1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #include <net/tcp.h>
38
39 #include <linux/compiler.h>
40 #include <linux/module.h>
41
42 /* People can turn this off for buggy TCP's found in printers etc. */
43 int sysctl_tcp_retrans_collapse __read_mostly = 1;
44
45 /* People can turn this on to work with those rare, broken TCPs that
46 * interpret the window field as a signed quantity.
47 */
48 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
49
50 /* This limits the percentage of the congestion window which we
51 * will allow a single TSO frame to consume. Building TSO frames
52 * which are too large can cause TCP streams to be bursty.
53 */
54 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
55
56 int sysctl_tcp_mtu_probing __read_mostly = 0;
57 int sysctl_tcp_base_mss __read_mostly = 512;
58
59 /* By default, RFC2861 behavior. */
60 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
61
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)62 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
63 {
64 struct tcp_sock *tp = tcp_sk(sk);
65 unsigned int prior_packets = tp->packets_out;
66
67 tcp_advance_send_head(sk, skb);
68 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
69
70 /* Don't override Nagle indefinately with F-RTO */
71 if (tp->frto_counter == 2)
72 tp->frto_counter = 3;
73
74 tp->packets_out += tcp_skb_pcount(skb);
75 if (!prior_packets)
76 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
77 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
78 }
79
80 /* SND.NXT, if window was not shrunk.
81 * If window has been shrunk, what should we make? It is not clear at all.
82 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
83 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
84 * invalid. OK, let's make this for now:
85 */
tcp_acceptable_seq(struct sock * sk)86 static inline __u32 tcp_acceptable_seq(struct sock *sk)
87 {
88 struct tcp_sock *tp = tcp_sk(sk);
89
90 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
91 return tp->snd_nxt;
92 else
93 return tcp_wnd_end(tp);
94 }
95
96 /* Calculate mss to advertise in SYN segment.
97 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
98 *
99 * 1. It is independent of path mtu.
100 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
101 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
102 * attached devices, because some buggy hosts are confused by
103 * large MSS.
104 * 4. We do not make 3, we advertise MSS, calculated from first
105 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
106 * This may be overridden via information stored in routing table.
107 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
108 * probably even Jumbo".
109 */
tcp_advertise_mss(struct sock * sk)110 static __u16 tcp_advertise_mss(struct sock *sk)
111 {
112 struct tcp_sock *tp = tcp_sk(sk);
113 struct dst_entry *dst = __sk_dst_get(sk);
114 int mss = tp->advmss;
115
116 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
117 mss = dst_metric(dst, RTAX_ADVMSS);
118 tp->advmss = mss;
119 }
120
121 return (__u16)mss;
122 }
123
124 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
125 * This is the first part of cwnd validation mechanism. */
tcp_cwnd_restart(struct sock * sk,struct dst_entry * dst)126 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
127 {
128 struct tcp_sock *tp = tcp_sk(sk);
129 s32 delta = tcp_time_stamp - tp->lsndtime;
130 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
131 u32 cwnd = tp->snd_cwnd;
132
133 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
134
135 tp->snd_ssthresh = tcp_current_ssthresh(sk);
136 restart_cwnd = min(restart_cwnd, cwnd);
137
138 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
139 cwnd >>= 1;
140 tp->snd_cwnd = max(cwnd, restart_cwnd);
141 tp->snd_cwnd_stamp = tcp_time_stamp;
142 tp->snd_cwnd_used = 0;
143 }
144
tcp_event_data_sent(struct tcp_sock * tp,struct sk_buff * skb,struct sock * sk)145 static void tcp_event_data_sent(struct tcp_sock *tp,
146 struct sk_buff *skb, struct sock *sk)
147 {
148 struct inet_connection_sock *icsk = inet_csk(sk);
149 const u32 now = tcp_time_stamp;
150
151 if (sysctl_tcp_slow_start_after_idle &&
152 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
153 tcp_cwnd_restart(sk, __sk_dst_get(sk));
154
155 tp->lsndtime = now;
156
157 /* If it is a reply for ato after last received
158 * packet, enter pingpong mode.
159 */
160 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
161 icsk->icsk_ack.pingpong = 1;
162 }
163
tcp_event_ack_sent(struct sock * sk,unsigned int pkts)164 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
165 {
166 tcp_dec_quickack_mode(sk, pkts);
167 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
168 }
169
170 /* Determine a window scaling and initial window to offer.
171 * Based on the assumption that the given amount of space
172 * will be offered. Store the results in the tp structure.
173 * NOTE: for smooth operation initial space offering should
174 * be a multiple of mss if possible. We assume here that mss >= 1.
175 * This MUST be enforced by all callers.
176 */
tcp_select_initial_window(int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale)177 void tcp_select_initial_window(int __space, __u32 mss,
178 __u32 *rcv_wnd, __u32 *window_clamp,
179 int wscale_ok, __u8 *rcv_wscale)
180 {
181 unsigned int space = (__space < 0 ? 0 : __space);
182
183 /* If no clamp set the clamp to the max possible scaled window */
184 if (*window_clamp == 0)
185 (*window_clamp) = (65535 << 14);
186 space = min(*window_clamp, space);
187
188 /* Quantize space offering to a multiple of mss if possible. */
189 if (space > mss)
190 space = (space / mss) * mss;
191
192 /* NOTE: offering an initial window larger than 32767
193 * will break some buggy TCP stacks. If the admin tells us
194 * it is likely we could be speaking with such a buggy stack
195 * we will truncate our initial window offering to 32K-1
196 * unless the remote has sent us a window scaling option,
197 * which we interpret as a sign the remote TCP is not
198 * misinterpreting the window field as a signed quantity.
199 */
200 if (sysctl_tcp_workaround_signed_windows)
201 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
202 else
203 (*rcv_wnd) = space;
204
205 (*rcv_wscale) = 0;
206 if (wscale_ok) {
207 /* Set window scaling on max possible window
208 * See RFC1323 for an explanation of the limit to 14
209 */
210 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
211 space = min_t(u32, space, *window_clamp);
212 while (space > 65535 && (*rcv_wscale) < 14) {
213 space >>= 1;
214 (*rcv_wscale)++;
215 }
216 }
217
218 /* Set initial window to value enough for senders,
219 * following RFC2414. Senders, not following this RFC,
220 * will be satisfied with 2.
221 */
222 if (mss > (1 << *rcv_wscale)) {
223 int init_cwnd = 4;
224 if (mss > 1460 * 3)
225 init_cwnd = 2;
226 else if (mss > 1460)
227 init_cwnd = 3;
228 if (*rcv_wnd > init_cwnd * mss)
229 *rcv_wnd = init_cwnd * mss;
230 }
231
232 /* Set the clamp no higher than max representable value */
233 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
234 }
235
236 /* Chose a new window to advertise, update state in tcp_sock for the
237 * socket, and return result with RFC1323 scaling applied. The return
238 * value can be stuffed directly into th->window for an outgoing
239 * frame.
240 */
tcp_select_window(struct sock * sk)241 static u16 tcp_select_window(struct sock *sk)
242 {
243 struct tcp_sock *tp = tcp_sk(sk);
244 u32 cur_win = tcp_receive_window(tp);
245 u32 new_win = __tcp_select_window(sk);
246
247 /* Never shrink the offered window */
248 if (new_win < cur_win) {
249 /* Danger Will Robinson!
250 * Don't update rcv_wup/rcv_wnd here or else
251 * we will not be able to advertise a zero
252 * window in time. --DaveM
253 *
254 * Relax Will Robinson.
255 */
256 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
257 }
258 tp->rcv_wnd = new_win;
259 tp->rcv_wup = tp->rcv_nxt;
260
261 /* Make sure we do not exceed the maximum possible
262 * scaled window.
263 */
264 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
265 new_win = min(new_win, MAX_TCP_WINDOW);
266 else
267 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
268
269 /* RFC1323 scaling applied */
270 new_win >>= tp->rx_opt.rcv_wscale;
271
272 /* If we advertise zero window, disable fast path. */
273 if (new_win == 0)
274 tp->pred_flags = 0;
275
276 return new_win;
277 }
278
TCP_ECN_send_synack(struct tcp_sock * tp,struct sk_buff * skb)279 static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb)
280 {
281 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR;
282 if (!(tp->ecn_flags & TCP_ECN_OK))
283 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE;
284 }
285
TCP_ECN_send_syn(struct sock * sk,struct sk_buff * skb)286 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
287 {
288 struct tcp_sock *tp = tcp_sk(sk);
289
290 tp->ecn_flags = 0;
291 if (sysctl_tcp_ecn) {
292 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR;
293 tp->ecn_flags = TCP_ECN_OK;
294 }
295 }
296
297 static __inline__ void
TCP_ECN_make_synack(struct request_sock * req,struct tcphdr * th)298 TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th)
299 {
300 if (inet_rsk(req)->ecn_ok)
301 th->ece = 1;
302 }
303
TCP_ECN_send(struct sock * sk,struct sk_buff * skb,int tcp_header_len)304 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
305 int tcp_header_len)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308
309 if (tp->ecn_flags & TCP_ECN_OK) {
310 /* Not-retransmitted data segment: set ECT and inject CWR. */
311 if (skb->len != tcp_header_len &&
312 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
313 INET_ECN_xmit(sk);
314 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
315 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
316 tcp_hdr(skb)->cwr = 1;
317 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
318 }
319 } else {
320 /* ACK or retransmitted segment: clear ECT|CE */
321 INET_ECN_dontxmit(sk);
322 }
323 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
324 tcp_hdr(skb)->ece = 1;
325 }
326 }
327
328 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
329 * auto increment end seqno.
330 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)331 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
332 {
333 skb->csum = 0;
334
335 TCP_SKB_CB(skb)->flags = flags;
336 TCP_SKB_CB(skb)->sacked = 0;
337
338 skb_shinfo(skb)->gso_segs = 1;
339 skb_shinfo(skb)->gso_size = 0;
340 skb_shinfo(skb)->gso_type = 0;
341
342 TCP_SKB_CB(skb)->seq = seq;
343 if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN))
344 seq++;
345 TCP_SKB_CB(skb)->end_seq = seq;
346 }
347
tcp_urg_mode(const struct tcp_sock * tp)348 static inline int tcp_urg_mode(const struct tcp_sock *tp)
349 {
350 return tp->snd_una != tp->snd_up;
351 }
352
353 #define OPTION_SACK_ADVERTISE (1 << 0)
354 #define OPTION_TS (1 << 1)
355 #define OPTION_MD5 (1 << 2)
356
357 struct tcp_out_options {
358 u8 options; /* bit field of OPTION_* */
359 u8 ws; /* window scale, 0 to disable */
360 u8 num_sack_blocks; /* number of SACK blocks to include */
361 u16 mss; /* 0 to disable */
362 __u32 tsval, tsecr; /* need to include OPTION_TS */
363 };
364
365 /* Beware: Something in the Internet is very sensitive to the ordering of
366 * TCP options, we learned this through the hard way, so be careful here.
