• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
98 
99 #ifdef CONFIG_UID_STAT
100 #include <linux/uid_stat.h>
101 #endif
102 
103 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
104 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
105 			 unsigned long nr_segs, loff_t pos);
106 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
107 			  unsigned long nr_segs, loff_t pos);
108 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
109 
110 static int sock_close(struct inode *inode, struct file *file);
111 static unsigned int sock_poll(struct file *file,
112 			      struct poll_table_struct *wait);
113 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
114 #ifdef CONFIG_COMPAT
115 static long compat_sock_ioctl(struct file *file,
116 			      unsigned int cmd, unsigned long arg);
117 #endif
118 static int sock_fasync(int fd, struct file *filp, int on);
119 static ssize_t sock_sendpage(struct file *file, struct page *page,
120 			     int offset, size_t size, loff_t *ppos, int more);
121 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
122 			        struct pipe_inode_info *pipe, size_t len,
123 				unsigned int flags);
124 
125 /*
126  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
127  *	in the operation structures but are done directly via the socketcall() multiplexor.
128  */
129 
130 static const struct file_operations socket_file_ops = {
131 	.owner =	THIS_MODULE,
132 	.llseek =	no_llseek,
133 	.aio_read =	sock_aio_read,
134 	.aio_write =	sock_aio_write,
135 	.poll =		sock_poll,
136 	.unlocked_ioctl = sock_ioctl,
137 #ifdef CONFIG_COMPAT
138 	.compat_ioctl = compat_sock_ioctl,
139 #endif
140 	.mmap =		sock_mmap,
141 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
142 	.release =	sock_close,
143 	.fasync =	sock_fasync,
144 	.sendpage =	sock_sendpage,
145 	.splice_write = generic_splice_sendpage,
146 	.splice_read =	sock_splice_read,
147 };
148 
149 /*
150  *	The protocol list. Each protocol is registered in here.
151  */
152 
153 static DEFINE_SPINLOCK(net_family_lock);
154 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
155 
156 /*
157  *	Statistics counters of the socket lists
158  */
159 
160 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
161 
162 /*
163  * Support routines.
164  * Move socket addresses back and forth across the kernel/user
165  * divide and look after the messy bits.
166  */
167 
168 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
169 					   16 for IP, 16 for IPX,
170 					   24 for IPv6,
171 					   about 80 for AX.25
172 					   must be at least one bigger than
173 					   the AF_UNIX size (see net/unix/af_unix.c
174 					   :unix_mkname()).
175 					 */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr * kaddr)188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
move_addr_to_user(struct sockaddr * kaddr,int klen,void __user * uaddr,int __user * ulen)216 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
217 		      int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	err = get_user(len, ulen);
223 	if (err)
224 		return err;
225 	if (len > klen)
226 		len = klen;
227 	if (len < 0 || len > sizeof(struct sockaddr_storage))
228 		return -EINVAL;
229 	if (len) {
230 		if (audit_sockaddr(klen, kaddr))
231 			return -ENOMEM;
232 		if (copy_to_user(uaddr, kaddr, len))
233 			return -EFAULT;
234 	}
235 	/*
236 	 *      "fromlen shall refer to the value before truncation.."
237 	 *                      1003.1g
238 	 */
239 	return __put_user(klen, ulen);
240 }
241 
242 #define SOCKFS_MAGIC 0x534F434B
243 
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 
sock_alloc_inode(struct super_block * sb)246 static struct inode *sock_alloc_inode(struct super_block *sb)
247 {
248 	struct socket_alloc *ei;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	init_waitqueue_head(&ei->socket.wait);
254 
255 	ei->socket.fasync_list = NULL;
256 	ei->socket.state = SS_UNCONNECTED;
257 	ei->socket.flags = 0;
258 	ei->socket.ops = NULL;
259 	ei->socket.sk = NULL;
260 	ei->socket.file = NULL;
261 
262 	return &ei->vfs_inode;
263 }
264 
sock_destroy_inode(struct inode * inode)265 static void sock_destroy_inode(struct inode *inode)
266 {
267 	kmem_cache_free(sock_inode_cachep,
268 			container_of(inode, struct socket_alloc, vfs_inode));
269 }
270 
init_once(void * foo)271 static void init_once(void *foo)
272 {
273 	struct socket_alloc *ei = (struct socket_alloc *)foo;
274 
275 	inode_init_once(&ei->vfs_inode);
276 }
277 
init_inodecache(void)278 static int init_inodecache(void)
279 {
280 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
281 					      sizeof(struct socket_alloc),
282 					      0,
283 					      (SLAB_HWCACHE_ALIGN |
284 					       SLAB_RECLAIM_ACCOUNT |
285 					       SLAB_MEM_SPREAD),
286 					      init_once);
287 	if (sock_inode_cachep == NULL)
288 		return -ENOMEM;
289 	return 0;
290 }
291 
292 static struct super_operations sockfs_ops = {
293 	.alloc_inode =	sock_alloc_inode,
294 	.destroy_inode =sock_destroy_inode,
295 	.statfs =	simple_statfs,
296 };
297 
sockfs_get_sb(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,struct vfsmount * mnt)298 static int sockfs_get_sb(struct file_system_type *fs_type,
299 			 int flags, const char *dev_name, void *data,
300 			 struct vfsmount *mnt)
301 {
302 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
303 			     mnt);
304 }
305 
306 static struct vfsmount *sock_mnt __read_mostly;
307 
308 static struct file_system_type sock_fs_type = {
309 	.name =		"sockfs",
310 	.get_sb =	sockfs_get_sb,
311 	.kill_sb =	kill_anon_super,
312 };
313 
sockfs_delete_dentry(struct dentry * dentry)314 static int sockfs_delete_dentry(struct dentry *dentry)
315 {
316 	/*
317 	 * At creation time, we pretended this dentry was hashed
318 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
319 	 * At delete time, we restore the truth : not hashed.
320 	 * (so that dput() can proceed correctly)
321 	 */
322 	dentry->d_flags |= DCACHE_UNHASHED;
323 	return 0;
324 }
325 
326 /*
327  * sockfs_dname() is called from d_path().
328  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)329 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
330 {
331 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
332 				dentry->d_inode->i_ino);
333 }
334 
335 static struct dentry_operations sockfs_dentry_operations = {
336 	.d_delete = sockfs_delete_dentry,
337 	.d_dname  = sockfs_dname,
338 };
339 
340 /*
341  *	Obtains the first available file descriptor and sets it up for use.
342  *
343  *	These functions create file structures and maps them to fd space
344  *	of the current process. On success it returns file descriptor
345  *	and file struct implicitly stored in sock->file.
346  *	Note that another thread may close file descriptor before we return
347  *	from this function. We use the fact that now we do not refer
348  *	to socket after mapping. If one day we will need it, this
349  *	function will increment ref. count on file by 1.
350  *
351  *	In any case returned fd MAY BE not valid!
352  *	This race condition is unavoidable
353  *	with shared fd spaces, we cannot solve it inside kernel,
354  *	but we take care of internal coherence yet.
355  */
356 
sock_alloc_fd(struct file ** filep,int flags)357 static int sock_alloc_fd(struct file **filep, int flags)
358 {
359 	int fd;
360 
361 	fd = get_unused_fd_flags(flags);
362 	if (likely(fd >= 0)) {
363 		struct file *file = get_empty_filp();
364 
365 		*filep = file;
366 		if (unlikely(!file)) {
367 			put_unused_fd(fd);
368 			return -ENFILE;
369 		}
370 	} else
371 		*filep = NULL;
372 	return fd;
373 }
374 
sock_attach_fd(struct socket * sock,struct file * file,int flags)375 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
376 {
377 	struct dentry *dentry;
378 	struct qstr name = { .name = "" };
379 
380 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
381 	if (unlikely(!dentry))
382 		return -ENOMEM;
383 
384 	dentry->d_op = &sockfs_dentry_operations;
385 	/*
386 	 * We dont want to push this dentry into global dentry hash table.
