• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 
45 /**
46  * struct regulatory_request - receipt of last regulatory request
47  *
48  * @wiphy: this is set if this request's initiator is
49  * 	%REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This
50  * 	can be used by the wireless core to deal with conflicts
51  * 	and potentially inform users of which devices specifically
52  * 	cased the conflicts.
53  * @initiator: indicates who sent this request, could be any of
54  * 	of those set in reg_set_by, %REGDOM_SET_BY_*
55  * @alpha2: the ISO / IEC 3166 alpha2 country code of the requested
56  * 	regulatory domain. We have a few special codes:
57  * 	00 - World regulatory domain
58  * 	99 - built by driver but a specific alpha2 cannot be determined
59  * 	98 - result of an intersection between two regulatory domains
60  * @intersect: indicates whether the wireless core should intersect
61  * 	the requested regulatory domain with the presently set regulatory
62  * 	domain.
63  * @country_ie_checksum: checksum of the last processed and accepted
64  * 	country IE
65  * @country_ie_env: lets us know if the AP is telling us we are outdoor,
66  * 	indoor, or if it doesn't matter
67  */
68 struct regulatory_request {
69 	struct wiphy *wiphy;
70 	enum reg_set_by initiator;
71 	char alpha2[2];
72 	bool intersect;
73 	u32 country_ie_checksum;
74 	enum environment_cap country_ie_env;
75 };
76 
77 /* Receipt of information from last regulatory request */
78 static struct regulatory_request *last_request;
79 
80 /* To trigger userspace events */
81 static struct platform_device *reg_pdev;
82 
83 /* Keep the ordering from large to small */
84 static u32 supported_bandwidths[] = {
85 	MHZ_TO_KHZ(40),
86 	MHZ_TO_KHZ(20),
87 };
88 
89 /* Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2 */
92 static const struct ieee80211_regdomain *cfg80211_regdomain;
93 
94 /* We use this as a place for the rd structure built from the
95  * last parsed country IE to rest until CRDA gets back to us with
96  * what it thinks should apply for the same country */
97 static const struct ieee80211_regdomain *country_ie_regdomain;
98 
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101 	.n_reg_rules = 1,
102 	.alpha2 =  "00",
103 	.reg_rules = {
104 		REG_RULE(2412-10, 2462+10, 40, 6, 20,
105 			NL80211_RRF_PASSIVE_SCAN |
106 			NL80211_RRF_NO_IBSS),
107 	}
108 };
109 
110 static const struct ieee80211_regdomain *cfg80211_world_regdom =
111 	&world_regdom;
112 
113 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
114 static char *ieee80211_regdom = "US";
115 module_param(ieee80211_regdom, charp, 0444);
116 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
117 
118 /* We assume 40 MHz bandwidth for the old regulatory work.
119  * We make emphasis we are using the exact same frequencies
120  * as before */
121 
122 static const struct ieee80211_regdomain us_regdom = {
123 	.n_reg_rules = 6,
124 	.alpha2 =  "US",
125 	.reg_rules = {
126 		/* IEEE 802.11b/g, channels 1..11 */
127 		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
128 		/* IEEE 802.11a, channel 36 */
129 		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
130 		/* IEEE 802.11a, channel 40 */
131 		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
132 		/* IEEE 802.11a, channel 44 */
133 		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
134 		/* IEEE 802.11a, channels 48..64 */
135 		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
136 		/* IEEE 802.11a, channels 149..165, outdoor */
137 		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
138 	}
139 };
140 
141 static const struct ieee80211_regdomain jp_regdom = {
142 	.n_reg_rules = 3,
143 	.alpha2 =  "JP",
144 	.reg_rules = {
145 		/* IEEE 802.11b/g, channels 1..14 */
146 		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
147 		/* IEEE 802.11a, channels 34..48 */
148 		REG_RULE(5170-10, 5240+10, 40, 6, 20,
149 			NL80211_RRF_PASSIVE_SCAN),
150 		/* IEEE 802.11a, channels 52..64 */
151 		REG_RULE(5260-10, 5320+10, 40, 6, 20,
152 			NL80211_RRF_NO_IBSS |
153 			NL80211_RRF_DFS),
154 	}
155 };
156 
157 static const struct ieee80211_regdomain eu_regdom = {
158 	.n_reg_rules = 6,
159 	/* This alpha2 is bogus, we leave it here just for stupid
160 	 * backward compatibility */
161 	.alpha2 =  "EU",
162 	.reg_rules = {
163 		/* IEEE 802.11b/g, channels 1..13 */
164 		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
165 		/* IEEE 802.11a, channel 36 */
166 		REG_RULE(5180-10, 5180+10, 40, 6, 23,
167 			NL80211_RRF_PASSIVE_SCAN),
168 		/* IEEE 802.11a, channel 40 */
169 		REG_RULE(5200-10, 5200+10, 40, 6, 23,
170 			NL80211_RRF_PASSIVE_SCAN),
171 		/* IEEE 802.11a, channel 44 */
172 		REG_RULE(5220-10, 5220+10, 40, 6, 23,
173 			NL80211_RRF_PASSIVE_SCAN),
174 		/* IEEE 802.11a, channels 48..64 */
175 		REG_RULE(5240-10, 5320+10, 40, 6, 20,
176 			NL80211_RRF_NO_IBSS |
177 			NL80211_RRF_DFS),
178 		/* IEEE 802.11a, channels 100..140 */
179 		REG_RULE(5500-10, 5700+10, 40, 6, 30,
180 			NL80211_RRF_NO_IBSS |
181 			NL80211_RRF_DFS),
182 	}
183 };
184 
static_regdom(char * alpha2)185 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
186 {
187 	if (alpha2[0] == 'U' && alpha2[1] == 'S')
188 		return &us_regdom;
189 	if (alpha2[0] == 'J' && alpha2[1] == 'P')
190 		return &jp_regdom;
191 	if (alpha2[0] == 'E' && alpha2[1] == 'U')
192 		return &eu_regdom;
193 	/* Default, as per the old rules */
194 	return &us_regdom;
195 }
196 
is_old_static_regdom(const struct ieee80211_regdomain * rd)197 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
198 {
199 	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
200 		return true;
201 	return false;
202 }
203 #else
is_old_static_regdom(const struct ieee80211_regdomain * rd)204 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
205 {
206 	return false;
207 }
208 #endif
209 
reset_regdomains(void)210 static void reset_regdomains(void)
211 {
212 	/* avoid freeing static information or freeing something twice */
213 	if (cfg80211_regdomain == cfg80211_world_regdom)
214 		cfg80211_regdomain = NULL;
215 	if (cfg80211_world_regdom == &world_regdom)
216 		cfg80211_world_regdom = NULL;
217 	if (cfg80211_regdomain == &world_regdom)
218 		cfg80211_regdomain = NULL;
219 	if (is_old_static_regdom(cfg80211_regdomain))
220 		cfg80211_regdomain = NULL;
221 
222 	kfree(cfg80211_regdomain);
223 	kfree(cfg80211_world_regdom);
224 
225 	cfg80211_world_regdom = &world_regdom;
226 	cfg80211_regdomain = NULL;
227 }
228 