367 * Luckily we can at least blame others for their non-compliance but from
368 * inter-operatibility perspective it seems that we're somewhat stuck with
369 * the ordering which we have been using if we want to keep working with
370 * those broken things (not that it currently hurts anybody as there isn't
371 * particular reason why the ordering would need to be changed).
372 *
373 * At least SACK_PERM as the first option is known to lead to a disaster
374 * (but it may well be that other scenarios fail similarly).
375 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,const struct tcp_out_options * opts,__u8 ** md5_hash)376 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
377 const struct tcp_out_options *opts,
378 __u8 **md5_hash) {
379 if (unlikely(OPTION_MD5 & opts->options)) {
380 *ptr++ = htonl((TCPOPT_NOP << 24) |
381 (TCPOPT_NOP << 16) |
382 (TCPOPT_MD5SIG << 8) |
383 TCPOLEN_MD5SIG);
384 *md5_hash = (__u8 *)ptr;
385 ptr += 4;
386 } else {
387 *md5_hash = NULL;
388 }
389
390 if (unlikely(opts->mss)) {
391 *ptr++ = htonl((TCPOPT_MSS << 24) |
392 (TCPOLEN_MSS << 16) |
393 opts->mss);
394 }
395
396 if (likely(OPTION_TS & opts->options)) {
397 if (unlikely(OPTION_SACK_ADVERTISE & opts->options)) {
398 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
399 (TCPOLEN_SACK_PERM << 16) |
400 (TCPOPT_TIMESTAMP << 8) |
401 TCPOLEN_TIMESTAMP);
402 } else {
403 *ptr++ = htonl((TCPOPT_NOP << 24) |
404 (TCPOPT_NOP << 16) |
405 (TCPOPT_TIMESTAMP << 8) |
406 TCPOLEN_TIMESTAMP);
407 }
408 *ptr++ = htonl(opts->tsval);
409 *ptr++ = htonl(opts->tsecr);
410 }
411
412 if (unlikely(OPTION_SACK_ADVERTISE & opts->options &&
413 !(OPTION_TS & opts->options))) {
414 *ptr++ = htonl((TCPOPT_NOP << 24) |
415 (TCPOPT_NOP << 16) |
416 (TCPOPT_SACK_PERM << 8) |
417 TCPOLEN_SACK_PERM);
418 }
419
420 if (unlikely(opts->ws)) {
421 *ptr++ = htonl((TCPOPT_NOP << 24) |
422 (TCPOPT_WINDOW << 16) |
423 (TCPOLEN_WINDOW << 8) |
424 opts->ws);
425 }
426
427 if (unlikely(opts->num_sack_blocks)) {
428 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
429 tp->duplicate_sack : tp->selective_acks;
430 int this_sack;
431
432 *ptr++ = htonl((TCPOPT_NOP << 24) |
433 (TCPOPT_NOP << 16) |
434 (TCPOPT_SACK << 8) |
435 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
436 TCPOLEN_SACK_PERBLOCK)));
437
438 for (this_sack = 0; this_sack < opts->num_sack_blocks;
439 ++this_sack) {
440 *ptr++ = htonl(sp[this_sack].start_seq);
441 *ptr++ = htonl(sp[this_sack].end_seq);
442 }
443
444 if (tp->rx_opt.dsack) {
445 tp->rx_opt.dsack = 0;
446 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
447 }
448 }
449 }
450
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)451 static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb,
452 struct tcp_out_options *opts,
453 struct tcp_md5sig_key **md5) {
454 struct tcp_sock *tp = tcp_sk(sk);
455 unsigned size = 0;
456
457 #ifdef CONFIG_TCP_MD5SIG
458 *md5 = tp->af_specific->md5_lookup(sk, sk);
459 if (*md5) {
460 opts->options |= OPTION_MD5;
461 size += TCPOLEN_MD5SIG_ALIGNED;
462 }
463 #else
464 *md5 = NULL;
465 #endif
466
467 /* We always get an MSS option. The option bytes which will be seen in
468 * normal data packets should timestamps be used, must be in the MSS
469 * advertised. But we subtract them from tp->mss_cache so that
470 * calculations in tcp_sendmsg are simpler etc. So account for this
471 * fact here if necessary. If we don't do this correctly, as a
472 * receiver we won't recognize data packets as being full sized when we
473 * should, and thus we won't abide by the delayed ACK rules correctly.
474 * SACKs don't matter, we never delay an ACK when we have any of those
475 * going out. */
476 opts->mss = tcp_advertise_mss(sk);
477 size += TCPOLEN_MSS_ALIGNED;
478
479 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
480 opts->options |= OPTION_TS;
481 opts->tsval = TCP_SKB_CB(skb)->when;
482 opts->tsecr = tp->rx_opt.ts_recent;
483 size += TCPOLEN_TSTAMP_ALIGNED;
484 }
485 if (likely(sysctl_tcp_window_scaling)) {
486 opts->ws = tp->rx_opt.rcv_wscale;
487 if (likely(opts->ws))
488 size += TCPOLEN_WSCALE_ALIGNED;
489 }
490 if (likely(sysctl_tcp_sack)) {
491 opts->options |= OPTION_SACK_ADVERTISE;
492 if (unlikely(!(OPTION_TS & opts->options)))
493 size += TCPOLEN_SACKPERM_ALIGNED;
494 }
495
496 return size;
497 }
498
tcp_synack_options(struct sock * sk,struct request_sock * req,unsigned mss,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)499 static unsigned tcp_synack_options(struct sock *sk,
500 struct request_sock *req,
501 unsigned mss, struct sk_buff *skb,
502 struct tcp_out_options *opts,
503 struct tcp_md5sig_key **md5) {
504 unsigned size = 0;
505 struct inet_request_sock *ireq = inet_rsk(req);
506 char doing_ts;
507
508 #ifdef CONFIG_TCP_MD5SIG
509 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
510 if (*md5) {
511 opts->options |= OPTION_MD5;
512 size += TCPOLEN_MD5SIG_ALIGNED;
513 }
514 #else
515 *md5 = NULL;
516 #endif
517
518 /* we can't fit any SACK blocks in a packet with MD5 + TS
519 options. There was discussion about disabling SACK rather than TS in
520 order to fit in better with old, buggy kernels, but that was deemed
521 to be unnecessary. */
522 doing_ts = ireq->tstamp_ok && !(*md5 && ireq->sack_ok);
523
524 opts->mss = mss;
525 size += TCPOLEN_MSS_ALIGNED;
526
527 if (likely(ireq->wscale_ok)) {
528 opts->ws = ireq->rcv_wscale;
529 if (likely(opts->ws))
530 size += TCPOLEN_WSCALE_ALIGNED;
531 }
532 if (likely(doing_ts)) {
533 opts->options |= OPTION_TS;
534 opts->tsval = TCP_SKB_CB(skb)->when;
535 opts->tsecr = req->ts_recent;
536 size += TCPOLEN_TSTAMP_ALIGNED;
537 }
538 if (likely(ireq->sack_ok)) {
539 opts->options |= OPTION_SACK_ADVERTISE;
540 if (unlikely(!doing_ts))
541 size += TCPOLEN_SACKPERM_ALIGNED;
542 }
543
544 return size;
545 }
546
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)547 static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb,
548 struct tcp_out_options *opts,
549 struct tcp_md5sig_key **md5) {
550 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
551 struct tcp_sock *tp = tcp_sk(sk);
552 unsigned size = 0;
553
554 #ifdef CONFIG_TCP_MD5SIG
555 *md5 = tp->af_specific->md5_lookup(sk, sk);
556 if (unlikely(*md5)) {
557 opts->options |= OPTION_MD5;
558 size += TCPOLEN_MD5SIG_ALIGNED;
559 }
560 #else
561 *md5 = NULL;
562 #endif
563
564 if (likely(tp->rx_opt.tstamp_ok)) {
565 opts->options |= OPTION_TS;
566 opts->tsval = tcb ? tcb->when : 0;
567 opts->tsecr = tp->rx_opt.ts_recent;
568 size += TCPOLEN_TSTAMP_ALIGNED;
569 }
570
571 if (unlikely(tp->rx_opt.eff_sacks)) {
572 const unsigned remaining = MAX_TCP_OPTION_SPACE - size;
573 opts->num_sack_blocks =
574 min_t(unsigned, tp->rx_opt.eff_sacks,
575 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
576 TCPOLEN_SACK_PERBLOCK);
577 size += TCPOLEN_SACK_BASE_ALIGNED +
578 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
579 }
580
581 return size;
582 }
583
584 /* This routine actually transmits TCP packets queued in by
585 * tcp_do_sendmsg(). This is used by both the initial
586 * transmission and possible later retransmissions.
587 * All SKB's seen here are completely headerless. It is our
588 * job to build the TCP header, and pass the packet down to
589 * IP so it can do the same plus pass the packet off to the
590 * device.
591 *
592 * We are working here with either a clone of the original
593 * SKB, or a fresh unique copy made by the retransmit engine.
594 */
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)595 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
596 gfp_t gfp_mask)
597 {
598 const struct inet_connection_sock *icsk = inet_csk(sk);
599 struct inet_sock *inet;
600 struct tcp_sock *tp;
601 struct tcp_skb_cb *tcb;
602 struct tcp_out_options opts;
603 unsigned tcp_options_size, tcp_header_size;
604 struct tcp_md5sig_key *md5;
605 __u8 *md5_hash_location;
606 struct tcphdr *th;
607 int err;
608
609 BUG_ON(!skb || !tcp_skb_pcount(skb));
610
611 /* If congestion control is doing timestamping, we must
612 * take such a timestamp before we potentially clone/copy.