387 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
388 	 * This permits a working /proc/$pid/fd/XXX on sockets
389 	 */
390 	dentry->d_flags &= ~DCACHE_UNHASHED;
391 	d_instantiate(dentry, SOCK_INODE(sock));
392 
393 	sock->file = file;
394 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
395 		  &socket_file_ops);
396 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
397 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
398 	file->f_pos = 0;
399 	file->private_data = sock;
400 
401 	return 0;
402 }
403 
sock_map_fd(struct socket * sock,int flags)404 int sock_map_fd(struct socket *sock, int flags)
405 {
406 	struct file *newfile;
407 	int fd = sock_alloc_fd(&newfile, flags);
408 
409 	if (likely(fd >= 0)) {
410 		int err = sock_attach_fd(sock, newfile, flags);
411 
412 		if (unlikely(err < 0)) {
413 			put_filp(newfile);
414 			put_unused_fd(fd);
415 			return err;
416 		}
417 		fd_install(fd, newfile);
418 	}
419 	return fd;
420 }
421 
sock_from_file(struct file * file,int * err)422 static struct socket *sock_from_file(struct file *file, int *err)
423 {
424 	if (file->f_op == &socket_file_ops)
425 		return file->private_data;	/* set in sock_map_fd */
426 
427 	*err = -ENOTSOCK;
428 	return NULL;
429 }
430 
431 /**
432  *	sockfd_lookup	- 	Go from a file number to its socket slot
433  *	@fd: file handle
434  *	@err: pointer to an error code return
435  *
436  *	The file handle passed in is locked and the socket it is bound
437  *	too is returned. If an error occurs the err pointer is overwritten
438  *	with a negative errno code and NULL is returned. The function checks
439  *	for both invalid handles and passing a handle which is not a socket.
440  *
441  *	On a success the socket object pointer is returned.
442  */
443 
sockfd_lookup(int fd,int * err)444 struct socket *sockfd_lookup(int fd, int *err)
445 {
446 	struct file *file;
447 	struct socket *sock;
448 
449 	file = fget(fd);
450 	if (!file) {
451 		*err = -EBADF;
452 		return NULL;
453 	}
454 
455 	sock = sock_from_file(file, err);
456 	if (!sock)
457 		fput(file);
458 	return sock;
459 }
460 
sockfd_lookup_light(int fd,int * err,int * fput_needed)461 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
462 {
463 	struct file *file;
464 	struct socket *sock;
465 
466 	*err = -EBADF;
467 	file = fget_light(fd, fput_needed);
468 	if (file) {
469 		sock = sock_from_file(file, err);
470 		if (sock)
471 			return sock;
472 		fput_light(file, *fput_needed);
473 	}
474 	return NULL;
475 }
476 
477 /**
478  *	sock_alloc	-	allocate a socket
479  *
480  *	Allocate a new inode and socket object. The two are bound together
481  *	and initialised. The socket is then returned. If we are out of inodes
482  *	NULL is returned.
483  */
484 
sock_alloc(void)485 static struct socket *sock_alloc(void)
486 {
487 	struct inode *inode;
488 	struct socket *sock;
489 
490 	inode = new_inode(sock_mnt->mnt_sb);
491 	if (!inode)
492 		return NULL;
493 
494 	sock = SOCKET_I(inode);
495 
496 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
497 	inode->i_uid = current_fsuid();
498 	inode->i_gid = current_fsgid();
499 
500 	get_cpu_var(sockets_in_use)++;
501 	put_cpu_var(sockets_in_use);
502 	return sock;
503 }
504 
505 /*
506  *	In theory you can't get an open on this inode, but /proc provides
507  *	a back door. Remember to keep it shut otherwise you'll let the
508  *	creepy crawlies in.
509  */
510 
sock_no_open(struct inode * irrelevant,struct file * dontcare)511 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
512 {
513 	return -ENXIO;
514 }
515 
516 const struct file_operations bad_sock_fops = {
517 	.owner = THIS_MODULE,
518 	.open = sock_no_open,
519 };
520 
521 /**
522  *	sock_release	-	close a socket
523  *	@sock: socket to close
524  *
525  *	The socket is released from the protocol stack if it has a release
526  *	callback, and the inode is then released if the socket is bound to
527  *	an inode not a file.
528  */
529 
sock_release(struct socket * sock)530 void sock_release(struct socket *sock)
531 {
532 	if (sock->ops) {
533 		struct module *owner = sock->ops->owner;
534 
535 		sock->ops->release(sock);
536 		sock->ops = NULL;
537 		module_put(owner);
538 	}
539 
540 	if (sock->fasync_list)
541 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
542 
543 	get_cpu_var(sockets_in_use)--;
544 	put_cpu_var(sockets_in_use);
545 	if (!sock->file) {
546 		iput(SOCK_INODE(sock));
547 		return;
548 	}
549 	sock->file = NULL;
550 }
551 
__sock_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size)552 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
553 				 struct msghdr *msg, size_t size)
554 {
555 	struct sock_iocb *si = kiocb_to_siocb(iocb);
556 	int err;
557 
558 	si->sock = sock;
559 	si->scm = NULL;
560 	si->msg = msg;
561 	si->size = size;
562 
563 	err = security_socket_sendmsg(sock, msg, size);
564 	if (err)
565 		return err;
566 
567 	err = sock->ops->sendmsg(iocb, sock, msg, size);
568 #ifdef CONFIG_UID_STAT
569 	if (err > 0)
570 		update_tcp_snd(current_uid(), err);
571 #endif
572 	return err;
573 }
574 
sock_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)575 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
576 {
577 	struct kiocb iocb;
578 	struct sock_iocb siocb;
579 	int ret;
580 
581 	init_sync_kiocb(&iocb, NULL);
582 	iocb.private = &siocb;
583 	ret = __sock_sendmsg(&iocb, sock, msg, size);
584 	if (-EIOCBQUEUED == ret)
585 		ret = wait_on_sync_kiocb(&iocb);
586 	return ret;
587 }
588 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)589 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
590 		   struct kvec *vec, size_t num, size_t size)
591 {
592 	mm_segment_t oldfs = get_fs();
593 	int result;
594 
595 	set_fs(KERNEL_DS);
596 	/*
597 	 * the following is safe, since for compiler definitions of kvec and
598 	 * iovec are identical, yielding the same in-core layout and alignment
599 	 */
600 	msg->msg_iov = (struct iovec *)vec;
601 	msg->msg_iovlen = num;
602 	result = sock_sendmsg(sock, msg, size);
603 	set_fs(oldfs);
604 	return result;
605 }
606 
607 /*
608  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
609  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)610 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
611 	struct sk_buff *skb)
612 {
613 	ktime_t kt = skb->tstamp;
614 
615 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
616 		struct timeval tv;
617 		/* Race occurred between timestamp enabling and packet
618 		   receiving.  Fill in the current time for now. */
619 		if (kt.tv64 == 0)
620 			kt = ktime_get_real();
621 		skb->tstamp = kt;
622 		tv = ktime_to_timeval(kt);
623 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
624 	} else {
625 		struct timespec ts;
626 		/* Race occurred between timestamp enabling and packet
627 		   receiving.  Fill in the current time for now. */
628 		if (kt.tv64 == 0)
629 			kt = ktime_get_real();
630 		skb->tstamp = kt;
631 		ts = ktime_to_timespec(kt);
632 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
633 	}
634 }
635 
636 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
637 
__sock_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)638 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
639 				 struct msghdr *msg, size_t size, int flags)
640 {
641 	int err;
642 	struct sock_iocb *si = kiocb_to_siocb(iocb);
643 
644 	si->sock = sock;
645 	si->scm = NULL;
646 	si->msg = msg;
647 	si->size = size;
648 	si->flags = flags;
649 
650 	err = security_socket_recvmsg(sock, msg, size, flags);
651 	if (err)
652 		return err;
653 
654 	err = sock->ops->recvmsg(iocb, sock, msg, size, flags);
655 #ifdef CONFIG_UID_STAT
656 	if (err > 0)
657 		update_tcp_rcv(current_uid(), err);
658 #endif
659 	return err;
660 }
661 
sock_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)662 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
663 		 size_t size, int flags)
664 {
665 	struct kiocb iocb;
666 	struct sock_iocb siocb;
667 	int ret;
668 
669 	init_sync_kiocb(&iocb, NULL);
670 	iocb.private = &siocb;
671 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
672 	if (-EIOCBQUEUED == ret)
673 		ret = wait_on_sync_kiocb(&iocb);
674 	return ret;
675 }
676 
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)677 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
678 		   struct kvec *vec, size_t num, size_t size, int flags)
679 {
680 	mm_segment_t oldfs = get_fs();
681 	int result;
682 
683 	set_fs(KERNEL_DS);
684 	/*