229 /* Dynamic world regulatory domain requested by the wireless
230  * core upon initialization */
update_world_regdomain(const struct ieee80211_regdomain * rd)231 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
232 {
233 	BUG_ON(!last_request);
234 
235 	reset_regdomains();
236 
237 	cfg80211_world_regdom = rd;
238 	cfg80211_regdomain = rd;
239 }
240 
is_world_regdom(const char * alpha2)241 bool is_world_regdom(const char *alpha2)
242 {
243 	if (!alpha2)
244 		return false;
245 	if (alpha2[0] == '0' && alpha2[1] == '0')
246 		return true;
247 	return false;
248 }
249 
is_alpha2_set(const char * alpha2)250 static bool is_alpha2_set(const char *alpha2)
251 {
252 	if (!alpha2)
253 		return false;
254 	if (alpha2[0] != 0 && alpha2[1] != 0)
255 		return true;
256 	return false;
257 }
258 
is_alpha_upper(char letter)259 static bool is_alpha_upper(char letter)
260 {
261 	/* ASCII A - Z */
262 	if (letter >= 65 && letter <= 90)
263 		return true;
264 	return false;
265 }
266 
is_unknown_alpha2(const char * alpha2)267 static bool is_unknown_alpha2(const char *alpha2)
268 {
269 	if (!alpha2)
270 		return false;
271 	/* Special case where regulatory domain was built by driver
272 	 * but a specific alpha2 cannot be determined */
273 	if (alpha2[0] == '9' && alpha2[1] == '9')
274 		return true;
275 	return false;
276 }
277 
is_intersected_alpha2(const char * alpha2)278 static bool is_intersected_alpha2(const char *alpha2)
279 {
280 	if (!alpha2)
281 		return false;
282 	/* Special case where regulatory domain is the
283 	 * result of an intersection between two regulatory domain
284 	 * structures */
285 	if (alpha2[0] == '9' && alpha2[1] == '8')
286 		return true;
287 	return false;
288 }
289 
is_an_alpha2(const char * alpha2)290 static bool is_an_alpha2(const char *alpha2)
291 {
292 	if (!alpha2)
293 		return false;
294 	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
295 		return true;
296 	return false;
297 }
298 
alpha2_equal(const char * alpha2_x,const char * alpha2_y)299 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
300 {
301 	if (!alpha2_x || !alpha2_y)
302 		return false;
303 	if (alpha2_x[0] == alpha2_y[0] &&
304 		alpha2_x[1] == alpha2_y[1])
305 		return true;
306 	return false;
307 }
308 
regdom_changed(const char * alpha2)309 static bool regdom_changed(const char *alpha2)
310 {
311 	if (!cfg80211_regdomain)
312 		return true;
313 	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
314 		return false;
315 	return true;
316 }
317 
318 /**
319  * country_ie_integrity_changes - tells us if the country IE has changed
320  * @checksum: checksum of country IE of fields we are interested in
321  *
322  * If the country IE has not changed you can ignore it safely. This is
323  * useful to determine if two devices are seeing two different country IEs
324  * even on the same alpha2. Note that this will return false if no IE has
325  * been set on the wireless core yet.
326  */
country_ie_integrity_changes(u32 checksum)327 static bool country_ie_integrity_changes(u32 checksum)
328 {
329 	/* If no IE has been set then the checksum doesn't change */
330 	if (unlikely(!last_request->country_ie_checksum))
331 		return false;
332 	if (unlikely(last_request->country_ie_checksum != checksum))
333 		return true;
334 	return false;
335 }
336 
337 /* This lets us keep regulatory code which is updated on a regulatory
338  * basis in userspace. */
call_crda(const char * alpha2)339 static int call_crda(const char *alpha2)
340 {
341 	char country_env[9 + 2] = "COUNTRY=";
342 	char *envp[] = {
343 		country_env,
344 		NULL
345 	};
346 
347 	if (!is_world_regdom((char *) alpha2))
348 		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
349 			alpha2[0], alpha2[1]);
350 	else
351 		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
352 			"regulatory domain\n");
353 
354 	country_env[8] = alpha2[0];
355 	country_env[9] = alpha2[1];
356 
357 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
358 }
359 
360 /* Used by nl80211 before kmalloc'ing our regulatory domain */
reg_is_valid_request(const char * alpha2)361 bool reg_is_valid_request(const char *alpha2)
362 {
363 	if (!last_request)
364 		return false;
365 
366 	return alpha2_equal(last_request->alpha2, alpha2);
367 }
368 
369 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)370 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
371 {
372 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
373 	u32 freq_diff;
374 
375 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
376 		return false;
377 
378 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
379 		return false;
380 
381 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
382 
383 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
384 			freq_range->max_bandwidth_khz > freq_diff)
385 		return false;
386 
387 	return true;
388 }
389 
is_valid_rd(const struct ieee80211_regdomain * rd)390 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
391 {
392 	const struct ieee80211_reg_rule *reg_rule = NULL;
393 	unsigned int i;
394 
395 	if (!rd->n_reg_rules)
396 		return false;
397 
398 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
399 		return false;
400 
401 	for (i = 0; i < rd->n_reg_rules; i++) {
402 		reg_rule = &rd->reg_rules[i];
403 		if (!is_valid_reg_rule(reg_rule))
404 			return false;
405 	}
406 
407 	return true;
408 }
409 
410 /* Returns value in KHz */
freq_max_bandwidth(const struct ieee80211_freq_range * freq_range,u32 freq)411 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
412 	u32 freq)
413 {
414 	unsigned int i;
415 	for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
416 		u32 start_freq_khz = freq - supported_bandwidths[i]/2;
417 		u32 end_freq_khz = freq + supported_bandwidths[i]/2;
418 		if (start_freq_khz >= freq_range->start_freq_khz &&
419 			end_freq_khz <= freq_range->end_freq_khz)
420 			return supported_bandwidths[i];
421 	}
422 	return 0;
423 }
424 
425 /**
426  * freq_in_rule_band - tells us if a frequency is in a frequency band
427  * @freq_range: frequency rule we want to query
428  * @freq_khz: frequency we are inquiring about
429  *
430  * This lets us know if a specific frequency rule is or is not relevant to
431  * a specific frequency's band. Bands are device specific and artificial
432  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
433  * safe for now to assume that a frequency rule should not be part of a
434  * frequency's band if the start freq or end freq are off by more than 2 GHz.
