• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 #include <net/sctp/checksum.h>
64 #include <net/net_namespace.h>
65 
66 /* Forward declarations for internal helpers. */
67 static int sctp_rcv_ootb(struct sk_buff *);
68 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
69 				      const union sctp_addr *laddr,
70 				      const union sctp_addr *paddr,
71 				      struct sctp_transport **transportp);
72 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
73 static struct sctp_association *__sctp_lookup_association(
74 					const union sctp_addr *local,
75 					const union sctp_addr *peer,
76 					struct sctp_transport **pt);
77 
78 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
79 
80 
81 /* Calculate the SCTP checksum of an SCTP packet.  */
sctp_rcv_checksum(struct sk_buff * skb)82 static inline int sctp_rcv_checksum(struct sk_buff *skb)
83 {
84 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
85 	struct sctphdr *sh = sctp_hdr(skb);
86 	__be32 cmp = sh->checksum;
87 	__be32 val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
88 
89 	for (; list; list = list->next)
90 		val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
91 					val);
92 
93 	val = sctp_end_cksum(val);
94 
95 	if (val != cmp) {
96 		/* CRC failure, dump it. */
97 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
98 		return -1;
99 	}
100 	return 0;
101 }
102 
103 struct sctp_input_cb {
104 	union {
105 		struct inet_skb_parm	h4;
106 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
107 		struct inet6_skb_parm	h6;
108 #endif
109 	} header;
110 	struct sctp_chunk *chunk;
111 };
112 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
113 
114 /*
115  * This is the routine which IP calls when receiving an SCTP packet.
116  */
sctp_rcv(struct sk_buff * skb)117 int sctp_rcv(struct sk_buff *skb)
118 {
119 	struct sock *sk;
120 	struct sctp_association *asoc;
121 	struct sctp_endpoint *ep = NULL;
122 	struct sctp_ep_common *rcvr;
123 	struct sctp_transport *transport = NULL;
124 	struct sctp_chunk *chunk;
125 	struct sctphdr *sh;
126 	union sctp_addr src;
127 	union sctp_addr dest;
128 	int family;
129 	struct sctp_af *af;
130 
131 	if (skb->pkt_type!=PACKET_HOST)
132 		goto discard_it;
133 
134 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
135 
136 	if (skb_linearize(skb))
137 		goto discard_it;
138 
139 	sh = sctp_hdr(skb);
140 
141 	/* Pull up the IP and SCTP headers. */
142 	__skb_pull(skb, skb_transport_offset(skb));
143 	if (skb->len < sizeof(struct sctphdr))
144 		goto discard_it;
145 	if (!skb_csum_unnecessary(skb) && sctp_rcv_checksum(skb) < 0)
146 		goto discard_it;
147 
148 	skb_pull(skb, sizeof(struct sctphdr));
149 
150 	/* Make sure we at least have chunk headers worth of data left. */
151 	if (skb->len < sizeof(struct sctp_chunkhdr))
152 		goto discard_it;
153 
154 	family = ipver2af(ip_hdr(skb)->version);
155 	af = sctp_get_af_specific(family);
156 	if (unlikely(!af))
157 		goto discard_it;
158 
159 	/* Initialize local addresses for lookups. */
160 	af->from_skb(&src, skb, 1);
161 	af->from_skb(&dest, skb, 0);
162 
163 	/* If the packet is to or from a non-unicast address,
164 	 * silently discard the packet.
165 	 *
166 	 * This is not clearly defined in the RFC except in section
167 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
168 	 * Transmission Protocol" 2.1, "It is important to note that the
169 	 * IP address of an SCTP transport address must be a routable
170 	 * unicast address.  In other words, IP multicast addresses and
171 	 * IP broadcast addresses cannot be used in an SCTP transport
172 	 * address."
173 	 */
174 	if (!af->addr_valid(&src, NULL, skb) ||
175 	    !af->addr_valid(&dest, NULL, skb))
176 		goto discard_it;
177 
178 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
179 
180 	if (!asoc)
181 		ep = __sctp_rcv_lookup_endpoint(&dest);
182 
183 	/* Retrieve the common input handling substructure. */
184 	rcvr = asoc ? &asoc->base : &ep->base;
185 	sk = rcvr->sk;
186 
187 	/*
188 	 * If a frame arrives on an interface and the receiving socket is
189 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
190 	 */
191 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
192 	{
193 		if (asoc) {
194 			sctp_association_put(asoc);
195 			asoc = NULL;
196 		} else {
197 			sctp_endpoint_put(ep);
198 			ep = NULL;
199 		}
200 		sk = sctp_get_ctl_sock();
201 		ep = sctp_sk(sk)->ep;
202 		sctp_endpoint_hold(ep);
203 		rcvr = &ep->base;
204 	}
205 
206 	/*
207 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
208 	 * An SCTP packet is called an "out of the blue" (OOTB)
209 	 * packet if it is correctly formed, i.e., passed the
210 	 * receiver's checksum check, but the receiver is not
211 	 * able to identify the association to which this
212 	 * packet belongs.