613 */
614 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
615 __net_timestamp(skb);
616
617 if (likely(clone_it)) {
618 if (unlikely(skb_cloned(skb)))
619 skb = pskb_copy(skb, gfp_mask);
620 else
621 skb = skb_clone(skb, gfp_mask);
622 if (unlikely(!skb))
623 return -ENOBUFS;
624 }
625
626 inet = inet_sk(sk);
627 tp = tcp_sk(sk);
628 tcb = TCP_SKB_CB(skb);
629 memset(&opts, 0, sizeof(opts));
630
631 if (unlikely(tcb->flags & TCPCB_FLAG_SYN))
632 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
633 else
634 tcp_options_size = tcp_established_options(sk, skb, &opts,
635 &md5);
636 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
637
638 if (tcp_packets_in_flight(tp) == 0)
639 tcp_ca_event(sk, CA_EVENT_TX_START);
640
641 skb_push(skb, tcp_header_size);
642 skb_reset_transport_header(skb);
643 skb_set_owner_w(skb, sk);
644
645 /* Build TCP header and checksum it. */
646 th = tcp_hdr(skb);
647 th->source = inet->sport;
648 th->dest = inet->dport;
649 th->seq = htonl(tcb->seq);
650 th->ack_seq = htonl(tp->rcv_nxt);
651 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
652 tcb->flags);
653
654 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
655 /* RFC1323: The window in SYN & SYN/ACK segments
656 * is never scaled.
657 */
658 th->window = htons(min(tp->rcv_wnd, 65535U));
659 } else {
660 th->window = htons(tcp_select_window(sk));
661 }
662 th->check = 0;
663 th->urg_ptr = 0;
664
665 /* The urg_mode check is necessary during a below snd_una win probe */
666 if (unlikely(tcp_urg_mode(tp) &&
667 between(tp->snd_up, tcb->seq + 1, tcb->seq + 0xFFFF))) {
668 th->urg_ptr = htons(tp->snd_up - tcb->seq);
669 th->urg = 1;
670 }
671
672 tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location);
673 if (likely((tcb->flags & TCPCB_FLAG_SYN) == 0))
674 TCP_ECN_send(sk, skb, tcp_header_size);
675
676 #ifdef CONFIG_TCP_MD5SIG
677 /* Calculate the MD5 hash, as we have all we need now */
678 if (md5) {
679 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
680 tp->af_specific->calc_md5_hash(md5_hash_location,
681 md5, sk, NULL, skb);
682 }
683 #endif
684
685 icsk->icsk_af_ops->send_check(sk, skb->len, skb);
686
687 if (likely(tcb->flags & TCPCB_FLAG_ACK))
688 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
689
690 if (skb->len != tcp_header_size)
691 tcp_event_data_sent(tp, skb, sk);
692
693 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
694 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
695
696 err = icsk->icsk_af_ops->queue_xmit(skb, 0);
697 if (likely(err <= 0))
698 return err;
699
700 tcp_enter_cwr(sk, 1);
701
702 return net_xmit_eval(err);
703 }
704
705 /* This routine just queue's the buffer
706 *
707 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
708 * otherwise socket can stall.
709 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)710 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
711 {
712 struct tcp_sock *tp = tcp_sk(sk);
713
714 /* Advance write_seq and place onto the write_queue. */
715 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
716 skb_header_release(skb);
717 tcp_add_write_queue_tail(sk, skb);
718 sk->sk_wmem_queued += skb->truesize;
719 sk_mem_charge(sk, skb->truesize);
720 }
721
tcp_set_skb_tso_segs(struct sock * sk,struct sk_buff * skb,unsigned int mss_now)722 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb,
723 unsigned int mss_now)
724 {
725 if (skb->len <= mss_now || !sk_can_gso(sk)) {
726 /* Avoid the costly divide in the normal
727 * non-TSO case.
728 */
729 skb_shinfo(skb)->gso_segs = 1;
730 skb_shinfo(skb)->gso_size = 0;
731 skb_shinfo(skb)->gso_type = 0;
732 } else {
733 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
734 skb_shinfo(skb)->gso_size = mss_now;
735 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
736 }
737 }
738
739 /* When a modification to fackets out becomes necessary, we need to check
740 * skb is counted to fackets_out or not.
741 */
tcp_adjust_fackets_out(struct sock * sk,struct sk_buff * skb,int decr)742 static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb,
743 int decr)
744 {
745 struct tcp_sock *tp = tcp_sk(sk);
746
747 if (!tp->sacked_out || tcp_is_reno(tp))
748 return;
749
750 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
751 tp->fackets_out -= decr;
752 }
753
754 /* Function to create two new TCP segments. Shrinks the given segment
755 * to the specified size and appends a new segment with the rest of the
756 * packet to the list. This won't be called frequently, I hope.
757 * Remember, these are still headerless SKBs at this point.
758 */
tcp_fragment(struct sock * sk,struct sk_buff * skb,u32 len,unsigned int mss_now)759 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
760 unsigned int mss_now)
761 {
762 struct tcp_sock *tp = tcp_sk(sk);
763 struct sk_buff *buff;
764 int nsize, old_factor;
765 int nlen;
766 u16 flags;
767
768 BUG_ON(len > skb->len);
769
770 tcp_clear_retrans_hints_partial(tp);
771 nsize = skb_headlen(skb) - len;
772 if (nsize < 0)
773 nsize = 0;
774
775 if (skb_cloned(skb) &&
776 skb_is_nonlinear(skb) &&
777 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
778 return -ENOMEM;
779
780 /* Get a new skb... force flag on. */
781 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
782 if (buff == NULL)
783 return -ENOMEM; /* We'll just try again later. */
784
785 sk->sk_wmem_queued += buff->truesize;
786 sk_mem_charge(sk, buff->truesize);
787 nlen = skb->len - len - nsize;
788 buff->truesize += nlen;
789 skb->truesize -= nlen;
790
791 /* Correct the sequence numbers. */
792 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
793 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
794 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
795
796 /* PSH and FIN should only be set in the second packet. */
797 flags = TCP_SKB_CB(skb)->flags;
798 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
799 TCP_SKB_CB(buff)->flags = flags;
800 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
801
802 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
803 /* Copy and checksum data tail into the new buffer. */
804 buff->csum = csum_partial_copy_nocheck(skb->data + len,
805 skb_put(buff, nsize),
806 nsize, 0);
807
808 skb_trim(skb, len);
809
810 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
811 } else {
812 skb->ip_summed = CHECKSUM_PARTIAL;
813 skb_split(skb, buff, len);
814 }
815
816 buff->ip_summed = skb->ip_summed;
817
818 /* Looks stupid, but our code really uses when of
819 * skbs, which it never sent before. --ANK
820 */
821 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
822 buff->tstamp = skb->tstamp;
823
824 old_factor = tcp_skb_pcount(skb);
825
826 /* Fix up tso_factor for both original and new SKB. */
827 tcp_set_skb_tso_segs(sk, skb, mss_now);
828 tcp_set_skb_tso_segs(sk, buff, mss_now);
829
830 /* If this packet has been sent out already, we must
831 * adjust the various packet counters.
832 */
833 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
834 int diff = old_factor - tcp_skb_pcount(skb) -
835 tcp_skb_pcount(buff);
836
837 tp->packets_out -= diff;
838
839 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
840 tp->sacked_out -= diff;
841 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
842 tp->retrans_out -= diff;
843
844 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
845 tp->lost_out -= diff;
846
847 /* Adjust Reno SACK estimate. */
848 if (tcp_is_reno(tp) && diff > 0) {
849 tcp_dec_pcount_approx_int(&tp->sacked_out, diff);
850 tcp_verify_left_out(tp);
851 }
852 tcp_adjust_fackets_out(sk, skb, diff);
853 }
854
855 /* Link BUFF into the send queue. */
856 skb_header_release(buff);
857 tcp_insert_write_queue_after(skb, buff, sk);
858
859 return 0;
860 }
861
862 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
863 * eventually). The difference is that pulled data not copied, but
864 * immediately discarded.
865 */
__pskb_trim_head(struct sk_buff * skb,int len)866 static void __pskb_trim_head(struct sk_buff *skb, int len)
867 {
868 int i, k, eat;
869
870 eat = len;
871 k = 0;
872 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
873 if (skb_shinfo(skb)->frags[i].size <= eat) {
874 put_page(skb_shinfo(skb)->frags[i].page);
875 eat -= skb_shinfo(skb)->frags[i].size;
876 } else {
877 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
878 if (eat) {
879 skb_shinfo(skb)->frags[k].page_offset += eat;
880 skb_shinfo(skb)->frags[k].size -= eat;
881 eat = 0;
882 }
883 k++;
884 }
885 }
886 skb_shinfo(skb)->nr_frags = k;
887
888 skb_reset_tail_pointer(skb);
889 skb->data_len -= len;
890 skb->len = skb->data_len;
891 }
892
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)893 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
894 {
895 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
896 return -ENOMEM;
897
898 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
899 if (unlikely(len < skb_headlen(skb)))
900 __skb_pull(skb, len);
901 else
902 __pskb_trim_head(skb, len - skb_headlen(skb));
903
904 TCP_SKB_CB(skb)->seq += len;
905 skb->ip_summed = CHECKSUM_PARTIAL;
906
907 skb->truesize -= len;
908 sk->sk_wmem_queued -= len;
909 sk_mem_uncharge(sk, len);
910 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
911
912 /* Any change of skb->len requires recalculation of tso
913 * factor and mss.
914 */
915 if (tcp_skb_pcount(skb) > 1)
916 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
917
918 return 0;
919 }
920
921 /* Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)922 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
923 {
924 struct tcp_sock *tp = tcp_sk(sk);
925 struct inet_connection_sock *icsk = inet_csk(sk);
926 int mss_now;
927
928 /* Calculate base mss without TCP options:
929 It is MMS_S - sizeof(tcphdr) of rfc1122
930 */
931 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
932
933 /* Clamp it (mss_clamp does not include tcp options) */
934 if (mss_now > tp->rx_opt.mss_clamp)
935 mss_now = tp->rx_opt.mss_clamp;
936
937 /* Now subtract optional transport overhead */
938 mss_now -= icsk->icsk_ext_hdr_len;
939
940 /* Then reserve room for full set of TCP options and 8 bytes of data */
941 if (mss_now < 48)
942 mss_now = 48;
943
944 /* Now subtract TCP options size, not including SACKs */
945 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
946
947 return mss_now;
948 }
949
950 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)951 int tcp_mss_to_mtu(struct sock *sk, int mss)
952 {
953 struct tcp_sock *tp = tcp_sk(sk);
954 struct inet_connection_sock *icsk = inet_csk(sk);
955 int mtu;
956
957 mtu = mss +
958 tp->tcp_header_len +
959 icsk->icsk_ext_hdr_len +
960 icsk->icsk_af_ops->net_header_len;
961
962 return mtu;
963 }
964
tcp_mtup_init(struct sock * sk)965 void tcp_mtup_init(struct sock *sk)
966 {
967 struct tcp_sock *tp = tcp_sk(sk);
968 struct inet_connection_sock *icsk = inet_csk(sk);
969
970 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
971 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
972 icsk->icsk_af_ops->net_header_len;
973 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
974 icsk->icsk_mtup.probe_size = 0;
975 }
976
977 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)978 static int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
979 {
980 if (tp->max_window && pktsize > (tp->max_window >> 1))
981 return max(tp->max_window >> 1, 68U - tp->tcp_header_len);
982 else
983 return pktsize;
984 }
985
986 /* This function synchronize snd mss to current pmtu/exthdr set.