435  * This resolution can be lowered and should be considered as we add
436  * regulatory rule support for other "bands".
437  **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)438 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
439 	u32 freq_khz)
440 {
441 #define ONE_GHZ_IN_KHZ	1000000
442 	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
443 		return true;
444 	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
445 		return true;
446 	return false;
447 #undef ONE_GHZ_IN_KHZ
448 }
449 
450 /* Converts a country IE to a regulatory domain. A regulatory domain
451  * structure has a lot of information which the IE doesn't yet have,
452  * so for the other values we use upper max values as we will intersect
453  * with our userspace regulatory agent to get lower bounds. */
country_ie_2_rd(u8 * country_ie,u8 country_ie_len,u32 * checksum)454 static struct ieee80211_regdomain *country_ie_2_rd(
455 				u8 *country_ie,
456 				u8 country_ie_len,
457 				u32 *checksum)
458 {
459 	struct ieee80211_regdomain *rd = NULL;
460 	unsigned int i = 0;
461 	char alpha2[2];
462 	u32 flags = 0;
463 	u32 num_rules = 0, size_of_regd = 0;
464 	u8 *triplets_start = NULL;
465 	u8 len_at_triplet = 0;
466 	/* the last channel we have registered in a subband (triplet) */
467 	int last_sub_max_channel = 0;
468 
469 	*checksum = 0xDEADBEEF;
470 
471 	/* Country IE requirements */
472 	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
473 		country_ie_len & 0x01);
474 
475 	alpha2[0] = country_ie[0];
476 	alpha2[1] = country_ie[1];
477 
478 	/*
479 	 * Third octet can be:
480 	 *    'I' - Indoor
481 	 *    'O' - Outdoor
482 	 *
483 	 *  anything else we assume is no restrictions
484 	 */
485 	if (country_ie[2] == 'I')
486 		flags = NL80211_RRF_NO_OUTDOOR;
487 	else if (country_ie[2] == 'O')
488 		flags = NL80211_RRF_NO_INDOOR;
489 
490 	country_ie += 3;
491 	country_ie_len -= 3;
492 
493 	triplets_start = country_ie;
494 	len_at_triplet = country_ie_len;
495 
496 	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
497 
498 	/* We need to build a reg rule for each triplet, but first we must
499 	 * calculate the number of reg rules we will need. We will need one
500 	 * for each channel subband */
501 	while (country_ie_len >= 3) {
502 		int end_channel = 0;
503 		struct ieee80211_country_ie_triplet *triplet =
504 			(struct ieee80211_country_ie_triplet *) country_ie;
505 		int cur_sub_max_channel = 0, cur_channel = 0;
506 
507 		if (triplet->ext.reg_extension_id >=
508 				IEEE80211_COUNTRY_EXTENSION_ID) {
509 			country_ie += 3;
510 			country_ie_len -= 3;
511 			continue;
512 		}
513 
514 		/* 2 GHz */
515 		if (triplet->chans.first_channel <= 14)
516 			end_channel = triplet->chans.first_channel +
517 				triplet->chans.num_channels;
518 		else
519 			/*
520 			 * 5 GHz -- For example in country IEs if the first
521 			 * channel given is 36 and the number of channels is 4
522 			 * then the individual channel numbers defined for the
523 			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
524 			 * and not 36, 37, 38, 39.
525 			 *
526 			 * See: http://tinyurl.com/11d-clarification
527 			 */
528 			end_channel =  triplet->chans.first_channel +
529 				(4 * (triplet->chans.num_channels - 1));
530 
531 		cur_channel = triplet->chans.first_channel;
532 		cur_sub_max_channel = end_channel;
533 
534 		/* Basic sanity check */
535 		if (cur_sub_max_channel < cur_channel)
536 			return NULL;
537 
538 		/* Do not allow overlapping channels. Also channels
539 		 * passed in each subband must be monotonically
540 		 * increasing */
541 		if (last_sub_max_channel) {
542 			if (cur_channel <= last_sub_max_channel)
543 				return NULL;
544 			if (cur_sub_max_channel <= last_sub_max_channel)
545 				return NULL;
546 		}
547 
548 		/* When dot11RegulatoryClassesRequired is supported
549 		 * we can throw ext triplets as part of this soup,
550 		 * for now we don't care when those change as we
551 		 * don't support them */
552 		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
553 		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
554 		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
555 
556 		last_sub_max_channel = cur_sub_max_channel;
557 
558 		country_ie += 3;
559 		country_ie_len -= 3;
560 		num_rules++;
561 
562 		/* Note: this is not a IEEE requirement but
563 		 * simply a memory requirement */
564 		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
565 			return NULL;
566 	}
567 
568 	country_ie = triplets_start;
569 	country_ie_len = len_at_triplet;
570 
571 	size_of_regd = sizeof(struct ieee80211_regdomain) +
572 		(num_rules * sizeof(struct ieee80211_reg_rule));
573 
574 	rd = kzalloc(size_of_regd, GFP_KERNEL);
575 	if (!rd)
576 		return NULL;
577 
578 	rd->n_reg_rules = num_rules;
579 	rd->alpha2[0] = alpha2[0];
580 	rd->alpha2[1] = alpha2[1];
581 
582 	/* This time around we fill in the rd */
583 	while (country_ie_len >= 3) {
584 		int end_channel = 0;
585 		struct ieee80211_country_ie_triplet *triplet =
586 			(struct ieee80211_country_ie_triplet *) country_ie;
587 		struct ieee80211_reg_rule *reg_rule = NULL;
588 		struct ieee80211_freq_range *freq_range = NULL;
589 		struct ieee80211_power_rule *power_rule = NULL;
590 
591 		/* Must parse if dot11RegulatoryClassesRequired is true,
592 		 * we don't support this yet */
593 		if (triplet->ext.reg_extension_id >=
594 				IEEE80211_COUNTRY_EXTENSION_ID) {
595 			country_ie += 3;
596 			country_ie_len -= 3;
597 			continue;
598 		}
599 
600 		reg_rule = &rd->reg_rules[i];
601 		freq_range = &reg_rule->freq_range;
602 		power_rule = &reg_rule->power_rule;
603 
604 		reg_rule->flags = flags;
605 
606 		/* 2 GHz */
607 		if (triplet->chans.first_channel <= 14)
608 			end_channel = triplet->chans.first_channel +
609 				triplet->chans.num_channels;
610 		else
611 			end_channel =  triplet->chans.first_channel +
612 				(4 * (triplet->chans.num_channels - 1));
613 
614 		/* The +10 is since the regulatory domain expects
615 		 * the actual band edge, not the center of freq for
616 		 * its start and end freqs, assuming 20 MHz bandwidth on
617 		 * the channels passed */
618 		freq_range->start_freq_khz =
619 			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
620 				triplet->chans.first_channel) - 10);
621 		freq_range->end_freq_khz =
622 			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
623 				end_channel) + 10);
624 
625 		/* Large arbitrary values, we intersect later */
