     (!estab && sysctl_tcp_timestamps))) {
3746 					opt_rx->saw_tstamp = 1;
3747 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3748 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3749 				}
3750 				break;
3751 			case TCPOPT_SACK_PERM:
3752 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3753 				    !estab && sysctl_tcp_sack) {
3754 					opt_rx->sack_ok = 1;
3755 					tcp_sack_reset(opt_rx);
3756 				}
3757 				break;
3758 
3759 			case TCPOPT_SACK:
3760 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3761 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3762 				   opt_rx->sack_ok) {
3763 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3764 				}
3765 				break;
3766 #ifdef CONFIG_TCP_MD5SIG
3767 			case TCPOPT_MD5SIG:
3768 				/*
3769 				 * The MD5 Hash has already been
3770 				 * checked (see tcp_v{4,6}_do_rcv()).
3771 				 */
3772 				break;
3773 #endif
3774 			}
3775 
3776 			ptr += opsize-2;
3777 			length -= opsize;
3778 		}
3779 	}
3780 }
3781 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,struct tcphdr * th)3782 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3783 {
3784 	__be32 *ptr = (__be32 *)(th + 1);
3785 
3786 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3787 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3788 		tp->rx_opt.saw_tstamp = 1;
3789 		++ptr;
3790 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3791 		++ptr;
3792 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3793 		return 1;
3794 	}
3795 	return 0;
3796 }
3797 
3798 /* Fast parse options. This hopes to only see timestamps.
3799  * If it is wrong it falls back on tcp_parse_options().
3800  */
tcp_fast_parse_options(struct sk_buff * skb,struct tcphdr * th,struct tcp_sock * tp)3801 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3802 				  struct tcp_sock *tp)
3803 {
3804 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3805 		tp->rx_opt.saw_tstamp = 0;
3806 		return 0;
3807 	} else if (tp->rx_opt.tstamp_ok &&
3808 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3809 		if (tcp_parse_aligned_timestamp(tp, th))
3810 			return 1;
3811 	}
3812 	tcp_parse_options(skb, &tp->rx_opt, 1);
3813 	return 1;
3814 }
3815 
3816 #ifdef CONFIG_TCP_MD5SIG
3817 /*
3818  * Parse MD5 Signature option
3819  */
tcp_parse_md5sig_option(struct tcphdr * th)3820 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3821 {
3822 	int length = (th->doff << 2) - sizeof (*th);
3823 	u8 *ptr = (u8*)(th + 1);
3824 
3825 	/* If the TCP option is too short, we can short cut */
3826 	if (length < TCPOLEN_MD5SIG)
3827 		return NULL;
3828 
3829 	while (length > 0) {
3830 		int opcode = *ptr++;
3831 		int opsize;
3832 
3833 		switch(opcode) {
3834 		case TCPOPT_EOL:
3835 			return NULL;
3836 		case TCPOPT_NOP:
3837 			length--;
3838 			continue;
3839 		default:
3840 			opsize = *ptr++;
3841 			if (opsize < 2 || opsize > length)
3842 				return NULL;
3843 			if (opcode == TCPOPT_MD5SIG)
3844 				return ptr;
3845 		}
3846 		ptr += opsize - 2;
3847 		length -= opsize;
3848 	}
3849 	return NULL;
3850 }
3851 #endif
3852 
tcp_store_ts_recent(struct tcp_sock * tp)3853 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3854 {
3855 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3856 	tp->rx_opt.ts_recent_stamp = get_seconds();
3857 }
3858 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3859 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3860 {
3861 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3862 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3863 		 * extra check below makes sure this can only happen
3864 		 * for pure ACK frames.  -DaveM
3865 		 *
3866 		 * Not only, also it occurs for expired timestamps.
3867 		 */
3868 
3869 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3870 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3871 			tcp_store_ts_recent(tp);
3872 	}
3873 }
3874 
3875 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3876  *
3877  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3878  * it can pass through stack. So, the following predicate verifies that
3879  * this segment is not used for anything but congestion avoidance or
3880  * fast retransmit. Moreover, we even are able to eliminate most of such
3881  * second order effects, if we apply some small "replay" window (~RTO)
3882  * to timestamp space.
3883  *
3884  * All these measures still do not guarantee that we reject wrapped ACKs
3885  * on networks with high bandwidth, when sequence space is recycled fastly,
3886  * but it guarantees that such events will be very rare and do not affect
3887  * connection seriously. This doesn't look nice, but alas, PAWS is really
3888  * buggy extension.
3889  *
3890  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3891  * states that events when retransmit arrives after original data are rare.
3892  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3893  * the biggest problem on large power networks even with minor reordering.
3894  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3895  * up to bandwidth of 18Gigabit/sec. 8) ]
3896  */
3897 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)3898 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3899 {
3900 	struct tcp_sock *tp = tcp_sk(sk);
3901 	struct tcphdr *th = tcp_hdr(skb);
3902 	u32 seq = TCP_SKB_CB(skb)->seq;
3903 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3904 
3905 	return (/* 1. Pure ACK with correct sequence number. */
3906 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3907 
3908 		/* 2. ... and duplicate ACK. */
3909 		ack == tp->snd_una &&
3910 
3911 		/* 3. ... and does not update window. */
3912 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3913 
3914 		/* 4. ... and sits in replay window. */
3915 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3916 }
3917 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)3918 static inline int tcp_paws_discard(const struct sock *sk,
3919 				   const struct sk_buff *skb)
3920 {
3921 	const struct tcp_sock *tp = tcp_sk(sk);
3922 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3923 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3924 		!tcp_disordered_ack(sk, skb));
3925 }
3926 
3927 /* Check segment sequence number for validity.
3928  *
3929  * Segment controls are considered valid, if the segment
3930  * fits to the window after truncation to the window. Acceptability
3931  * of data (and SYN, FIN, of course) is checked separately.
3932  * See tcp_data_queue(), for example.
3933  *
3934  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3935  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3936  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3937  * (borrowed from freebsd)
3938  */
3939 
tcp_sequence(struct tcp_sock * tp,u32 seq,u32 end_seq)3940 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3941 {
3942 	return	!before(end_seq, tp->rcv_wup) &&
3943 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3944 }
3945 
3946 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)3947 static void tcp_reset(struct sock *sk)
3948 {
3949 	/* We want the right error as BSD sees it (and indeed as we do). */
3950 	switch (sk->sk_state) {
3951 	case TCP_SYN_SENT:
3952 		sk->sk_err = ECONNREFUSED;
3953 		break;
3954 	case TCP_CLOSE_WAIT:
3955 		sk->sk_err = EPIPE;
3956 		break;
3957 	case TCP_CLOSE:
3958 		return;
3959 	default:
3960 		sk->sk_err = ECONNRESET;
3961 	}
3962 
3963 	if (!sock_flag(sk, SOCK_DEAD))
3964 		sk->sk_error_report(sk);
3965 
3966 	tcp_done(sk);
3967 }
3968 
3969 /*
3970  * 	Process the FIN bit. This now behaves as it is supposed to work
3971  *	and the FIN takes effect when it is validly part of sequence
3972  *	space. Not before when we get holes.
3973  *
3974  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3975  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3976  *	TIME-WAIT)
3977  *
3978  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3979  *	close and we go into CLOSING (and later onto TIME-WAIT)
3980  *
3981  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3982  */
tcp_fin(struct sk_buff * skb,struct sock * sk,struct tcphdr * th)3983 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3984 {
3985 	struct tcp_sock *tp = tcp_sk(sk);
3986 
3987 	inet_csk_schedule_ack(sk);
3988 
3989 	sk->sk_shutdown |= RCV_SHUTDOWN;
3990 	sock_set_flag(sk, SOCK_DONE);
3991 
3992 	switch (sk->sk_state) {
3993 	case TCP_SYN_RECV:
3994 	case TCP_ESTABLISHED:
3995 		/* Move to CLOSE_WAIT */
3996 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3997 		inet_csk(sk)->icsk_ack.pingpong = 1;
3998 		break;
3999 
4000 	case TCP_CLOSE_WAIT:
4001 	case TCP_CLOSING:
4002 		/* Received a retransmission of the FIN, do
4003 		 * nothing.
4004 		 */
4005 		break;
4006 	case TCP_LAST_ACK:
4007 		/* RFC793: Remain in the LAST-ACK state. */
4008 		break;
4009 
4010 	case TCP_FIN_WAIT1:
4011 		/* This case occurs when a simultaneous close
4012 		 * happens, we must ack the received FIN and
4013 		 * enter the CLOSING state.