213 	 */
214 	if (!asoc) {
215 		if (sctp_rcv_ootb(skb)) {
216 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
217 			goto discard_release;
218 		}
219 	}
220 
221 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
222 		goto discard_release;
223 	nf_reset(skb);
224 
225 	if (sk_filter(sk, skb))
226 		goto discard_release;
227 
228 	/* Create an SCTP packet structure. */
229 	chunk = sctp_chunkify(skb, asoc, sk);
230 	if (!chunk)
231 		goto discard_release;
232 	SCTP_INPUT_CB(skb)->chunk = chunk;
233 
234 	/* Remember what endpoint is to handle this packet. */
235 	chunk->rcvr = rcvr;
236 
237 	/* Remember the SCTP header. */
238 	chunk->sctp_hdr = sh;
239 
240 	/* Set the source and destination addresses of the incoming chunk.  */
241 	sctp_init_addrs(chunk, &src, &dest);
242 
243 	/* Remember where we came from.  */
244 	chunk->transport = transport;
245 
246 	/* Acquire access to the sock lock. Note: We are safe from other
247 	 * bottom halves on this lock, but a user may be in the lock too,
248 	 * so check if it is busy.
249 	 */
250 	sctp_bh_lock_sock(sk);
251 
252 	if (sk != rcvr->sk) {
253 		/* Our cached sk is different from the rcvr->sk.  This is
254 		 * because migrate()/accept() may have moved the association
255 		 * to a new socket and released all the sockets.  So now we
256 		 * are holding a lock on the old socket while the user may
257 		 * be doing something with the new socket.  Switch our veiw
258 		 * of the current sk.
259 		 */
260 		sctp_bh_unlock_sock(sk);
261 		sk = rcvr->sk;
262 		sctp_bh_lock_sock(sk);
263 	}
264 
265 	if (sock_owned_by_user(sk)) {
266 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
267 		sctp_add_backlog(sk, skb);
268 	} else {
269 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
270 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
271 	}
272 
273 	sctp_bh_unlock_sock(sk);
274 
275 	/* Release the asoc/ep ref we took in the lookup calls. */
276 	if (asoc)
277 		sctp_association_put(asoc);
278 	else
279 		sctp_endpoint_put(ep);
280 
281 	return 0;
282 
283 discard_it:
284 	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
285 	kfree_skb(skb);
286 	return 0;
287 
288 discard_release:
289 	/* Release the asoc/ep ref we took in the lookup calls. */
290 	if (asoc)
291 		sctp_association_put(asoc);
292 	else
293 		sctp_endpoint_put(ep);
294 
295 	goto discard_it;
296 }
297 
298 /* Process the backlog queue of the socket.  Every skb on
299  * the backlog holds a ref on an association or endpoint.
300  * We hold this ref throughout the state machine to make
301  * sure that the structure we need is still around.
302  */
sctp_backlog_rcv(struct sock * sk,struct sk_buff * skb)303 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
304 {
305 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
306 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
307 	struct sctp_ep_common *rcvr = NULL;
308 	int backloged = 0;
309 
310 	rcvr = chunk->rcvr;
311 
312 	/* If the rcvr is dead then the association or endpoint
313 	 * has been deleted and we can safely drop the chunk
314 	 * and refs that we are holding.
315 	 */
316 	if (rcvr->dead) {
317 		sctp_chunk_free(chunk);
318 		goto done;
319 	}
320 
321 	if (unlikely(rcvr->sk != sk)) {
322 		/* In this case, the association moved from one socket to
323 		 * another.  We are currently sitting on the backlog of the
324 		 * old socket, so we need to move.
325 		 * However, since we are here in the process context we
326 		 * need to take make sure that the user doesn't own
327 		 * the new socket when we process the packet.
328 		 * If the new socket is user-owned, queue the chunk to the
329 		 * backlog of the new socket without dropping any refs.
330 		 * Otherwise, we can safely push the chunk on the inqueue.