626 		/* Increment this if we ever support >= 40 MHz channels
627 		 * in IEEE 802.11 */
628 		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
629 		power_rule->max_antenna_gain = DBI_TO_MBI(100);
630 		power_rule->max_eirp = DBM_TO_MBM(100);
631 
632 		country_ie += 3;
633 		country_ie_len -= 3;
634 		i++;
635 
636 		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
637 	}
638 
639 	return rd;
640 }
641 
642 
643 /* Helper for regdom_intersect(), this does the real
644  * mathematical intersection fun */
reg_rules_intersect(const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)645 static int reg_rules_intersect(
646 	const struct ieee80211_reg_rule *rule1,
647 	const struct ieee80211_reg_rule *rule2,
648 	struct ieee80211_reg_rule *intersected_rule)
649 {
650 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
651 	struct ieee80211_freq_range *freq_range;
652 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
653 	struct ieee80211_power_rule *power_rule;
654 	u32 freq_diff;
655 
656 	freq_range1 = &rule1->freq_range;
657 	freq_range2 = &rule2->freq_range;
658 	freq_range = &intersected_rule->freq_range;
659 
660 	power_rule1 = &rule1->power_rule;
661 	power_rule2 = &rule2->power_rule;
662 	power_rule = &intersected_rule->power_rule;
663 
664 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
665 		freq_range2->start_freq_khz);
666 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
667 		freq_range2->end_freq_khz);
668 	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
669 		freq_range2->max_bandwidth_khz);
670 
671 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
672 	if (freq_range->max_bandwidth_khz > freq_diff)
673 		freq_range->max_bandwidth_khz = freq_diff;
674 
675 	power_rule->max_eirp = min(power_rule1->max_eirp,
676 		power_rule2->max_eirp);
677 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
678 		power_rule2->max_antenna_gain);
679 
680 	intersected_rule->flags = (rule1->flags | rule2->flags);
681 
682 	if (!is_valid_reg_rule(intersected_rule))
683 		return -EINVAL;
684 
685 	return 0;
686 }
687 
688 /**
689  * regdom_intersect - do the intersection between two regulatory domains
690  * @rd1: first regulatory domain
691  * @rd2: second regulatory domain
692  *
693  * Use this function to get the intersection between two regulatory domains.
694  * Once completed we will mark the alpha2 for the rd as intersected, "98",
695  * as no one single alpha2 can represent this regulatory domain.
696  *
697  * Returns a pointer to the regulatory domain structure which will hold the
698  * resulting intersection of rules between rd1 and rd2. We will
699  * kzalloc() this structure for you.
700  */
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)701 static struct ieee80211_regdomain *regdom_intersect(
702 	const struct ieee80211_regdomain *rd1,
703 	const struct ieee80211_regdomain *rd2)
704 {
705 	int r, size_of_regd;
706 	unsigned int x, y;
707 	unsigned int num_rules = 0, rule_idx = 0;
708 	const struct ieee80211_reg_rule *rule1, *rule2;
709 	struct ieee80211_reg_rule *intersected_rule;
710 	struct ieee80211_regdomain *rd;
711 	/* This is just a dummy holder to help us count */
712 	struct ieee80211_reg_rule irule;
713 
714 	/* Uses the stack temporarily for counter arithmetic */
715 	intersected_rule = &irule;
716 
717 	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
718 
719 	if (!rd1 || !rd2)
720 		return NULL;
721 
722 	/* First we get a count of the rules we'll need, then we actually
723 	 * build them. This is to so we can malloc() and free() a
724 	 * regdomain once. The reason we use reg_rules_intersect() here
725 	 * is it will return -EINVAL if the rule computed makes no sense.
726 	 * All rules that do check out OK are valid. */
727 
728 	for (x = 0; x < rd1->n_reg_rules; x++) {
729 		rule1 = &rd1->reg_rules[x];
730 		for (y = 0; y < rd2->n_reg_rules; y++) {
731 			rule2 = &rd2->reg_rules[y];
732 			if (!reg_rules_intersect(rule1, rule2,
733 					intersected_rule))
734 				num_rules++;
735 			memset(intersected_rule, 0,
736 					sizeof(struct ieee80211_reg_rule));
737 		}
738 	}
739 
740 	if (!num_rules)
741 		return NULL;
742 
743 	size_of_regd = sizeof(struct ieee80211_regdomain) +
744 		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
745 
746 	rd = kzalloc(size_of_regd, GFP_KERNEL);
747 	if (!rd)
748 		return NULL;
749 
750 	for (x = 0; x < rd1->n_reg_rules; x++) {
751 		rule1 = &rd1->reg_rules[x];
752 		for (y = 0; y < rd2->n_reg_rules; y++) {
753 			rule2 = &rd2->reg_rules[y];
754 			/* This time around instead of using the stack lets
755 			 * write to the target rule directly saving ourselves
756 			 * a memcpy() */
757 			intersected_rule = &rd->reg_rules[rule_idx];
758 			r = reg_rules_intersect(rule1, rule2,
759 				intersected_rule);
760 			/* No need to memset here the intersected rule here as
761 			 * we're not using the stack anymore */
762 			if (r)
763 				continue;
764 			rule_idx++;
765 		}
766 	}
767 
768 	if (rule_idx != num_rules) {
769 		kfree(rd);
770 		return NULL;
771 	}
772 
773 	rd->n_reg_rules = num_rules;
774 	rd->alpha2[0] = '9';
775 	rd->alpha2[1] = '8';
776 
777 	return rd;
778 }
779 
780 /* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
781  * want to just have the channel structure use these */
map_regdom_flags(u32 rd_flags)782 static u32 map_regdom_flags(u32 rd_flags)
783 {
784 	u32 channel_flags = 0;
785 	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
786 		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
787 	if (rd_flags & NL80211_RRF_NO_IBSS)
788 		channel_flags |= IEEE80211_CHAN_NO_IBSS;
789 	if (rd_flags & NL80211_RRF_DFS)
790 		channel_flags |= IEEE80211_CHAN_RADAR;
791 	return channel_flags;
792 }
793 
794 /**
795  * freq_reg_info - get regulatory information for the given frequency
796  * @center_freq: Frequency in KHz for which we want regulatory information for
797  * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
798  * 	you can set this to 0. If this frequency is allowed we then set
799  * 	this value to the maximum allowed bandwidth.
800  * @reg_rule: the regulatory rule which we have for this frequency
801  *
802  * Use this function to get the regulatory rule for a specific frequency on
803  * a given wireless device. If the device has a specific regulatory domain
804  * it wants to follow we respect that unless a country IE has been received
805  * and processed already.