4014 		 */
4015 		tcp_send_ack(sk);
4016 		tcp_set_state(sk, TCP_CLOSING);
4017 		break;
4018 	case TCP_FIN_WAIT2:
4019 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4020 		tcp_send_ack(sk);
4021 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4022 		break;
4023 	default:
4024 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4025 		 * cases we should never reach this piece of code.
4026 		 */
4027 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4028 		       __func__, sk->sk_state);
4029 		break;
4030 	}
4031 
4032 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4033 	 * Probably, we should reset in this case. For now drop them.
4034 	 */
4035 	__skb_queue_purge(&tp->out_of_order_queue);
4036 	if (tcp_is_sack(tp))
4037 		tcp_sack_reset(&tp->rx_opt);
4038 	sk_mem_reclaim(sk);
4039 
4040 	if (!sock_flag(sk, SOCK_DEAD)) {
4041 		sk->sk_state_change(sk);
4042 
4043 		/* Do not send POLL_HUP for half duplex close. */
4044 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4045 		    sk->sk_state == TCP_CLOSE)
4046 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4047 		else
4048 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4049 	}
4050 }
4051 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4052 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4053 				  u32 end_seq)
4054 {
4055 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4056 		if (before(seq, sp->start_seq))
4057 			sp->start_seq = seq;
4058 		if (after(end_seq, sp->end_seq))
4059 			sp->end_seq = end_seq;
4060 		return 1;
4061 	}
4062 	return 0;
4063 }
4064 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4065 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4066 {
4067 	struct tcp_sock *tp = tcp_sk(sk);
4068 
4069 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4070 		int mib_idx;
4071 
4072 		if (before(seq, tp->rcv_nxt))
4073 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4074 		else
4075 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4076 
4077 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4078 
4079 		tp->rx_opt.dsack = 1;
4080 		tp->duplicate_sack[0].start_seq = seq;
4081 		tp->duplicate_sack[0].end_seq = end_seq;
4082 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
4083 	}
4084 }
4085 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4086 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4087 {
4088 	struct tcp_sock *tp = tcp_sk(sk);
4089 
4090 	if (!tp->rx_opt.dsack)
4091 		tcp_dsack_set(sk, seq, end_seq);
4092 	else
4093 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4094 }
4095 
tcp_send_dupack(struct sock * sk,struct sk_buff * skb)4096 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4097 {
4098 	struct tcp_sock *tp = tcp_sk(sk);
4099 
4100 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4101 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4102 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4103 		tcp_enter_quickack_mode(sk);
4104 
4105 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4106 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4107 
4108 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4109 				end_seq = tp->rcv_nxt;
4110 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4111 		}
4112 	}
4113 
4114 	tcp_send_ack(sk);
4115 }
4116 
4117 /* These routines update the SACK block as out-of-order packets arrive or
4118  * in-order packets close up the sequence space.
4119  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4120 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4121 {
4122 	int this_sack;
4123 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4124 	struct tcp_sack_block *swalk = sp + 1;
4125 
4126 	/* See if the recent change to the first SACK eats into
4127 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4128 	 */
4129 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4130 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4131 			int i;
4132 
4133 			/* Zap SWALK, by moving every further SACK up by one slot.
4134 			 * Decrease num_sacks.
4135 			 */
4136 			tp->rx_opt.num_sacks--;
4137 			tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4138 					       tp->rx_opt.dsack;
4139 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4140 				sp[i] = sp[i + 1];
4141 			continue;
4142 		}
4143 		this_sack++, swalk++;
4144 	}
4145 }
4146 
tcp_sack_swap(struct tcp_sack_block * sack1,struct tcp_sack_block * sack2)4147 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
4148 				 struct tcp_sack_block *sack2)
4149 {
4150 	__u32 tmp;
4151 
4152 	tmp = sack1->start_seq;
4153 	sack1->start_seq = sack2->start_seq;
4154 	sack2->start_seq = tmp;
4155 
4156 	tmp = sack1->end_seq;
4157 	sack1->end_seq = sack2->end_seq;
4158 	sack2->end_seq = tmp;
4159 }
4160 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4161 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4162 {
4163 	struct tcp_sock *tp = tcp_sk(sk);
4164 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4165 	int cur_sacks = tp->rx_opt.num_sacks;
4166 	int this_sack;
4167 
4168 	if (!cur_sacks)
4169 		goto new_sack;
4170 
4171 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4172 		if (tcp_sack_extend(sp, seq, end_seq)) {
4173 			/* Rotate this_sack to the first one. */
4174 			for (; this_sack > 0; this_sack--, sp--)
4175 				tcp_sack_swap(sp, sp - 1);
4176 			if (cur_sacks > 1)
4177 				tcp_sack_maybe_coalesce(tp);
4178 			return;
4179 		}
4180 	}
4181 
4182 	/* Could not find an adjacent existing SACK, build a new one,
4183 	 * put it at the front, and shift everyone else down.  We
4184 	 * always know there is at least one SACK present already here.
4185 	 *
4186 	 * If the sack array is full, forget about the last one.
4187 	 */
4188 	if (this_sack >= TCP_NUM_SACKS) {
4189 		this_sack--;
4190 		tp->rx_opt.num_sacks--;
4191 		sp--;
4192 	}
4193 	for (; this_sack > 0; this_sack--, sp--)
4194 		*sp = *(sp - 1);
4195 
4196 new_sack:
4197 	/* Build the new head SACK, and we're done. */
4198 	sp->start_seq = seq;
4199 	sp->end_seq = end_seq;
4200 	tp->rx_opt.num_sacks++;
4201 	tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
4202 }
4203 
4204 /* RCV.NXT advances, some SACKs should be eaten. */
4205 
tcp_sack_remove(struct tcp_sock * tp)4206 static void tcp_sack_remove(struct tcp_sock *tp)
4207 {
4208 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4209 	int num_sacks = tp->rx_opt.num_sacks;
4210 	int this_sack;
4211 
4212 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4213 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4214 		tp->rx_opt.num_sacks = 0;
4215 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
4216 		return;
4217 	}
4218 
4219 	for (this_sack = 0; this_sack < num_sacks;) {
4220 		/* Check if the start of the sack is covered by RCV.NXT. */
4221 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4222 			int i;
4223 
4224 			/* RCV.NXT must cover all the block! */
4225 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4226 
4227 			/* Zap this SACK, by moving forward any other SACKS. */
4228 			for (i=this_sack+1; i < num_sacks; i++)
4229 				tp->selective_acks[i-1] = tp->selective_acks[i];
4230 			num_sacks--;
4231 			continue;
4232 		}
4233 		this_sack++;
4234 		sp++;
4235 	}
4236 	if (num_sacks != tp->rx_opt.num_sacks) {
4237 		tp->rx_opt.num_sacks = num_sacks;
4238 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
4239 				       tp->rx_opt.dsack;
4240 	}
4241 }
4242 
4243 /* This one checks to see if we can put data from the
4244  * out_of_order queue into the receive_queue.
4245  */
tcp_ofo_queue(struct sock * sk)4246 static void tcp_ofo_queue(struct sock *sk)
4247 {
4248 	struct tcp_sock *tp = tcp_sk(sk);
4249 	__u32 dsack_high = tp->rcv_nxt;
4250 	struct sk_buff *skb;
4251 
4252 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4253 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4254 			break;
4255 
4256 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4257 			__u32 dsack = dsack_high;
4258 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4259 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4260 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4261 		}
4262 
4263 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4264 			SOCK_DEBUG(sk, "ofo packet was already received \n");
4265 			__skb_unlink(skb, &tp->out_of_order_queue);
4266 			__kfree_skb(skb);
4267 			continue;
4268 		}
4269 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4270 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4271 			   TCP_SKB_CB(skb)->end_seq);
4272 
4273 		__skb_unlink(skb, &tp->out_of_order_queue);
4274 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4275 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4276 		if (tcp_hdr(skb)->fin)
4277 			tcp_fin(skb, sk, tcp_hdr(skb));
4278 	}
4279 }
4280 
4281 static int tcp_prune_ofo_queue(struct sock *sk);
4282 static int tcp_prune_queue(struct sock *sk);
4283 
tcp_try_rmem_schedule(struct sock * sk,unsigned int size)4284 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4285 {
4286 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4287 	    !sk_rmem_schedule(sk, size)) {
4288 
4289 		if (tcp_prune_queue(sk) < 0)
4290 			return -1;
4291 
4292 		if (!sk_rmem_schedule(sk, size)) {
4293 			if (!tcp_prune_ofo_queue(sk))
4294 				return -1;
4295 
4296 			if (!sk_rmem_schedule(sk, size))
4297 				return -1;
4298 		}
4299 	}
4300 	return 0;
4301 }
4302 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4303 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4304 {
4305 	struct tcphdr *th = tcp_hdr(skb);
4306 	struct tcp_sock *tp = tcp_sk(sk);
4307 	int eaten = -1;
4308 
4309 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4310 		goto drop;
4311 
4312 	__skb_pull(skb, th->doff * 4);
4313 
4314 	TCP_ECN_accept_cwr(tp, skb);
4315 
4316 	if (tp->rx_opt.dsack) {
4317 		tp->rx_opt.dsack = 0;
4318 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
4319 	}
4320 
4321 	/*  Queue data for delivery to the user.
