• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 
31 #ifdef CONFIG_ANDROID_PARANOID_NETWORK
32 #include <linux/android_aid.h>
33 #endif
34 
cap_netlink_send(struct sock * sk,struct sk_buff * skb)35 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
36 {
37 	NETLINK_CB(skb).eff_cap = current_cap();
38 	return 0;
39 }
40 
cap_netlink_recv(struct sk_buff * skb,int cap)41 int cap_netlink_recv(struct sk_buff *skb, int cap)
42 {
43 	if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
44 		return -EPERM;
45 	return 0;
46 }
47 EXPORT_SYMBOL(cap_netlink_recv);
48 
49 /**
50  * cap_capable - Determine whether a task has a particular effective capability
51  * @tsk: The task to query
52  * @cred: The credentials to use
53  * @cap: The capability to check for
54  * @audit: Whether to write an audit message or not
55  *
56  * Determine whether the nominated task has the specified capability amongst
57  * its effective set, returning 0 if it does, -ve if it does not.
58  *
59  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
60  * and has_capability() functions.  That is, it has the reverse semantics:
61  * cap_has_capability() returns 0 when a task has a capability, but the
62  * kernel's capable() and has_capability() returns 1 for this case.
63  */
cap_capable(struct task_struct * tsk,const struct cred * cred,int cap,int audit)64 int cap_capable(struct task_struct *tsk, const struct cred *cred, int cap,
65 		int audit)
66 {
67 #ifdef CONFIG_ANDROID_PARANOID_NETWORK
68 	if (cap == CAP_NET_RAW && in_egroup_p(AID_NET_RAW))
69 		return 0;
70 	if (cap == CAP_NET_ADMIN && in_egroup_p(AID_NET_ADMIN))
71 		return 0;
72 #endif
73 	return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
74 }
75 
76 /**
77  * cap_settime - Determine whether the current process may set the system clock
78  * @ts: The time to set
79  * @tz: The timezone to set
80  *
81  * Determine whether the current process may set the system clock and timezone
82  * information, returning 0 if permission granted, -ve if denied.
83  */
cap_settime(struct timespec * ts,struct timezone * tz)84 int cap_settime(struct timespec *ts, struct timezone *tz)
85 {
86 	if (!capable(CAP_SYS_TIME))
87 		return -EPERM;
88 	return 0;
89 }
90 
91 /**
92  * cap_ptrace_may_access - Determine whether the current process may access
93  *			   another
94  * @child: The process to be accessed
95  * @mode: The mode of attachment.
96  *
97  * Determine whether a process may access another, returning 0 if permission
98  * granted, -ve if denied.
99  */
cap_ptrace_may_access(struct task_struct * child,unsigned int mode)100 int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)
101 {
102 	int ret = 0;
103 
104 	rcu_read_lock();
105 	if (!cap_issubset(__task_cred(child)->cap_permitted,
106 			  current_cred()->cap_permitted) &&
107 	    !capable(CAP_SYS_PTRACE))
108 		ret = -EPERM;
109 	rcu_read_unlock();
110 	return ret;
111 }
112 
113 /**
114  * cap_ptrace_traceme - Determine whether another process may trace the current
115  * @parent: The task proposed to be the tracer
116  *
117  * Determine whether the nominated task is permitted to trace the current
118  * process, returning 0 if permission is granted, -ve if denied.
119  */
cap_ptrace_traceme(struct task_struct * parent)120 int cap_ptrace_traceme(struct task_struct *parent)
121 {
122 	int ret = 0;
123 
124 	rcu_read_lock();
125 	if (!cap_issubset(current_cred()->cap_permitted,
126 			  __task_cred(parent)->cap_permitted) &&
127 	    !has_capability(parent, CAP_SYS_PTRACE))
128 		ret = -EPERM;
129 	rcu_read_unlock();
130 	return ret;
131 }
132 
133 /**
134  * cap_capget - Retrieve a task's capability sets
135  * @target: The task from which to retrieve the capability sets
136  * @effective: The place to record the effective set
137  * @inheritable: The place to record the inheritable set
138  * @permitted: The place to record the permitted set
139  *
140  * This function retrieves the capabilities of the nominated task and returns
141  * them to the caller.