685 	 * the following is safe, since for compiler definitions of kvec and
686 	 * iovec are identical, yielding the same in-core layout and alignment
687 	 */
688 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
689 	result = sock_recvmsg(sock, msg, size, flags);
690 	set_fs(oldfs);
691 	return result;
692 }
693 
sock_aio_dtor(struct kiocb * iocb)694 static void sock_aio_dtor(struct kiocb *iocb)
695 {
696 	kfree(iocb->private);
697 }
698 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)699 static ssize_t sock_sendpage(struct file *file, struct page *page,
700 			     int offset, size_t size, loff_t *ppos, int more)
701 {
702 	struct socket *sock;
703 	int flags;
704 
705 	sock = file->private_data;
706 
707 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
708 	if (more)
709 		flags |= MSG_MORE;
710 
711 	return kernel_sendpage(sock, page, offset, size, flags);
712 }
713 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)714 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
715 			        struct pipe_inode_info *pipe, size_t len,
716 				unsigned int flags)
717 {
718 	struct socket *sock = file->private_data;
719 
720 	if (unlikely(!sock->ops->splice_read))
721 		return -EINVAL;
722 
723 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
724 }
725 
alloc_sock_iocb(struct kiocb * iocb,struct sock_iocb * siocb)726 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
727 					 struct sock_iocb *siocb)
728 {
729 	if (!is_sync_kiocb(iocb)) {
730 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
731 		if (!siocb)
732 			return NULL;
733 		iocb->ki_dtor = sock_aio_dtor;
734 	}
735 
736 	siocb->kiocb = iocb;
737 	iocb->private = siocb;
738 	return siocb;
739 }
740 
do_sock_read(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)741 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
742 		struct file *file, const struct iovec *iov,
743 		unsigned long nr_segs)
744 {
745 	struct socket *sock = file->private_data;
746 	size_t size = 0;
747 	int i;
748 
749 	for (i = 0; i < nr_segs; i++)
750 		size += iov[i].iov_len;
751 
752 	msg->msg_name = NULL;
753 	msg->msg_namelen = 0;
754 	msg->msg_control = NULL;
755 	msg->msg_controllen = 0;
756 	msg->msg_iov = (struct iovec *)iov;
757 	msg->msg_iovlen = nr_segs;
758 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
759 
760 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
761 }
762 
sock_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)763 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
764 				unsigned long nr_segs, loff_t pos)
765 {
766 	struct sock_iocb siocb, *x;
767 
768 	if (pos != 0)
769 		return -ESPIPE;
770 
771 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
772 		return 0;
773 
774 
775 	x = alloc_sock_iocb(iocb, &siocb);
776 	if (!x)
777 		return -ENOMEM;
778 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
779 }
780 
do_sock_write(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)781 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
782 			struct file *file, const struct iovec *iov,
783 			unsigned long nr_segs)
784 {
785 	struct socket *sock = file->private_data;
786 	size_t size = 0;
787 	int i;
788 
789 	for (i = 0; i < nr_segs; i++)
790 		size += iov[i].iov_len;
791 
792 	msg->msg_name = NULL;
793 	msg->msg_namelen = 0;
794 	msg->msg_control = NULL;
795 	msg->msg_controllen = 0;
796 	msg->msg_iov = (struct iovec *)iov;
797 	msg->msg_iovlen = nr_segs;
798 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
799 	if (sock->type == SOCK_SEQPACKET)
800 		msg->msg_flags |= MSG_EOR;
801 
802 	return __sock_sendmsg(iocb, sock, msg, size);
803 }
804 
sock_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)805 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
806 			  unsigned long nr_segs, loff_t pos)
807 {
808 	struct sock_iocb siocb, *x;
809 
810 	if (pos != 0)
811 		return -ESPIPE;
812 
813 	x = alloc_sock_iocb(iocb, &siocb);
814 	if (!x)
815 		return -ENOMEM;
816 
817 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
818 }
819 
820 /*
821  * Atomic setting of ioctl hooks to avoid race
822  * with module unload.
823  */
824 
825 static DEFINE_MUTEX(br_ioctl_mutex);
826 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
827 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))828 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
829 {
830 	mutex_lock(&br_ioctl_mutex);
831 	br_ioctl_hook = hook;
832 	mutex_unlock(&br_ioctl_mutex);
833 }
834 
835 EXPORT_SYMBOL(brioctl_set);
836 
837 static DEFINE_MUTEX(vlan_ioctl_mutex);
838 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
839 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))840 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
841 {
842 	mutex_lock(&vlan_ioctl_mutex);
843 	vlan_ioctl_hook = hook;
844 	mutex_unlock(&vlan_ioctl_mutex);
845 }
846 
847 EXPORT_SYMBOL(vlan_ioctl_set);
848 
849 static DEFINE_MUTEX(dlci_ioctl_mutex);
850 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
851 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))852 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
853 {
854 	mutex_lock(&dlci_ioctl_mutex);
855 	dlci_ioctl_hook = hook;
856 	mutex_unlock(&dlci_ioctl_mutex);
857 }
858 
859 EXPORT_SYMBOL(dlci_ioctl_set);
860 
861 /*
862  *	With an ioctl, arg may well be a user mode pointer, but we don't know
863  *	what to do with it - that's up to the protocol still.
864  */
865 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)866 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
867 {
868 	struct socket *sock;
869 	struct sock *sk;
870 	void __user *argp = (void __user *)arg;
871 	int pid, err;
872 	struct net *net;
873 
874 	sock = file->private_data;
875 	sk = sock->sk;
876 	net = sock_net(sk);
877 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
878 		err = dev_ioctl(net, cmd, argp);
879 	} else
880 #ifdef CONFIG_WIRELESS_EXT
881 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
882 		err = dev_ioctl(net, cmd, argp);
883 	} else
884 #endif				/* CONFIG_WIRELESS_EXT */
885 		switch (cmd) {
886 		case FIOSETOWN:
887 		case SIOCSPGRP:
888 			err = -EFAULT;
889 			if (get_user(pid, (int __user *)argp))
890 				break;
891 			err = f_setown(sock->file, pid, 1);
892 			break;
893 		case FIOGETOWN:
894 		case SIOCGPGRP:
895 			err = put_user(f_getown(sock->file),
896 				       (int __user *)argp);
897 			break;
898 		case SIOCGIFBR:
899 		case SIOCSIFBR:
900 		case SIOCBRADDBR:
901 		case SIOCBRDELBR:
902 			err = -ENOPKG;
903 			if (!br_ioctl_hook)
904 				request_module("bridge");
905 
906 			mutex_lock(&br_ioctl_mutex);
907 			if (br_ioctl_hook)
908 				err = br_ioctl_hook(net, cmd, argp);
909 			mutex_unlock(&br_ioctl_mutex);
910 			break;
911 		case SIOCGIFVLAN:
912 		case SIOCSIFVLAN:
913 			err = -ENOPKG;
914 			if (!vlan_ioctl_hook)
915 				request_module("8021q");
916 
917 			mutex_lock(&vlan_ioctl_mutex);
918 			if (vlan_ioctl_hook)
919 				err = vlan_ioctl_hook(net, argp);
920 			mutex_unlock(&vlan_ioctl_mutex);
921 			break;
922 		case SIOCADDDLCI:
923 		case SIOCDELDLCI:
924 			err = -ENOPKG;
925 			if (!dlci_ioctl_hook)
926 				request_module("dlci");
927 
928 			mutex_lock(&dlci_ioctl_mutex);
929 			if (dlci_ioctl_hook)
930 				err = dlci_ioctl_hook(cmd, argp);
931 			mutex_unlock(&dlci_ioctl_mutex);
932 			break;
933 		default:
934 			err = sock->ops->ioctl(sock, cmd, arg);
935 
936 			/*
937 			 * If this ioctl is unknown try to hand it down
938 			 * to the NIC driver.
939 			 */
940 			if (err == -ENOIOCTLCMD)
941 				err = dev_ioctl(net, cmd, argp);
942 			break;
943 		}
944 	return err;
945 }
946 
sock_create_lite(int family,int type,int protocol,struct socket ** res)947 int sock_create_lite(int family, int type, int protocol, struct socket **res)
948 {
949 	int err;
950 	struct socket *sock = NULL;
951 
952 	err = security_socket_create(family, type, protocol, 1);
953 	if (err)
954 		goto out;
955 
956 	sock = sock_alloc();
957 	if (!sock) {
958 		err = -ENOMEM;
959 		goto out;
960 	}
961 
962 	sock->type = type;
963 	err = security_socket_post_create(sock, family, type, protocol, 1);
964 	if (err)
965 		goto out_release;
966 
967 out:
968 	*res = sock;
969 	return err;
970 out_release:
971 	sock_release(sock);
972 	sock = NULL;
973 	goto out;
974 }
975 
976 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)977 static unsigned int sock_poll(struct file *file, poll_table *wait)
978 {
979 	struct socket *sock;
980 
981 	/*
982 	 *      We can't return errors to poll, so it's either yes or no.