806  *
807  * Returns 0 if it was able to find a valid regulatory rule which does
808  * apply to the given center_freq otherwise it returns non-zero. It will
809  * also return -ERANGE if we determine the given center_freq does not even have
810  * a regulatory rule for a frequency range in the center_freq's band. See
811  * freq_in_rule_band() for our current definition of a band -- this is purely
812  * subjective and right now its 802.11 specific.
813  */
freq_reg_info(u32 center_freq,u32 * bandwidth,const struct ieee80211_reg_rule ** reg_rule)814 static int freq_reg_info(u32 center_freq, u32 *bandwidth,
815 			 const struct ieee80211_reg_rule **reg_rule)
816 {
817 	int i;
818 	bool band_rule_found = false;
819 	u32 max_bandwidth = 0;
820 
821 	if (!cfg80211_regdomain)
822 		return -EINVAL;
823 
824 	for (i = 0; i < cfg80211_regdomain->n_reg_rules; i++) {
825 		const struct ieee80211_reg_rule *rr;
826 		const struct ieee80211_freq_range *fr = NULL;
827 		const struct ieee80211_power_rule *pr = NULL;
828 
829 		rr = &cfg80211_regdomain->reg_rules[i];
830 		fr = &rr->freq_range;
831 		pr = &rr->power_rule;
832 
833 		/* We only need to know if one frequency rule was
834 		 * was in center_freq's band, that's enough, so lets
835 		 * not overwrite it once found */
836 		if (!band_rule_found)
837 			band_rule_found = freq_in_rule_band(fr, center_freq);
838 
839 		max_bandwidth = freq_max_bandwidth(fr, center_freq);
840 
841 		if (max_bandwidth && *bandwidth <= max_bandwidth) {
842 			*reg_rule = rr;
843 			*bandwidth = max_bandwidth;
844 			break;
845 		}
846 	}
847 
848 	if (!band_rule_found)
849 		return -ERANGE;
850 
851 	return !max_bandwidth;
852 }
853 
handle_channel(struct wiphy * wiphy,enum ieee80211_band band,unsigned int chan_idx)854 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
855 			   unsigned int chan_idx)
856 {
857 	int r;
858 	u32 flags;
859 	u32 max_bandwidth = 0;
860 	const struct ieee80211_reg_rule *reg_rule = NULL;
861 	const struct ieee80211_power_rule *power_rule = NULL;
862 	struct ieee80211_supported_band *sband;
863 	struct ieee80211_channel *chan;
864 
865 	sband = wiphy->bands[band];
866 	BUG_ON(chan_idx >= sband->n_channels);
867 	chan = &sband->channels[chan_idx];
868 
869 	flags = chan->orig_flags;
870 
871 	r = freq_reg_info(MHZ_TO_KHZ(chan->center_freq),
872 		&max_bandwidth, &reg_rule);
873 
874 	if (r) {
875 		/* This means no regulatory rule was found in the country IE
876 		 * with a frequency range on the center_freq's band, since
877 		 * IEEE-802.11 allows for a country IE to have a subset of the
878 		 * regulatory information provided in a country we ignore
879 		 * disabling the channel unless at least one reg rule was
880 		 * found on the center_freq's band. For details see this
881 		 * clarification:
882 		 *
883 		 * http://tinyurl.com/11d-clarification
884 		 */
885 		if (r == -ERANGE &&
886 		    last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
887 #ifdef CONFIG_CFG80211_REG_DEBUG
888 			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
889 				"intact on %s - no rule found in band on "
890 				"Country IE\n",
891 				chan->center_freq, wiphy_name(wiphy));
892 #endif
893 		} else {
894 		/* In this case we know the country IE has at least one reg rule
895 		 * for the band so we respect its band definitions */
896 #ifdef CONFIG_CFG80211_REG_DEBUG
897 			if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
898 				printk(KERN_DEBUG "cfg80211: Disabling "
899 					"channel %d MHz on %s due to "
900 					"Country IE\n",
901 					chan->center_freq, wiphy_name(wiphy));
902 #endif
903 			flags |= IEEE80211_CHAN_DISABLED;
904 			chan->flags = flags;
905 		}
906 		return;
907 	}
908 
909 	power_rule = &reg_rule->power_rule;
910 
911 	chan->flags = flags | map_regdom_flags(reg_rule->flags);
912 	chan->max_antenna_gain = min(chan->orig_mag,
913 		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
914 	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
915 	if (chan->orig_mpwr)
916 		chan->max_power = min(chan->orig_mpwr,
917 			(int) MBM_TO_DBM(power_rule->max_eirp));
918 	else
919 		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
920 }
921 
handle_band(struct wiphy * wiphy,enum ieee80211_band band)922 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
923 {
924 	unsigned int i;
925 	struct ieee80211_supported_band *sband;
926 
927 	BUG_ON(!wiphy->bands[band]);
928 	sband = wiphy->bands[band];
929 
930 	for (i = 0; i < sband->n_channels; i++)
931 		handle_channel(wiphy, band, i);
932 }
933 
ignore_reg_update(struct wiphy * wiphy,enum reg_set_by setby)934 static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
935 {
936 	if (!last_request)
937 		return true;
938 	if (setby == REGDOM_SET_BY_CORE &&
939 		  wiphy->fw_handles_regulatory)
940 		return true;
941 	return false;
942 }
943 
update_all_wiphy_regulatory(enum reg_set_by setby)944 static void update_all_wiphy_regulatory(enum reg_set_by setby)
945 {
946 	struct cfg80211_registered_device *drv;
947 
948 	list_for_each_entry(drv, &cfg80211_drv_list, list)
949 		if (!ignore_reg_update(&drv->wiphy, setby))
950 			wiphy_update_regulatory(&drv->wiphy, setby);
951 }
952 
wiphy_update_regulatory(struct wiphy * wiphy,enum reg_set_by setby)953 void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
954 {
955 	enum ieee80211_band band;
956 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
957 		if (wiphy->bands[band])
958 			handle_band(wiphy, band);
959 		if (wiphy->reg_notifier)
960 			wiphy->reg_notifier(wiphy, setby);
961 	}
962 }
963 
964 /* Return value which can be used by ignore_request() to indicate
965  * it has been determined we should intersect two regulatory domains */
966 #define REG_INTERSECT	1
967 
968 /* This has the logic which determines when a new request
969  * should be ignored. */
ignore_request(struct wiphy * wiphy,enum reg_set_by set_by,const char * alpha2)970 static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
971 			  const char *alpha2)
972 {
973 	/* All initial requests are respected */
974 	if (!last_request)
975 		return 0;
976 
977 	switch (set_by) {
978 	case REGDOM_SET_BY_INIT:
979 		return -EINVAL;
980 	case REGDOM_SET_BY_CORE:
981 		/*
982 		 * Always respect new wireless core hints, should only happen
983 		 * when updating the world regulatory domain at init.