142  */
cap_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)143 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
144 	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
145 {
146 	const struct cred *cred;
147 
148 	/* Derived from kernel/capability.c:sys_capget. */
149 	rcu_read_lock();
150 	cred = __task_cred(target);
151 	*effective   = cred->cap_effective;
152 	*inheritable = cred->cap_inheritable;
153 	*permitted   = cred->cap_permitted;
154 	rcu_read_unlock();
155 	return 0;
156 }
157 
158 /*
159  * Determine whether the inheritable capabilities are limited to the old
160  * permitted set.  Returns 1 if they are limited, 0 if they are not.
161  */
cap_inh_is_capped(void)162 static inline int cap_inh_is_capped(void)
163 {
164 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
165 
166 	/* they are so limited unless the current task has the CAP_SETPCAP
167 	 * capability
168 	 */
169 	if (cap_capable(current, current_cred(), CAP_SETPCAP,
170 			SECURITY_CAP_AUDIT) == 0)
171 		return 0;
172 #endif
173 	return 1;
174 }
175 
176 /**
177  * cap_capset - Validate and apply proposed changes to current's capabilities
178  * @new: The proposed new credentials; alterations should be made here
179  * @old: The current task's current credentials
180  * @effective: A pointer to the proposed new effective capabilities set
181  * @inheritable: A pointer to the proposed new inheritable capabilities set
182  * @permitted: A pointer to the proposed new permitted capabilities set
183  *
184  * This function validates and applies a proposed mass change to the current
185  * process's capability sets.  The changes are made to the proposed new
186  * credentials, and assuming no error, will be committed by the caller of LSM.
187  */
cap_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)188 int cap_capset(struct cred *new,
189 	       const struct cred *old,
190 	       const kernel_cap_t *effective,
191 	       const kernel_cap_t *inheritable,
192 	       const kernel_cap_t *permitted)
193 {
194 	if (cap_inh_is_capped() &&
195 	    !cap_issubset(*inheritable,
196 			  cap_combine(old->cap_inheritable,
197 				      old->cap_permitted)))
198 		/* incapable of using this inheritable set */
199 		return -EPERM;
200 
201 	if (!cap_issubset(*inheritable,
202 			  cap_combine(old->cap_inheritable,
203 				      old->cap_bset)))
204 		/* no new pI capabilities outside bounding set */
205 		return -EPERM;
206 
207 	/* verify restrictions on target's new Permitted set */
208 	if (!cap_issubset(*permitted, old->cap_permitted))
209 		return -EPERM;
210 
211 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
212 	if (!cap_issubset(*effective, *permitted))
213 		return -EPERM;
214 
215 	new->cap_effective   = *effective;
216 	new->cap_inheritable = *inheritable;
217 	new->cap_permitted   = *permitted;
218 	return 0;
219 }
220 
221 /*
222  * Clear proposed capability sets for execve().
223  */
bprm_clear_caps(struct linux_binprm * bprm)224 static inline void bprm_clear_caps(struct linux_binprm *bprm)
225 {
226 	cap_clear(bprm->cred->cap_permitted);
227 	bprm->cap_effective = false;
228 }
229 
230 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
231 
232 /**
233  * cap_inode_need_killpriv - Determine if inode change affects privileges
234  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
235  *
236  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
237  * affects the security markings on that inode, and if it is, should
238  * inode_killpriv() be invoked or the change rejected?
239  *
240  * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
241  * -ve to deny the change.