983 	 */
984 	sock = file->private_data;
985 	return sock->ops->poll(file, sock, wait);
986 }
987 
sock_mmap(struct file * file,struct vm_area_struct * vma)988 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
989 {
990 	struct socket *sock = file->private_data;
991 
992 	return sock->ops->mmap(file, sock, vma);
993 }
994 
sock_close(struct inode * inode,struct file * filp)995 static int sock_close(struct inode *inode, struct file *filp)
996 {
997 	/*
998 	 *      It was possible the inode is NULL we were
999 	 *      closing an unfinished socket.
1000 	 */
1001 
1002 	if (!inode) {
1003 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1004 		return 0;
1005 	}
1006 	sock_release(SOCKET_I(inode));
1007 	return 0;
1008 }
1009 
1010 /*
1011  *	Update the socket async list
1012  *
1013  *	Fasync_list locking strategy.
1014  *
1015  *	1. fasync_list is modified only under process context socket lock
1016  *	   i.e. under semaphore.
1017  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1018  *	   or under socket lock.
1019  *	3. fasync_list can be used from softirq context, so that
1020  *	   modification under socket lock have to be enhanced with
1021  *	   write_lock_bh(&sk->sk_callback_lock).
1022  *							--ANK (990710)
1023  */
1024 
sock_fasync(int fd,struct file * filp,int on)1025 static int sock_fasync(int fd, struct file *filp, int on)
1026 {
1027 	struct fasync_struct *fa, *fna = NULL, **prev;
1028 	struct socket *sock;
1029 	struct sock *sk;
1030 
1031 	if (on) {
1032 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1033 		if (fna == NULL)
1034 			return -ENOMEM;
1035 	}
1036 
1037 	sock = filp->private_data;
1038 
1039 	sk = sock->sk;
1040 	if (sk == NULL) {
1041 		kfree(fna);
1042 		return -EINVAL;
1043 	}
1044 
1045 	lock_sock(sk);
1046 
1047 	prev = &(sock->fasync_list);
1048 
1049 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1050 		if (fa->fa_file == filp)
1051 			break;
1052 
1053 	if (on) {
1054 		if (fa != NULL) {
1055 			write_lock_bh(&sk->sk_callback_lock);
1056 			fa->fa_fd = fd;
1057 			write_unlock_bh(&sk->sk_callback_lock);
1058 
1059 			kfree(fna);
1060 			goto out;
1061 		}
1062 		fna->fa_file = filp;
1063 		fna->fa_fd = fd;
1064 		fna->magic = FASYNC_MAGIC;
1065 		fna->fa_next = sock->fasync_list;
1066 		write_lock_bh(&sk->sk_callback_lock);
1067 		sock->fasync_list = fna;
1068 		write_unlock_bh(&sk->sk_callback_lock);
1069 	} else {
1070 		if (fa != NULL) {
1071 			write_lock_bh(&sk->sk_callback_lock);
1072 			*prev = fa->fa_next;
1073 			write_unlock_bh(&sk->sk_callback_lock);
1074 			kfree(fa);
1075 		}
1076 	}
1077 
1078 out:
1079 	release_sock(sock->sk);
1080 	return 0;
1081 }
1082 
1083 /* This function may be called only under socket lock or callback_lock */
1084 
sock_wake_async(struct socket * sock,int how,int band)1085 int sock_wake_async(struct socket *sock, int how, int band)
1086 {
1087 	if (!sock || !sock->fasync_list)
1088 		return -1;
1089 	switch (how) {
1090 	case SOCK_WAKE_WAITD:
1091 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1092 			break;
1093 		goto call_kill;
1094 	case SOCK_WAKE_SPACE:
1095 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1096 			break;
1097 		/* fall through */
1098 	case SOCK_WAKE_IO:
1099 call_kill:
1100 		__kill_fasync(sock->fasync_list, SIGIO, band);
1101 		break;
1102 	case SOCK_WAKE_URG:
1103 		__kill_fasync(sock->fasync_list, SIGURG, band);
1104 	}
1105 	return 0;
1106 }
1107 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1108 static int __sock_create(struct net *net, int family, int type, int protocol,
1109 			 struct socket **res, int kern)
1110 {
1111 	int err;
1112 	struct socket *sock;
1113 	const struct net_proto_family *pf;
1114 
1115 	/*
1116 	 *      Check protocol is in range
1117 	 */
1118 	if (family < 0 || family >= NPROTO)
1119 		return -EAFNOSUPPORT;
1120 	if (type < 0 || type >= SOCK_MAX)
1121 		return -EINVAL;
1122 
1123 	/* Compatibility.
1124 
1125 	   This uglymoron is moved from INET layer to here to avoid
1126 	   deadlock in module load.
1127 	 */
1128 	if (family == PF_INET && type == SOCK_PACKET) {
1129 		static int warned;
1130 		if (!warned) {
1131 			warned = 1;
1132 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1133 			       current->comm);
1134 		}
1135 		family = PF_PACKET;
1136 	}
1137 
1138 	err = security_socket_create(family, type, protocol, kern);
1139 	if (err)
1140 		return err;
1141 
1142 	/*
1143 	 *	Allocate the socket and allow the family to set things up. if
1144 	 *	the protocol is 0, the family is instructed to select an appropriate
1145 	 *	default.
1146 	 */
1147 	sock = sock_alloc();
1148 	if (!sock) {
1149 		if (net_ratelimit())
1150 			printk(KERN_WARNING "socket: no more sockets\n");
1151 		return -ENFILE;	/* Not exactly a match, but its the
1152 				   closest posix thing */
1153 	}
1154 
1155 	sock->type = type;
1156 
1157 #ifdef CONFIG_MODULES
1158 	/* Attempt to load a protocol module if the find failed.
1159 	 *
1160 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1161 	 * requested real, full-featured networking support upon configuration.
1162 	 * Otherwise module support will break!
1163 	 */
1164 	if (net_families[family] == NULL)
1165 		request_module("net-pf-%d", family);
1166 #endif
1167 
1168 	rcu_read_lock();
1169 	pf = rcu_dereference(net_families[family]);
1170 	err = -EAFNOSUPPORT;
1171 	if (!pf)
1172 		goto out_release;
1173 
1174 	/*
1175 	 * We will call the ->create function, that possibly is in a loadable
1176 	 * module, so we have to bump that loadable module refcnt first.
1177 	 */
1178 	if (!try_module_get(pf->owner))
1179 		goto out_release;
1180 
1181 	/* Now protected by module ref count */
1182 	rcu_read_unlock();
1183 
1184 	err = pf->create(net, sock, protocol);
1185 	if (err < 0)
1186 		goto out_module_put;
1187 
1188 	/*
1189 	 * Now to bump the refcnt of the [loadable] module that owns this
1190 	 * socket at sock_release time we decrement its refcnt.
1191 	 */
1192 	if (!try_module_get(sock->ops->owner))
1193 		goto out_module_busy;
1194 
1195 	/*
1196 	 * Now that we're done with the ->create function, the [loadable]
1197 	 * module can have its refcnt decremented
1198 	 */
1199 	module_put(pf->owner);
1200 	err = security_socket_post_create(sock, family, type, protocol, kern);
1201 	if (err)
1202 		goto out_sock_release;
1203 	*res = sock;
1204 
1205 	return 0;
1206 
1207 out_module_busy:
1208 	err = -EAFNOSUPPORT;
1209 out_module_put:
1210 	sock->ops = NULL;
1211 	module_put(pf->owner);
1212 out_sock_release:
1213 	sock_release(sock);
1214 	return err;
1215 
1216 out_release:
1217 	rcu_read_unlock();
1218 	goto out_sock_release;
1219 }
1220 
sock_create(int family,int type,int protocol,struct socket ** res)1221 int sock_create(int family, int type, int protocol, struct socket **res)
1222 {
1223 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1224 }
1225 
sock_create_kern(int family,int type,int protocol,struct socket ** res)1226 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1227 {
1228 	return __sock_create(&init_net, family, type, protocol, res, 1);
1229 }
1230 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1231 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1232 {
1233 	int retval;
1234 	struct socket *sock;
1235 	int flags;
1236 
1237 	/* Check the SOCK_* constants for consistency.  */
1238 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1239 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1240 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1241 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1242 
1243 	flags = type & ~SOCK_TYPE_MASK;
1244 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1245 		return -EINVAL;
1246 	type &= SOCK_TYPE_MASK;
1247 
1248 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1249 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1250 
1251 	retval = sock_create(family, type, protocol, &sock);
1252 	if (retval < 0)
1253 		goto out;
1254 
1255 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1256 	if (retval < 0)
1257 		goto out_release;
1258 
1259 out:
1260 	/* It may be already another descriptor 8) Not kernel problem. */
1261 	return retval;
1262 
1263 out_release:
1264 	sock_release(sock);
1265 	return retval;
1266 }
1267 
1268 /*
1269  *	Create a pair of connected sockets.