331 		 */
332 
333 		sk = rcvr->sk;
334 		sctp_bh_lock_sock(sk);
335 
336 		if (sock_owned_by_user(sk)) {
337 			sk_add_backlog(sk, skb);
338 			backloged = 1;
339 		} else
340 			sctp_inq_push(inqueue, chunk);
341 
342 		sctp_bh_unlock_sock(sk);
343 
344 		/* If the chunk was backloged again, don't drop refs */
345 		if (backloged)
346 			return 0;
347 	} else {
348 		sctp_inq_push(inqueue, chunk);
349 	}
350 
351 done:
352 	/* Release the refs we took in sctp_add_backlog */
353 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
354 		sctp_association_put(sctp_assoc(rcvr));
355 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
356 		sctp_endpoint_put(sctp_ep(rcvr));
357 	else
358 		BUG();
359 
360 	return 0;
361 }
362 
sctp_add_backlog(struct sock * sk,struct sk_buff * skb)363 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
364 {
365 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
366 	struct sctp_ep_common *rcvr = chunk->rcvr;
367 
368 	/* Hold the assoc/ep while hanging on the backlog queue.
369 	 * This way, we know structures we need will not disappear from us
370 	 */
371 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
372 		sctp_association_hold(sctp_assoc(rcvr));
373 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
374 		sctp_endpoint_hold(sctp_ep(rcvr));
375 	else
376 		BUG();
377 
378 	sk_add_backlog(sk, skb);
379 }
380 
381 /* Handle icmp frag needed error. */
sctp_icmp_frag_needed(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t,__u32 pmtu)382 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
383 			   struct sctp_transport *t, __u32 pmtu)
384 {
385 	if (!t || (t->pathmtu <= pmtu))
386 		return;
387 
388 	if (sock_owned_by_user(sk)) {
389 		asoc->pmtu_pending = 1;
390 		t->pmtu_pending = 1;
391 		return;
392 	}
393 
394 	if (t->param_flags & SPP_PMTUD_ENABLE) {
395 		/* Update transports view of the MTU */
396 		sctp_transport_update_pmtu(t, pmtu);
397 
398 		/* Update association pmtu. */
399 		sctp_assoc_sync_pmtu(asoc);
400 	}
401 
402 	/* Retransmit with the new pmtu setting.
403 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
404 	 * Needed will never be sent, but if a message was sent before
405 	 * PMTU discovery was disabled that was larger than the PMTU, it
406 	 * would not be fragmented, so it must be re-transmitted fragmented.
407 	 */
408 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
409 }
410 
411 /*
412  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
413  *
414  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
415  *        or a "Protocol Unreachable" treat this message as an abort
416  *        with the T bit set.
417  *
418  * This function sends an event to the state machine, which will abort the
419  * association.
420  *
421  */
sctp_icmp_proto_unreachable(struct sock * sk,struct sctp_association * asoc,struct sctp_transport * t)422 void sctp_icmp_proto_unreachable(struct sock *sk,
423 			   struct sctp_association *asoc,
424 			   struct sctp_transport *t)
425 {
426 	SCTP_DEBUG_PRINTK("%s\n",  __func__);
427 
428 	sctp_do_sm(SCTP_EVENT_T_OTHER,
429 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
430 		   asoc->state, asoc->ep, asoc, t,
431 		   GFP_ATOMIC);
432 
433 }
434 
435 /* Common lookup code for icmp/icmpv6 error handler. */
sctp_err_lookup(int family,struct sk_buff * skb,struct sctphdr * sctphdr,struct sctp_association ** app,struct sctp_transport ** tpp)436 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
437 			     struct sctphdr *sctphdr,
438 			     struct sctp_association **app,
439 			     struct sctp_transport **tpp)
440 {
441 	union sctp_addr saddr;
442 	union sctp_addr daddr;
443 	struct sctp_af *af;
444 	struct sock *sk = NULL;
445 	struct sctp_association *asoc;
446 	struct sctp_transport *transport = NULL;
447 	struct sctp_init_chunk *chunkhdr;
448 	__u32 vtag = ntohl(sctphdr->vtag);
449 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
450 
451 	*app = NULL; *tpp = NULL;
452 
453 	af = sctp_get_af_specific(family);
454 	if (unlikely(!af)) {
455 		return NULL;
456 	}
457 
458 	/* Initialize local addresses for lookups. */
459 	af->from_skb(&saddr, skb, 1);
460 	af->from_skb(&daddr, skb, 0);
461 
462 	/* Look for an association that matches the incoming ICMP error
463 	 * packet.