242  */
cap_inode_need_killpriv(struct dentry * dentry)243 int cap_inode_need_killpriv(struct dentry *dentry)
244 {
245 	struct inode *inode = dentry->d_inode;
246 	int error;
247 
248 	if (!inode->i_op->getxattr)
249 	       return 0;
250 
251 	error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
252 	if (error <= 0)
253 		return 0;
254 	return 1;
255 }
256 
257 /**
258  * cap_inode_killpriv - Erase the security markings on an inode
259  * @dentry: The inode/dentry to alter
260  *
261  * Erase the privilege-enhancing security markings on an inode.
262  *
263  * Returns 0 if successful, -ve on error.
264  */
cap_inode_killpriv(struct dentry * dentry)265 int cap_inode_killpriv(struct dentry *dentry)
266 {
267 	struct inode *inode = dentry->d_inode;
268 
269 	if (!inode->i_op->removexattr)
270 	       return 0;
271 
272 	return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
273 }
274 
275 /*
276  * Calculate the new process capability sets from the capability sets attached
277  * to a file.
278  */
bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data * caps,struct linux_binprm * bprm,bool * effective)279 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
280 					  struct linux_binprm *bprm,
281 					  bool *effective)
282 {
283 	struct cred *new = bprm->cred;
284 	unsigned i;
285 	int ret = 0;
286 
287 	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
288 		*effective = true;
289 
290 	CAP_FOR_EACH_U32(i) {
291 		__u32 permitted = caps->permitted.cap[i];
292 		__u32 inheritable = caps->inheritable.cap[i];
293 
294 		/*
295 		 * pP' = (X & fP) | (pI & fI)
296 		 */
297 		new->cap_permitted.cap[i] =
298 			(new->cap_bset.cap[i] & permitted) |
299 			(new->cap_inheritable.cap[i] & inheritable);
300 
301 		if (permitted & ~new->cap_permitted.cap[i])
302 			/* insufficient to execute correctly */
303 			ret = -EPERM;
304 	}
305 
306 	/*
307 	 * For legacy apps, with no internal support for recognizing they
308 	 * do not have enough capabilities, we return an error if they are
309 	 * missing some "forced" (aka file-permitted) capabilities.
310 	 */
311 	return *effective ? ret : 0;
312 }
313 
314 /*
315  * Extract the on-exec-apply capability sets for an executable file.
316  */
get_vfs_caps_from_disk(const struct dentry * dentry,struct cpu_vfs_cap_data * cpu_caps)317 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
318 {
319 	struct inode *inode = dentry->d_inode;
320 	__u32 magic_etc;
321 	unsigned tocopy, i;
322 	int size;
323 	struct vfs_cap_data caps;
324 
325 	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
326 
327 	if (!inode || !inode->i_op->getxattr)
328 		return -ENODATA;
329 
330 	size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
331 				   XATTR_CAPS_SZ);
332 	if (size == -ENODATA || size == -EOPNOTSUPP)
333 		/* no data, that's ok */
334 		return -ENODATA;
335 	if (size < 0)
336 		return size;
337 
338 	if (size < sizeof(magic_etc))
339 		return -EINVAL;
340 
341 	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
342 
343 	switch (magic_etc & VFS_CAP_REVISION_MASK) {
344 	case VFS_CAP_REVISION_1:
345 		if (size != XATTR_CAPS_SZ_1)
346 			return -EINVAL;
347 		tocopy = VFS_CAP_U32_1;
348 		break;
349 	case VFS_CAP_REVISION_2:
350 		if (size != XATTR_CAPS_SZ_2)
351 			return -EINVAL;
352 		tocopy = VFS_CAP_U32_2;
353 		break;
354 	default:
355 		return -EINVAL;
356 	}
357 
358 	CAP_FOR_EACH_U32(i) {
359 		if (i >= tocopy)
360 			break;
361 		cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
362 		cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
363 	}
364 
365 	return 0;
366 }
367 
368 /*
369  * Attempt to get the on-exec apply capability sets for an executable file from
370  * its xattrs and, if present, apply them to the proposed credentials being
371  * constructed by execve().