4322 	 *  Packets in sequence go to the receive queue.
4323 	 *  Out of sequence packets to the out_of_order_queue.
4324 	 */
4325 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4326 		if (tcp_receive_window(tp) == 0)
4327 			goto out_of_window;
4328 
4329 		/* Ok. In sequence. In window. */
4330 		if (tp->ucopy.task == current &&
4331 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4332 		    sock_owned_by_user(sk) && !tp->urg_data) {
4333 			int chunk = min_t(unsigned int, skb->len,
4334 					  tp->ucopy.len);
4335 
4336 			__set_current_state(TASK_RUNNING);
4337 
4338 			local_bh_enable();
4339 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4340 				tp->ucopy.len -= chunk;
4341 				tp->copied_seq += chunk;
4342 				eaten = (chunk == skb->len && !th->fin);
4343 				tcp_rcv_space_adjust(sk);
4344 			}
4345 			local_bh_disable();
4346 		}
4347 
4348 		if (eaten <= 0) {
4349 queue_and_out:
4350 			if (eaten < 0 &&
4351 			    tcp_try_rmem_schedule(sk, skb->truesize))
4352 				goto drop;
4353 
4354 			skb_set_owner_r(skb, sk);
4355 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4356 		}
4357 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4358 		if (skb->len)
4359 			tcp_event_data_recv(sk, skb);
4360 		if (th->fin)
4361 			tcp_fin(skb, sk, th);
4362 
4363 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4364 			tcp_ofo_queue(sk);
4365 
4366 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4367 			 * gap in queue is filled.
4368 			 */
4369 			if (skb_queue_empty(&tp->out_of_order_queue))
4370 				inet_csk(sk)->icsk_ack.pingpong = 0;
4371 		}
4372 
4373 		if (tp->rx_opt.num_sacks)
4374 			tcp_sack_remove(tp);
4375 
4376 		tcp_fast_path_check(sk);
4377 
4378 		if (eaten > 0)
4379 			__kfree_skb(skb);
4380 		else if (!sock_flag(sk, SOCK_DEAD))
4381 			sk->sk_data_ready(sk, 0);
4382 		return;
4383 	}
4384 
4385 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4386 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4387 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4388 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4389 
4390 out_of_window:
4391 		tcp_enter_quickack_mode(sk);
4392 		inet_csk_schedule_ack(sk);
4393 drop:
4394 		__kfree_skb(skb);
4395 		return;
4396 	}
4397 
4398 	/* Out of window. F.e. zero window probe. */
4399 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4400 		goto out_of_window;
4401 
4402 	tcp_enter_quickack_mode(sk);
4403 
4404 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4405 		/* Partial packet, seq < rcv_next < end_seq */
4406 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4407 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4408 			   TCP_SKB_CB(skb)->end_seq);
4409 
4410 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4411 
4412 		/* If window is closed, drop tail of packet. But after
4413 		 * remembering D-SACK for its head made in previous line.
4414 		 */
4415 		if (!tcp_receive_window(tp))
4416 			goto out_of_window;
4417 		goto queue_and_out;
4418 	}
4419 
4420 	TCP_ECN_check_ce(tp, skb);
4421 
4422 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4423 		goto drop;
4424 
4425 	/* Disable header prediction. */
4426 	tp->pred_flags = 0;
4427 	inet_csk_schedule_ack(sk);
4428 
4429 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4430 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4431 
4432 	skb_set_owner_r(skb, sk);
4433 
4434 	if (!skb_peek(&tp->out_of_order_queue)) {
4435 		/* Initial out of order segment, build 1 SACK. */
4436 		if (tcp_is_sack(tp)) {
4437 			tp->rx_opt.num_sacks = 1;
4438 			tp->rx_opt.dsack     = 0;
4439 			tp->rx_opt.eff_sacks = 1;
4440 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4441 			tp->selective_acks[0].end_seq =
4442 						TCP_SKB_CB(skb)->end_seq;
4443 		}
4444 		__skb_queue_head(&tp->out_of_order_queue, skb);
4445 	} else {
4446 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4447 		u32 seq = TCP_SKB_CB(skb)->seq;
4448 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4449 
4450 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4451 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4452 
4453 			if (!tp->rx_opt.num_sacks ||
4454 			    tp->selective_acks[0].end_seq != seq)
4455 				goto add_sack;
4456 
4457 			/* Common case: data arrive in order after hole. */
4458 			tp->selective_acks[0].end_seq = end_seq;
4459 			return;
4460 		}
4461 
4462 		/* Find place to insert this segment. */
4463 		do {
4464 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4465 				break;
4466 		} while ((skb1 = skb1->prev) !=
4467 			 (struct sk_buff *)&tp->out_of_order_queue);
4468 
4469 		/* Do skb overlap to previous one? */
4470 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4471 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4472 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4473 				/* All the bits are present. Drop. */
4474 				__kfree_skb(skb);
4475 				tcp_dsack_set(sk, seq, end_seq);
4476 				goto add_sack;
4477 			}
4478 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4479 				/* Partial overlap. */
4480 				tcp_dsack_set(sk, seq,
4481 					      TCP_SKB_CB(skb1)->end_seq);
4482 			} else {
4483 				skb1 = skb1->prev;
4484 			}
4485 		}
4486 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4487 
4488 		/* And clean segments covered by new one as whole. */
4489 		while ((skb1 = skb->next) !=
4490 		       (struct sk_buff *)&tp->out_of_order_queue &&
4491 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4492 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4493 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4494 						 end_seq);
4495 				break;
4496 			}
4497 			__skb_unlink(skb1, &tp->out_of_order_queue);
4498 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4499 					 TCP_SKB_CB(skb1)->end_seq);
4500 			__kfree_skb(skb1);
4501 		}
4502 
4503 add_sack:
4504 		if (tcp_is_sack(tp))
4505 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4506 	}
4507 }
4508 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list)4509 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4510 					struct sk_buff_head *list)
4511 {
4512 	struct sk_buff *next = skb->next;
4513 
4514 	__skb_unlink(skb, list);
4515 	__kfree_skb(skb);
4516 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4517 
4518 	return next;
4519 }
4520 
4521 /* Collapse contiguous sequence of skbs head..tail with
4522  * sequence numbers start..end.
4523  * Segments with FIN/SYN are not collapsed (only because this
4524  * simplifies code)
4525  */
4526 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4527 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4528 	     struct sk_buff *head, struct sk_buff *tail,
4529 	     u32 start, u32 end)
4530 {
4531 	struct sk_buff *skb;
4532 
4533 	/* First, check that queue is collapsible and find
4534 	 * the point where collapsing can be useful. */
4535 	for (skb = head; skb != tail;) {
4536 		/* No new bits? It is possible on ofo queue. */
4537 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4538 			skb = tcp_collapse_one(sk, skb, list);
4539 			continue;
4540 		}
4541 
4542 		/* The first skb to collapse is:
4543 		 * - not SYN/FIN and
4544 		 * - bloated or contains data before "start" or
4545 		 *   overlaps to the next one.