987
988 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
989 for TCP options, but includes only bare TCP header.
990
991 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
992 It is minimum of user_mss and mss received with SYN.
993 It also does not include TCP options.
994
995 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
996
997 tp->mss_cache is current effective sending mss, including
998 all tcp options except for SACKs. It is evaluated,
999 taking into account current pmtu, but never exceeds
1000 tp->rx_opt.mss_clamp.
1001
1002 NOTE1. rfc1122 clearly states that advertised MSS
1003 DOES NOT include either tcp or ip options.
1004
1005 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1006 are READ ONLY outside this function. --ANK (980731)
1007 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1008 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1009 {
1010 struct tcp_sock *tp = tcp_sk(sk);
1011 struct inet_connection_sock *icsk = inet_csk(sk);
1012 int mss_now;
1013
1014 if (icsk->icsk_mtup.search_high > pmtu)
1015 icsk->icsk_mtup.search_high = pmtu;
1016
1017 mss_now = tcp_mtu_to_mss(sk, pmtu);
1018 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1019
1020 /* And store cached results */
1021 icsk->icsk_pmtu_cookie = pmtu;
1022 if (icsk->icsk_mtup.enabled)
1023 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1024 tp->mss_cache = mss_now;
1025
1026 return mss_now;
1027 }
1028
1029 /* Compute the current effective MSS, taking SACKs and IP options,
1030 * and even PMTU discovery events into account.
1031 */
tcp_current_mss(struct sock * sk,int large_allowed)1032 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
1033 {
1034 struct tcp_sock *tp = tcp_sk(sk);
1035 struct dst_entry *dst = __sk_dst_get(sk);
1036 u32 mss_now;
1037 u16 xmit_size_goal;
1038 int doing_tso = 0;
1039 unsigned header_len;
1040 struct tcp_out_options opts;
1041 struct tcp_md5sig_key *md5;
1042
1043 mss_now = tp->mss_cache;
1044
1045 if (large_allowed && sk_can_gso(sk))
1046 doing_tso = 1;
1047
1048 if (dst) {
1049 u32 mtu = dst_mtu(dst);
1050 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1051 mss_now = tcp_sync_mss(sk, mtu);
1052 }
1053
1054 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1055 sizeof(struct tcphdr);
1056 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1057 * some common options. If this is an odd packet (because we have SACK
1058 * blocks etc) then our calculated header_len will be different, and
1059 * we have to adjust mss_now correspondingly */
1060 if (header_len != tp->tcp_header_len) {
1061 int delta = (int) header_len - tp->tcp_header_len;
1062 mss_now -= delta;
1063 }
1064
1065 xmit_size_goal = mss_now;
1066
1067 if (doing_tso) {
1068 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
1069 inet_csk(sk)->icsk_af_ops->net_header_len -
1070 inet_csk(sk)->icsk_ext_hdr_len -
1071 tp->tcp_header_len);
1072
1073 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
1074 xmit_size_goal -= (xmit_size_goal % mss_now);
1075 }
1076 tp->xmit_size_goal = xmit_size_goal;
1077
1078 return mss_now;
1079 }
1080
1081 /* Congestion window validation. (RFC2861) */
tcp_cwnd_validate(struct sock * sk)1082 static void tcp_cwnd_validate(struct sock *sk)
1083 {
1084 struct tcp_sock *tp = tcp_sk(sk);
1085
1086 if (tp->packets_out >= tp->snd_cwnd) {
1087 /* Network is feed fully. */
1088 tp->snd_cwnd_used = 0;
1089 tp->snd_cwnd_stamp = tcp_time_stamp;
1090 } else {
1091 /* Network starves. */
1092 if (tp->packets_out > tp->snd_cwnd_used)
1093 tp->snd_cwnd_used = tp->packets_out;
1094
1095 if (sysctl_tcp_slow_start_after_idle &&
1096 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1097 tcp_cwnd_application_limited(sk);
1098 }
1099 }
1100
1101 /* Returns the portion of skb which can be sent right away without
1102 * introducing MSS oddities to segment boundaries. In rare cases where
1103 * mss_now != mss_cache, we will request caller to create a small skb
1104 * per input skb which could be mostly avoided here (if desired).
1105 *
1106 * We explicitly want to create a request for splitting write queue tail
1107 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1108 * thus all the complexity (cwnd_len is always MSS multiple which we
1109 * return whenever allowed by the other factors). Basically we need the
1110 * modulo only when the receiver window alone is the limiting factor or
1111 * when we would be allowed to send the split-due-to-Nagle skb fully.
1112 */
tcp_mss_split_point(struct sock * sk,struct sk_buff * skb,unsigned int mss_now,unsigned int cwnd)1113 static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb,
1114 unsigned int mss_now, unsigned int cwnd)
1115 {
1116 struct tcp_sock *tp = tcp_sk(sk);
1117 u32 needed, window, cwnd_len;
1118
1119 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1120 cwnd_len = mss_now * cwnd;
1121
1122 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
1123 return cwnd_len;
1124
1125 needed = min(skb->len, window);
1126
1127 if (cwnd_len <= needed)
1128 return cwnd_len;
1129
1130 return needed - needed % mss_now;
1131 }
1132
1133 /* Can at least one segment of SKB be sent right now, according to the
1134 * congestion window rules? If so, return how many segments are allowed.
1135 */
tcp_cwnd_test(struct tcp_sock * tp,struct sk_buff * skb)1136 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp,
1137 struct sk_buff *skb)
1138 {
1139 u32 in_flight, cwnd;
1140
1141 /* Don't be strict about the congestion window for the final FIN. */
1142 if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1143 tcp_skb_pcount(skb) == 1)
1144 return 1;
1145
1146 in_flight = tcp_packets_in_flight(tp);
1147 cwnd = tp->snd_cwnd;
1148 if (in_flight < cwnd)
1149 return (cwnd - in_flight);
1150
1151 return 0;
1152 }
1153
1154 /* This must be invoked the first time we consider transmitting
1155 * SKB onto the wire.
1156 */
tcp_init_tso_segs(struct sock * sk,struct sk_buff * skb,unsigned int mss_now)1157 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb,
1158 unsigned int mss_now)
1159 {
1160 int tso_segs = tcp_skb_pcount(skb);
1161
1162 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1163 tcp_set_skb_tso_segs(sk, skb, mss_now);
1164 tso_segs = tcp_skb_pcount(skb);
1165 }
1166 return tso_segs;
1167 }
1168
tcp_minshall_check(const struct tcp_sock * tp)1169 static inline int tcp_minshall_check(const struct tcp_sock *tp)
1170 {
1171 return after(tp->snd_sml, tp->snd_una) &&
1172 !after(tp->snd_sml, tp->snd_nxt);
1173 }
1174
1175 /* Return 0, if packet can be sent now without violation Nagle's rules:
1176 * 1. It is full sized.
1177 * 2. Or it contains FIN. (already checked by caller)
1178 * 3. Or TCP_NODELAY was set.
1179 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1180 * With Minshall's modification: all sent small packets are ACKed.
1181 */
tcp_nagle_check(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned mss_now,int nonagle)1182 static inline int tcp_nagle_check(const struct tcp_sock *tp,
1183 const struct sk_buff *skb,
1184 unsigned mss_now, int nonagle)
1185 {
1186 return (skb->len < mss_now &&
1187 ((nonagle & TCP_NAGLE_CORK) ||
1188 (!nonagle && tp->packets_out && tcp_minshall_check(tp))));
1189 }
1190
1191 /* Return non-zero if the Nagle test allows this packet to be
1192 * sent now.
1193 */
tcp_nagle_test(struct tcp_sock * tp,struct sk_buff * skb,unsigned int cur_mss,int nonagle)1194 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
1195 unsigned int cur_mss, int nonagle)
1196 {
1197 /* Nagle rule does not apply to frames, which sit in the middle of the
1198 * write_queue (they have no chances to get new data).
1199 *
1200 * This is implemented in the callers, where they modify the 'nonagle'
1201 * argument based upon the location of SKB in the send queue.
1202 */
1203 if (nonagle & TCP_NAGLE_PUSH)
1204 return 1;
1205
1206 /* Don't use the nagle rule for urgent data (or for the final FIN).
1207 * Nagle can be ignored during F-RTO too (see RFC4138).
1208 */
1209 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1210 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
1211 return 1;
1212
1213 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1214 return 1;
1215
1216 return 0;
1217 }
1218
1219 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(struct tcp_sock * tp,struct sk_buff * skb,unsigned int cur_mss)1220 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb,
1221 unsigned int cur_mss)
1222 {
1223 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1224
1225 if (skb->len > cur_mss)
1226 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1227
1228 return !after(end_seq, tcp_wnd_end(tp));
1229 }
1230
1231 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1232 * should be put on the wire right now. If so, it returns the number of
1233 * packets allowed by the congestion window.
1234 */
tcp_snd_test(struct sock * sk,struct sk_buff * skb,unsigned int cur_mss,int nonagle)1235 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
1236 unsigned int cur_mss, int nonagle)
1237 {
1238 struct tcp_sock *tp = tcp_sk(sk);
1239 unsigned int cwnd_quota;
1240
1241 tcp_init_tso_segs(sk, skb, cur_mss);
1242
1243 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1244 return 0;
1245
1246 cwnd_quota = tcp_cwnd_test(tp, skb);
1247 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1248 cwnd_quota = 0;
1249
1250 return cwnd_quota;
1251 }
1252
tcp_may_send_now(struct sock * sk)1253 int tcp_may_send_now(struct sock *sk)
1254 {
1255 struct tcp_sock *tp = tcp_sk(sk);
1256 struct sk_buff *skb = tcp_send_head(sk);
1257
1258 return (skb &&
1259 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
1260 (tcp_skb_is_last(sk, skb) ?
1261 tp->nonagle : TCP_NAGLE_PUSH)));
1262 }
1263
1264 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1265 * which is put after SKB on the list. It is very much like
1266 * tcp_fragment() except that it may make several kinds of assumptions
1267 * in order to speed up the splitting operation. In particular, we
1268 * know that all the data is in scatter-gather pages, and that the
1269 * packet has never been sent out before (and thus is not cloned).