1270  */
1271 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1272 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1273 		int __user *, usockvec)
1274 {
1275 	struct socket *sock1, *sock2;
1276 	int fd1, fd2, err;
1277 	struct file *newfile1, *newfile2;
1278 	int flags;
1279 
1280 	flags = type & ~SOCK_TYPE_MASK;
1281 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1282 		return -EINVAL;
1283 	type &= SOCK_TYPE_MASK;
1284 
1285 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1286 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1287 
1288 	/*
1289 	 * Obtain the first socket and check if the underlying protocol
1290 	 * supports the socketpair call.
1291 	 */
1292 
1293 	err = sock_create(family, type, protocol, &sock1);
1294 	if (err < 0)
1295 		goto out;
1296 
1297 	err = sock_create(family, type, protocol, &sock2);
1298 	if (err < 0)
1299 		goto out_release_1;
1300 
1301 	err = sock1->ops->socketpair(sock1, sock2);
1302 	if (err < 0)
1303 		goto out_release_both;
1304 
1305 	fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1306 	if (unlikely(fd1 < 0)) {
1307 		err = fd1;
1308 		goto out_release_both;
1309 	}
1310 
1311 	fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1312 	if (unlikely(fd2 < 0)) {
1313 		err = fd2;
1314 		put_filp(newfile1);
1315 		put_unused_fd(fd1);
1316 		goto out_release_both;
1317 	}
1318 
1319 	err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1320 	if (unlikely(err < 0)) {
1321 		goto out_fd2;
1322 	}
1323 
1324 	err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1325 	if (unlikely(err < 0)) {
1326 		fput(newfile1);
1327 		goto out_fd1;
1328 	}
1329 
1330 	audit_fd_pair(fd1, fd2);
1331 	fd_install(fd1, newfile1);
1332 	fd_install(fd2, newfile2);
1333 	/* fd1 and fd2 may be already another descriptors.
1334 	 * Not kernel problem.
1335 	 */
1336 
1337 	err = put_user(fd1, &usockvec[0]);
1338 	if (!err)
1339 		err = put_user(fd2, &usockvec[1]);
1340 	if (!err)
1341 		return 0;
1342 
1343 	sys_close(fd2);
1344 	sys_close(fd1);
1345 	return err;
1346 
1347 out_release_both:
1348 	sock_release(sock2);
1349 out_release_1:
1350 	sock_release(sock1);
1351 out:
1352 	return err;
1353 
1354 out_fd2:
1355 	put_filp(newfile1);
1356 	sock_release(sock1);
1357 out_fd1:
1358 	put_filp(newfile2);
1359 	sock_release(sock2);
1360 	put_unused_fd(fd1);
1361 	put_unused_fd(fd2);
1362 	goto out;
1363 }
1364 
1365 /*
1366  *	Bind a name to a socket. Nothing much to do here since it's
1367  *	the protocol's responsibility to handle the local address.
1368  *
1369  *	We move the socket address to kernel space before we call
1370  *	the protocol layer (having also checked the address is ok).
1371  */
1372 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1373 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1374 {
1375 	struct socket *sock;
1376 	struct sockaddr_storage address;
1377 	int err, fput_needed;
1378 
1379 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1380 	if (sock) {
1381 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1382 		if (err >= 0) {
1383 			err = security_socket_bind(sock,
1384 						   (struct sockaddr *)&address,
1385 						   addrlen);
1386 			if (!err)
1387 				err = sock->ops->bind(sock,
1388 						      (struct sockaddr *)
1389 						      &address, addrlen);
1390 		}
1391 		fput_light(sock->file, fput_needed);
1392 	}
1393 	return err;
1394 }
1395 
1396 /*
1397  *	Perform a listen. Basically, we allow the protocol to do anything
1398  *	necessary for a listen, and if that works, we mark the socket as
1399  *	ready for listening.
1400  */
1401 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1402 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1403 {
1404 	struct socket *sock;
1405 	int err, fput_needed;
1406 	int somaxconn;
1407 
1408 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1409 	if (sock) {
1410 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1411 		if ((unsigned)backlog > somaxconn)
1412 			backlog = somaxconn;
1413 
1414 		err = security_socket_listen(sock, backlog);
1415 		if (!err)
1416 			err = sock->ops->listen(sock, backlog);
1417 
1418 		fput_light(sock->file, fput_needed);
1419 	}
1420 	return err;
1421 }
1422 
1423 /*
1424  *	For accept, we attempt to create a new socket, set up the link
1425  *	with the client, wake up the client, then return the new
1426  *	connected fd. We collect the address of the connector in kernel
1427  *	space and move it to user at the very end. This is unclean because
1428  *	we open the socket then return an error.
1429  *
1430  *	1003.1g adds the ability to recvmsg() to query connection pending
1431  *	status to recvmsg. We need to add that support in a way thats
1432  *	clean when we restucture accept also.
1433  */
1434 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1435 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1436 		int __user *, upeer_addrlen, int, flags)
1437 {
1438 	struct socket *sock, *newsock;
1439 	struct file *newfile;
1440 	int err, len, newfd, fput_needed;
1441 	struct sockaddr_storage address;
1442 
1443 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1444 		return -EINVAL;
1445 
1446 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1447 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1448 
1449 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1450 	if (!sock)
1451 		goto out;
1452 
1453 	err = -ENFILE;
1454 	if (!(newsock = sock_alloc()))
1455 		goto out_put;
1456 
1457 	newsock->type = sock->type;
1458 	newsock->ops = sock->ops;
1459 
1460 	/*
1461 	 * We don't need try_module_get here, as the listening socket (sock)
1462 	 * has the protocol module (sock->ops->owner) held.
1463 	 */
1464 	__module_get(newsock->ops->owner);
1465 
1466 	newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1467 	if (unlikely(newfd < 0)) {
1468 		err = newfd;
1469 		sock_release(newsock);
1470 		goto out_put;
1471 	}
1472 
1473 	err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1474 	if (err < 0)
1475 		goto out_fd_simple;
1476 
1477 	err = security_socket_accept(sock, newsock);
1478 	if (err)
1479 		goto out_fd;
1480 
1481 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1482 	if (err < 0)
1483 		goto out_fd;
1484 
1485 	if (upeer_sockaddr) {
1486 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1487 					  &len, 2) < 0) {
1488 			err = -ECONNABORTED;
1489 			goto out_fd;
1490 		}
1491 		err = move_addr_to_user((struct sockaddr *)&address,
1492 					len, upeer_sockaddr, upeer_addrlen);
1493 		if (err < 0)
1494 			goto out_fd;
1495 	}
1496 
1497 	/* File flags are not inherited via accept() unlike another OSes. */
1498 
1499 	fd_install(newfd, newfile);
1500 	err = newfd;
1501 
1502 	security_socket_post_accept(sock, newsock);
1503 
1504 out_put:
1505 	fput_light(sock->file, fput_needed);
1506 out:
1507 	return err;
1508 out_fd_simple:
1509 	sock_release(newsock);
1510 	put_filp(newfile);
1511 	put_unused_fd(newfd);
1512 	goto out_put;
1513 out_fd:
1514 	fput(newfile);
1515 	put_unused_fd(newfd);
1516 	goto out_put;
1517 }
1518 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1519 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1520 		int __user *, upeer_addrlen)
1521 {
1522 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1523 }
1524 
1525 /*
1526  *	Attempt to connect to a socket with the server address.  The address
1527  *	is in user space so we verify it is OK and move it to kernel space.
1528  *
1529  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1530  *	break bindings
1531  *
1532  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1533  *	other SEQPACKET protocols that take time to connect() as it doesn't
1534  *	include the -EINPROGRESS status for such sockets.
1535  */
1536 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1537 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1538 		int, addrlen)
1539 {
1540 	struct socket *sock;
1541 	struct sockaddr_storage address;
1542 	int err, fput_needed;
1543 
1544 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1545 	if (!sock)
1546 		goto out;
1547 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1548 	if (err < 0)
1549 		goto out_put;
1550 
1551 	err =
1552 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1553 	if (err)
1554 		goto out_put;
1555 
1556 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1557 				 sock->file->f_flags);
1558 out_put:
1559 	fput_light(sock->file, fput_needed);
1560 out:
1561 	return err;
1562 }
1563 
1564 /*
1565  *	Get the local address ('name') of a socket object. Move the obtained
1566  *	name to user space.
