1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul.moore@hp.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h> /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h> /* for Unix socket types */
67 #include <net/af_unix.h> /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 4
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
enforcing_setup(char * str)105 static int __init enforcing_setup(char *str)
106 {
107 unsigned long enforcing;
108 if (!strict_strtoul(str, 0, &enforcing))
109 selinux_enforcing = enforcing ? 1 : 0;
110 return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
selinux_enabled_setup(char * str)118 static int __init selinux_enabled_setup(char *str)
119 {
120 unsigned long enabled;
121 if (!strict_strtoul(str, 0, &enabled))
122 selinux_enabled = enabled ? 1 : 0;
123 return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132 * Minimal support for a secondary security module,
133 * just to allow the use of the capability module.
134 */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138 before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146 *
147 * Description:
148 * This function checks the SECMARK reference counter to see if any SECMARK
149 * targets are currently configured, if the reference counter is greater than
150 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
151 * enabled, false (0) if SECMARK is disabled.
152 *
153 */
selinux_secmark_enabled(void)154 static int selinux_secmark_enabled(void)
155 {
156 return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /*
160 * initialise the security for the init task
161 */
cred_init_security(void)162 static void cred_init_security(void)
163 {
164 struct cred *cred = (struct cred *) current->real_cred;
165 struct task_security_struct *tsec;
166
167 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168 if (!tsec)
169 panic("SELinux: Failed to initialize initial task.\n");
170
171 tsec->osid = tsec->sid = SECINITSID_KERNEL;
172 cred->security = tsec;
173 }
174
175 /*
176 * get the security ID of a set of credentials
177 */
cred_sid(const struct cred * cred)178 static inline u32 cred_sid(const struct cred *cred)
179 {
180 const struct task_security_struct *tsec;
181
182 tsec = cred->security;
183 return tsec->sid;
184 }
185
186 /*
187 * get the objective security ID of a task
188 */
task_sid(const struct task_struct * task)189 static inline u32 task_sid(const struct task_struct *task)
190 {
191 u32 sid;
192
193 rcu_read_lock();
194 sid = cred_sid(__task_cred(task));
195 rcu_read_unlock();
196 return sid;
197 }
198
199 /*
200 * get the subjective security ID of the current task
201 */
current_sid(void)202 static inline u32 current_sid(void)
203 {
204 const struct task_security_struct *tsec = current_cred()->security;
205
206 return tsec->sid;
207 }
208
209 /* Allocate and free functions for each kind of security blob. */
210
inode_alloc_security(struct inode * inode)211 static int inode_alloc_security(struct inode *inode)
212 {
213 struct inode_security_struct *isec;
214 u32 sid = current_sid();
215
216 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217 if (!isec)
218 return -ENOMEM;
219
220 mutex_init(&isec->lock);
221 INIT_LIST_HEAD(&isec->list);
222 isec->inode = inode;
223 isec->sid = SECINITSID_UNLABELED;
224 isec->sclass = SECCLASS_FILE;
225 isec->task_sid = sid;
226 inode->i_security = isec;
227
228 return 0;
229 }
230
inode_free_security(struct inode * inode)231 static void inode_free_security(struct inode *inode)
232 {
233 struct inode_security_struct *isec = inode->i_security;
234 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235
236 spin_lock(&sbsec->isec_lock);
237 if (!list_empty(&isec->list))
238 list_del_init(&isec->list);
239 spin_unlock(&sbsec->isec_lock);
240
241 inode->i_security = NULL;
242 kmem_cache_free(sel_inode_cache, isec);
243 }
244
file_alloc_security(struct file * file)245 static int file_alloc_security(struct file *file)
246 {
247 struct file_security_struct *fsec;
248 u32 sid = current_sid();
249
250 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251 if (!fsec)
252 return -ENOMEM;
253
254 fsec->sid = sid;
255 fsec->fown_sid = sid;
256 file->f_security = fsec;
257
258 return 0;
259 }
260
file_free_security(struct file * file)261 static void file_free_security(struct file *file)
262 {
263 struct file_security_struct *fsec = file->f_security;
264 file->f_security = NULL;
265 kfree(fsec);
266 }
267
superblock_alloc_security(struct super_block * sb)268 static int superblock_alloc_security(struct super_block *sb)
269 {
270 struct superblock_security_struct *sbsec;
271
272 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273 if (!sbsec)
274 return -ENOMEM;
275
276 mutex_init(&sbsec->lock);
277 INIT_LIST_HEAD(&sbsec->list);
278 INIT_LIST_HEAD(&sbsec->isec_head);
279 spin_lock_init(&sbsec->isec_lock);
280 sbsec->sb = sb;
281 sbsec->sid = SECINITSID_UNLABELED;
282 sbsec->def_sid = SECINITSID_FILE;
283 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284 sb->s_security = sbsec;