1270 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now)1271 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1272 unsigned int mss_now)
1273 {
1274 struct sk_buff *buff;
1275 int nlen = skb->len - len;
1276 u16 flags;
1277
1278 /* All of a TSO frame must be composed of paged data. */
1279 if (skb->len != skb->data_len)
1280 return tcp_fragment(sk, skb, len, mss_now);
1281
1282 buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC);
1283 if (unlikely(buff == NULL))
1284 return -ENOMEM;
1285
1286 sk->sk_wmem_queued += buff->truesize;
1287 sk_mem_charge(sk, buff->truesize);
1288 buff->truesize += nlen;
1289 skb->truesize -= nlen;
1290
1291 /* Correct the sequence numbers. */
1292 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1293 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1294 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1295
1296 /* PSH and FIN should only be set in the second packet. */
1297 flags = TCP_SKB_CB(skb)->flags;
1298 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
1299 TCP_SKB_CB(buff)->flags = flags;
1300
1301 /* This packet was never sent out yet, so no SACK bits. */
1302 TCP_SKB_CB(buff)->sacked = 0;
1303
1304 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1305 skb_split(skb, buff, len);
1306
1307 /* Fix up tso_factor for both original and new SKB. */
1308 tcp_set_skb_tso_segs(sk, skb, mss_now);
1309 tcp_set_skb_tso_segs(sk, buff, mss_now);
1310
1311 /* Link BUFF into the send queue. */
1312 skb_header_release(buff);
1313 tcp_insert_write_queue_after(skb, buff, sk);
1314
1315 return 0;
1316 }
1317
1318 /* Try to defer sending, if possible, in order to minimize the amount
1319 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1320 *
1321 * This algorithm is from John Heffner.
1322 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb)1323 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1324 {
1325 struct tcp_sock *tp = tcp_sk(sk);
1326 const struct inet_connection_sock *icsk = inet_csk(sk);
1327 u32 send_win, cong_win, limit, in_flight;
1328
1329 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
1330 goto send_now;
1331
1332 if (icsk->icsk_ca_state != TCP_CA_Open)
1333 goto send_now;
1334
1335 /* Defer for less than two clock ticks. */
1336 if (tp->tso_deferred &&
1337 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1338 goto send_now;
1339
1340 in_flight = tcp_packets_in_flight(tp);
1341
1342 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1343
1344 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1345
1346 /* From in_flight test above, we know that cwnd > in_flight. */
1347 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1348
1349 limit = min(send_win, cong_win);
1350
1351 /* If a full-sized TSO skb can be sent, do it. */
1352 if (limit >= sk->sk_gso_max_size)
1353 goto send_now;
1354
1355 if (sysctl_tcp_tso_win_divisor) {
1356 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1357
1358 /* If at least some fraction of a window is available,
1359 * just use it.
1360 */
1361 chunk /= sysctl_tcp_tso_win_divisor;
1362 if (limit >= chunk)
1363 goto send_now;
1364 } else {
1365 /* Different approach, try not to defer past a single
1366 * ACK. Receiver should ACK every other full sized
1367 * frame, so if we have space for more than 3 frames
1368 * then send now.
1369 */
1370 if (limit > tcp_max_burst(tp) * tp->mss_cache)
1371 goto send_now;
1372 }
1373
1374 /* Ok, it looks like it is advisable to defer. */
1375 tp->tso_deferred = 1 | (jiffies << 1);
1376
1377 return 1;
1378
1379 send_now:
1380 tp->tso_deferred = 0;
1381 return 0;
1382 }
1383
1384 /* Create a new MTU probe if we are ready.
1385 * Returns 0 if we should wait to probe (no cwnd available),
1386 * 1 if a probe was sent,
1387 * -1 otherwise
1388 */
tcp_mtu_probe(struct sock * sk)1389 static int tcp_mtu_probe(struct sock *sk)
1390 {
1391 struct tcp_sock *tp = tcp_sk(sk);
1392 struct inet_connection_sock *icsk = inet_csk(sk);
1393 struct sk_buff *skb, *nskb, *next;
1394 int len;
1395 int probe_size;
1396 int size_needed;
1397 int copy;
1398 int mss_now;
1399
1400 /* Not currently probing/verifying,
1401 * not in recovery,
1402 * have enough cwnd, and
1403 * not SACKing (the variable headers throw things off) */
1404 if (!icsk->icsk_mtup.enabled ||
1405 icsk->icsk_mtup.probe_size ||
1406 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1407 tp->snd_cwnd < 11 ||
1408 tp->rx_opt.eff_sacks)
1409 return -1;
1410
1411 /* Very simple search strategy: just double the MSS. */
1412 mss_now = tcp_current_mss(sk, 0);
1413 probe_size = 2 * tp->mss_cache;
1414 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1415 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1416 /* TODO: set timer for probe_converge_event */
1417 return -1;
1418 }
1419
1420 /* Have enough data in the send queue to probe? */
1421 if (tp->write_seq - tp->snd_nxt < size_needed)
1422 return -1;
1423
1424 if (tp->snd_wnd < size_needed)
1425 return -1;
1426 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1427 return 0;
1428
1429 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1430 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1431 if (!tcp_packets_in_flight(tp))
1432 return -1;
1433 else
1434 return 0;
1435 }
1436
1437 /* We're allowed to probe. Build it now. */
1438 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1439 return -1;
1440 sk->sk_wmem_queued += nskb->truesize;
1441 sk_mem_charge(sk, nskb->truesize);
1442
1443 skb = tcp_send_head(sk);
1444
1445 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1446 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1447 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
1448 TCP_SKB_CB(nskb)->sacked = 0;
1449 nskb->csum = 0;
1450 nskb->ip_summed = skb->ip_summed;
1451
1452 tcp_insert_write_queue_before(nskb, skb, sk);
1453
1454 len = 0;
1455 tcp_for_write_queue_from_safe(skb, next, sk) {
1456 copy = min_t(int, skb->len, probe_size - len);
1457 if (nskb->ip_summed)
1458 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1459 else
1460 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1461 skb_put(nskb, copy),
1462 copy, nskb->csum);
1463
1464 if (skb->len <= copy) {
1465 /* We've eaten all the data from this skb.
1466 * Throw it away. */
1467 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
1468 tcp_unlink_write_queue(skb, sk);
1469 sk_wmem_free_skb(sk, skb);
1470 } else {
1471 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
1472 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1473 if (!skb_shinfo(skb)->nr_frags) {
1474 skb_pull(skb, copy);
1475 if (skb->ip_summed != CHECKSUM_PARTIAL)
1476 skb->csum = csum_partial(skb->data,
1477 skb->len, 0);
1478 } else {
1479 __pskb_trim_head(skb, copy);
1480 tcp_set_skb_tso_segs(sk, skb, mss_now);
1481 }
1482 TCP_SKB_CB(skb)->seq += copy;
1483 }
1484
1485 len += copy;
1486
1487 if (len >= probe_size)
1488 break;
1489 }
1490 tcp_init_tso_segs(sk, nskb, nskb->len);
1491
1492 /* We're ready to send. If this fails, the probe will
1493 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1494 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1495 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1496 /* Decrement cwnd here because we are sending
1497 * effectively two packets. */
1498 tp->snd_cwnd--;
1499 tcp_event_new_data_sent(sk, nskb);
1500
1501 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1502 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1503 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1504
1505 return 1;
1506 }
1507
1508 return -1;
1509 }
1510
1511 /* This routine writes packets to the network. It advances the
1512 * send_head. This happens as incoming acks open up the remote
1513 * window for us.
1514 *
1515 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1516 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1517 * account rare use of URG, this is not a big flaw.
1518 *
1519 * Returns 1, if no segments are in flight and we have queued segments, but
1520 * cannot send anything now because of SWS or another problem.
1521 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)1522 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1523 int push_one, gfp_t gfp)
1524 {
1525 struct tcp_sock *tp = tcp_sk(sk);
1526 struct sk_buff *skb;
1527 unsigned int tso_segs, sent_pkts;
1528 int cwnd_quota;
1529 int result;
1530
1531 sent_pkts = 0;
1532
1533 if (!push_one) {
1534 /* Do MTU probing. */
1535 result = tcp_mtu_probe(sk);
1536 if (!result) {
1537 return 0;
1538 } else if (result > 0) {
1539 sent_pkts = 1;
1540 }
1541 }
1542
1543 while ((skb = tcp_send_head(sk))) {
1544 unsigned int limit;
1545
1546 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1547 BUG_ON(!tso_segs);
1548
1549 cwnd_quota = tcp_cwnd_test(tp, skb);
1550 if (!cwnd_quota)
1551 break;
1552
1553 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1554 break;
1555
1556 if (tso_segs == 1) {
1557 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1558 (tcp_skb_is_last(sk, skb) ?
1559 nonagle : TCP_NAGLE_PUSH))))
1560 break;
1561 } else {
1562 if (!push_one && tcp_tso_should_defer(sk, skb))
1563 break;
1564 }
1565
1566 limit = mss_now;
1567 if (tso_segs > 1 && !tcp_urg_mode(tp))
1568 limit = tcp_mss_split_point(sk, skb, mss_now,
1569 cwnd_quota);
1570
1571 if (skb->len > limit &&
1572 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1573 break;
1574
1575 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1576
1577 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1578 break;
1579
1580 /* Advance the send_head. This one is sent out.
1581 * This call will increment packets_out.
1582 */
1583 tcp_event_new_data_sent(sk, skb);
1584
1585 tcp_minshall_update(tp, mss_now, skb);
1586 sent_pkts++;
1587
1588 if (push_one)
1589 break;
1590 }
1591
1592 if (likely(sent_pkts)) {
1593 tcp_cwnd_validate(sk);
1594 return 0;
1595 }
1596 return !tp->packets_out && tcp_send_head(sk);
1597 }
1598
1599 /* Push out any pending frames which were held back due to
1600 * TCP_CORK or attempt at coalescing tiny packets.
1601 * The socket must be locked by the caller.
1602 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)1603 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
1604 int nonagle)
1605 {
1606 struct sk_buff *skb = tcp_send_head(sk);
1607
1608 if (!skb)
1609 return;
1610
1611 /* If we are closed, the bytes will have to remain here.
1612 * In time closedown will finish, we empty the write queue and
1613 * all will be happy.
1614 */
1615 if (unlikely(sk->sk_state == TCP_CLOSE))
1616 return;
1617
1618 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC))
1619 tcp_check_probe_timer(sk);
1620 }
1621
1622 /* Send _single_ skb sitting at the send head. This function requires
1623 * true push pending frames to setup probe timer etc.