372  */
get_file_caps(struct linux_binprm * bprm,bool * effective)373 static int get_file_caps(struct linux_binprm *bprm, bool *effective)
374 {
375 	struct dentry *dentry;
376 	int rc = 0;
377 	struct cpu_vfs_cap_data vcaps;
378 
379 	bprm_clear_caps(bprm);
380 
381 	if (!file_caps_enabled)
382 		return 0;
383 
384 	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
385 		return 0;
386 
387 	dentry = dget(bprm->file->f_dentry);
388 
389 	rc = get_vfs_caps_from_disk(dentry, &vcaps);
390 	if (rc < 0) {
391 		if (rc == -EINVAL)
392 			printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
393 				__func__, rc, bprm->filename);
394 		else if (rc == -ENODATA)
395 			rc = 0;
396 		goto out;
397 	}
398 
399 	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
400 	if (rc == -EINVAL)
401 		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
402 		       __func__, rc, bprm->filename);
403 
404 out:
405 	dput(dentry);
406 	if (rc)
407 		bprm_clear_caps(bprm);
408 
409 	return rc;
410 }
411 
412 #else
cap_inode_need_killpriv(struct dentry * dentry)413 int cap_inode_need_killpriv(struct dentry *dentry)
414 {
415 	return 0;
416 }
417 
cap_inode_killpriv(struct dentry * dentry)418 int cap_inode_killpriv(struct dentry *dentry)
419 {
420 	return 0;
421 }
422 
get_vfs_caps_from_disk(const struct dentry * dentry,struct cpu_vfs_cap_data * cpu_caps)423 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
424 {
425 	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
426  	return -ENODATA;
427 }
428 
get_file_caps(struct linux_binprm * bprm,bool * effective)429 static inline int get_file_caps(struct linux_binprm *bprm, bool *effective)
430 {
431 	bprm_clear_caps(bprm);
432 	return 0;
433 }
434 #endif
435 
436 /*
437  * Determine whether a exec'ing process's new permitted capabilities should be
438  * limited to just what it already has.
439  *
440  * This prevents processes that are being ptraced from gaining access to
441  * CAP_SETPCAP, unless the process they're tracing already has it, and the
442  * binary they're executing has filecaps that elevate it.
443  *
444  *  Returns 1 if they should be limited, 0 if they are not.
445  */
cap_limit_ptraced_target(void)446 static inline int cap_limit_ptraced_target(void)
447 {
448 #ifndef CONFIG_SECURITY_FILE_CAPABILITIES
449 	if (capable(CAP_SETPCAP))
450 		return 0;
451 #endif
452 	return 1;
453 }
454 
455 /**
456  * cap_bprm_set_creds - Set up the proposed credentials for execve().
457  * @bprm: The execution parameters, including the proposed creds
458  *
459  * Set up the proposed credentials for a new execution context being
460  * constructed by execve().  The proposed creds in @bprm->cred is altered,
461  * which won't take effect immediately.  Returns 0 if successful, -ve on error.
462  */
cap_bprm_set_creds(struct linux_binprm * bprm)463 int cap_bprm_set_creds(struct linux_binprm *bprm)
464 {
465 	const struct cred *old = current_cred();
466 	struct cred *new = bprm->cred;
467 	bool effective;
468 	int ret;
469 
470 	effective = false;
471 	ret = get_file_caps(bprm, &effective);
472 	if (ret < 0)
473 		return ret;
474 
475 	if (!issecure(SECURE_NOROOT)) {
476 		/*
477 		 * To support inheritance of root-permissions and suid-root
478 		 * executables under compatibility mode, we override the
479 		 * capability sets for the file.
480 		 *
481 		 * If only the real uid is 0, we do not set the effective bit.