4546 		 */
4547 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4548 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4549 		     before(TCP_SKB_CB(skb)->seq, start) ||
4550 		     (skb->next != tail &&
4551 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4552 			break;
4553 
4554 		/* Decided to skip this, advance start seq. */
4555 		start = TCP_SKB_CB(skb)->end_seq;
4556 		skb = skb->next;
4557 	}
4558 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4559 		return;
4560 
4561 	while (before(start, end)) {
4562 		struct sk_buff *nskb;
4563 		unsigned int header = skb_headroom(skb);
4564 		int copy = SKB_MAX_ORDER(header, 0);
4565 
4566 		/* Too big header? This can happen with IPv6. */
4567 		if (copy < 0)
4568 			return;
4569 		if (end - start < copy)
4570 			copy = end - start;
4571 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4572 		if (!nskb)
4573 			return;
4574 
4575 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4576 		skb_set_network_header(nskb, (skb_network_header(skb) -
4577 					      skb->head));
4578 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4579 						skb->head));
4580 		skb_reserve(nskb, header);
4581 		memcpy(nskb->head, skb->head, header);
4582 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4583 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4584 		__skb_queue_before(list, skb, nskb);
4585 		skb_set_owner_r(nskb, sk);
4586 
4587 		/* Copy data, releasing collapsed skbs. */
4588 		while (copy > 0) {
4589 			int offset = start - TCP_SKB_CB(skb)->seq;
4590 			int size = TCP_SKB_CB(skb)->end_seq - start;
4591 
4592 			BUG_ON(offset < 0);
4593 			if (size > 0) {
4594 				size = min(copy, size);
4595 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4596 					BUG();
4597 				TCP_SKB_CB(nskb)->end_seq += size;
4598 				copy -= size;
4599 				start += size;
4600 			}
4601 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4602 				skb = tcp_collapse_one(sk, skb, list);
4603 				if (skb == tail ||
4604 				    tcp_hdr(skb)->syn ||
4605 				    tcp_hdr(skb)->fin)
4606 					return;
4607 			}
4608 		}
4609 	}
4610 }
4611 
4612 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4613  * and tcp_collapse() them until all the queue is collapsed.
4614  */
tcp_collapse_ofo_queue(struct sock * sk)4615 static void tcp_collapse_ofo_queue(struct sock *sk)
4616 {
4617 	struct tcp_sock *tp = tcp_sk(sk);
4618 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4619 	struct sk_buff *head;
4620 	u32 start, end;
4621 
4622 	if (skb == NULL)
4623 		return;
4624 
4625 	start = TCP_SKB_CB(skb)->seq;
4626 	end = TCP_SKB_CB(skb)->end_seq;
4627 	head = skb;
4628 
4629 	for (;;) {
4630 		skb = skb->next;
4631 
4632 		/* Segment is terminated when we see gap or when
4633 		 * we are at the end of all the queue. */
4634 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4635 		    after(TCP_SKB_CB(skb)->seq, end) ||
4636 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4637 			tcp_collapse(sk, &tp->out_of_order_queue,
4638 				     head, skb, start, end);
4639 			head = skb;
4640 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4641 				break;
4642 			/* Start new segment */
4643 			start = TCP_SKB_CB(skb)->seq;
4644 			end = TCP_SKB_CB(skb)->end_seq;
4645 		} else {
4646 			if (before(TCP_SKB_CB(skb)->seq, start))
4647 				start = TCP_SKB_CB(skb)->seq;
4648 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4649 				end = TCP_SKB_CB(skb)->end_seq;
4650 		}
4651 	}
4652 }
4653 
4654 /*
4655  * Purge the out-of-order queue.
4656  * Return true if queue was pruned.
4657  */
tcp_prune_ofo_queue(struct sock * sk)4658 static int tcp_prune_ofo_queue(struct sock *sk)
4659 {
4660 	struct tcp_sock *tp = tcp_sk(sk);
4661 	int res = 0;
4662 
4663 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4664 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4665 		__skb_queue_purge(&tp->out_of_order_queue);
4666 
4667 		/* Reset SACK state.  A conforming SACK implementation will
4668 		 * do the same at a timeout based retransmit.  When a connection
4669 		 * is in a sad state like this, we care only about integrity
4670 		 * of the connection not performance.
4671 		 */
4672 		if (tp->rx_opt.sack_ok)
4673 			tcp_sack_reset(&tp->rx_opt);
4674 		sk_mem_reclaim(sk);
4675 		res = 1;
4676 	}
4677 	return res;
4678 }
4679 
4680 /* Reduce allocated memory if we can, trying to get
4681  * the socket within its memory limits again.
4682  *
4683  * Return less than zero if we should start dropping frames
4684  * until the socket owning process reads some of the data
4685  * to stabilize the situation.
4686  */
tcp_prune_queue(struct sock * sk)4687 static int tcp_prune_queue(struct sock *sk)
4688 {
4689 	struct tcp_sock *tp = tcp_sk(sk);
4690 
4691 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4692 
4693 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4694 
4695 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4696 		tcp_clamp_window(sk);
4697 	else if (tcp_memory_pressure)
4698 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4699 
4700 	tcp_collapse_ofo_queue(sk);
4701 	tcp_collapse(sk, &sk->sk_receive_queue,
4702 		     sk->sk_receive_queue.next,
4703 		     (struct sk_buff *)&sk->sk_receive_queue,
4704 		     tp->copied_seq, tp->rcv_nxt);
4705 	sk_mem_reclaim(sk);
4706 
4707 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4708 		return 0;
4709 
4710 	/* Collapsing did not help, destructive actions follow.
4711 	 * This must not ever occur. */
4712 
4713 	tcp_prune_ofo_queue(sk);
4714 
4715 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4716 		return 0;
4717 
4718 	/* If we are really being abused, tell the caller to silently
4719 	 * drop receive data on the floor.  It will get retransmitted
4720 	 * and hopefully then we'll have sufficient space.
4721 	 */
4722 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4723 
4724 	/* Massive buffer overcommit. */
4725 	tp->pred_flags = 0;
4726 	return -1;
4727 }
4728 
4729 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4730  * As additional protections, we do not touch cwnd in retransmission phases,
4731  * and if application hit its sndbuf limit recently.
4732  */
tcp_cwnd_application_limited(struct sock * sk)4733 void tcp_cwnd_application_limited(struct sock *sk)
4734 {
4735 	struct tcp_sock *tp = tcp_sk(sk);
4736 
4737 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4738 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4739 		/* Limited by application or receiver window. */
4740 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4741 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4742 		if (win_used < tp->snd_cwnd) {
4743 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4744 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4745 		}
4746 		tp->snd_cwnd_used = 0;
4747 	}
4748 	tp->snd_cwnd_stamp = tcp_time_stamp;
4749 }
4750 
tcp_should_expand_sndbuf(struct sock * sk)4751 static int tcp_should_expand_sndbuf(struct sock *sk)
4752 {
4753 	struct tcp_sock *tp = tcp_sk(sk);
4754 
4755 	/* If the user specified a specific send buffer setting, do
4756 	 * not modify it.
4757 	 */
4758 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4759 		return 0;
4760 
4761 	/* If we are under global TCP memory pressure, do not expand.  */
4762 	if (tcp_memory_pressure)
4763 		return 0;
4764 
4765 	/* If we are under soft global TCP memory pressure, do not expand.  */
4766 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4767 		return 0;
4768 
4769 	/* If we filled the congestion window, do not expand.  */
4770 	if (tp->packets_out >= tp->snd_cwnd)
4771 		return 0;
4772 
4773 	return 1;
4774 }
4775 
4776 /* When incoming ACK allowed to free some skb from write_queue,
4777  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4778  * on the exit from tcp input handler.
4779  *
4780  * PROBLEM: sndbuf expansion does not work well with largesend.
4781  */
tcp_new_space(struct sock * sk)4782 static void tcp_new_space(struct sock *sk)
4783 {
4784 	struct tcp_sock *tp = tcp_sk(sk);
4785 
4786 	if (tcp_should_expand_sndbuf(sk)) {
4787 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4788 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4789 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4790 				     tp->reordering + 1);
4791 		sndmem *= 2 * demanded;
4792 		if (sndmem > sk->sk_sndbuf)
4793 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4794 		tp->snd_cwnd_stamp = tcp_time_stamp;
4795 	}
4796 
4797 	sk->sk_write_space(sk);
4798 }
4799 
tcp_check_space(struct sock * sk)4800 static void tcp_check_space(struct sock *sk)
4801 {
4802 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4803 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4804 		if (sk->sk_socket &&
4805 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4806 			tcp_new_space(sk);
4807 	}
4808 }
4809 
tcp_data_snd_check(struct sock * sk)4810 static inline void tcp_data_snd_check(struct sock *sk)
4811 {
4812 	tcp_push_pending_frames(sk);
4813 	tcp_check_space(sk);
4814 }
4815 
4816 /*
4817  * Check if sending an ack is needed.