285
286 return 0;
287 }
288
superblock_free_security(struct super_block * sb)289 static void superblock_free_security(struct super_block *sb)
290 {
291 struct superblock_security_struct *sbsec = sb->s_security;
292
293 spin_lock(&sb_security_lock);
294 if (!list_empty(&sbsec->list))
295 list_del_init(&sbsec->list);
296 spin_unlock(&sb_security_lock);
297
298 sb->s_security = NULL;
299 kfree(sbsec);
300 }
301
sk_alloc_security(struct sock * sk,int family,gfp_t priority)302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 {
304 struct sk_security_struct *ssec;
305
306 ssec = kzalloc(sizeof(*ssec), priority);
307 if (!ssec)
308 return -ENOMEM;
309
310 ssec->peer_sid = SECINITSID_UNLABELED;
311 ssec->sid = SECINITSID_UNLABELED;
312 sk->sk_security = ssec;
313
314 selinux_netlbl_sk_security_reset(ssec, family);
315
316 return 0;
317 }
318
sk_free_security(struct sock * sk)319 static void sk_free_security(struct sock *sk)
320 {
321 struct sk_security_struct *ssec = sk->sk_security;
322
323 sk->sk_security = NULL;
324 selinux_netlbl_sk_security_free(ssec);
325 kfree(ssec);
326 }
327
328 /* The security server must be initialized before
329 any labeling or access decisions can be provided. */
330 extern int ss_initialized;
331
332 /* The file system's label must be initialized prior to use. */
333
334 static char *labeling_behaviors[6] = {
335 "uses xattr",
336 "uses transition SIDs",
337 "uses task SIDs",
338 "uses genfs_contexts",
339 "not configured for labeling",
340 "uses mountpoint labeling",
341 };
342
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344
inode_doinit(struct inode * inode)345 static inline int inode_doinit(struct inode *inode)
346 {
347 return inode_doinit_with_dentry(inode, NULL);
348 }
349
350 enum {
351 Opt_error = -1,
352 Opt_context = 1,
353 Opt_fscontext = 2,
354 Opt_defcontext = 3,
355 Opt_rootcontext = 4,
356 };
357
358 static const match_table_t tokens = {
359 {Opt_context, CONTEXT_STR "%s"},
360 {Opt_fscontext, FSCONTEXT_STR "%s"},
361 {Opt_defcontext, DEFCONTEXT_STR "%s"},
362 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363 {Opt_error, NULL},
364 };
365
366 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
367
may_context_mount_sb_relabel(u32 sid,struct superblock_security_struct * sbsec,const struct cred * cred)368 static int may_context_mount_sb_relabel(u32 sid,
369 struct superblock_security_struct *sbsec,
370 const struct cred *cred)
371 {
372 const struct task_security_struct *tsec = cred->security;
373 int rc;
374
375 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
376 FILESYSTEM__RELABELFROM, NULL);
377 if (rc)
378 return rc;
379
380 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
381 FILESYSTEM__RELABELTO, NULL);
382 return rc;
383 }
384
may_context_mount_inode_relabel(u32 sid,struct superblock_security_struct * sbsec,const struct cred * cred)385 static int may_context_mount_inode_relabel(u32 sid,
386 struct superblock_security_struct *sbsec,
387 const struct cred *cred)
388 {
389 const struct task_security_struct *tsec = cred->security;
390 int rc;
391 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
392 FILESYSTEM__RELABELFROM, NULL);
393 if (rc)
394 return rc;
395
396 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
397 FILESYSTEM__ASSOCIATE, NULL);
398 return rc;
399 }
400
sb_finish_set_opts(struct super_block * sb)401 static int sb_finish_set_opts(struct super_block *sb)
402 {
403 struct superblock_security_struct *sbsec = sb->s_security;
404 struct dentry *root = sb->s_root;
405 struct inode *root_inode = root->d_inode;
406 int rc = 0;
407
408 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
409 /* Make sure that the xattr handler exists and that no
410 error other than -ENODATA is returned by getxattr on
411 the root directory. -ENODATA is ok, as this may be
412 the first boot of the SELinux kernel before we have
413 assigned xattr values to the filesystem. */
414 if (!root_inode->i_op->getxattr) {
415 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
416 "xattr support\n", sb->s_id, sb->s_type->name);
417 rc = -EOPNOTSUPP;
418 goto out;
419 }
420 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
421 if (rc < 0 && rc != -ENODATA) {
422 if (rc == -EOPNOTSUPP)
423 printk(KERN_WARNING "SELinux: (dev %s, type "
424 "%s) has no security xattr handler\n",
425 sb->s_id, sb->s_type->name);
426 else
427 printk(KERN_WARNING "SELinux: (dev %s, type "
428 "%s) getxattr errno %d\n", sb->s_id,
429 sb->s_type->name, -rc);
430 goto out;
431 }
432 }
433
434 sbsec->initialized = 1;
435
436 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
437 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
438 sb->s_id, sb->s_type->name);
439 else
440 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
441 sb->s_id, sb->s_type->name,
442 labeling_behaviors[sbsec->behavior-1]);
443
444 /* Initialize the root inode. */
445 rc = inode_doinit_with_dentry(root_inode, root);
446
447 /* Initialize any other inodes associated with the superblock, e.g.