984 		 */
985 		return 0;
986 	case REGDOM_SET_BY_COUNTRY_IE:
987 		if (unlikely(!is_an_alpha2(alpha2)))
988 			return -EINVAL;
989 		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
990 			if (last_request->wiphy != wiphy) {
991 				/*
992 				 * Two cards with two APs claiming different
993 				 * different Country IE alpha2s. We could
994 				 * intersect them, but that seems unlikely
995 				 * to be correct. Reject second one for now.
996 				 */
997 				if (!alpha2_equal(alpha2,
998 						  cfg80211_regdomain->alpha2))
999 					return -EOPNOTSUPP;
1000 				return -EALREADY;
1001 			}
1002 			/* Two consecutive Country IE hints on the same wiphy.
1003 			 * This should be picked up early by the driver/stack */
1004 			if (WARN_ON(!alpha2_equal(cfg80211_regdomain->alpha2,
1005 				  alpha2)))
1006 				return 0;
1007 			return -EALREADY;
1008 		}
1009 		return REG_INTERSECT;
1010 	case REGDOM_SET_BY_DRIVER:
1011 		if (last_request->initiator == REGDOM_SET_BY_DRIVER)
1012 			return -EALREADY;
1013 		return 0;
1014 	case REGDOM_SET_BY_USER:
1015 		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
1016 			return REG_INTERSECT;
1017 		/* If the user knows better the user should set the regdom
1018 		 * to their country before the IE is picked up */
1019 		if (last_request->initiator == REGDOM_SET_BY_USER &&
1020 			  last_request->intersect)
1021 			return -EOPNOTSUPP;
1022 		return 0;
1023 	}
1024 
1025 	return -EINVAL;
1026 }
1027 
1028 /* Caller must hold &cfg80211_drv_mutex */
__regulatory_hint(struct wiphy * wiphy,enum reg_set_by set_by,const char * alpha2,u32 country_ie_checksum,enum environment_cap env)1029 int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
1030 			const char *alpha2,
1031 			u32 country_ie_checksum,
1032 			enum environment_cap env)
1033 {
1034 	struct regulatory_request *request;
1035 	bool intersect = false;
1036 	int r = 0;
1037 
1038 	r = ignore_request(wiphy, set_by, alpha2);
1039 
1040 	if (r == REG_INTERSECT)
1041 		intersect = true;
1042 	else if (r)
1043 		return r;
1044 
1045 	request = kzalloc(sizeof(struct regulatory_request),
1046 			  GFP_KERNEL);
1047 	if (!request)
1048 		return -ENOMEM;
1049 
1050 	request->alpha2[0] = alpha2[0];
1051 	request->alpha2[1] = alpha2[1];
1052 	request->initiator = set_by;
1053 	request->wiphy = wiphy;
1054 	request->intersect = intersect;
1055 	request->country_ie_checksum = country_ie_checksum;
1056 	request->country_ie_env = env;
1057 
1058 	kfree(last_request);
1059 	last_request = request;
1060 	/*
1061 	 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1062 	 * AND if CRDA is NOT present nothing will happen, if someone
1063 	 * wants to bother with 11d with OLD_REG you can add a timer.
1064 	 * If after x amount of time nothing happens you can call:
1065 	 *
1066 	 * return set_regdom(country_ie_regdomain);
1067 	 *
1068 	 * to intersect with the static rd
1069 	 */
1070 	return call_crda(alpha2);
1071 }
1072 
regulatory_hint(struct wiphy * wiphy,const char * alpha2)1073 void regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1074 {
1075 	BUG_ON(!alpha2);
1076 
1077 	mutex_lock(&cfg80211_drv_mutex);
1078 	__regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, alpha2, 0, ENVIRON_ANY);
1079 	mutex_unlock(&cfg80211_drv_mutex);
1080 }
1081 EXPORT_SYMBOL(regulatory_hint);
1082 
reg_same_country_ie_hint(struct wiphy * wiphy,u32 country_ie_checksum)1083 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1084 			u32 country_ie_checksum)
1085 {
1086 	if (!last_request->wiphy)
1087 		return false;
1088 	if (likely(last_request->wiphy != wiphy))
1089 		return !country_ie_integrity_changes(country_ie_checksum);
1090 	/* We should not have let these through at this point, they
1091 	 * should have been picked up earlier by the first alpha2 check
1092 	 * on the device */
1093 	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1094 		return true;
1095 	return false;
1096 }
1097 
regulatory_hint_11d(struct wiphy * wiphy,u8 * country_ie,u8 country_ie_len)1098 void regulatory_hint_11d(struct wiphy *wiphy,
1099 			u8 *country_ie,
1100 			u8 country_ie_len)
1101 {
1102 	struct ieee80211_regdomain *rd = NULL;
1103 	char alpha2[2];
1104 	u32 checksum = 0;
1105 	enum environment_cap env = ENVIRON_ANY;
1106 
1107 	if (!last_request)
1108 		return;
1109 
1110 	mutex_lock(&cfg80211_drv_mutex);
1111 
1112 	/* IE len must be evenly divisible by 2 */
1113 	if (country_ie_len & 0x01)
1114 		goto out;
1115 
1116 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1117 		goto out;
1118 
1119 	/* Pending country IE processing, this can happen after we
1120 	 * call CRDA and wait for a response if a beacon was received before
1121 	 * we were able to process the last regulatory_hint_11d() call */
1122 	if (country_ie_regdomain)
1123 		goto out;
1124 
1125 	alpha2[0] = country_ie[0];
1126 	alpha2[1] = country_ie[1];
1127 
1128 	if (country_ie[2] == 'I')
1129 		env = ENVIRON_INDOOR;
1130 	else if (country_ie[2] == 'O')
1131 		env = ENVIRON_OUTDOOR;
1132 
1133 	/* We will run this for *every* beacon processed for the BSSID, so
1134 	 * we optimize an early check to exit out early if we don't have to
1135 	 * do anything */
1136 	if (likely(last_request->wiphy)) {
1137 		struct cfg80211_registered_device *drv_last_ie;
1138 
1139 		drv_last_ie = wiphy_to_dev(last_request->wiphy);
1140 
1141 		/* Lets keep this simple -- we trust the first AP
1142 		 * after we intersect with CRDA */
1143 		if (likely(last_request->wiphy == wiphy)) {
1144 			/* Ignore IEs coming in on this wiphy with
1145 			 * the same alpha2 and environment cap */
1146 			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1147 				  alpha2) &&
1148 				  env == drv_last_ie->env)) {
1149 				goto out;
1150 			}
1151 			/* the wiphy moved on to another BSSID or the AP
1152 			 * was reconfigured. XXX: We need to deal with the
1153 			 * case where the user suspends and goes to goes
1154 			 * to another country, and then gets IEs from an
1155 			 * AP with different settings */
1156 			goto out;
1157 		} else {