4818  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)4819 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4820 {
4821 	struct tcp_sock *tp = tcp_sk(sk);
4822 
4823 	    /* More than one full frame received... */
4824 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4825 	     /* ... and right edge of window advances far enough.
4826 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4827 	      */
4828 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4829 	    /* We ACK each frame or... */
4830 	    tcp_in_quickack_mode(sk) ||
4831 	    /* We have out of order data. */
4832 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4833 		/* Then ack it now */
4834 		tcp_send_ack(sk);
4835 	} else {
4836 		/* Else, send delayed ack. */
4837 		tcp_send_delayed_ack(sk);
4838 	}
4839 }
4840 
tcp_ack_snd_check(struct sock * sk)4841 static inline void tcp_ack_snd_check(struct sock *sk)
4842 {
4843 	if (!inet_csk_ack_scheduled(sk)) {
4844 		/* We sent a data segment already. */
4845 		return;
4846 	}
4847 	__tcp_ack_snd_check(sk, 1);
4848 }
4849 
4850 /*
4851  *	This routine is only called when we have urgent data
4852  *	signaled. Its the 'slow' part of tcp_urg. It could be
4853  *	moved inline now as tcp_urg is only called from one
4854  *	place. We handle URGent data wrong. We have to - as
4855  *	BSD still doesn't use the correction from RFC961.
4856  *	For 1003.1g we should support a new option TCP_STDURG to permit
4857  *	either form (or just set the sysctl tcp_stdurg).
4858  */
4859 
tcp_check_urg(struct sock * sk,struct tcphdr * th)4860 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4861 {
4862 	struct tcp_sock *tp = tcp_sk(sk);
4863 	u32 ptr = ntohs(th->urg_ptr);
4864 
4865 	if (ptr && !sysctl_tcp_stdurg)
4866 		ptr--;
4867 	ptr += ntohl(th->seq);
4868 
4869 	/* Ignore urgent data that we've already seen and read. */
4870 	if (after(tp->copied_seq, ptr))
4871 		return;
4872 
4873 	/* Do not replay urg ptr.
4874 	 *
4875 	 * NOTE: interesting situation not covered by specs.
4876 	 * Misbehaving sender may send urg ptr, pointing to segment,
4877 	 * which we already have in ofo queue. We are not able to fetch
4878 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4879 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4880 	 * situations. But it is worth to think about possibility of some
4881 	 * DoSes using some hypothetical application level deadlock.
4882 	 */
4883 	if (before(ptr, tp->rcv_nxt))
4884 		return;
4885 
4886 	/* Do we already have a newer (or duplicate) urgent pointer? */
4887 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4888 		return;
4889 
4890 	/* Tell the world about our new urgent pointer. */
4891 	sk_send_sigurg(sk);
4892 
4893 	/* We may be adding urgent data when the last byte read was
4894 	 * urgent. To do this requires some care. We cannot just ignore
4895 	 * tp->copied_seq since we would read the last urgent byte again
4896 	 * as data, nor can we alter copied_seq until this data arrives
4897 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4898 	 *
4899 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4900 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4901 	 * and expect that both A and B disappear from stream. This is _wrong_.
4902 	 * Though this happens in BSD with high probability, this is occasional.
4903 	 * Any application relying on this is buggy. Note also, that fix "works"
4904 	 * only in this artificial test. Insert some normal data between A and B and we will
4905 	 * decline of BSD again. Verdict: it is better to remove to trap
4906 	 * buggy users.
4907 	 */
4908 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4909 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4910 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4911 		tp->copied_seq++;
4912 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4913 			__skb_unlink(skb, &sk->sk_receive_queue);
4914 			__kfree_skb(skb);
4915 		}
4916 	}
4917 
4918 	tp->urg_data = TCP_URG_NOTYET;
4919 	tp->urg_seq = ptr;
4920 
4921 	/* Disable header prediction. */
4922 	tp->pred_flags = 0;
4923 }
4924 
4925 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,struct tcphdr * th)4926 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4927 {
4928 	struct tcp_sock *tp = tcp_sk(sk);
4929 
4930 	/* Check if we get a new urgent pointer - normally not. */
4931 	if (th->urg)
4932 		tcp_check_urg(sk, th);
4933 
4934 	/* Do we wait for any urgent data? - normally not... */
4935 	if (tp->urg_data == TCP_URG_NOTYET) {
4936 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4937 			  th->syn;
4938 
4939 		/* Is the urgent pointer pointing into this packet? */
4940 		if (ptr < skb->len) {
4941 			u8 tmp;
4942 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4943 				BUG();
4944 			tp->urg_data = TCP_URG_VALID | tmp;
4945 			if (!sock_flag(sk, SOCK_DEAD))
4946 				sk->sk_data_ready(sk, 0);
4947 		}
4948 	}
4949 }
4950 
tcp_copy_to_iovec(struct sock * sk,struct sk_buff * skb,int hlen)4951 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4952 {
4953 	struct tcp_sock *tp = tcp_sk(sk);
4954 	int chunk = skb->len - hlen;
4955 	int err;
4956 
4957 	local_bh_enable();
4958 	if (skb_csum_unnecessary(skb))
4959 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4960 	else
4961 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4962 						       tp->ucopy.iov);
4963 
4964 	if (!err) {
4965 		tp->ucopy.len -= chunk;
4966 		tp->copied_seq += chunk;
4967 		tcp_rcv_space_adjust(sk);
4968 	}
4969 
4970 	local_bh_disable();
4971 	return err;
4972 }
4973 
__tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)4974 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4975 					    struct sk_buff *skb)
4976 {
4977 	__sum16 result;
4978 
4979 	if (sock_owned_by_user(sk)) {
4980 		local_bh_enable();
4981 		result = __tcp_checksum_complete(skb);
4982 		local_bh_disable();
4983 	} else {
4984 		result = __tcp_checksum_complete(skb);
4985 	}
4986 	return result;
4987 }
4988 
tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)4989 static inline int tcp_checksum_complete_user(struct sock *sk,
4990 					     struct sk_buff *skb)
4991 {
4992 	return !skb_csum_unnecessary(skb) &&
4993 	       __tcp_checksum_complete_user(sk, skb);
4994 }
4995 
4996 #ifdef CONFIG_NET_DMA
tcp_dma_try_early_copy(struct sock * sk,struct sk_buff * skb,int hlen)4997 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4998 				  int hlen)
4999 {
5000 	struct tcp_sock *tp = tcp_sk(sk);
5001 	int chunk = skb->len - hlen;
5002 	int dma_cookie;
5003 	int copied_early = 0;
5004 
5005 	if (tp->ucopy.wakeup)
5006 		return 0;
5007 
5008 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5009 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5010 
5011 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5012 
5013 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5014 							 skb, hlen,
5015 							 tp->ucopy.iov, chunk,
5016 							 tp->ucopy.pinned_list);
5017 
5018 		if (dma_cookie < 0)
5019 			goto out;
5020 
5021 		tp->ucopy.dma_cookie = dma_cookie;
5022 		copied_early = 1;
5023 
5024 		tp->ucopy.len -= chunk;
5025 		tp->copied_seq += chunk;
5026 		tcp_rcv_space_adjust(sk);
5027 
5028 		if ((tp->ucopy.len == 0) ||
5029 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5030 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5031 			tp->ucopy.wakeup = 1;
5032 			sk->sk_data_ready(sk, 0);
5033 		}
5034 	} else if (chunk > 0) {
5035 		tp->ucopy.wakeup = 1;
5036 		sk->sk_data_ready(sk, 0);
5037 	}
5038 out:
5039 	return copied_early;
5040 }
5041 #endif /* CONFIG_NET_DMA */
5042 
5043 /* Does PAWS and seqno based validation of an incoming segment, flags will
5044  * play significant role here.
5045  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int syn_inerr)5046 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5047 			      struct tcphdr *th, int syn_inerr)
5048 {
5049 	struct tcp_sock *tp = tcp_sk(sk);
5050 
5051 	/* RFC1323: H1. Apply PAWS check first. */
5052 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5053 	    tcp_paws_discard(sk, skb)) {
5054 		if (!th->rst) {
5055 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5056 			tcp_send_dupack(sk, skb);
5057 			goto discard;
5058 		}
5059 		/* Reset is accepted even if it did not pass PAWS. */
5060 	}
5061 
5062 	/* Step 1: check sequence number */
5063 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5064 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5065 		 * (RST) segments are validated by checking their SEQ-fields."