464 	 */
465 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
466 	if (!asoc)
467 		return NULL;
468 
469 	sk = asoc->base.sk;
470 
471 	/* RFC 4960, Appendix C. ICMP Handling
472 	 *
473 	 * ICMP6) An implementation MUST validate that the Verification Tag
474 	 * contained in the ICMP message matches the Verification Tag of
475 	 * the peer.  If the Verification Tag is not 0 and does NOT
476 	 * match, discard the ICMP message.  If it is 0 and the ICMP
477 	 * message contains enough bytes to verify that the chunk type is
478 	 * an INIT chunk and that the Initiate Tag matches the tag of the
479 	 * peer, continue with ICMP7.  If the ICMP message is too short
480 	 * or the chunk type or the Initiate Tag does not match, silently
481 	 * discard the packet.
482 	 */
483 	if (vtag == 0) {
484 		chunkhdr = (struct sctp_init_chunk *)((void *)sctphdr
485 				+ sizeof(struct sctphdr));
486 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
487 			  + sizeof(__be32) ||
488 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
489 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
490 			goto out;
491 		}
492 	} else if (vtag != asoc->c.peer_vtag) {
493 		goto out;
494 	}
495 
496 	sctp_bh_lock_sock(sk);
497 
498 	/* If too many ICMPs get dropped on busy
499 	 * servers this needs to be solved differently.
500 	 */
501 	if (sock_owned_by_user(sk))
502 		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
503 
504 	*app = asoc;
505 	*tpp = transport;
506 	return sk;
507 
508 out:
509 	if (asoc)
510 		sctp_association_put(asoc);
511 	return NULL;
512 }
513 
514 /* Common cleanup code for icmp/icmpv6 error handler. */
sctp_err_finish(struct sock * sk,struct sctp_association * asoc)515 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
516 {
517 	sctp_bh_unlock_sock(sk);
518 	if (asoc)
519 		sctp_association_put(asoc);
520 }
521 
522 /*
523  * This routine is called by the ICMP module when it gets some
524  * sort of error condition.  If err < 0 then the socket should
525  * be closed and the error returned to the user.  If err > 0
526  * it's just the icmp type << 8 | icmp code.  After adjustment
527  * header points to the first 8 bytes of the sctp header.  We need
528  * to find the appropriate port.
529  *
530  * The locking strategy used here is very "optimistic". When
531  * someone else accesses the socket the ICMP is just dropped
532  * and for some paths there is no check at all.
533  * A more general error queue to queue errors for later handling
534  * is probably better.
535  *
536  */
sctp_v4_err(struct sk_buff * skb,__u32 info)537 void sctp_v4_err(struct sk_buff *skb, __u32 info)
538 {
539 	struct iphdr *iph = (struct iphdr *)skb->data;
540 	const int ihlen = iph->ihl * 4;
541 	const int type = icmp_hdr(skb)->type;
542 	const int code = icmp_hdr(skb)->code;
543 	struct sock *sk;
544 	struct sctp_association *asoc = NULL;
545 	struct sctp_transport *transport;
546 	struct inet_sock *inet;
547 	sk_buff_data_t saveip, savesctp;
548 	int err;
549 
550 	if (skb->len < ihlen + 8) {
551 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
552 		return;
553 	}
554 
555 	/* Fix up skb to look at the embedded net header. */
556 	saveip = skb->network_header;
557 	savesctp = skb->transport_header;
558 	skb_reset_network_header(skb);
559 	skb_set_transport_header(skb, ihlen);
560 	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
561 	/* Put back, the original values. */
562 	skb->network_header = saveip;
563 	skb->transport_header = savesctp;
564 	if (!sk) {
565 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
566 		return;
567 	}
568 	/* Warning:  The sock lock is held.  Remember to call
569 	 * sctp_err_finish!
570 	 */
571 
572 	switch (type) {
573 	case ICMP_PARAMETERPROB:
574 		err = EPROTO;
575 		break;
576 	case ICMP_DEST_UNREACH:
577 		if (code > NR_ICMP_UNREACH)
578 			goto out_unlock;
579 
580 		/* PMTU discovery (RFC1191) */
581 		if (ICMP_FRAG_NEEDED == code) {
582 			sctp_icmp_frag_needed(sk, asoc, transport, info);
583 			goto out_unlock;
584 		}
585 		else {
586 			if (ICMP_PROT_UNREACH == code) {
587 				sctp_icmp_proto_unreachable(sk, asoc,
588 							    transport);
589 				goto out_unlock;
590 			}
591 		}
592 		err = icmp_err_convert[code].errno;
593 		break;
594 	case ICMP_TIME_EXCEEDED:
595 		/* Ignore any time exceeded errors due to fragment reassembly
596 		 * timeouts.