1624 */
tcp_push_one(struct sock * sk,unsigned int mss_now)1625 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1626 {
1627 struct sk_buff *skb = tcp_send_head(sk);
1628
1629 BUG_ON(!skb || skb->len < mss_now);
1630
1631 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
1632 }
1633
1634 /* This function returns the amount that we can raise the
1635 * usable window based on the following constraints
1636 *
1637 * 1. The window can never be shrunk once it is offered (RFC 793)
1638 * 2. We limit memory per socket
1639 *
1640 * RFC 1122:
1641 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1642 * RECV.NEXT + RCV.WIN fixed until:
1643 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1644 *
1645 * i.e. don't raise the right edge of the window until you can raise
1646 * it at least MSS bytes.
1647 *
1648 * Unfortunately, the recommended algorithm breaks header prediction,
1649 * since header prediction assumes th->window stays fixed.
1650 *
1651 * Strictly speaking, keeping th->window fixed violates the receiver
1652 * side SWS prevention criteria. The problem is that under this rule
1653 * a stream of single byte packets will cause the right side of the
1654 * window to always advance by a single byte.
1655 *
1656 * Of course, if the sender implements sender side SWS prevention
1657 * then this will not be a problem.
1658 *
1659 * BSD seems to make the following compromise:
1660 *
1661 * If the free space is less than the 1/4 of the maximum
1662 * space available and the free space is less than 1/2 mss,
1663 * then set the window to 0.
1664 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1665 * Otherwise, just prevent the window from shrinking
1666 * and from being larger than the largest representable value.
1667 *
1668 * This prevents incremental opening of the window in the regime
1669 * where TCP is limited by the speed of the reader side taking
1670 * data out of the TCP receive queue. It does nothing about
1671 * those cases where the window is constrained on the sender side
1672 * because the pipeline is full.
1673 *
1674 * BSD also seems to "accidentally" limit itself to windows that are a
1675 * multiple of MSS, at least until the free space gets quite small.
1676 * This would appear to be a side effect of the mbuf implementation.
1677 * Combining these two algorithms results in the observed behavior
1678 * of having a fixed window size at almost all times.
1679 *
1680 * Below we obtain similar behavior by forcing the offered window to
1681 * a multiple of the mss when it is feasible to do so.
1682 *
1683 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1684 * Regular options like TIMESTAMP are taken into account.
1685 */
__tcp_select_window(struct sock * sk)1686 u32 __tcp_select_window(struct sock *sk)
1687 {
1688 struct inet_connection_sock *icsk = inet_csk(sk);
1689 struct tcp_sock *tp = tcp_sk(sk);
1690 /* MSS for the peer's data. Previous versions used mss_clamp
1691 * here. I don't know if the value based on our guesses
1692 * of peer's MSS is better for the performance. It's more correct
1693 * but may be worse for the performance because of rcv_mss
1694 * fluctuations. --SAW 1998/11/1
1695 */
1696 int mss = icsk->icsk_ack.rcv_mss;
1697 int free_space = tcp_space(sk);
1698 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1699 int window;
1700
1701 if (mss > full_space)
1702 mss = full_space;
1703
1704 if (free_space < (full_space >> 1)) {
1705 icsk->icsk_ack.quick = 0;
1706
1707 if (tcp_memory_pressure)
1708 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
1709 4U * tp->advmss);
1710
1711 if (free_space < mss)
1712 return 0;
1713 }
1714
1715 if (free_space > tp->rcv_ssthresh)
1716 free_space = tp->rcv_ssthresh;
1717
1718 /* Don't do rounding if we are using window scaling, since the
1719 * scaled window will not line up with the MSS boundary anyway.
1720 */
1721 window = tp->rcv_wnd;
1722 if (tp->rx_opt.rcv_wscale) {
1723 window = free_space;
1724
1725 /* Advertise enough space so that it won't get scaled away.
1726 * Import case: prevent zero window announcement if
1727 * 1<<rcv_wscale > mss.
1728 */
1729 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1730 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1731 << tp->rx_opt.rcv_wscale);
1732 } else {
1733 /* Get the largest window that is a nice multiple of mss.
1734 * Window clamp already applied above.
1735 * If our current window offering is within 1 mss of the
1736 * free space we just keep it. This prevents the divide
1737 * and multiply from happening most of the time.
1738 * We also don't do any window rounding when the free space
1739 * is too small.
1740 */
1741 if (window <= free_space - mss || window > free_space)
1742 window = (free_space / mss) * mss;
1743 else if (mss == full_space &&
1744 free_space > window + (full_space >> 1))
1745 window = free_space;
1746 }
1747
1748 return window;
1749 }
1750
1751 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)1752 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
1753 {
1754 struct tcp_sock *tp = tcp_sk(sk);
1755 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
1756 int skb_size, next_skb_size;
1757 u16 flags;
1758
1759 skb_size = skb->len;
1760 next_skb_size = next_skb->len;
1761 flags = TCP_SKB_CB(skb)->flags;
1762
1763 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
1764
1765 tcp_highest_sack_combine(sk, next_skb, skb);
1766
1767 tcp_unlink_write_queue(next_skb, sk);
1768
1769 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
1770 next_skb_size);
1771
1772 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
1773 skb->ip_summed = CHECKSUM_PARTIAL;
1774
1775 if (skb->ip_summed != CHECKSUM_PARTIAL)
1776 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1777
1778 /* Update sequence range on original skb. */
1779 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1780
1781 /* Merge over control information. */
1782 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1783 TCP_SKB_CB(skb)->flags = flags;
1784
1785 /* All done, get rid of second SKB and account for it so
1786 * packet counting does not break.
1787 */
1788 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
1789 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_RETRANS)
1790 tp->retrans_out -= tcp_skb_pcount(next_skb);
1791 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_LOST)
1792 tp->lost_out -= tcp_skb_pcount(next_skb);
1793 /* Reno case is special. Sigh... */
1794 if (tcp_is_reno(tp) && tp->sacked_out)
1795 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1796
1797 tcp_adjust_fackets_out(sk, next_skb, tcp_skb_pcount(next_skb));
1798 tp->packets_out -= tcp_skb_pcount(next_skb);
1799
1800 /* changed transmit queue under us so clear hints */
1801 tcp_clear_retrans_hints_partial(tp);
1802 if (next_skb == tp->retransmit_skb_hint)
1803 tp->retransmit_skb_hint = skb;
1804
1805 sk_wmem_free_skb(sk, next_skb);
1806 }
1807
tcp_can_collapse(struct sock * sk,struct sk_buff * skb)1808 static int tcp_can_collapse(struct sock *sk, struct sk_buff *skb)
1809 {
1810 if (tcp_skb_pcount(skb) > 1)
1811 return 0;
1812 /* TODO: SACK collapsing could be used to remove this condition */
1813 if (skb_shinfo(skb)->nr_frags != 0)
1814 return 0;
1815 if (skb_cloned(skb))
1816 return 0;
1817 if (skb == tcp_send_head(sk))
1818 return 0;
1819 /* Some heurestics for collapsing over SACK'd could be invented */
1820 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1821 return 0;
1822
1823 return 1;
1824 }
1825
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)1826 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
1827 int space)
1828 {
1829 struct tcp_sock *tp = tcp_sk(sk);
1830 struct sk_buff *skb = to, *tmp;
1831 int first = 1;
1832
1833 if (!sysctl_tcp_retrans_collapse)
1834 return;
1835 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)
1836 return;
1837
1838 tcp_for_write_queue_from_safe(skb, tmp, sk) {
1839 if (!tcp_can_collapse(sk, skb))
1840 break;
1841
1842 space -= skb->len;
1843
1844 if (first) {
1845 first = 0;
1846 continue;
1847 }
1848
1849 if (space < 0)
1850 break;
1851 /* Punt if not enough space exists in the first SKB for
1852 * the data in the second
1853 */
1854 if (skb->len > skb_tailroom(to))
1855 break;
1856
1857 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
1858 break;
1859
1860 tcp_collapse_retrans(sk, to);
1861 }
1862 }
1863
1864 /* This retransmits one SKB. Policy decisions and retransmit queue
1865 * state updates are done by the caller. Returns non-zero if an
1866 * error occurred which prevented the send.
1867 */
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb)1868 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1869 {
1870 struct tcp_sock *tp = tcp_sk(sk);
1871 struct inet_connection_sock *icsk = inet_csk(sk);
1872 unsigned int cur_mss;
1873 int err;
1874
1875 /* Inconslusive MTU probe */
1876 if (icsk->icsk_mtup.probe_size) {
1877 icsk->icsk_mtup.probe_size = 0;
1878 }
1879
1880 /* Do not sent more than we queued. 1/4 is reserved for possible
1881 * copying overhead: fragmentation, tunneling, mangling etc.
1882 */
1883 if (atomic_read(&sk->sk_wmem_alloc) >
1884 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1885 return -EAGAIN;
1886
1887 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1888 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1889 BUG();
1890 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1891 return -ENOMEM;
1892 }
1893
1894 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
1895 return -EHOSTUNREACH; /* Routing failure or similar. */
1896
1897 cur_mss = tcp_current_mss(sk, 0);
1898
1899 /* If receiver has shrunk his window, and skb is out of
1900 * new window, do not retransmit it. The exception is the
1901 * case, when window is shrunk to zero. In this case
1902 * our retransmit serves as a zero window probe.
1903 */
1904 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))
1905 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1906 return -EAGAIN;
1907
1908 if (skb->len > cur_mss) {
1909 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1910 return -ENOMEM; /* We'll try again later. */
1911 }
1912
1913 tcp_retrans_try_collapse(sk, skb, cur_mss);
1914
1915 /* Some Solaris stacks overoptimize and ignore the FIN on a
1916 * retransmit when old data is attached. So strip it off
1917 * since it is cheap to do so and saves bytes on the network.
1918 */
1919 if (skb->len > 0 &&
1920 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1921 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1922 if (!pskb_trim(skb, 0)) {
1923 /* Reuse, even though it does some unnecessary work */
1924 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
1925 TCP_SKB_CB(skb)->flags);
1926 skb->ip_summed = CHECKSUM_NONE;
1927 }
1928 }
1929
1930 /* Make a copy, if the first transmission SKB clone we made
1931 * is still in somebody's hands, else make a clone.
1932 */
1933 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1934
1935 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1936
1937 if (err == 0) {
1938 /* Update global TCP statistics. */
1939 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
1940
1941 tp->total_retrans++;
1942
1943 #if FASTRETRANS_DEBUG > 0
1944 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1945 if (net_ratelimit())
1946 printk(KERN_DEBUG "retrans_out leaked.\n");
1947 }
1948 #endif
1949 if (!tp->retrans_out)
1950 tp->lost_retrans_low = tp->snd_nxt;
1951 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1952 tp->retrans_out += tcp_skb_pcount(skb);
1953
1954 /* Save stamp of the first retransmit. */
1955 if (!tp->retrans_stamp)
1956 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1957
1958 tp->undo_retrans++;
1959
1960 /* snd_nxt is stored to detect loss of retransmitted segment,
1961 * see tcp_input.c tcp_sacktag_write_queue().