5066 		 * And page 69: "If an incoming segment is not acceptable,
5067 		 * an acknowledgment should be sent in reply (unless the RST
5068 		 * bit is set, if so drop the segment and return)".
5069 		 */
5070 		if (!th->rst)
5071 			tcp_send_dupack(sk, skb);
5072 		goto discard;
5073 	}
5074 
5075 	/* Step 2: check RST bit */
5076 	if (th->rst) {
5077 		tcp_reset(sk);
5078 		goto discard;
5079 	}
5080 
5081 	/* ts_recent update must be made after we are sure that the packet
5082 	 * is in window.
5083 	 */
5084 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5085 
5086 	/* step 3: check security and precedence [ignored] */
5087 
5088 	/* step 4: Check for a SYN in window. */
5089 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5090 		if (syn_inerr)
5091 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5092 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5093 		tcp_reset(sk);
5094 		return -1;
5095 	}
5096 
5097 	return 1;
5098 
5099 discard:
5100 	__kfree_skb(skb);
5101 	return 0;
5102 }
5103 
5104 /*
5105  *	TCP receive function for the ESTABLISHED state.
5106  *
5107  *	It is split into a fast path and a slow path. The fast path is
5108  * 	disabled when:
5109  *	- A zero window was announced from us - zero window probing
5110  *        is only handled properly in the slow path.
5111  *	- Out of order segments arrived.
5112  *	- Urgent data is expected.
5113  *	- There is no buffer space left
5114  *	- Unexpected TCP flags/window values/header lengths are received
5115  *	  (detected by checking the TCP header against pred_flags)
5116  *	- Data is sent in both directions. Fast path only supports pure senders
5117  *	  or pure receivers (this means either the sequence number or the ack
5118  *	  value must stay constant)
5119  *	- Unexpected TCP option.
5120  *
5121  *	When these conditions are not satisfied it drops into a standard
5122  *	receive procedure patterned after RFC793 to handle all cases.
5123  *	The first three cases are guaranteed by proper pred_flags setting,
5124  *	the rest is checked inline. Fast processing is turned on in
5125  *	tcp_data_queue when everything is OK.
5126  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,unsigned len)5127 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5128 			struct tcphdr *th, unsigned len)
5129 {
5130 	struct tcp_sock *tp = tcp_sk(sk);
5131 	int res;
5132 
5133 	/*
5134 	 *	Header prediction.
5135 	 *	The code loosely follows the one in the famous
5136 	 *	"30 instruction TCP receive" Van Jacobson mail.
5137 	 *
5138 	 *	Van's trick is to deposit buffers into socket queue
5139 	 *	on a device interrupt, to call tcp_recv function
5140 	 *	on the receive process context and checksum and copy
5141 	 *	the buffer to user space. smart...
5142 	 *
5143 	 *	Our current scheme is not silly either but we take the
5144 	 *	extra cost of the net_bh soft interrupt processing...
5145 	 *	We do checksum and copy also but from device to kernel.
5146 	 */
5147 
5148 	tp->rx_opt.saw_tstamp = 0;
5149 
5150 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5151 	 *	if header_prediction is to be made
5152 	 *	'S' will always be tp->tcp_header_len >> 2
5153 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5154 	 *  turn it off	(when there are holes in the receive
5155 	 *	 space for instance)
5156 	 *	PSH flag is ignored.
5157 	 */
5158 
5159 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5160 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5161 		int tcp_header_len = tp->tcp_header_len;
5162 
5163 		/* Timestamp header prediction: tcp_header_len
5164 		 * is automatically equal to th->doff*4 due to pred_flags
5165 		 * match.
5166 		 */
5167 
5168 		/* Check timestamp */
5169 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5170 			/* No? Slow path! */
5171 			if (!tcp_parse_aligned_timestamp(tp, th))
5172 				goto slow_path;
5173 
5174 			/* If PAWS failed, check it more carefully in slow path */
5175 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5176 				goto slow_path;
5177 
5178 			/* DO NOT update ts_recent here, if checksum fails
5179 			 * and timestamp was corrupted part, it will result
5180 			 * in a hung connection since we will drop all
5181 			 * future packets due to the PAWS test.
5182 			 */
5183 		}
5184 
5185 		if (len <= tcp_header_len) {
5186 			/* Bulk data transfer: sender */
5187 			if (len == tcp_header_len) {
5188 				/* Predicted packet is in window by definition.
5189 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5190 				 * Hence, check seq<=rcv_wup reduces to:
5191 				 */
5192 				if (tcp_header_len ==
5193 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5194 				    tp->rcv_nxt == tp->rcv_wup)
5195 					tcp_store_ts_recent(tp);
5196 
5197 				/* We know that such packets are checksummed
5198 				 * on entry.
5199 				 */
5200 				tcp_ack(sk, skb, 0);
5201 				__kfree_skb(skb);
5202 				tcp_data_snd_check(sk);
5203 				return 0;
5204 			} else { /* Header too small */
5205 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5206 				goto discard;
5207 			}
5208 		} else {
5209 			int eaten = 0;
5210 			int copied_early = 0;
5211 
5212 			if (tp->copied_seq == tp->rcv_nxt &&
5213 			    len - tcp_header_len <= tp->ucopy.len) {
5214 #ifdef CONFIG_NET_DMA
5215 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5216 					copied_early = 1;
5217 					eaten = 1;
5218 				}
5219 #endif
5220 				if (tp->ucopy.task == current &&
5221 				    sock_owned_by_user(sk) && !copied_early) {
5222 					__set_current_state(TASK_RUNNING);
5223 
5224 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5225 						eaten = 1;
5226 				}
5227 				if (eaten) {
5228 					/* Predicted packet is in window by definition.
5229 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5230 					 * Hence, check seq<=rcv_wup reduces to:
5231 					 */
5232 					if (tcp_header_len ==
5233 					    (sizeof(struct tcphdr) +
5234 					     TCPOLEN_TSTAMP_ALIGNED) &&
5235 					    tp->rcv_nxt == tp->rcv_wup)
5236 						tcp_store_ts_recent(tp);
5237 
5238 					tcp_rcv_rtt_measure_ts(sk, skb);
5239 
5240 					__skb_pull(skb, tcp_header_len);
5241 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5242 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5243 				}
5244 				if (copied_early)
5245 					tcp_cleanup_rbuf(sk, skb->len);
5246 			}
5247 			if (!eaten) {
5248 				if (tcp_checksum_complete_user(sk, skb))
5249 					goto csum_error;
5250 
5251 				/* Predicted packet is in window by definition.
5252 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5253 				 * Hence, check seq<=rcv_wup reduces to:
5254 				 */
5255 				if (tcp_header_len ==
5256 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5257 				    tp->rcv_nxt == tp->rcv_wup)
5258 					tcp_store_ts_recent(tp);
5259 
5260 				tcp_rcv_rtt_measure_ts(sk, skb);
5261 
5262 				if ((int)skb->truesize > sk->sk_forward_alloc)
5263 					goto step5;
5264 
5265 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5266 
5267 				/* Bulk data transfer: receiver */
5268 				__skb_pull(skb, tcp_header_len);
5269 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5270 				skb_set_owner_r(skb, sk);
5271 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5272 			}
5273 
5274 			tcp_event_data_recv(sk, skb);
5275 
5276 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5277 				/* Well, only one small jumplet in fast path... */
5278 				tcp_ack(sk, skb, FLAG_DATA);
5279 				tcp_data_snd_check(sk);
5280 				if (!inet_csk_ack_scheduled(sk))
5281 					goto no_ack;
5282 			}
5283 
5284 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5285 				__tcp_ack_snd_check(sk, 0);
5286 no_ack:
5287 #ifdef CONFIG_NET_DMA
5288 			if (copied_early)
5289 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5290 			else
5291 #endif
5292 			if (eaten)
5293 				__kfree_skb(skb);
5294 			else
5295 				sk->sk_data_ready(sk, 0);
5296 			return 0;
5297 		}
5298 	}
5299 
5300 slow_path:
5301 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5302 		goto csum_error;
5303 
5304 	/*
5305 	 *	Standard slow path.