1158 			/* Ignore IEs coming in on two separate wiphys with
1159 			 * the same alpha2 and environment cap */
1160 			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1161 				  alpha2) &&
1162 				  env == drv_last_ie->env)) {
1163 				goto out;
1164 			}
1165 			/* We could potentially intersect though */
1166 			goto out;
1167 		}
1168 	}
1169 
1170 	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1171 	if (!rd)
1172 		goto out;
1173 
1174 	/* This will not happen right now but we leave it here for the
1175 	 * the future when we want to add suspend/resume support and having
1176 	 * the user move to another country after doing so, or having the user
1177 	 * move to another AP. Right now we just trust the first AP. This is why
1178 	 * this is marked as likley(). If we hit this before we add this support
1179 	 * we want to be informed of it as it would indicate a mistake in the
1180 	 * current design  */
1181 	if (likely(WARN_ON(reg_same_country_ie_hint(wiphy, checksum))))
1182 		goto out;
1183 
1184 	/* We keep this around for when CRDA comes back with a response so
1185 	 * we can intersect with that */
1186 	country_ie_regdomain = rd;
1187 
1188 	__regulatory_hint(wiphy, REGDOM_SET_BY_COUNTRY_IE,
1189 		country_ie_regdomain->alpha2, checksum, env);
1190 
1191 out:
1192 	mutex_unlock(&cfg80211_drv_mutex);
1193 }
1194 EXPORT_SYMBOL(regulatory_hint_11d);
1195 
print_rd_rules(const struct ieee80211_regdomain * rd)1196 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1197 {
1198 	unsigned int i;
1199 	const struct ieee80211_reg_rule *reg_rule = NULL;
1200 	const struct ieee80211_freq_range *freq_range = NULL;
1201 	const struct ieee80211_power_rule *power_rule = NULL;
1202 
1203 	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1204 		"(max_antenna_gain, max_eirp)\n");
1205 
1206 	for (i = 0; i < rd->n_reg_rules; i++) {
1207 		reg_rule = &rd->reg_rules[i];
1208 		freq_range = &reg_rule->freq_range;
1209 		power_rule = &reg_rule->power_rule;
1210 
1211 		/* There may not be documentation for max antenna gain
1212 		 * in certain regions */
1213 		if (power_rule->max_antenna_gain)
1214 			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1215 				"(%d mBi, %d mBm)\n",
1216 				freq_range->start_freq_khz,
1217 				freq_range->end_freq_khz,
1218 				freq_range->max_bandwidth_khz,
1219 				power_rule->max_antenna_gain,
1220 				power_rule->max_eirp);
1221 		else
1222 			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1223 				"(N/A, %d mBm)\n",
1224 				freq_range->start_freq_khz,
1225 				freq_range->end_freq_khz,
1226 				freq_range->max_bandwidth_khz,
1227 				power_rule->max_eirp);
1228 	}
1229 }
1230 
print_regdomain(const struct ieee80211_regdomain * rd)1231 static void print_regdomain(const struct ieee80211_regdomain *rd)
1232 {
1233 
1234 	if (is_intersected_alpha2(rd->alpha2)) {
1235 		struct wiphy *wiphy = NULL;
1236 		struct cfg80211_registered_device *drv;
1237 
1238 		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1239 			if (last_request->wiphy) {
1240 				wiphy = last_request->wiphy;
1241 				drv = wiphy_to_dev(wiphy);
1242 				printk(KERN_INFO "cfg80211: Current regulatory "
1243 					"domain updated by AP to: %c%c\n",
1244 					drv->country_ie_alpha2[0],
1245 					drv->country_ie_alpha2[1]);
1246 			} else
1247 				printk(KERN_INFO "cfg80211: Current regulatory "
1248 					"domain intersected: \n");
1249 		} else
1250 				printk(KERN_INFO "cfg80211: Current regulatory "
1251 					"intersected: \n");
1252 	} else if (is_world_regdom(rd->alpha2))
1253 		printk(KERN_INFO "cfg80211: World regulatory "
1254 			"domain updated:\n");
1255 	else {
1256 		if (is_unknown_alpha2(rd->alpha2))
1257 			printk(KERN_INFO "cfg80211: Regulatory domain "
1258 				"changed to driver built-in settings "
1259 				"(unknown country)\n");
1260 		else
1261 			printk(KERN_INFO "cfg80211: Regulatory domain "
1262 				"changed to country: %c%c\n",
1263 				rd->alpha2[0], rd->alpha2[1]);
1264 	}
1265 	print_rd_rules(rd);
1266 }
1267 
print_regdomain_info(const struct ieee80211_regdomain * rd)1268 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1269 {
1270 	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1271 		rd->alpha2[0], rd->alpha2[1]);
1272 	print_rd_rules(rd);
1273 }
1274 
1275 #ifdef CONFIG_CFG80211_REG_DEBUG
reg_country_ie_process_debug(const struct ieee80211_regdomain * rd,const struct ieee80211_regdomain * country_ie_regdomain,const struct ieee80211_regdomain * intersected_rd)1276 static void reg_country_ie_process_debug(
1277 	const struct ieee80211_regdomain *rd,
1278 	const struct ieee80211_regdomain *country_ie_regdomain,
1279 	const struct ieee80211_regdomain *intersected_rd)
1280 {
1281 	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1282 	print_regdomain_info(country_ie_regdomain);
1283 	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1284 	print_regdomain_info(rd);
1285 	if (intersected_rd) {
1286 		printk(KERN_DEBUG "cfg80211: We intersect both of these "
1287 			"and get:\n");
1288 		print_regdomain_info(intersected_rd);
1289 		return;
1290 	}
1291 	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1292 }
1293 #else
reg_country_ie_process_debug(const struct ieee80211_regdomain * rd,const struct ieee80211_regdomain * country_ie_regdomain,const struct ieee80211_regdomain * intersected_rd)1294 static inline void reg_country_ie_process_debug(
1295 	const struct ieee80211_regdomain *rd,
1296 	const struct ieee80211_regdomain *country_ie_regdomain,
1297 	const struct ieee80211_regdomain *intersected_rd)
1298 {
1299 }
1300 #endif
1301 
1302 /* Takes ownership of rd only if it doesn't fail */
__set_regdom(const struct ieee80211_regdomain * rd)1303 static int __set_regdom(const struct ieee80211_regdomain *rd)
1304 {
1305 	const struct ieee80211_regdomain *intersected_rd = NULL;
1306 	struct cfg80211_registered_device *drv = NULL;
1307 	struct wiphy *wiphy = NULL;
1308 	/* Some basic sanity checks first */
1309 
1310 	if (is_world_regdom(rd->alpha2)) {
1311 		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1312 			return -EINVAL;