1962 */
1963 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1964 }
1965 return err;
1966 }
1967
tcp_can_forward_retransmit(struct sock * sk)1968 static int tcp_can_forward_retransmit(struct sock *sk)
1969 {
1970 const struct inet_connection_sock *icsk = inet_csk(sk);
1971 struct tcp_sock *tp = tcp_sk(sk);
1972
1973 /* Forward retransmissions are possible only during Recovery. */
1974 if (icsk->icsk_ca_state != TCP_CA_Recovery)
1975 return 0;
1976
1977 /* No forward retransmissions in Reno are possible. */
1978 if (tcp_is_reno(tp))
1979 return 0;
1980
1981 /* Yeah, we have to make difficult choice between forward transmission
1982 * and retransmission... Both ways have their merits...
1983 *
1984 * For now we do not retransmit anything, while we have some new
1985 * segments to send. In the other cases, follow rule 3 for
1986 * NextSeg() specified in RFC3517.
1987 */
1988
1989 if (tcp_may_send_now(sk))
1990 return 0;
1991
1992 return 1;
1993 }
1994
1995 /* This gets called after a retransmit timeout, and the initially
1996 * retransmitted data is acknowledged. It tries to continue
1997 * resending the rest of the retransmit queue, until either
1998 * we've sent it all or the congestion window limit is reached.
1999 * If doing SACK, the first ACK which comes back for a timeout
2000 * based retransmit packet might feed us FACK information again.
2001 * If so, we use it to avoid unnecessarily retransmissions.
2002 */
tcp_xmit_retransmit_queue(struct sock * sk)2003 void tcp_xmit_retransmit_queue(struct sock *sk)
2004 {
2005 const struct inet_connection_sock *icsk = inet_csk(sk);
2006 struct tcp_sock *tp = tcp_sk(sk);
2007 struct sk_buff *skb;
2008 struct sk_buff *hole = NULL;
2009 u32 last_lost;
2010 int mib_idx;
2011 int fwd_rexmitting = 0;
2012
2013 if (!tp->lost_out)
2014 tp->retransmit_high = tp->snd_una;
2015
2016 if (tp->retransmit_skb_hint) {
2017 skb = tp->retransmit_skb_hint;
2018 last_lost = TCP_SKB_CB(skb)->end_seq;
2019 if (after(last_lost, tp->retransmit_high))
2020 last_lost = tp->retransmit_high;
2021 } else {
2022 skb = tcp_write_queue_head(sk);
2023 last_lost = tp->snd_una;
2024 }
2025
2026 tcp_for_write_queue_from(skb, sk) {
2027 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2028
2029 if (skb == tcp_send_head(sk))
2030 break;
2031 /* we could do better than to assign each time */
2032 if (hole == NULL)
2033 tp->retransmit_skb_hint = skb;
2034
2035 /* Assume this retransmit will generate
2036 * only one packet for congestion window
2037 * calculation purposes. This works because
2038 * tcp_retransmit_skb() will chop up the
2039 * packet to be MSS sized and all the
2040 * packet counting works out.
2041 */
2042 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2043 return;
2044
2045 if (fwd_rexmitting) {
2046 begin_fwd:
2047 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2048 break;
2049 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2050
2051 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2052 tp->retransmit_high = last_lost;
2053 if (!tcp_can_forward_retransmit(sk))
2054 break;
2055 /* Backtrack if necessary to non-L'ed skb */
2056 if (hole != NULL) {
2057 skb = hole;
2058 hole = NULL;
2059 }
2060 fwd_rexmitting = 1;
2061 goto begin_fwd;
2062
2063 } else if (!(sacked & TCPCB_LOST)) {
2064 if (hole == NULL && !(sacked & TCPCB_SACKED_RETRANS))
2065 hole = skb;
2066 continue;
2067
2068 } else {
2069 last_lost = TCP_SKB_CB(skb)->end_seq;
2070 if (icsk->icsk_ca_state != TCP_CA_Loss)
2071 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2072 else
2073 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2074 }
2075
2076 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2077 continue;
2078
2079 if (tcp_retransmit_skb(sk, skb))
2080 return;
2081 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2082
2083 if (skb == tcp_write_queue_head(sk))
2084 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2085 inet_csk(sk)->icsk_rto,
2086 TCP_RTO_MAX);
2087 }
2088 }
2089
2090 /* Send a fin. The caller locks the socket for us. This cannot be
2091 * allowed to fail queueing a FIN frame under any circumstances.
2092 */
tcp_send_fin(struct sock * sk)2093 void tcp_send_fin(struct sock *sk)
2094 {
2095 struct tcp_sock *tp = tcp_sk(sk);
2096 struct sk_buff *skb = tcp_write_queue_tail(sk);
2097 int mss_now;
2098
2099 /* Optimization, tack on the FIN if we have a queue of
2100 * unsent frames. But be careful about outgoing SACKS
2101 * and IP options.
2102 */
2103 mss_now = tcp_current_mss(sk, 1);
2104
2105 if (tcp_send_head(sk) != NULL) {
2106 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
2107 TCP_SKB_CB(skb)->end_seq++;
2108 tp->write_seq++;
2109 } else {
2110 /* Socket is locked, keep trying until memory is available. */
2111 for (;;) {
2112 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
2113 if (skb)
2114 break;
2115 yield();
2116 }
2117
2118 /* Reserve space for headers and prepare control bits. */
2119 skb_reserve(skb, MAX_TCP_HEADER);
2120 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2121 tcp_init_nondata_skb(skb, tp->write_seq,
2122 TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
2123 tcp_queue_skb(sk, skb);
2124 }
2125 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2126 }
2127
2128 /* We get here when a process closes a file descriptor (either due to
2129 * an explicit close() or as a byproduct of exit()'ing) and there
2130 * was unread data in the receive queue. This behavior is recommended
2131 * by RFC 2525, section 2.17. -DaveM
2132 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)2133 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2134 {
2135 struct sk_buff *skb;
2136
2137 /* NOTE: No TCP options attached and we never retransmit this. */
2138 skb = alloc_skb(MAX_TCP_HEADER, priority);
2139 if (!skb) {
2140 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2141 return;
2142 }
2143
2144 /* Reserve space for headers and prepare control bits. */
2145 skb_reserve(skb, MAX_TCP_HEADER);
2146 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2147 TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
2148 /* Send it off. */
2149 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2150 if (tcp_transmit_skb(sk, skb, 0, priority))
2151 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2152
2153 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2154 }
2155
2156 /* WARNING: This routine must only be called when we have already sent
2157 * a SYN packet that crossed the incoming SYN that caused this routine
2158 * to get called. If this assumption fails then the initial rcv_wnd
2159 * and rcv_wscale values will not be correct.
2160 */
tcp_send_synack(struct sock * sk)2161 int tcp_send_synack(struct sock *sk)
2162 {
2163 struct sk_buff *skb;
2164
2165 skb = tcp_write_queue_head(sk);
2166 if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) {
2167 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
2168 return -EFAULT;
2169 }
2170 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) {
2171 if (skb_cloned(skb)) {
2172 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2173 if (nskb == NULL)
2174 return -ENOMEM;
2175 tcp_unlink_write_queue(skb, sk);
2176 skb_header_release(nskb);
2177 __tcp_add_write_queue_head(sk, nskb);
2178 sk_wmem_free_skb(sk, skb);
2179 sk->sk_wmem_queued += nskb->truesize;
2180 sk_mem_charge(sk, nskb->truesize);
2181 skb = nskb;
2182 }
2183
2184 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
2185 TCP_ECN_send_synack(tcp_sk(sk), skb);
2186 }
2187 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2188 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2189 }
2190
2191 /*
2192 * Prepare a SYN-ACK.
2193 */
tcp_make_synack(struct sock * sk,struct dst_entry * dst,struct request_sock * req)2194 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2195 struct request_sock *req)
2196 {
2197 struct inet_request_sock *ireq = inet_rsk(req);
2198 struct tcp_sock *tp = tcp_sk(sk);
2199 struct tcphdr *th;
2200 int tcp_header_size;
2201 struct tcp_out_options opts;
2202 struct sk_buff *skb;
2203 struct tcp_md5sig_key *md5;
2204 __u8 *md5_hash_location;
2205 int mss;
2206
2207 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2208 if (skb == NULL)
2209 return NULL;
2210
2211 /* Reserve space for headers. */
2212 skb_reserve(skb, MAX_TCP_HEADER);
2213
2214 skb->dst = dst_clone(dst);
2215
2216 mss = dst_metric(dst, RTAX_ADVMSS);
2217 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2218 mss = tp->rx_opt.user_mss;
2219
2220 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2221 __u8 rcv_wscale;
2222 /* Set this up on the first call only */
2223 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2224 /* tcp_full_space because it is guaranteed to be the first packet */
2225 tcp_select_initial_window(tcp_full_space(sk),
2226 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2227 &req->rcv_wnd,
2228 &req->window_clamp,
2229 ireq->wscale_ok,
2230 &rcv_wscale);
2231 ireq->rcv_wscale = rcv_wscale;
2232 }
2233
2234 memset(&opts, 0, sizeof(opts));
2235 #ifdef CONFIG_SYN_COOKIES
2236 if (unlikely(req->cookie_ts))
2237 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2238 else
2239 #endif
2240 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2241 tcp_header_size = tcp_synack_options(sk, req, mss,
2242 skb, &opts, &md5) +
2243 sizeof(struct tcphdr);
2244
2245 skb_push(skb, tcp_header_size);
2246 skb_reset_transport_header(skb);
2247
2248 th = tcp_hdr(skb);
2249 memset(th, 0, sizeof(struct tcphdr));
2250 th->syn = 1;
2251 th->ack = 1;
2252 TCP_ECN_make_synack(req, th);
2253 th->source = ireq->loc_port;
2254 th->dest = ireq->rmt_port;
2255 /* Setting of flags are superfluous here for callers (and ECE is
2256 * not even correctly set)
2257 */
2258 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2259 TCPCB_FLAG_SYN | TCPCB_FLAG_ACK);
2260 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2261 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2262
2263 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2264 th->window = htons(min(req->rcv_wnd, 65535U));
2265 tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location);
2266 th->doff = (tcp_header_size >> 2);
2267 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
2268
2269 #ifdef CONFIG_TCP_MD5SIG
2270 /* Okay, we have all we need - do the md5 hash if needed */
2271 if (md5) {
2272 tp->af_specific->calc_md5_hash(md5_hash_location,
2273 md5, NULL, req, skb);
2274 }
2275 #endif
2276
2277 return skb;
2278 }
2279
2280 /*
2281 * Do all connect socket setups that can be done AF independent.