482 		 */
483 		if (new->euid == 0 || new->uid == 0) {
484 			/* pP' = (cap_bset & ~0) | (pI & ~0) */
485 			new->cap_permitted = cap_combine(old->cap_bset,
486 							 old->cap_inheritable);
487 		}
488 		if (new->euid == 0)
489 			effective = true;
490 	}
491 
492 	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
493 	 * credentials unless they have the appropriate permit
494 	 */
495 	if ((new->euid != old->uid ||
496 	     new->egid != old->gid ||
497 	     !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
498 	    bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
499 		/* downgrade; they get no more than they had, and maybe less */
500 		if (!capable(CAP_SETUID)) {
501 			new->euid = new->uid;
502 			new->egid = new->gid;
503 		}
504 		if (cap_limit_ptraced_target())
505 			new->cap_permitted = cap_intersect(new->cap_permitted,
506 							   old->cap_permitted);
507 	}
508 
509 	new->suid = new->fsuid = new->euid;
510 	new->sgid = new->fsgid = new->egid;
511 
512 	/* For init, we want to retain the capabilities set in the initial
513 	 * task.  Thus we skip the usual capability rules
514 	 */
515 	if (!is_global_init(current)) {
516 		if (effective)
517 			new->cap_effective = new->cap_permitted;
518 		else
519 			cap_clear(new->cap_effective);
520 	}
521 	bprm->cap_effective = effective;
522 
523 	/*
524 	 * Audit candidate if current->cap_effective is set
525 	 *
526 	 * We do not bother to audit if 3 things are true:
527 	 *   1) cap_effective has all caps
528 	 *   2) we are root
529 	 *   3) root is supposed to have all caps (SECURE_NOROOT)
530 	 * Since this is just a normal root execing a process.
531 	 *
532 	 * Number 1 above might fail if you don't have a full bset, but I think
533 	 * that is interesting information to audit.
534 	 */
535 	if (!cap_isclear(new->cap_effective)) {
536 		if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
537 		    new->euid != 0 || new->uid != 0 ||
538 		    issecure(SECURE_NOROOT)) {
539 			ret = audit_log_bprm_fcaps(bprm, new, old);
540 			if (ret < 0)
541 				return ret;
542 		}
543 	}
544 
545 	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
546 	return 0;
547 }
548 
549 /**
550  * cap_bprm_secureexec - Determine whether a secure execution is required
551  * @bprm: The execution parameters
552  *
553  * Determine whether a secure execution is required, return 1 if it is, and 0
554  * if it is not.
555  *
556  * The credentials have been committed by this point, and so are no longer
557  * available through @bprm->cred.
558  */
cap_bprm_secureexec(struct linux_binprm * bprm)559 int cap_bprm_secureexec(struct linux_binprm *bprm)
560 {
561 	const struct cred *cred = current_cred();
562 
563 	if (cred->uid != 0) {
564 		if (bprm->cap_effective)
565 			return 1;
566 		if (!cap_isclear(cred->cap_permitted))
567 			return 1;
568 	}
569 
570 	return (cred->euid != cred->uid ||
571 		cred->egid != cred->gid);
572 }
573 
574 /**
575  * cap_inode_setxattr - Determine whether an xattr may be altered
576  * @dentry: The inode/dentry being altered
577  * @name: The name of the xattr to be changed
578  * @value: The value that the xattr will be changed to
579  * @size: The size of value
580  * @flags: The replacement flag
581  *
582  * Determine whether an xattr may be altered or set on an inode, returning 0 if
583  * permission is granted, -ve if denied.
584  *
585  * This is used to make sure security xattrs don't get updated or set by those
586  * who aren't privileged to do so.
587  */
cap_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)588 int cap_inode_setxattr(struct dentry *dentry, const char *name,
589 		       const void *value, size_t size, int flags)
590 {
591 	if (!strcmp(name, XATTR_NAME_CAPS)) {
592 		if (!capable(CAP_SETFCAP))
593 			return -EPERM;
594 		return 0;
595 	}
596 
597 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
598 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
599 	    !capable(CAP_SYS_ADMIN))
600 		return -EPERM;
601 	return 0;
602 }
603 
604 /**
605  * cap_inode_removexattr - Determine whether an xattr may be removed
606  * @dentry: The inode/dentry being altered
607  * @name: The name of the xattr to be changed
608  *
609  * Determine whether an xattr may be removed from an inode, returning 0 if
610  * permission is granted, -ve if denied.