597 		 */
598 		if (ICMP_EXC_FRAGTIME == code)
599 			goto out_unlock;
600 
601 		err = EHOSTUNREACH;
602 		break;
603 	default:
604 		goto out_unlock;
605 	}
606 
607 	inet = inet_sk(sk);
608 	if (!sock_owned_by_user(sk) && inet->recverr) {
609 		sk->sk_err = err;
610 		sk->sk_error_report(sk);
611 	} else {  /* Only an error on timeout */
612 		sk->sk_err_soft = err;
613 	}
614 
615 out_unlock:
616 	sctp_err_finish(sk, asoc);
617 }
618 
619 /*
620  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
621  *
622  * This function scans all the chunks in the OOTB packet to determine if
623  * the packet should be discarded right away.  If a response might be needed
624  * for this packet, or, if further processing is possible, the packet will
625  * be queued to a proper inqueue for the next phase of handling.
626  *
627  * Output:
628  * Return 0 - If further processing is needed.
629  * Return 1 - If the packet can be discarded right away.
630  */
sctp_rcv_ootb(struct sk_buff * skb)631 static int sctp_rcv_ootb(struct sk_buff *skb)
632 {
633 	sctp_chunkhdr_t *ch;
634 	__u8 *ch_end;
635 	sctp_errhdr_t *err;
636 
637 	ch = (sctp_chunkhdr_t *) skb->data;
638 
639 	/* Scan through all the chunks in the packet.  */
640 	do {
641 		/* Break out if chunk length is less then minimal. */
642 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
643 			break;
644 
645 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
646 		if (ch_end > skb_tail_pointer(skb))
647 			break;
648 
649 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
650 		 * receiver MUST silently discard the OOTB packet and take no
651 		 * further action.
652 		 */
653 		if (SCTP_CID_ABORT == ch->type)
654 			goto discard;
655 
656 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
657 		 * chunk, the receiver should silently discard the packet
658 		 * and take no further action.
659 		 */
660 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
661 			goto discard;
662 
663 		/* RFC 4460, 2.11.2
664 		 * This will discard packets with INIT chunk bundled as
665 		 * subsequent chunks in the packet.  When INIT is first,
666 		 * the normal INIT processing will discard the chunk.
667 		 */
668 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
669 			goto discard;
670 
671 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
672 		 * or a COOKIE ACK the SCTP Packet should be silently
673 		 * discarded.
674 		 */
675 		if (SCTP_CID_COOKIE_ACK == ch->type)
676 			goto discard;
677 
678 		if (SCTP_CID_ERROR == ch->type) {
679 			sctp_walk_errors(err, ch) {
680 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
681 					goto discard;
682 			}
683 		}
684 
685 		ch = (sctp_chunkhdr_t *) ch_end;
686 	} while (ch_end < skb_tail_pointer(skb));
687 
688 	return 0;
689 
690 discard:
691 	return 1;
692 }
693 
694 /* Insert endpoint into the hash table.  */
__sctp_hash_endpoint(struct sctp_endpoint * ep)695 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
696 {
697 	struct sctp_ep_common *epb;
698 	struct sctp_hashbucket *head;
699 
700 	epb = &ep->base;
701 
702 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
703 	head = &sctp_ep_hashtable[epb->hashent];
704 
705 	sctp_write_lock(&head->lock);
706 	hlist_add_head(&epb->node, &head->chain);
707 	sctp_write_unlock(&head->lock);
708 }
709 
710 /* Add an endpoint to the hash. Local BH-safe. */
sctp_hash_endpoint(struct sctp_endpoint * ep)711 void sctp_hash_endpoint(struct sctp_endpoint *ep)
712 {
713 	sctp_local_bh_disable();
714 	__sctp_hash_endpoint(ep);
715 	sctp_local_bh_enable();
716 }
717 
718 /* Remove endpoint from the hash table.  */
__sctp_unhash_endpoint(struct sctp_endpoint * ep)719 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
720 {
721 	struct sctp_hashbucket *head;