1313 		update_world_regdomain(rd);
1314 		return 0;
1315 	}
1316 
1317 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1318 			!is_unknown_alpha2(rd->alpha2))
1319 		return -EINVAL;
1320 
1321 	if (!last_request)
1322 		return -EINVAL;
1323 
1324 	/* Lets only bother proceeding on the same alpha2 if the current
1325 	 * rd is non static (it means CRDA was present and was used last)
1326 	 * and the pending request came in from a country IE */
1327 	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1328 		/* If someone else asked us to change the rd lets only bother
1329 		 * checking if the alpha2 changes if CRDA was already called */
1330 		if (!is_old_static_regdom(cfg80211_regdomain) &&
1331 		    !regdom_changed(rd->alpha2))
1332 			return -EINVAL;
1333 	}
1334 
1335 	wiphy = last_request->wiphy;
1336 
1337 	/* Now lets set the regulatory domain, update all driver channels
1338 	 * and finally inform them of what we have done, in case they want
1339 	 * to review or adjust their own settings based on their own
1340 	 * internal EEPROM data */
1341 
1342 	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1343 		return -EINVAL;
1344 
1345 	if (!is_valid_rd(rd)) {
1346 		printk(KERN_ERR "cfg80211: Invalid "
1347 			"regulatory domain detected:\n");
1348 		print_regdomain_info(rd);
1349 		return -EINVAL;
1350 	}
1351 
1352 	if (!last_request->intersect) {
1353 		reset_regdomains();
1354 		cfg80211_regdomain = rd;
1355 		return 0;
1356 	}
1357 
1358 	/* Intersection requires a bit more work */
1359 
1360 	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1361 
1362 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1363 		if (!intersected_rd)
1364 			return -EINVAL;
1365 
1366 		/* We can trash what CRDA provided now */
1367 		kfree(rd);
1368 		rd = NULL;
1369 
1370 		reset_regdomains();
1371 		cfg80211_regdomain = intersected_rd;
1372 
1373 		return 0;
1374 	}
1375 
1376 	/*
1377 	 * Country IE requests are handled a bit differently, we intersect
1378 	 * the country IE rd with what CRDA believes that country should have
1379 	 */
1380 
1381 	BUG_ON(!country_ie_regdomain);
1382 
1383 	if (rd != country_ie_regdomain) {
1384 		/* Intersect what CRDA returned and our what we
1385 		 * had built from the Country IE received */
1386 
1387 		intersected_rd = regdom_intersect(rd, country_ie_regdomain);
1388 
1389 		reg_country_ie_process_debug(rd, country_ie_regdomain,
1390 			intersected_rd);
1391 
1392 		kfree(country_ie_regdomain);
1393 		country_ie_regdomain = NULL;
1394 	} else {
1395 		/* This would happen when CRDA was not present and
1396 		 * OLD_REGULATORY was enabled. We intersect our Country
1397 		 * IE rd and what was set on cfg80211 originally */
1398 		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1399 	}
1400 
1401 	if (!intersected_rd)
1402 		return -EINVAL;
1403 
1404 	drv = wiphy_to_dev(wiphy);
1405 
1406 	drv->country_ie_alpha2[0] = rd->alpha2[0];
1407 	drv->country_ie_alpha2[1] = rd->alpha2[1];
1408 	drv->env = last_request->country_ie_env;
1409 
1410 	BUG_ON(intersected_rd == rd);
1411 
1412 	kfree(rd);
1413 	rd = NULL;
1414 
1415 	reset_regdomains();
1416 	cfg80211_regdomain = intersected_rd;
1417 
1418 	return 0;
1419 }
1420 
1421 
1422 /* Use this call to set the current regulatory domain. Conflicts with
1423  * multiple drivers can be ironed out later. Caller must've already
1424  * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */
set_regdom(const struct ieee80211_regdomain * rd)1425 int set_regdom(const struct ieee80211_regdomain *rd)
1426 {
1427 	int r;
1428 
1429 	/* Note that this doesn't update the wiphys, this is done below */
1430 	r = __set_regdom(rd);
1431 	if (r) {
1432 		kfree(rd);
1433 		return r;
1434 	}
1435 
1436 	/* This would make this whole thing pointless */
1437 	if (!last_request->intersect)
1438 		BUG_ON(rd != cfg80211_regdomain);
1439 
1440 	/* update all wiphys now with the new established regulatory domain */
1441 	update_all_wiphy_regulatory(last_request->initiator);
1442 
1443 	print_regdomain(cfg80211_regdomain);
1444 
1445 	return r;
1446 }
1447 
1448 /* Caller must hold cfg80211_drv_mutex */
reg_device_remove(struct wiphy * wiphy)1449 void reg_device_remove(struct wiphy *wiphy)
1450 {
1451 	if (!last_request || !last_request->wiphy)
1452 		return;
1453 	if (last_request->wiphy != wiphy)
1454 		return;
1455 	last_request->wiphy = NULL;
1456 	last_request->country_ie_env = ENVIRON_ANY;
1457 }
1458 
regulatory_init(void)1459 int regulatory_init(void)
1460 {
1461 	int err;
1462 
1463 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1464 	if (IS_ERR(reg_pdev))
1465 		return PTR_ERR(reg_pdev);
1466 
1467 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
1468 	cfg80211_regdomain = static_regdom(ieee80211_regdom);
1469 
1470 	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
1471 	print_regdomain_info(cfg80211_regdomain);
1472 	/* The old code still requests for a new regdomain and if
1473 	 * you have CRDA you get it updated, otherwise you get
1474 	 * stuck with the static values. We ignore "EU" code as
1475 	 * that is not a valid ISO / IEC 3166 alpha2 */
1476 	if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
1477 		err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE,
1478 					ieee80211_regdom, 0, ENVIRON_ANY);
1479 #else
1480 	cfg80211_regdomain = cfg80211_world_regdom;
1481 
1482 	err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00", 0, ENVIRON_ANY);
1483 	if (err)
1484 		printk(KERN_ERR "cfg80211: calling CRDA failed - "
1485 		       "unable to update world regulatory domain, "
1486 		       "using static definition\n");
1487 #endif
1488 
1489 	return 0;
1490 }
1491 
regulatory_exit(void)1492 void regulatory_exit(void)
1493 {
1494 	mutex_lock(&cfg80211_drv_mutex);
1495 
1496 	reset_regdomains();
1497 
1498 	kfree(country_ie_regdomain);
1499 	country_ie_regdomain = NULL;
1500 
1501 	kfree(last_request);
1502 
1503 	platform_device_unregister(reg_pdev);
1504 
1505 	mutex_unlock(&cfg80211_drv_mutex);
1506 }
1507