448 inodes created prior to initial policy load or inodes created
449 during get_sb by a pseudo filesystem that directly
450 populates itself. */
451 spin_lock(&sbsec->isec_lock);
452 next_inode:
453 if (!list_empty(&sbsec->isec_head)) {
454 struct inode_security_struct *isec =
455 list_entry(sbsec->isec_head.next,
456 struct inode_security_struct, list);
457 struct inode *inode = isec->inode;
458 spin_unlock(&sbsec->isec_lock);
459 inode = igrab(inode);
460 if (inode) {
461 if (!IS_PRIVATE(inode))
462 inode_doinit(inode);
463 iput(inode);
464 }
465 spin_lock(&sbsec->isec_lock);
466 list_del_init(&isec->list);
467 goto next_inode;
468 }
469 spin_unlock(&sbsec->isec_lock);
470 out:
471 return rc;
472 }
473
474 /*
475 * This function should allow an FS to ask what it's mount security
476 * options were so it can use those later for submounts, displaying
477 * mount options, or whatever.
478 */
selinux_get_mnt_opts(const struct super_block * sb,struct security_mnt_opts * opts)479 static int selinux_get_mnt_opts(const struct super_block *sb,
480 struct security_mnt_opts *opts)
481 {
482 int rc = 0, i;
483 struct superblock_security_struct *sbsec = sb->s_security;
484 char *context = NULL;
485 u32 len;
486 char tmp;
487
488 security_init_mnt_opts(opts);
489
490 if (!sbsec->initialized)
491 return -EINVAL;
492
493 if (!ss_initialized)
494 return -EINVAL;
495
496 /*
497 * if we ever use sbsec flags for anything other than tracking mount
498 * settings this is going to need a mask
499 */
500 tmp = sbsec->flags;
501 /* count the number of mount options for this sb */
502 for (i = 0; i < 8; i++) {
503 if (tmp & 0x01)
504 opts->num_mnt_opts++;
505 tmp >>= 1;
506 }
507
508 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
509 if (!opts->mnt_opts) {
510 rc = -ENOMEM;
511 goto out_free;
512 }
513
514 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
515 if (!opts->mnt_opts_flags) {
516 rc = -ENOMEM;
517 goto out_free;
518 }
519
520 i = 0;
521 if (sbsec->flags & FSCONTEXT_MNT) {
522 rc = security_sid_to_context(sbsec->sid, &context, &len);
523 if (rc)
524 goto out_free;
525 opts->mnt_opts[i] = context;
526 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
527 }
528 if (sbsec->flags & CONTEXT_MNT) {
529 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
530 if (rc)
531 goto out_free;
532 opts->mnt_opts[i] = context;
533 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
534 }
535 if (sbsec->flags & DEFCONTEXT_MNT) {
536 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
537 if (rc)
538 goto out_free;
539 opts->mnt_opts[i] = context;
540 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
541 }
542 if (sbsec->flags & ROOTCONTEXT_MNT) {
543 struct inode *root = sbsec->sb->s_root->d_inode;
544 struct inode_security_struct *isec = root->i_security;
545
546 rc = security_sid_to_context(isec->sid, &context, &len);
547 if (rc)
548 goto out_free;
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
551 }
552
553 BUG_ON(i != opts->num_mnt_opts);
554
555 return 0;
556
557 out_free:
558 security_free_mnt_opts(opts);
559 return rc;
560 }
561
bad_option(struct superblock_security_struct * sbsec,char flag,u32 old_sid,u32 new_sid)562 static int bad_option(struct superblock_security_struct *sbsec, char flag,
563 u32 old_sid, u32 new_sid)
564 {
565 /* check if the old mount command had the same options */
566 if (sbsec->initialized)
567 if (!(sbsec->flags & flag) ||
568 (old_sid != new_sid))
569 return 1;
570
571 /* check if we were passed the same options twice,
572 * aka someone passed context=a,context=b
573 */
574 if (!sbsec->initialized)
575 if (sbsec->flags & flag)
576 return 1;
577 return 0;
578 }
579
580 /*
581 * Allow filesystems with binary mount data to explicitly set mount point
582 * labeling information.