722 	struct sctp_ep_common *epb;
723 
724 	epb = &ep->base;
725 
726 	if (hlist_unhashed(&epb->node))
727 		return;
728 
729 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
730 
731 	head = &sctp_ep_hashtable[epb->hashent];
732 
733 	sctp_write_lock(&head->lock);
734 	__hlist_del(&epb->node);
735 	sctp_write_unlock(&head->lock);
736 }
737 
738 /* Remove endpoint from the hash.  Local BH-safe. */
sctp_unhash_endpoint(struct sctp_endpoint * ep)739 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
740 {
741 	sctp_local_bh_disable();
742 	__sctp_unhash_endpoint(ep);
743 	sctp_local_bh_enable();
744 }
745 
746 /* Look up an endpoint. */
__sctp_rcv_lookup_endpoint(const union sctp_addr * laddr)747 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
748 {
749 	struct sctp_hashbucket *head;
750 	struct sctp_ep_common *epb;
751 	struct sctp_endpoint *ep;
752 	struct hlist_node *node;
753 	int hash;
754 
755 	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
756 	head = &sctp_ep_hashtable[hash];
757 	read_lock(&head->lock);
758 	sctp_for_each_hentry(epb, node, &head->chain) {
759 		ep = sctp_ep(epb);
760 		if (sctp_endpoint_is_match(ep, laddr))
761 			goto hit;
762 	}
763 
764 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
765 
766 hit:
767 	sctp_endpoint_hold(ep);
768 	read_unlock(&head->lock);
769 	return ep;
770 }
771 
772 /* Insert association into the hash table.  */
__sctp_hash_established(struct sctp_association * asoc)773 static void __sctp_hash_established(struct sctp_association *asoc)
774 {
775 	struct sctp_ep_common *epb;
776 	struct sctp_hashbucket *head;
777 
778 	epb = &asoc->base;
779 
780 	/* Calculate which chain this entry will belong to. */
781 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
782 
783 	head = &sctp_assoc_hashtable[epb->hashent];
784 
785 	sctp_write_lock(&head->lock);
786 	hlist_add_head(&epb->node, &head->chain);
787 	sctp_write_unlock(&head->lock);
788 }
789 
790 /* Add an association to the hash. Local BH-safe. */
sctp_hash_established(struct sctp_association * asoc)791 void sctp_hash_established(struct sctp_association *asoc)
792 {
793 	if (asoc->temp)
794 		return;
795 
796 	sctp_local_bh_disable();
797 	__sctp_hash_established(asoc);
798 	sctp_local_bh_enable();
799 }
800 
801 /* Remove association from the hash table.  */
__sctp_unhash_established(struct sctp_association * asoc)802 static void __sctp_unhash_established(struct sctp_association *asoc)
803 {
804 	struct sctp_hashbucket *head;
805 	struct sctp_ep_common *epb;
806 
807 	epb = &asoc->base;
808 
809 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
810 					 asoc->peer.port);
811 
812 	head = &sctp_assoc_hashtable[epb->hashent];
813 
814 	sctp_write_lock(&head->lock);
815 	__hlist_del(&epb->node);
816 	sctp_write_unlock(&head->lock);
817 }
818 
819 /* Remove association from the hash table.  Local BH-safe. */
sctp_unhash_established(struct sctp_association * asoc)820 void sctp_unhash_established(struct sctp_association *asoc)
821 {
822 	if (asoc->temp)
823 		return;
824 
825 	sctp_local_bh_disable();
826 	__sctp_unhash_established(asoc);
827 	sctp_local_bh_enable();
828 }
829 
830 /* Look up an association. */
__sctp_lookup_association(const union sctp_addr * local,const union sctp_addr * peer,struct sctp_transport ** pt)831 static struct sctp_association *__sctp_lookup_association(
832 					const union sctp_addr *local,
833 					const union sctp_addr *peer,
834 					struct sctp_transport **pt)
835 {
836 	struct sctp_hashbucket *head;
837 	struct sctp_ep_common *epb;
838 	struct sctp_association *asoc;
839 	struct sctp_transport *transport;
840 	struct hlist_node *node;
841 	int hash;
842 
843 	/* Optimize here for direct hit, only listening connections can
844 	 * have wildcards anyways.