611  *
612  * This is used to make sure security xattrs don't get removed by those who
613  * aren't privileged to remove them.
614  */
cap_inode_removexattr(struct dentry * dentry,const char * name)615 int cap_inode_removexattr(struct dentry *dentry, const char *name)
616 {
617 	if (!strcmp(name, XATTR_NAME_CAPS)) {
618 		if (!capable(CAP_SETFCAP))
619 			return -EPERM;
620 		return 0;
621 	}
622 
623 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
624 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
625 	    !capable(CAP_SYS_ADMIN))
626 		return -EPERM;
627 	return 0;
628 }
629 
630 /*
631  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
632  * a process after a call to setuid, setreuid, or setresuid.
633  *
634  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
635  *  {r,e,s}uid != 0, the permitted and effective capabilities are
636  *  cleared.
637  *
638  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
639  *  capabilities of the process are cleared.
640  *
641  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
642  *  capabilities are set to the permitted capabilities.
643  *
644  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
645  *  never happen.
646  *
647  *  -astor
648  *
649  * cevans - New behaviour, Oct '99
650  * A process may, via prctl(), elect to keep its capabilities when it
651  * calls setuid() and switches away from uid==0. Both permitted and
652  * effective sets will be retained.
653  * Without this change, it was impossible for a daemon to drop only some
654  * of its privilege. The call to setuid(!=0) would drop all privileges!
655  * Keeping uid 0 is not an option because uid 0 owns too many vital
656  * files..
657  * Thanks to Olaf Kirch and Peter Benie for spotting this.
658  */
cap_emulate_setxuid(struct cred * new,const struct cred * old)659 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
660 {
661 	if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
662 	    (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
663 	    !issecure(SECURE_KEEP_CAPS)) {
664 		cap_clear(new->cap_permitted);
665 		cap_clear(new->cap_effective);
666 	}
667 	if (old->euid == 0 && new->euid != 0)
668 		cap_clear(new->cap_effective);
669 	if (old->euid != 0 && new->euid == 0)
670 		new->cap_effective = new->cap_permitted;
671 }
672 
673 /**
674  * cap_task_fix_setuid - Fix up the results of setuid() call
675  * @new: The proposed credentials
676  * @old: The current task's current credentials
677  * @flags: Indications of what has changed
678  *
679  * Fix up the results of setuid() call before the credential changes are
680  * actually applied, returning 0 to grant the changes, -ve to deny them.
681  */
cap_task_fix_setuid(struct cred * new,const struct cred * old,int flags)682 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
683 {
684 	switch (flags) {
685 	case LSM_SETID_RE:
686 	case LSM_SETID_ID:
687 	case LSM_SETID_RES:
688 		/* juggle the capabilities to follow [RES]UID changes unless
689 		 * otherwise suppressed */
690 		if (!issecure(SECURE_NO_SETUID_FIXUP))
691 			cap_emulate_setxuid(new, old);
692 		break;
693 
694 	case LSM_SETID_FS:
695 		/* juggle the capabilties to follow FSUID changes, unless
696 		 * otherwise suppressed
697 		 *
698 		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
699 		 *          if not, we might be a bit too harsh here.
700 		 */
701 		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
702 			if (old->fsuid == 0 && new->fsuid != 0)
703 				new->cap_effective =
704 					cap_drop_fs_set(new->cap_effective);
705 
706 			if (old->fsuid != 0 && new->fsuid == 0)
707 				new->cap_effective =
708 					cap_raise_fs_set(new->cap_effective,
709 							 new->cap_permitted);
710 		}
711 		break;
712 
713 	default:
714 		return -EINVAL;
715 	}
716 
717 	return 0;
718 }
719 
720 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
721 /*
722  * Rationale: code calling task_setscheduler, task_setioprio, and
723  * task_setnice, assumes that
724  *   . if capable(cap_sys_nice), then those actions should be allowed
725  *   . if not capable(cap_sys_nice), but acting on your own processes,
726  *   	then those actions should be allowed
727  * This is insufficient now since you can call code without suid, but
728  * yet with increased caps.