2282 */
tcp_connect_init(struct sock * sk)2283 static void tcp_connect_init(struct sock *sk)
2284 {
2285 struct dst_entry *dst = __sk_dst_get(sk);
2286 struct tcp_sock *tp = tcp_sk(sk);
2287 __u8 rcv_wscale;
2288
2289 /* We'll fix this up when we get a response from the other end.
2290 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2291 */
2292 tp->tcp_header_len = sizeof(struct tcphdr) +
2293 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2294
2295 #ifdef CONFIG_TCP_MD5SIG
2296 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2297 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2298 #endif
2299
2300 /* If user gave his TCP_MAXSEG, record it to clamp */
2301 if (tp->rx_opt.user_mss)
2302 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2303 tp->max_window = 0;
2304 tcp_mtup_init(sk);
2305 tcp_sync_mss(sk, dst_mtu(dst));
2306
2307 if (!tp->window_clamp)
2308 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2309 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
2310 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2311 tp->advmss = tp->rx_opt.user_mss;
2312
2313 tcp_initialize_rcv_mss(sk);
2314
2315 tcp_select_initial_window(tcp_full_space(sk),
2316 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2317 &tp->rcv_wnd,
2318 &tp->window_clamp,
2319 sysctl_tcp_window_scaling,
2320 &rcv_wscale);
2321
2322 tp->rx_opt.rcv_wscale = rcv_wscale;
2323 tp->rcv_ssthresh = tp->rcv_wnd;
2324
2325 sk->sk_err = 0;
2326 sock_reset_flag(sk, SOCK_DONE);
2327 tp->snd_wnd = 0;
2328 tcp_init_wl(tp, tp->write_seq, 0);
2329 tp->snd_una = tp->write_seq;
2330 tp->snd_sml = tp->write_seq;
2331 tp->snd_up = tp->write_seq;
2332 tp->rcv_nxt = 0;
2333 tp->rcv_wup = 0;
2334 tp->copied_seq = 0;
2335
2336 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2337 inet_csk(sk)->icsk_retransmits = 0;
2338 tcp_clear_retrans(tp);
2339 }
2340
2341 /*
2342 * Build a SYN and send it off.
2343 */
tcp_connect(struct sock * sk)2344 int tcp_connect(struct sock *sk)
2345 {
2346 struct tcp_sock *tp = tcp_sk(sk);
2347 struct sk_buff *buff;
2348
2349 tcp_connect_init(sk);
2350
2351 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2352 if (unlikely(buff == NULL))
2353 return -ENOBUFS;
2354
2355 /* Reserve space for headers. */
2356 skb_reserve(buff, MAX_TCP_HEADER);
2357
2358 tp->snd_nxt = tp->write_seq;
2359 tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN);
2360 TCP_ECN_send_syn(sk, buff);
2361
2362 /* Send it off. */
2363 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2364 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2365 skb_header_release(buff);
2366 __tcp_add_write_queue_tail(sk, buff);
2367 sk->sk_wmem_queued += buff->truesize;
2368 sk_mem_charge(sk, buff->truesize);
2369 tp->packets_out += tcp_skb_pcount(buff);
2370 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);
2371
2372 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2373 * in order to make this packet get counted in tcpOutSegs.
2374 */
2375 tp->snd_nxt = tp->write_seq;
2376 tp->pushed_seq = tp->write_seq;
2377 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2378
2379 /* Timer for repeating the SYN until an answer. */
2380 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2381 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2382 return 0;
2383 }
2384
2385 /* Send out a delayed ack, the caller does the policy checking
2386 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2387 * for details.
2388 */
tcp_send_delayed_ack(struct sock * sk)2389 void tcp_send_delayed_ack(struct sock *sk)
2390 {
2391 struct inet_connection_sock *icsk = inet_csk(sk);
2392 int ato = icsk->icsk_ack.ato;
2393 unsigned long timeout;
2394
2395 if (ato > TCP_DELACK_MIN) {
2396 const struct tcp_sock *tp = tcp_sk(sk);
2397 int max_ato = HZ / 2;
2398
2399 if (icsk->icsk_ack.pingpong ||
2400 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2401 max_ato = TCP_DELACK_MAX;
2402
2403 /* Slow path, intersegment interval is "high". */
2404
2405 /* If some rtt estimate is known, use it to bound delayed ack.
2406 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2407 * directly.
2408 */
2409 if (tp->srtt) {
2410 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2411
2412 if (rtt < max_ato)
2413 max_ato = rtt;
2414 }
2415
2416 ato = min(ato, max_ato);
2417 }
2418
2419 /* Stay within the limit we were given */
2420 timeout = jiffies + ato;
2421
2422 /* Use new timeout only if there wasn't a older one earlier. */
2423 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2424 /* If delack timer was blocked or is about to expire,
2425 * send ACK now.
2426 */
2427 if (icsk->icsk_ack.blocked ||
2428 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2429 tcp_send_ack(sk);
2430 return;
2431 }
2432
2433 if (!time_before(timeout, icsk->icsk_ack.timeout))
2434 timeout = icsk->icsk_ack.timeout;
2435 }
2436 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2437 icsk->icsk_ack.timeout = timeout;
2438 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2439 }
2440
2441 /* This routine sends an ack and also updates the window. */
tcp_send_ack(struct sock * sk)2442 void tcp_send_ack(struct sock *sk)
2443 {
2444 struct sk_buff *buff;
2445
2446 /* If we have been reset, we may not send again. */
2447 if (sk->sk_state == TCP_CLOSE)
2448 return;
2449
2450 /* We are not putting this on the write queue, so
2451 * tcp_transmit_skb() will set the ownership to this
2452 * sock.
2453 */
2454 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2455 if (buff == NULL) {
2456 inet_csk_schedule_ack(sk);
2457 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2458 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2459 TCP_DELACK_MAX, TCP_RTO_MAX);
2460 return;
2461 }
2462
2463 /* Reserve space for headers and prepare control bits. */
2464 skb_reserve(buff, MAX_TCP_HEADER);
2465 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK);
2466
2467 /* Send it off, this clears delayed acks for us. */
2468 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2469 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2470 }
2471
2472 /* This routine sends a packet with an out of date sequence
2473 * number. It assumes the other end will try to ack it.
2474 *
2475 * Question: what should we make while urgent mode?
2476 * 4.4BSD forces sending single byte of data. We cannot send
2477 * out of window data, because we have SND.NXT==SND.MAX...
2478 *
2479 * Current solution: to send TWO zero-length segments in urgent mode:
2480 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2481 * out-of-date with SND.UNA-1 to probe window.
2482 */
tcp_xmit_probe_skb(struct sock * sk,int urgent)2483 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2484 {
2485 struct tcp_sock *tp = tcp_sk(sk);
2486 struct sk_buff *skb;
2487
2488 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2489 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2490 if (skb == NULL)
2491 return -1;
2492
2493 /* Reserve space for headers and set control bits. */
2494 skb_reserve(skb, MAX_TCP_HEADER);
2495 /* Use a previous sequence. This should cause the other
2496 * end to send an ack. Don't queue or clone SKB, just
2497 * send it.
2498 */
2499 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK);
2500 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2501 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2502 }
2503
tcp_write_wakeup(struct sock * sk)2504 int tcp_write_wakeup(struct sock *sk)
2505 {
2506 struct tcp_sock *tp = tcp_sk(sk);
2507 struct sk_buff *skb;
2508
2509 if (sk->sk_state == TCP_CLOSE)
2510 return -1;
2511
2512 if ((skb = tcp_send_head(sk)) != NULL &&
2513 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
2514 int err;
2515 unsigned int mss = tcp_current_mss(sk, 0);
2516 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2517
2518 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2519 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2520
2521 /* We are probing the opening of a window
2522 * but the window size is != 0
2523 * must have been a result SWS avoidance ( sender )
2524 */
2525 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2526 skb->len > mss) {
2527 seg_size = min(seg_size, mss);
2528 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2529 if (tcp_fragment(sk, skb, seg_size, mss))
2530 return -1;
2531 } else if (!tcp_skb_pcount(skb))
2532 tcp_set_skb_tso_segs(sk, skb, mss);
2533
2534 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2535 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2536 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2537 if (!err)
2538 tcp_event_new_data_sent(sk, skb);
2539 return err;
2540 } else {
2541 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
2542 tcp_xmit_probe_skb(sk, 1);
2543 return tcp_xmit_probe_skb(sk, 0);
2544 }
2545 }
2546
2547 /* A window probe timeout has occurred. If window is not closed send
2548 * a partial packet else a zero probe.
2549 */
tcp_send_probe0(struct sock * sk)2550 void tcp_send_probe0(struct sock *sk)
2551 {
2552 struct inet_connection_sock *icsk = inet_csk(sk);
2553 struct tcp_sock *tp = tcp_sk(sk);
2554 int err;
2555
2556 err = tcp_write_wakeup(sk);
2557
2558 if (tp->packets_out || !tcp_send_head(sk)) {
2559 /* Cancel probe timer, if it is not required. */
2560 icsk->icsk_probes_out = 0;
2561 icsk->icsk_backoff = 0;
2562 return;
2563 }
2564
2565 if (err <= 0) {
2566 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2567 icsk->icsk_backoff++;
2568 icsk->icsk_probes_out++;
2569 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2570 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2571 TCP_RTO_MAX);
2572 } else {
2573 /* If packet was not sent due to local congestion,
2574 * do not backoff and do not remember icsk_probes_out.
2575 * Let local senders to fight for local resources.
2576 *
2577 * Use accumulated backoff yet.
2578 */
2579 if (!icsk->icsk_probes_out)
2580 icsk->icsk_probes_out = 1;
2581 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2582 min(icsk->icsk_rto << icsk->icsk_backoff,
2583 TCP_RESOURCE_PROBE_INTERVAL),
2584 TCP_RTO_MAX);
2585 }
2586 }
2587
2588 EXPORT_SYMBOL(tcp_select_initial_window);
2589 EXPORT_SYMBOL(tcp_connect);
2590 EXPORT_SYMBOL(tcp_make_synack);
2591 EXPORT_SYMBOL(tcp_simple_retransmit);
2592 EXPORT_SYMBOL(tcp_sync_mss);
2593 EXPORT_SYMBOL(tcp_mtup_init);
2594