845 	 */
846 	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
847 	head = &sctp_assoc_hashtable[hash];
848 	read_lock(&head->lock);
849 	sctp_for_each_hentry(epb, node, &head->chain) {
850 		asoc = sctp_assoc(epb);
851 		transport = sctp_assoc_is_match(asoc, local, peer);
852 		if (transport)
853 			goto hit;
854 	}
855 
856 	read_unlock(&head->lock);
857 
858 	return NULL;
859 
860 hit:
861 	*pt = transport;
862 	sctp_association_hold(asoc);
863 	read_unlock(&head->lock);
864 	return asoc;
865 }
866 
867 /* Look up an association. BH-safe. */
868 SCTP_STATIC
sctp_lookup_association(const union sctp_addr * laddr,const union sctp_addr * paddr,struct sctp_transport ** transportp)869 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
870 						 const union sctp_addr *paddr,
871 					    struct sctp_transport **transportp)
872 {
873 	struct sctp_association *asoc;
874 
875 	sctp_local_bh_disable();
876 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
877 	sctp_local_bh_enable();
878 
879 	return asoc;
880 }
881 
882 /* Is there an association matching the given local and peer addresses? */
sctp_has_association(const union sctp_addr * laddr,const union sctp_addr * paddr)883 int sctp_has_association(const union sctp_addr *laddr,
884 			 const union sctp_addr *paddr)
885 {
886 	struct sctp_association *asoc;
887 	struct sctp_transport *transport;
888 
889 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
890 		sctp_association_put(asoc);
891 		return 1;
892 	}
893 
894 	return 0;
895 }
896 
897 /*
898  * SCTP Implementors Guide, 2.18 Handling of address
899  * parameters within the INIT or INIT-ACK.
900  *
901  * D) When searching for a matching TCB upon reception of an INIT
902  *    or INIT-ACK chunk the receiver SHOULD use not only the
903  *    source address of the packet (containing the INIT or
904  *    INIT-ACK) but the receiver SHOULD also use all valid
905  *    address parameters contained within the chunk.
906  *
907  * 2.18.3 Solution description
908  *
909  * This new text clearly specifies to an implementor the need
910  * to look within the INIT or INIT-ACK. Any implementation that
911  * does not do this, may not be able to establish associations
912  * in certain circumstances.
913  *
914  */
__sctp_rcv_init_lookup(struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)915 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
916 	const union sctp_addr *laddr, struct sctp_transport **transportp)
917 {
918 	struct sctp_association *asoc;
919 	union sctp_addr addr;
920 	union sctp_addr *paddr = &addr;
921 	struct sctphdr *sh = sctp_hdr(skb);
922 	sctp_chunkhdr_t *ch;
923 	union sctp_params params;
924 	sctp_init_chunk_t *init;
925 	struct sctp_transport *transport;
926 	struct sctp_af *af;
927 
928 	ch = (sctp_chunkhdr_t *) skb->data;
929 
930 	/*
931 	 * This code will NOT touch anything inside the chunk--it is
932 	 * strictly READ-ONLY.
933 	 *
934 	 * RFC 2960 3  SCTP packet Format
935 	 *
936 	 * Multiple chunks can be bundled into one SCTP packet up to
937 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
938 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
939 	 * other chunk in a packet.  See Section 6.10 for more details
940 	 * on chunk bundling.
941 	 */
942 
943 	/* Find the start of the TLVs and the end of the chunk.  This is
944 	 * the region we search for address parameters.
945 	 */
946 	init = (sctp_init_chunk_t *)skb->data;
947 
948 	/* Walk the parameters looking for embedded addresses. */
949 	sctp_walk_params(params, init, init_hdr.params) {
950 
951 		/* Note: Ignoring hostname addresses. */
952 		af = sctp_get_af_specific(param_type2af(params.p->type));
953 		if (!af)
954 			continue;
955 
956 		af->from_addr_param(paddr, params.addr, sh->source, 0);
957 
958 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
959 		if (asoc)
960 			return asoc;
961 	}
962 
963 	return NULL;
964 }
965 
966 /* ADD-IP, Section 5.2
967  * When an endpoint receives an ASCONF Chunk from the remote peer
968  * special procedures may be needed to identify the association the
969  * ASCONF Chunk is associated with. To properly find the association
970  * the following procedures SHOULD be followed:
971  *
972  * D2) If the association is not found, use the address found in the
973  * Address Parameter TLV combined with the port number found in the
974  * SCTP common header. If found proceed to rule D4.
975  *
976  * D2-ext) If more than one ASCONF Chunks are packed together, use the
977  * address found in the ASCONF Address Parameter TLV of each of the
978  * subsequent ASCONF Chunks. If found, proceed to rule D4.
979  */
__sctp_rcv_asconf_lookup(sctp_chunkhdr_t * ch,const union sctp_addr * laddr,__be16 peer_port,struct sctp_transport ** transportp)980 static struct sctp_association *__sctp_rcv_asconf_lookup(
981 					sctp_chunkhdr_t *ch,
982 					const union sctp_addr *laddr,
983 					__be16 peer_port,
984 					struct sctp_transport **transportp)
985 {
986 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
987 	struct sctp_af *af;
988 	union sctp_addr_param *param;
989 	union sctp_addr paddr;
990 
991 	/* Skip over the ADDIP header and find the Address parameter */
992 	param = (union sctp_addr_param *)(asconf + 1);
993 
994 	af = sctp_get_af_specific(param_type2af(param->v4.param_hdr.type));
995 	if (unlikely(!af))
996 		return NULL;
997 
998 	af->from_addr_param(&paddr, param, peer_port, 0);
999 
1000 	return __sctp_lookup_association(laddr, &paddr, transportp);
1001 }
1002 
1003 
1004 /* SCTP-AUTH, Section 6.3:
1005 *    If the receiver does not find a STCB for a packet containing an AUTH
1006 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1007 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1008 *    association.