729  * So we check for increased caps on the target process.
730  */
cap_safe_nice(struct task_struct * p)731 static int cap_safe_nice(struct task_struct *p)
732 {
733 	int is_subset;
734 
735 	rcu_read_lock();
736 	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
737 				 current_cred()->cap_permitted);
738 	rcu_read_unlock();
739 
740 	if (!is_subset && !capable(CAP_SYS_NICE))
741 		return -EPERM;
742 	return 0;
743 }
744 
745 /**
746  * cap_task_setscheduler - Detemine if scheduler policy change is permitted
747  * @p: The task to affect
748  * @policy: The policy to effect
749  * @lp: The parameters to the scheduling policy
750  *
751  * Detemine if the requested scheduler policy change is permitted for the
752  * specified task, returning 0 if permission is granted, -ve if denied.
753  */
cap_task_setscheduler(struct task_struct * p,int policy,struct sched_param * lp)754 int cap_task_setscheduler(struct task_struct *p, int policy,
755 			   struct sched_param *lp)
756 {
757 	return cap_safe_nice(p);
758 }
759 
760 /**
761  * cap_task_ioprio - Detemine if I/O priority change is permitted
762  * @p: The task to affect
763  * @ioprio: The I/O priority to set
764  *
765  * Detemine if the requested I/O priority change is permitted for the specified
766  * task, returning 0 if permission is granted, -ve if denied.
767  */
cap_task_setioprio(struct task_struct * p,int ioprio)768 int cap_task_setioprio(struct task_struct *p, int ioprio)
769 {
770 	return cap_safe_nice(p);
771 }
772 
773 /**
774  * cap_task_ioprio - Detemine if task priority change is permitted
775  * @p: The task to affect
776  * @nice: The nice value to set
777  *
778  * Detemine if the requested task priority change is permitted for the
779  * specified task, returning 0 if permission is granted, -ve if denied.
780  */
cap_task_setnice(struct task_struct * p,int nice)781 int cap_task_setnice(struct task_struct *p, int nice)
782 {
783 	return cap_safe_nice(p);
784 }
785 
786 /*
787  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
788  * the current task's bounding set.  Returns 0 on success, -ve on error.
789  */
cap_prctl_drop(struct cred * new,unsigned long cap)790 static long cap_prctl_drop(struct cred *new, unsigned long cap)
791 {
792 	if (!capable(CAP_SETPCAP))
793 		return -EPERM;
794 	if (!cap_valid(cap))
795 		return -EINVAL;
796 
797 	cap_lower(new->cap_bset, cap);
798 	return 0;
799 }
800 
801 #else
cap_task_setscheduler(struct task_struct * p,int policy,struct sched_param * lp)802 int cap_task_setscheduler (struct task_struct *p, int policy,
803 			   struct sched_param *lp)
804 {
805 	return 0;
806 }
cap_task_setioprio(struct task_struct * p,int ioprio)807 int cap_task_setioprio (struct task_struct *p, int ioprio)
808 {
809 	return 0;
810 }
cap_task_setnice(struct task_struct * p,int nice)811 int cap_task_setnice (struct task_struct *p, int nice)
812 {
813 	return 0;
814 }
815 #endif
816 
817 /**
818  * cap_task_prctl - Implement process control functions for this security module
819  * @option: The process control function requested
820  * @arg2, @arg3, @arg4, @arg5: The argument data for this function
821  *
822  * Allow process control functions (sys_prctl()) to alter capabilities; may
823  * also deny access to other functions not otherwise implemented here.
824  *
825  * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
826  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
827  * modules will consider performing the function.