1567  */
1568 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1569 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1570 		int __user *, usockaddr_len)
1571 {
1572 	struct socket *sock;
1573 	struct sockaddr_storage address;
1574 	int len, err, fput_needed;
1575 
1576 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1577 	if (!sock)
1578 		goto out;
1579 
1580 	err = security_socket_getsockname(sock);
1581 	if (err)
1582 		goto out_put;
1583 
1584 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1585 	if (err)
1586 		goto out_put;
1587 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1588 
1589 out_put:
1590 	fput_light(sock->file, fput_needed);
1591 out:
1592 	return err;
1593 }
1594 
1595 /*
1596  *	Get the remote address ('name') of a socket object. Move the obtained
1597  *	name to user space.
1598  */
1599 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1600 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1601 		int __user *, usockaddr_len)
1602 {
1603 	struct socket *sock;
1604 	struct sockaddr_storage address;
1605 	int len, err, fput_needed;
1606 
1607 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1608 	if (sock != NULL) {
1609 		err = security_socket_getpeername(sock);
1610 		if (err) {
1611 			fput_light(sock->file, fput_needed);
1612 			return err;
1613 		}
1614 
1615 		err =
1616 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1617 				       1);
1618 		if (!err)
1619 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1620 						usockaddr_len);
1621 		fput_light(sock->file, fput_needed);
1622 	}
1623 	return err;
1624 }
1625 
1626 /*
1627  *	Send a datagram to a given address. We move the address into kernel
1628  *	space and check the user space data area is readable before invoking
1629  *	the protocol.
1630  */
1631 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned,flags,struct sockaddr __user *,addr,int,addr_len)1632 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1633 		unsigned, flags, struct sockaddr __user *, addr,
1634 		int, addr_len)
1635 {
1636 	struct socket *sock;
1637 	struct sockaddr_storage address;
1638 	int err;
1639 	struct msghdr msg;
1640 	struct iovec iov;
1641 	int fput_needed;
1642 
1643 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1644 	if (!sock)
1645 		goto out;
1646 
1647 	iov.iov_base = buff;
1648 	iov.iov_len = len;
1649 	msg.msg_name = NULL;
1650 	msg.msg_iov = &iov;
1651 	msg.msg_iovlen = 1;
1652 	msg.msg_control = NULL;
1653 	msg.msg_controllen = 0;
1654 	msg.msg_namelen = 0;
1655 	if (addr) {
1656 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1657 		if (err < 0)
1658 			goto out_put;
1659 		msg.msg_name = (struct sockaddr *)&address;
1660 		msg.msg_namelen = addr_len;
1661 	}
1662 	if (sock->file->f_flags & O_NONBLOCK)
1663 		flags |= MSG_DONTWAIT;
1664 	msg.msg_flags = flags;
1665 	err = sock_sendmsg(sock, &msg, len);
1666 
1667 out_put:
1668 	fput_light(sock->file, fput_needed);
1669 out:
1670 	return err;
1671 }
1672 
1673 /*
1674  *	Send a datagram down a socket.
1675  */
1676 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned,flags)1677 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1678 		unsigned, flags)
1679 {
1680 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1681 }
1682 
1683 /*
1684  *	Receive a frame from the socket and optionally record the address of the
1685  *	sender. We verify the buffers are writable and if needed move the
1686  *	sender address from kernel to user space.
1687  */
1688 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned,flags,struct sockaddr __user *,addr,int __user *,addr_len)1689 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1690 		unsigned, flags, struct sockaddr __user *, addr,
1691 		int __user *, addr_len)
1692 {
1693 	struct socket *sock;
1694 	struct iovec iov;
1695 	struct msghdr msg;
1696 	struct sockaddr_storage address;
1697 	int err, err2;
1698 	int fput_needed;
1699 
1700 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1701 	if (!sock)
1702 		goto out;
1703 
1704 	msg.msg_control = NULL;
1705 	msg.msg_controllen = 0;
1706 	msg.msg_iovlen = 1;
1707 	msg.msg_iov = &iov;
1708 	iov.iov_len = size;
1709 	iov.iov_base = ubuf;
1710 	msg.msg_name = (struct sockaddr *)&address;
1711 	msg.msg_namelen = sizeof(address);
1712 	if (sock->file->f_flags & O_NONBLOCK)
1713 		flags |= MSG_DONTWAIT;
1714 	err = sock_recvmsg(sock, &msg, size, flags);
1715 
1716 	if (err >= 0 && addr != NULL) {
1717 		err2 = move_addr_to_user((struct sockaddr *)&address,
1718 					 msg.msg_namelen, addr, addr_len);
1719 		if (err2 < 0)
1720 			err = err2;
1721 	}
1722 
1723 	fput_light(sock->file, fput_needed);
1724 out:
1725 	return err;
1726 }
1727 
1728 /*
1729  *	Receive a datagram from a socket.
1730  */
1731 
sys_recv(int fd,void __user * ubuf,size_t size,unsigned flags)1732 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1733 			 unsigned flags)
1734 {
1735 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1736 }
1737 
1738 /*
1739  *	Set a socket option. Because we don't know the option lengths we have
1740  *	to pass the user mode parameter for the protocols to sort out.
1741  */
1742 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)1743 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1744 		char __user *, optval, int, optlen)
1745 {
1746 	int err, fput_needed;
1747 	struct socket *sock;
1748 
1749 	if (optlen < 0)
1750 		return -EINVAL;
1751 
1752 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753 	if (sock != NULL) {
1754 		err = security_socket_setsockopt(sock, level, optname);
1755 		if (err)
1756 			goto out_put;
1757 
1758 		if (level == SOL_SOCKET)
1759 			err =
1760 			    sock_setsockopt(sock, level, optname, optval,
1761 					    optlen);
1762 		else
1763 			err =
1764 			    sock->ops->setsockopt(sock, level, optname, optval,
1765 						  optlen);
1766 out_put:
1767 		fput_light(sock->file, fput_needed);
1768 	}
1769 	return err;
1770 }
1771 
1772 /*
1773  *	Get a socket option. Because we don't know the option lengths we have
1774  *	to pass a user mode parameter for the protocols to sort out.
1775  */
1776 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)1777 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1778 		char __user *, optval, int __user *, optlen)
1779 {
1780 	int err, fput_needed;
1781 	struct socket *sock;
1782 
1783 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 	if (sock != NULL) {
1785 		err = security_socket_getsockopt(sock, level, optname);
1786 		if (err)
1787 			goto out_put;
1788 
1789 		if (level == SOL_SOCKET)
1790 			err =
1791 			    sock_getsockopt(sock, level, optname, optval,
1792 					    optlen);
1793 		else
1794 			err =
1795 			    sock->ops->getsockopt(sock, level, optname, optval,
1796 						  optlen);
1797 out_put:
1798 		fput_light(sock->file, fput_needed);
1799 	}
1800 	return err;
1801 }
1802 
1803 /*
1804  *	Shutdown a socket.
1805  */
1806 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)1807 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1808 {
1809 	int err, fput_needed;
1810 	struct socket *sock;
1811 
1812 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1813 	if (sock != NULL) {
1814 		err = security_socket_shutdown(sock, how);
1815 		if (!err)
1816 			err = sock->ops->shutdown(sock, how);
1817 		fput_light(sock->file, fput_needed);
1818 	}
1819 	return err;
1820 }
1821 
1822 /* A couple of helpful macros for getting the address of the 32/64 bit
1823  * fields which are the same type (int / unsigned) on our platforms.
1824  */
1825 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1826 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1827 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1828 
1829 /*
1830  *	BSD sendmsg interface
1831  */
1832 
SYSCALL_DEFINE3(sendmsg,int,fd,struct msghdr __user *,msg,unsigned,flags)1833 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1834 {
1835 	struct compat_msghdr __user *msg_compat =
1836 	    (struct compat_msghdr __user *)msg;
1837 	struct socket *sock;
1838 	struct sockaddr_storage address;
1839 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1840 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1841 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1842 	/* 20 is size of ipv6_pktinfo */
1843 	unsigned char *ctl_buf = ctl;
1844 	struct msghdr msg_sys;
1845 	int err, ctl_len, iov_size, total_len;
1846 	int fput_needed;
1847 
1848 	err = -EFAULT;
1849 	if (MSG_CMSG_COMPAT & flags) {
1850 		if (get_compat_msghdr(&msg_sys, msg_compat))
1851 			return -EFAULT;
1852 	}
1853 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1854 		return -EFAULT;
1855 
1856 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1857 	if (!sock)
1858 		goto out;
1859 
1860 	/* do not move before msg_sys is valid */
1861 	err = -EMSGSIZE;
1862 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1863 		goto out_put;
1864 
1865 	/* Check whether to allocate the iovec area */
1866 	err = -ENOMEM;
1867 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1868 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1869 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1870 		if (!iov)
1871 			goto out_put;
1872 	}
1873 
1874 	/* This will also move the address data into kernel space */
1875 	if (MSG_CMSG_COMPAT & flags) {
1876 		err = verify_compat_iovec(&msg_sys, iov,
1877 					  (struct sockaddr *)&address,
1878 					  VERIFY_READ);
1879 	} else
1880 		err = verify_iovec(&msg_sys, iov,
1881 				   (struct sockaddr *)&address,
1882 				   VERIFY_READ);
1883 	if (err < 0)
1884 		goto out_freeiov;
1885 	total_len = err;
1886 
1887 	err = -ENOBUFS;
1888 
1889 	if (msg_sys.msg_controllen > INT_MAX)
1890 		goto out_freeiov;
1891 	ctl_len = msg_sys.msg_controllen;
1892 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1893 		err =
1894 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1895 						     sizeof(ctl));
1896 		if (err)
1897 			goto out_freeiov;
1898 		ctl_buf = msg_sys.msg_control;
1899 		ctl_len = msg_sys.msg_controllen;
1900 	} else if (ctl_len) {
1901 		if (ctl_len > sizeof(ctl)) {
1902 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1903 			if (ctl_buf == NULL)
1904 				goto out_freeiov;
1905 		}
1906 		err = -EFAULT;
1907 		/*
1908 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1909 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1910 		 * checking falls down on this.