1009 *
1010 * This means that any chunks that can help us identify the association need
1011 * to be looked at to find this assocation.
1012 */
__sctp_rcv_walk_lookup(struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1013 static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
1014 				      const union sctp_addr *laddr,
1015 				      struct sctp_transport **transportp)
1016 {
1017 	struct sctp_association *asoc = NULL;
1018 	sctp_chunkhdr_t *ch;
1019 	int have_auth = 0;
1020 	unsigned int chunk_num = 1;
1021 	__u8 *ch_end;
1022 
1023 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1024 	 * to help us find the association.
1025 	 */
1026 	ch = (sctp_chunkhdr_t *) skb->data;
1027 	do {
1028 		/* Break out if chunk length is less then minimal. */
1029 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1030 			break;
1031 
1032 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1033 		if (ch_end > skb_tail_pointer(skb))
1034 			break;
1035 
1036 		switch(ch->type) {
1037 		    case SCTP_CID_AUTH:
1038 			    have_auth = chunk_num;
1039 			    break;
1040 
1041 		    case SCTP_CID_COOKIE_ECHO:
1042 			    /* If a packet arrives containing an AUTH chunk as
1043 			     * a first chunk, a COOKIE-ECHO chunk as the second
1044 			     * chunk, and possibly more chunks after them, and
1045 			     * the receiver does not have an STCB for that
1046 			     * packet, then authentication is based on
1047 			     * the contents of the COOKIE- ECHO chunk.
1048 			     */
1049 			    if (have_auth == 1 && chunk_num == 2)
1050 				    return NULL;
1051 			    break;
1052 
1053 		    case SCTP_CID_ASCONF:
1054 			    if (have_auth || sctp_addip_noauth)
1055 				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1056 							sctp_hdr(skb)->source,
1057 							transportp);
1058 		    default:
1059 			    break;
1060 		}
1061 
1062 		if (asoc)
1063 			break;
1064 
1065 		ch = (sctp_chunkhdr_t *) ch_end;
1066 		chunk_num++;
1067 	} while (ch_end < skb_tail_pointer(skb));
1068 
1069 	return asoc;
1070 }
1071 
1072 /*
1073  * There are circumstances when we need to look inside the SCTP packet
1074  * for information to help us find the association.   Examples
1075  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1076  * chunks.
1077  */
__sctp_rcv_lookup_harder(struct sk_buff * skb,const union sctp_addr * laddr,struct sctp_transport ** transportp)1078 static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
1079 				      const union sctp_addr *laddr,
1080 				      struct sctp_transport **transportp)
1081 {
1082 	sctp_chunkhdr_t *ch;
1083 
1084 	ch = (sctp_chunkhdr_t *) skb->data;
1085 
1086 	/* The code below will attempt to walk the chunk and extract
1087 	 * parameter information.  Before we do that, we need to verify
1088 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1089 	 * walk off the end.
1090 	 */
1091 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1092 		return NULL;
1093 
1094 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1095 	switch (ch->type) {
1096 	case SCTP_CID_INIT:
1097 	case SCTP_CID_INIT_ACK:
1098 		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1099 		break;
1100 
1101 	default:
1102 		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1103 		break;
1104 	}
1105 
1106 
1107 	return NULL;
1108 }
1109 
1110 /* Lookup an association for an inbound skb. */
__sctp_rcv_lookup(struct sk_buff * skb,const union sctp_addr * paddr,const union sctp_addr * laddr,struct sctp_transport ** transportp)1111 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
1112 				      const union sctp_addr *paddr,
1113 				      const union sctp_addr *laddr,
1114 				      struct sctp_transport **transportp)
1115 {
1116 	struct sctp_association *asoc;
1117 
1118 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
1119 
1120 	/* Further lookup for INIT/INIT-ACK packets.
1121 	 * SCTP Implementors Guide, 2.18 Handling of address
1122 	 * parameters within the INIT or INIT-ACK.
1123 	 */
1124 	if (!asoc)
1125 		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
1126 
1127 	return asoc;
1128 }
1129