583 */
selinux_set_mnt_opts(struct super_block * sb,struct security_mnt_opts * opts)584 static int selinux_set_mnt_opts(struct super_block *sb,
585 struct security_mnt_opts *opts)
586 {
587 const struct cred *cred = current_cred();
588 int rc = 0, i;
589 struct superblock_security_struct *sbsec = sb->s_security;
590 const char *name = sb->s_type->name;
591 struct inode *inode = sbsec->sb->s_root->d_inode;
592 struct inode_security_struct *root_isec = inode->i_security;
593 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
594 u32 defcontext_sid = 0;
595 char **mount_options = opts->mnt_opts;
596 int *flags = opts->mnt_opts_flags;
597 int num_opts = opts->num_mnt_opts;
598
599 mutex_lock(&sbsec->lock);
600
601 if (!ss_initialized) {
602 if (!num_opts) {
603 /* Defer initialization until selinux_complete_init,
604 after the initial policy is loaded and the security
605 server is ready to handle calls. */
606 spin_lock(&sb_security_lock);
607 if (list_empty(&sbsec->list))
608 list_add(&sbsec->list, &superblock_security_head);
609 spin_unlock(&sb_security_lock);
610 goto out;
611 }
612 rc = -EINVAL;
613 printk(KERN_WARNING "SELinux: Unable to set superblock options "
614 "before the security server is initialized\n");
615 goto out;
616 }
617
618 /*
619 * Binary mount data FS will come through this function twice. Once
620 * from an explicit call and once from the generic calls from the vfs.
621 * Since the generic VFS calls will not contain any security mount data
622 * we need to skip the double mount verification.
623 *
624 * This does open a hole in which we will not notice if the first
625 * mount using this sb set explict options and a second mount using
626 * this sb does not set any security options. (The first options
627 * will be used for both mounts)
628 */
629 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
630 && (num_opts == 0))
631 goto out;
632
633 /*
634 * parse the mount options, check if they are valid sids.
635 * also check if someone is trying to mount the same sb more
636 * than once with different security options.
637 */
638 for (i = 0; i < num_opts; i++) {
639 u32 sid;
640 rc = security_context_to_sid(mount_options[i],
641 strlen(mount_options[i]), &sid);
642 if (rc) {
643 printk(KERN_WARNING "SELinux: security_context_to_sid"
644 "(%s) failed for (dev %s, type %s) errno=%d\n",
645 mount_options[i], sb->s_id, name, rc);
646 goto out;
647 }
648 switch (flags[i]) {
649 case FSCONTEXT_MNT:
650 fscontext_sid = sid;
651
652 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
653 fscontext_sid))
654 goto out_double_mount;
655
656 sbsec->flags |= FSCONTEXT_MNT;
657 break;
658 case CONTEXT_MNT:
659 context_sid = sid;
660
661 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
662 context_sid))
663 goto out_double_mount;
664
665 sbsec->flags |= CONTEXT_MNT;
666 break;
667 case ROOTCONTEXT_MNT:
668 rootcontext_sid = sid;
669
670 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
671 rootcontext_sid))
672 goto out_double_mount;
673
674 sbsec->flags |= ROOTCONTEXT_MNT;
675
676 break;
677 case DEFCONTEXT_MNT:
678 defcontext_sid = sid;
679
680 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
681 defcontext_sid))
682 goto out_double_mount;
683
684 sbsec->flags |= DEFCONTEXT_MNT;
685
686 break;
687 default:
688 rc = -EINVAL;
689 goto out;
690 }
691 }
692
693 if (sbsec->initialized) {
694 /* previously mounted with options, but not on this attempt? */
695 if (sbsec->flags && !num_opts)
696 goto out_double_mount;
697 rc = 0;
698 goto out;
699 }
700
701 if (strcmp(sb->s_type->name, "proc") == 0)
702 sbsec->proc = 1;
703
704 /* Determine the labeling behavior to use for this filesystem type. */
705 rc = security_fs_use(sbsec->proc ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
706 if (rc) {
707 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
708 __func__, sb->s_type->name, rc);
709 goto out;
710 }
711
712 /* sets the context of the superblock for the fs being mounted. */
713 if (fscontext_sid) {
714 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
715 if (rc)
716 goto out;
717
718 sbsec->sid = fscontext_sid;
719 }
720
721 /*
722 * Switch to using mount point labeling behavior.