1911 		 */
1912 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1913 				   ctl_len))
1914 			goto out_freectl;
1915 		msg_sys.msg_control = ctl_buf;
1916 	}
1917 	msg_sys.msg_flags = flags;
1918 
1919 	if (sock->file->f_flags & O_NONBLOCK)
1920 		msg_sys.msg_flags |= MSG_DONTWAIT;
1921 	err = sock_sendmsg(sock, &msg_sys, total_len);
1922 
1923 out_freectl:
1924 	if (ctl_buf != ctl)
1925 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1926 out_freeiov:
1927 	if (iov != iovstack)
1928 		sock_kfree_s(sock->sk, iov, iov_size);
1929 out_put:
1930 	fput_light(sock->file, fput_needed);
1931 out:
1932 	return err;
1933 }
1934 
1935 /*
1936  *	BSD recvmsg interface
1937  */
1938 
SYSCALL_DEFINE3(recvmsg,int,fd,struct msghdr __user *,msg,unsigned int,flags)1939 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1940 		unsigned int, flags)
1941 {
1942 	struct compat_msghdr __user *msg_compat =
1943 	    (struct compat_msghdr __user *)msg;
1944 	struct socket *sock;
1945 	struct iovec iovstack[UIO_FASTIOV];
1946 	struct iovec *iov = iovstack;
1947 	struct msghdr msg_sys;
1948 	unsigned long cmsg_ptr;
1949 	int err, iov_size, total_len, len;
1950 	int fput_needed;
1951 
1952 	/* kernel mode address */
1953 	struct sockaddr_storage addr;
1954 
1955 	/* user mode address pointers */
1956 	struct sockaddr __user *uaddr;
1957 	int __user *uaddr_len;
1958 
1959 	if (MSG_CMSG_COMPAT & flags) {
1960 		if (get_compat_msghdr(&msg_sys, msg_compat))
1961 			return -EFAULT;
1962 	}
1963 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1964 		return -EFAULT;
1965 
1966 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1967 	if (!sock)
1968 		goto out;
1969 
1970 	err = -EMSGSIZE;
1971 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1972 		goto out_put;
1973 
1974 	/* Check whether to allocate the iovec area */
1975 	err = -ENOMEM;
1976 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1977 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1978 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1979 		if (!iov)
1980 			goto out_put;
1981 	}
1982 
1983 	/*
1984 	 *      Save the user-mode address (verify_iovec will change the
1985 	 *      kernel msghdr to use the kernel address space)
1986 	 */
1987 
1988 	uaddr = (__force void __user *)msg_sys.msg_name;
1989 	uaddr_len = COMPAT_NAMELEN(msg);
1990 	if (MSG_CMSG_COMPAT & flags) {
1991 		err = verify_compat_iovec(&msg_sys, iov,
1992 					  (struct sockaddr *)&addr,
1993 					  VERIFY_WRITE);
1994 	} else
1995 		err = verify_iovec(&msg_sys, iov,
1996 				   (struct sockaddr *)&addr,
1997 				   VERIFY_WRITE);
1998 	if (err < 0)
1999 		goto out_freeiov;
2000 	total_len = err;
2001 
2002 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
2003 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2004 
2005 	if (sock->file->f_flags & O_NONBLOCK)
2006 		flags |= MSG_DONTWAIT;
2007 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2008 	if (err < 0)
2009 		goto out_freeiov;
2010 	len = err;
2011 
2012 	if (uaddr != NULL) {
2013 		err = move_addr_to_user((struct sockaddr *)&addr,
2014 					msg_sys.msg_namelen, uaddr,
2015 					uaddr_len);
2016 		if (err < 0)
2017 			goto out_freeiov;
2018 	}
2019 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2020 			 COMPAT_FLAGS(msg));
2021 	if (err)
2022 		goto out_freeiov;
2023 	if (MSG_CMSG_COMPAT & flags)
2024 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2025 				 &msg_compat->msg_controllen);
2026 	else
2027 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2028 				 &msg->msg_controllen);
2029 	if (err)
2030 		goto out_freeiov;
2031 	err = len;
2032 
2033 out_freeiov:
2034 	if (iov != iovstack)
2035 		sock_kfree_s(sock->sk, iov, iov_size);
2036 out_put:
2037 	fput_light(sock->file, fput_needed);
2038 out:
2039 	return err;
2040 }
2041 
2042 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2043 
2044 /* Argument list sizes for sys_socketcall */
2045 #define AL(x) ((x) * sizeof(unsigned long))
2046 static const unsigned char nargs[19]={
2047 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2048 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2049 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2050 	AL(4)
2051 };
2052 
2053 #undef AL
2054 
2055 /*
2056  *	System call vectors.
2057  *
2058  *	Argument checking cleaned up. Saved 20% in size.
2059  *  This function doesn't need to set the kernel lock because
2060  *  it is set by the callees.
2061  */
2062 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2063 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2064 {
2065 	unsigned long a[6];
2066 	unsigned long a0, a1;
2067 	int err;
2068 
2069 	if (call < 1 || call > SYS_ACCEPT4)
2070 		return -EINVAL;
2071 
2072 	/* copy_from_user should be SMP safe. */
2073 	if (copy_from_user(a, args, nargs[call]))
2074 		return -EFAULT;
2075 
2076 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2077 
2078 	a0 = a[0];
2079 	a1 = a[1];
2080 
2081 	switch (call) {
2082 	case SYS_SOCKET:
2083 		err = sys_socket(a0, a1, a[2]);
2084 		break;
2085 	case SYS_BIND:
2086 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2087 		break;
2088 	case SYS_CONNECT:
2089 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2090 		break;
2091 	case SYS_LISTEN:
2092 		err = sys_listen(a0, a1);
2093 		break;
2094 	case SYS_ACCEPT:
2095 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2096 				  (int __user *)a[2], 0);
2097 		break;
2098 	case SYS_GETSOCKNAME:
2099 		err =
2100 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2101 				    (int __user *)a[2]);
2102 		break;
2103 	case SYS_GETPEERNAME:
2104 		err =
2105 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2106 				    (int __user *)a[2]);
2107 		break;
2108 	case SYS_SOCKETPAIR:
2109 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2110 		break;
2111 	case SYS_SEND:
2112 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2113 		break;
2114 	case SYS_SENDTO:
2115 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2116 				 (struct sockaddr __user *)a[4], a[5]);
2117 		break;
2118 	case SYS_RECV:
2119 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2120 		break;
2121 	case SYS_RECVFROM:
2122 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2123 				   (struct sockaddr __user *)a[4],
2124 				   (int __user *)a[5]);
2125 		break;
2126 	case SYS_SHUTDOWN:
2127 		err = sys_shutdown(a0, a1);
2128 		break;
2129 	case SYS_SETSOCKOPT:
2130 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2131 		break;
2132 	case SYS_GETSOCKOPT:
2133 		err =
2134 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2135 				   (int __user *)a[4]);
2136 		break;
2137 	case SYS_SENDMSG:
2138 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2139 		break;
2140 	case SYS_RECVMSG:
2141 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2142 		break;
2143 	case SYS_ACCEPT4:
2144 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2145 				  (int __user *)a[2], a[3]);
2146 		break;
2147 	default:
2148 		err = -EINVAL;
2149 		break;
2150 	}
2151 	return err;
2152 }
2153 
2154 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2155 
2156 /**
2157  *	sock_register - add a socket protocol handler
2158  *	@ops: description of protocol
2159  *
2160  *	This function is called by a protocol handler that wants to
2161  *	advertise its address family, and have it linked into the
2162  *	socket interface. The value ops->family coresponds to the
2163  *	socket system call protocol family.