5306 	 */
5307 
5308 	res = tcp_validate_incoming(sk, skb, th, 1);
5309 	if (res <= 0)
5310 		return -res;
5311 
5312 step5:
5313 	if (th->ack)
5314 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5315 
5316 	tcp_rcv_rtt_measure_ts(sk, skb);
5317 
5318 	/* Process urgent data. */
5319 	tcp_urg(sk, skb, th);
5320 
5321 	/* step 7: process the segment text */
5322 	tcp_data_queue(sk, skb);
5323 
5324 	tcp_data_snd_check(sk);
5325 	tcp_ack_snd_check(sk);
5326 	return 0;
5327 
5328 csum_error:
5329 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5330 
5331 discard:
5332 	__kfree_skb(skb);
5333 	return 0;
5334 }
5335 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,unsigned len)5336 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5337 					 struct tcphdr *th, unsigned len)
5338 {
5339 	struct tcp_sock *tp = tcp_sk(sk);
5340 	struct inet_connection_sock *icsk = inet_csk(sk);
5341 	int saved_clamp = tp->rx_opt.mss_clamp;
5342 
5343 	tcp_parse_options(skb, &tp->rx_opt, 0);
5344 
5345 	if (th->ack) {
5346 		/* rfc793:
5347 		 * "If the state is SYN-SENT then
5348 		 *    first check the ACK bit
5349 		 *      If the ACK bit is set
5350 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5351 		 *        a reset (unless the RST bit is set, if so drop
5352 		 *        the segment and return)"
5353 		 *
5354 		 *  We do not send data with SYN, so that RFC-correct
5355 		 *  test reduces to:
5356 		 */
5357 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5358 			goto reset_and_undo;
5359 
5360 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5361 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5362 			     tcp_time_stamp)) {
5363 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5364 			goto reset_and_undo;
5365 		}
5366 
5367 		/* Now ACK is acceptable.
5368 		 *
5369 		 * "If the RST bit is set
5370 		 *    If the ACK was acceptable then signal the user "error:
5371 		 *    connection reset", drop the segment, enter CLOSED state,
5372 		 *    delete TCB, and return."
5373 		 */
5374 
5375 		if (th->rst) {
5376 			tcp_reset(sk);
5377 			goto discard;
5378 		}
5379 
5380 		/* rfc793:
5381 		 *   "fifth, if neither of the SYN or RST bits is set then
5382 		 *    drop the segment and return."
5383 		 *
5384 		 *    See note below!
5385 		 *                                        --ANK(990513)
5386 		 */
5387 		if (!th->syn)
5388 			goto discard_and_undo;
5389 
5390 		/* rfc793:
5391 		 *   "If the SYN bit is on ...
5392 		 *    are acceptable then ...
5393 		 *    (our SYN has been ACKed), change the connection
5394 		 *    state to ESTABLISHED..."
5395 		 */
5396 
5397 		TCP_ECN_rcv_synack(tp, th);
5398 
5399 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5400 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5401 
5402 		/* Ok.. it's good. Set up sequence numbers and
5403 		 * move to established.
5404 		 */
5405 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5406 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5407 
5408 		/* RFC1323: The window in SYN & SYN/ACK segments is
5409 		 * never scaled.
5410 		 */
5411 		tp->snd_wnd = ntohs(th->window);
5412 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5413 
5414 		if (!tp->rx_opt.wscale_ok) {
5415 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5416 			tp->window_clamp = min(tp->window_clamp, 65535U);
5417 		}
5418 
5419 		if (tp->rx_opt.saw_tstamp) {
5420 			tp->rx_opt.tstamp_ok	   = 1;
5421 			tp->tcp_header_len =
5422 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5423 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5424 			tcp_store_ts_recent(tp);
5425 		} else {
5426 			tp->tcp_header_len = sizeof(struct tcphdr);
5427 		}
5428 
5429 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5430 			tcp_enable_fack(tp);
5431 
5432 		tcp_mtup_init(sk);
5433 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5434 		tcp_initialize_rcv_mss(sk);
5435 
5436 		/* Remember, tcp_poll() does not lock socket!
5437 		 * Change state from SYN-SENT only after copied_seq
5438 		 * is initialized. */
5439 		tp->copied_seq = tp->rcv_nxt;
5440 		smp_mb();
5441 		tcp_set_state(sk, TCP_ESTABLISHED);
5442 
5443 		security_inet_conn_established(sk, skb);
5444 
5445 		/* Make sure socket is routed, for correct metrics.  */
5446 		icsk->icsk_af_ops->rebuild_header(sk);
5447 
5448 		tcp_init_metrics(sk);
5449 
5450 		tcp_init_congestion_control(sk);
5451 
5452 		/* Prevent spurious tcp_cwnd_restart() on first data
5453 		 * packet.
5454 		 */
5455 		tp->lsndtime = tcp_time_stamp;
5456 
5457 		tcp_init_buffer_space(sk);
5458 
5459 		if (sock_flag(sk, SOCK_KEEPOPEN))
5460 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5461 
5462 		if (!tp->rx_opt.snd_wscale)
5463 			__tcp_fast_path_on(tp, tp->snd_wnd);
5464 		else
5465 			tp->pred_flags = 0;
5466 
5467 		if (!sock_flag(sk, SOCK_DEAD)) {
5468 			sk->sk_state_change(sk);
5469 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5470 		}
5471 
5472 		if (sk->sk_write_pending ||
5473 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5474 		    icsk->icsk_ack.pingpong) {
5475 			/* Save one ACK. Data will be ready after
5476 			 * several ticks, if write_pending is set.
5477 			 *
5478 			 * It may be deleted, but with this feature tcpdumps
5479 			 * look so _wonderfully_ clever, that I was not able
5480 			 * to stand against the temptation 8)     --ANK
5481 			 */
5482 			inet_csk_schedule_ack(sk);
5483 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5484 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5485 			tcp_incr_quickack(sk);
5486 			tcp_enter_quickack_mode(sk);
5487 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5488 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5489 
5490 discard:
5491 			__kfree_skb(skb);
5492 			return 0;
5493 		} else {
5494 			tcp_send_ack(sk);
5495 		}
5496 		return -1;
5497 	}
5498 
5499 	/* No ACK in the segment */
5500 
5501 	if (th->rst) {
5502 		/* rfc793:
5503 		 * "If the RST bit is set
5504 		 *
5505 		 *      Otherwise (no ACK) drop the segment and return."
5506 		 */
5507 
5508 		goto discard_and_undo;
5509 	}
5510 
5511 	/* PAWS check. */
5512 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5513 	    tcp_paws_check(&tp->rx_opt, 0))
5514 		goto discard_and_undo;
5515 
5516 	if (th->syn) {
5517 		/* We see SYN without ACK. It is attempt of
5518 		 * simultaneous connect with crossed SYNs.
5519 		 * Particularly, it can be connect to self.
5520 		 */
5521 		tcp_set_state(sk, TCP_SYN_RECV);
5522 
5523 		if (tp->rx_opt.saw_tstamp) {
5524 			tp->rx_opt.tstamp_ok = 1;
5525 			tcp_store_ts_recent(tp);
5526 			tp->tcp_header_len =
5527 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5528 		} else {
5529 			tp->tcp_header_len = sizeof(struct tcphdr);
5530 		}
5531 
5532 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5533 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5534 
5535 		/* RFC1323: The window in SYN & SYN/ACK segments is
5536 		 * never scaled.
5537 		 */
5538 		tp->snd_wnd    = ntohs(th->window);
5539 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5540 		tp->max_window = tp->snd_wnd;
5541 
5542 		TCP_ECN_rcv_syn(tp, th);
5543 
5544 		tcp_mtup_init(sk);
5545 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5546 		tcp_initialize_rcv_mss(sk);
5547 
5548 		tcp_send_synack(sk);
5549 #if 0
5550 		/* Note, we could accept data and URG from this segment.
5551 		 * There are no obstacles to make this.
5552 		 *
5553 		 * However, if we ignore data in ACKless segments sometimes,
5554 		 * we have no reasons to accept it sometimes.
5555 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5556 		 * is not flawless. So, discard packet for sanity.
5557 		 * Uncomment this return to process the data.
5558 		 */
5559 		return -1;
5560 #else
5561 		goto discard;
5562 #endif
5563 	}
5564 	/* "fifth, if neither of the SYN or RST bits is set then
5565 	 * drop the segment and return."