828  */
cap_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)829 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
830 		   unsigned long arg4, unsigned long arg5)
831 {
832 	struct cred *new;
833 	long error = 0;
834 
835 	new = prepare_creds();
836 	if (!new)
837 		return -ENOMEM;
838 
839 	switch (option) {
840 	case PR_CAPBSET_READ:
841 		error = -EINVAL;
842 		if (!cap_valid(arg2))
843 			goto error;
844 		error = !!cap_raised(new->cap_bset, arg2);
845 		goto no_change;
846 
847 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
848 	case PR_CAPBSET_DROP:
849 		error = cap_prctl_drop(new, arg2);
850 		if (error < 0)
851 			goto error;
852 		goto changed;
853 
854 	/*
855 	 * The next four prctl's remain to assist with transitioning a
856 	 * system from legacy UID=0 based privilege (when filesystem
857 	 * capabilities are not in use) to a system using filesystem
858 	 * capabilities only - as the POSIX.1e draft intended.
859 	 *
860 	 * Note:
861 	 *
862 	 *  PR_SET_SECUREBITS =
863 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
864 	 *    | issecure_mask(SECURE_NOROOT)
865 	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
866 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
867 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
868 	 *
869 	 * will ensure that the current process and all of its
870 	 * children will be locked into a pure
871 	 * capability-based-privilege environment.
872 	 */
873 	case PR_SET_SECUREBITS:
874 		error = -EPERM;
875 		if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
876 		     & (new->securebits ^ arg2))			/*[1]*/
877 		    || ((new->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
878 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
879 		    || (cap_capable(current, current_cred(), CAP_SETPCAP,
880 				    SECURITY_CAP_AUDIT) != 0)		/*[4]*/
881 			/*
882 			 * [1] no changing of bits that are locked
883 			 * [2] no unlocking of locks
884 			 * [3] no setting of unsupported bits
885 			 * [4] doing anything requires privilege (go read about
886 			 *     the "sendmail capabilities bug")
887 			 */
888 		    )
889 			/* cannot change a locked bit */
890 			goto error;
891 		new->securebits = arg2;
892 		goto changed;
893 
894 	case PR_GET_SECUREBITS:
895 		error = new->securebits;
896 		goto no_change;
897 
898 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
899 
900 	case PR_GET_KEEPCAPS:
901 		if (issecure(SECURE_KEEP_CAPS))
902 			error = 1;
903 		goto no_change;
904 
905 	case PR_SET_KEEPCAPS:
906 		error = -EINVAL;
907 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
908 			goto error;
909 		error = -EPERM;
910 		if (issecure(SECURE_KEEP_CAPS_LOCKED))
911 			goto error;
912 		if (arg2)
913 			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
914 		else
915 			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
916 		goto changed;
917 
918 	default:
919 		/* No functionality available - continue with default */
920 		error = -ENOSYS;
921 		goto error;
922 	}
923 
924 	/* Functionality provided */
925 changed:
926 	return commit_creds(new);
927 
928 no_change:
929 	error = 0;
930 error:
931 	abort_creds(new);
932 	return error;
933 }
934 
935 /**
936  * cap_syslog - Determine whether syslog function is permitted
937  * @type: Function requested
938  *
939  * Determine whether the current process is permitted to use a particular
940  * syslog function, returning 0 if permission is granted, -ve if not.
941  */
cap_syslog(int type)942 int cap_syslog(int type)
943 {
944 	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
945 		return -EPERM;
946 	return 0;
947 }
948 
949 /**
950  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
951  * @mm: The VM space in which the new mapping is to be made
952  * @pages: The size of the mapping
953  *
954  * Determine whether the allocation of a new virtual mapping by the current
955  * task is permitted, returning 0 if permission is granted, -ve if not.
956  */
cap_vm_enough_memory(struct mm_struct * mm,long pages)957 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
958 {
959 	int cap_sys_admin = 0;
960 
961 	if (cap_capable(current, current_cred(), CAP_SYS_ADMIN,
962 			SECURITY_CAP_NOAUDIT) == 0)
963 		cap_sys_admin = 1;
964 	return __vm_enough_memory(mm, pages, cap_sys_admin);
965 }
966