2164  */
sock_register(const struct net_proto_family * ops)2165 int sock_register(const struct net_proto_family *ops)
2166 {
2167 	int err;
2168 
2169 	if (ops->family >= NPROTO) {
2170 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2171 		       NPROTO);
2172 		return -ENOBUFS;
2173 	}
2174 
2175 	spin_lock(&net_family_lock);
2176 	if (net_families[ops->family])
2177 		err = -EEXIST;
2178 	else {
2179 		net_families[ops->family] = ops;
2180 		err = 0;
2181 	}
2182 	spin_unlock(&net_family_lock);
2183 
2184 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2185 	return err;
2186 }
2187 
2188 /**
2189  *	sock_unregister - remove a protocol handler
2190  *	@family: protocol family to remove
2191  *
2192  *	This function is called by a protocol handler that wants to
2193  *	remove its address family, and have it unlinked from the
2194  *	new socket creation.
2195  *
2196  *	If protocol handler is a module, then it can use module reference
2197  *	counts to protect against new references. If protocol handler is not
2198  *	a module then it needs to provide its own protection in
2199  *	the ops->create routine.
2200  */
sock_unregister(int family)2201 void sock_unregister(int family)
2202 {
2203 	BUG_ON(family < 0 || family >= NPROTO);
2204 
2205 	spin_lock(&net_family_lock);
2206 	net_families[family] = NULL;
2207 	spin_unlock(&net_family_lock);
2208 
2209 	synchronize_rcu();
2210 
2211 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2212 }
2213 
sock_init(void)2214 static int __init sock_init(void)
2215 {
2216 	/*
2217 	 *      Initialize sock SLAB cache.
2218 	 */
2219 
2220 	sk_init();
2221 
2222 	/*
2223 	 *      Initialize skbuff SLAB cache
2224 	 */
2225 	skb_init();
2226 
2227 	/*
2228 	 *      Initialize the protocols module.
2229 	 */
2230 
2231 	init_inodecache();
2232 	register_filesystem(&sock_fs_type);
2233 	sock_mnt = kern_mount(&sock_fs_type);
2234 
2235 	/* The real protocol initialization is performed in later initcalls.
2236 	 */
2237 
2238 #ifdef CONFIG_NETFILTER
2239 	netfilter_init();
2240 #endif
2241 
2242 	return 0;
2243 }
2244 
2245 core_initcall(sock_init);	/* early initcall */
2246 
2247 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)2248 void socket_seq_show(struct seq_file *seq)
2249 {
2250 	int cpu;
2251 	int counter = 0;
2252 
2253 	for_each_possible_cpu(cpu)
2254 	    counter += per_cpu(sockets_in_use, cpu);
2255 
2256 	/* It can be negative, by the way. 8) */
2257 	if (counter < 0)
2258 		counter = 0;
2259 
2260 	seq_printf(seq, "sockets: used %d\n", counter);
2261 }
2262 #endif				/* CONFIG_PROC_FS */
2263 
2264 #ifdef CONFIG_COMPAT
compat_sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)2265 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2266 			      unsigned long arg)
2267 {
2268 	struct socket *sock = file->private_data;
2269 	int ret = -ENOIOCTLCMD;
2270 	struct sock *sk;
2271 	struct net *net;
2272 
2273 	sk = sock->sk;
2274 	net = sock_net(sk);
2275 
2276 	if (sock->ops->compat_ioctl)
2277 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2278 
2279 	if (ret == -ENOIOCTLCMD &&
2280 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2281 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2282 
2283 	return ret;
2284 }
2285 #endif
2286 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)2287 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2288 {
2289 	return sock->ops->bind(sock, addr, addrlen);
2290 }
2291 
kernel_listen(struct socket * sock,int backlog)2292 int kernel_listen(struct socket *sock, int backlog)
2293 {
2294 	return sock->ops->listen(sock, backlog);
2295 }
2296 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)2297 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2298 {
2299 	struct sock *sk = sock->sk;
2300 	int err;
2301 
2302 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2303 			       newsock);
2304 	if (err < 0)
2305 		goto done;
2306 
2307 	err = sock->ops->accept(sock, *newsock, flags);
2308 	if (err < 0) {
2309 		sock_release(*newsock);
2310 		*newsock = NULL;
2311 		goto done;
2312 	}
2313 
2314 	(*newsock)->ops = sock->ops;
2315 	__module_get((*newsock)->ops->owner);
2316 
2317 done:
2318 	return err;
2319 }
2320 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)2321 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2322 		   int flags)
2323 {
2324 	return sock->ops->connect(sock, addr, addrlen, flags);
2325 }
2326 
kernel_getsockname(struct socket * sock,struct sockaddr * addr,int * addrlen)2327 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2328 			 int *addrlen)
2329 {
2330 	return sock->ops->getname(sock, addr, addrlen, 0);
2331 }
2332 
kernel_getpeername(struct socket * sock,struct sockaddr * addr,int * addrlen)2333 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2334 			 int *addrlen)
2335 {
2336 	return sock->ops->getname(sock, addr, addrlen, 1);
2337 }
2338 
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)2339 int kernel_getsockopt(struct socket *sock, int level, int optname,
2340 			char *optval, int *optlen)
2341 {
2342 	mm_segment_t oldfs = get_fs();
2343 	int err;
2344 
2345 	set_fs(KERNEL_DS);
2346 	if (level == SOL_SOCKET)
2347 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2348 	else
2349 		err = sock->ops->getsockopt(sock, level, optname, optval,
2350 					    optlen);
2351 	set_fs(oldfs);
2352 	return err;
2353 }
2354 
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,int optlen)2355 int kernel_setsockopt(struct socket *sock, int level, int optname,
2356 			char *optval, int optlen)
2357 {
2358 	mm_segment_t oldfs = get_fs();
2359 	int err;
2360 
2361 	set_fs(KERNEL_DS);
2362 	if (level == SOL_SOCKET)
2363 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2364 	else
2365 		err = sock->ops->setsockopt(sock, level, optname, optval,
2366 					    optlen);
2367 	set_fs(oldfs);
2368 	return err;
2369 }
2370 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2371 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2372 		    size_t size, int flags)
2373 {
2374 	if (sock->ops->sendpage)
2375 		return sock->ops->sendpage(sock, page, offset, size, flags);
2376 
2377 	return sock_no_sendpage(sock, page, offset, size, flags);
2378 }
2379 
kernel_sock_ioctl(struct socket * sock,int cmd,unsigned long arg)2380 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2381 {
2382 	mm_segment_t oldfs = get_fs();
2383 	int err;
2384 
2385 	set_fs(KERNEL_DS);
2386 	err = sock->ops->ioctl(sock, cmd, arg);
2387 	set_fs(oldfs);
2388 
2389 	return err;
2390 }
2391 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)2392 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2393 {
2394 	return sock->ops->shutdown(sock, how);
2395 }
2396 
2397 EXPORT_SYMBOL(sock_create);
2398 EXPORT_SYMBOL(sock_create_kern);
2399 EXPORT_SYMBOL(sock_create_lite);
2400 EXPORT_SYMBOL(sock_map_fd);
2401 EXPORT_SYMBOL(sock_recvmsg);
2402 EXPORT_SYMBOL(sock_register);
2403 EXPORT_SYMBOL(sock_release);
2404 EXPORT_SYMBOL(sock_sendmsg);
2405 EXPORT_SYMBOL(sock_unregister);
2406 EXPORT_SYMBOL(sock_wake_async);
2407 EXPORT_SYMBOL(sockfd_lookup);
2408 EXPORT_SYMBOL(kernel_sendmsg);
2409 EXPORT_SYMBOL(kernel_recvmsg);
2410 EXPORT_SYMBOL(kernel_bind);
2411 EXPORT_SYMBOL(kernel_listen);
2412 EXPORT_SYMBOL(kernel_accept);
2413 EXPORT_SYMBOL(kernel_connect);
2414 EXPORT_SYMBOL(kernel_getsockname);
2415 EXPORT_SYMBOL(kernel_getpeername);
2416 EXPORT_SYMBOL(kernel_getsockopt);
2417 EXPORT_SYMBOL(kernel_setsockopt);
2418 EXPORT_SYMBOL(kernel_sendpage);
2419 EXPORT_SYMBOL(kernel_sock_ioctl);
2420 EXPORT_SYMBOL(kernel_sock_shutdown);
2421