5566 	 */
5567 
5568 discard_and_undo:
5569 	tcp_clear_options(&tp->rx_opt);
5570 	tp->rx_opt.mss_clamp = saved_clamp;
5571 	goto discard;
5572 
5573 reset_and_undo:
5574 	tcp_clear_options(&tp->rx_opt);
5575 	tp->rx_opt.mss_clamp = saved_clamp;
5576 	return 1;
5577 }
5578 
5579 /*
5580  *	This function implements the receiving procedure of RFC 793 for
5581  *	all states except ESTABLISHED and TIME_WAIT.
5582  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5583  *	address independent.
5584  */
5585 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,unsigned len)5586 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5587 			  struct tcphdr *th, unsigned len)
5588 {
5589 	struct tcp_sock *tp = tcp_sk(sk);
5590 	struct inet_connection_sock *icsk = inet_csk(sk);
5591 	int queued = 0;
5592 	int res;
5593 
5594 	tp->rx_opt.saw_tstamp = 0;
5595 
5596 	switch (sk->sk_state) {
5597 	case TCP_CLOSE:
5598 		goto discard;
5599 
5600 	case TCP_LISTEN:
5601 		if (th->ack)
5602 			return 1;
5603 
5604 		if (th->rst)
5605 			goto discard;
5606 
5607 		if (th->syn) {
5608 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5609 				return 1;
5610 
5611 			/* Now we have several options: In theory there is
5612 			 * nothing else in the frame. KA9Q has an option to
5613 			 * send data with the syn, BSD accepts data with the
5614 			 * syn up to the [to be] advertised window and
5615 			 * Solaris 2.1 gives you a protocol error. For now
5616 			 * we just ignore it, that fits the spec precisely
5617 			 * and avoids incompatibilities. It would be nice in
5618 			 * future to drop through and process the data.
5619 			 *
5620 			 * Now that TTCP is starting to be used we ought to
5621 			 * queue this data.
5622 			 * But, this leaves one open to an easy denial of
5623 			 * service attack, and SYN cookies can't defend
5624 			 * against this problem. So, we drop the data
5625 			 * in the interest of security over speed unless
5626 			 * it's still in use.
5627 			 */
5628 			kfree_skb(skb);
5629 			return 0;
5630 		}
5631 		goto discard;
5632 
5633 	case TCP_SYN_SENT:
5634 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5635 		if (queued >= 0)
5636 			return queued;
5637 
5638 		/* Do step6 onward by hand. */
5639 		tcp_urg(sk, skb, th);
5640 		__kfree_skb(skb);
5641 		tcp_data_snd_check(sk);
5642 		return 0;
5643 	}
5644 
5645 	res = tcp_validate_incoming(sk, skb, th, 0);
5646 	if (res <= 0)
5647 		return -res;
5648 
5649 	/* step 5: check the ACK field */
5650 	if (th->ack) {
5651 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5652 
5653 		switch (sk->sk_state) {
5654 		case TCP_SYN_RECV:
5655 			if (acceptable) {
5656 				tp->copied_seq = tp->rcv_nxt;
5657 				smp_mb();
5658 				tcp_set_state(sk, TCP_ESTABLISHED);
5659 				sk->sk_state_change(sk);
5660 
5661 				/* Note, that this wakeup is only for marginal
5662 				 * crossed SYN case. Passively open sockets
5663 				 * are not waked up, because sk->sk_sleep ==
5664 				 * NULL and sk->sk_socket == NULL.
5665 				 */
5666 				if (sk->sk_socket)
5667 					sk_wake_async(sk,
5668 						      SOCK_WAKE_IO, POLL_OUT);
5669 
5670 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5671 				tp->snd_wnd = ntohs(th->window) <<
5672 					      tp->rx_opt.snd_wscale;
5673 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5674 					    TCP_SKB_CB(skb)->seq);
5675 
5676 				/* tcp_ack considers this ACK as duplicate
5677 				 * and does not calculate rtt.
5678 				 * Fix it at least with timestamps.
5679 				 */
5680 				if (tp->rx_opt.saw_tstamp &&
5681 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5682 					tcp_ack_saw_tstamp(sk, 0);
5683 
5684 				if (tp->rx_opt.tstamp_ok)
5685 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5686 
5687 				/* Make sure socket is routed, for
5688 				 * correct metrics.
5689 				 */
5690 				icsk->icsk_af_ops->rebuild_header(sk);
5691 
5692 				tcp_init_metrics(sk);
5693 
5694 				tcp_init_congestion_control(sk);
5695 
5696 				/* Prevent spurious tcp_cwnd_restart() on
5697 				 * first data packet.
5698 				 */
5699 				tp->lsndtime = tcp_time_stamp;
5700 
5701 				tcp_mtup_init(sk);
5702 				tcp_initialize_rcv_mss(sk);
5703 				tcp_init_buffer_space(sk);
5704 				tcp_fast_path_on(tp);
5705 			} else {
5706 				return 1;
5707 			}
5708 			break;
5709 
5710 		case TCP_FIN_WAIT1:
5711 			if (tp->snd_una == tp->write_seq) {
5712 				tcp_set_state(sk, TCP_FIN_WAIT2);
5713 				sk->sk_shutdown |= SEND_SHUTDOWN;
5714 				dst_confirm(sk->sk_dst_cache);
5715 
5716 				if (!sock_flag(sk, SOCK_DEAD))
5717 					/* Wake up lingering close() */
5718 					sk->sk_state_change(sk);
5719 				else {
5720 					int tmo;
5721 
5722 					if (tp->linger2 < 0 ||
5723 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5724 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5725 						tcp_done(sk);
5726 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5727 						return 1;
5728 					}
5729 
5730 					tmo = tcp_fin_time(sk);
5731 					if (tmo > TCP_TIMEWAIT_LEN) {
5732 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5733 					} else if (th->fin || sock_owned_by_user(sk)) {
5734 						/* Bad case. We could lose such FIN otherwise.
5735 						 * It is not a big problem, but it looks confusing
5736 						 * and not so rare event. We still can lose it now,
5737 						 * if it spins in bh_lock_sock(), but it is really
5738 						 * marginal case.
5739 						 */
5740 						inet_csk_reset_keepalive_timer(sk, tmo);
5741 					} else {
5742 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5743 						goto discard;
5744 					}
5745 				}
5746 			}
5747 			break;
5748 
5749 		case TCP_CLOSING:
5750 			if (tp->snd_una == tp->write_seq) {
5751 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5752 				goto discard;
5753 			}
5754 			break;
5755 
5756 		case TCP_LAST_ACK:
5757 			if (tp->snd_una == tp->write_seq) {
5758 				tcp_update_metrics(sk);
5759 				tcp_done(sk);
5760 				goto discard;
5761 			}
5762 			break;
5763 		}
5764 	} else
5765 		goto discard;
5766 
5767 	/* step 6: check the URG bit */
5768 	tcp_urg(sk, skb, th);
5769 
5770 	/* step 7: process the segment text */
5771 	switch (sk->sk_state) {
5772 	case TCP_CLOSE_WAIT:
5773 	case TCP_CLOSING:
5774 	case TCP_LAST_ACK:
5775 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5776 			break;
5777 	case TCP_FIN_WAIT1:
5778 	case TCP_FIN_WAIT2:
5779 		/* RFC 793 says to queue data in these states,
5780 		 * RFC 1122 says we MUST send a reset.
5781 		 * BSD 4.4 also does reset.
5782 		 */
5783 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5784 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5785 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5786 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5787 				tcp_reset(sk);
5788 				return 1;
5789 			}
5790 		}
5791 		/* Fall through */
5792 	case TCP_ESTABLISHED:
5793 		tcp_data_queue(sk, skb);
5794 		queued = 1;
5795 		break;
5796 	}
5797 
5798 	/* tcp_data could move socket to TIME-WAIT */
5799 	if (sk->sk_state != TCP_CLOSE) {
5800 		tcp_data_snd_check(sk);
5801 		tcp_ack_snd_check(sk);
5802 	}
5803 
5804 	if (!queued) {
5805 discard:
5806 		__kfree_skb(skb);
5807 	}
5808 	return 0;
5809 }
5810 
5811 EXPORT_SYMBOL(sysctl_tcp_ecn);
5812 EXPORT_SYMBOL(sysctl_tcp_reordering);
5813 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5814 EXPORT_SYMBOL(tcp_parse_options);
5815 #ifdef CONFIG_TCP_MD5SIG
5816 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5817 #endif
5818 EXPORT_SYMBOL(tcp_rcv_established);
5819 EXPORT_SYMBOL(tcp_rcv_state_process);
5820 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5821