723 * sets the label used on all file below the mountpoint, and will set
724 * the superblock context if not already set.
725 */
726 if (context_sid) {
727 if (!fscontext_sid) {
728 rc = may_context_mount_sb_relabel(context_sid, sbsec,
729 cred);
730 if (rc)
731 goto out;
732 sbsec->sid = context_sid;
733 } else {
734 rc = may_context_mount_inode_relabel(context_sid, sbsec,
735 cred);
736 if (rc)
737 goto out;
738 }
739 if (!rootcontext_sid)
740 rootcontext_sid = context_sid;
741
742 sbsec->mntpoint_sid = context_sid;
743 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
744 }
745
746 if (rootcontext_sid) {
747 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
748 cred);
749 if (rc)
750 goto out;
751
752 root_isec->sid = rootcontext_sid;
753 root_isec->initialized = 1;
754 }
755
756 if (defcontext_sid) {
757 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
758 rc = -EINVAL;
759 printk(KERN_WARNING "SELinux: defcontext option is "
760 "invalid for this filesystem type\n");
761 goto out;
762 }
763
764 if (defcontext_sid != sbsec->def_sid) {
765 rc = may_context_mount_inode_relabel(defcontext_sid,
766 sbsec, cred);
767 if (rc)
768 goto out;
769 }
770
771 sbsec->def_sid = defcontext_sid;
772 }
773
774 rc = sb_finish_set_opts(sb);
775 out:
776 mutex_unlock(&sbsec->lock);
777 return rc;
778 out_double_mount:
779 rc = -EINVAL;
780 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
781 "security settings for (dev %s, type %s)\n", sb->s_id, name);
782 goto out;
783 }
784
selinux_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb)785 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
786 struct super_block *newsb)
787 {
788 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
789 struct superblock_security_struct *newsbsec = newsb->s_security;
790
791 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
792 int set_context = (oldsbsec->flags & CONTEXT_MNT);
793 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
794
795 /*
796 * if the parent was able to be mounted it clearly had no special lsm
797 * mount options. thus we can safely put this sb on the list and deal
798 * with it later
799 */
800 if (!ss_initialized) {
801 spin_lock(&sb_security_lock);
802 if (list_empty(&newsbsec->list))
803 list_add(&newsbsec->list, &superblock_security_head);
804 spin_unlock(&sb_security_lock);
805 return;
806 }
807
808 /* how can we clone if the old one wasn't set up?? */
809 BUG_ON(!oldsbsec->initialized);
810
811 /* if fs is reusing a sb, just let its options stand... */
812 if (newsbsec->initialized)
813 return;
814
815 mutex_lock(&newsbsec->lock);
816
817 newsbsec->flags = oldsbsec->flags;
818
819 newsbsec->sid = oldsbsec->sid;
820 newsbsec->def_sid = oldsbsec->def_sid;
821 newsbsec->behavior = oldsbsec->behavior;
822
823 if (set_context) {
824 u32 sid = oldsbsec->mntpoint_sid;
825
826 if (!set_fscontext)
827 newsbsec->sid = sid;
828 if (!set_rootcontext) {
829 struct inode *newinode = newsb->s_root->d_inode;
830 struct inode_security_struct *newisec = newinode->i_security;
831 newisec->sid = sid;
832 }
833 newsbsec->mntpoint_sid = sid;
834 }
835 if (set_rootcontext) {
836 const struct inode *oldinode = oldsb->s_root->d_inode;
837 const struct inode_security_struct *oldisec = oldinode->i_security;
838 struct inode *newinode = newsb->s_root->d_inode;
839 struct inode_security_struct *newisec = newinode->i_security;
840
841 newisec->sid = oldisec->sid;
842 }
843
844 sb_finish_set_opts(newsb);
845 mutex_unlock(&newsbsec->lock);
846 }
847
selinux_parse_opts_str(char * options,struct security_mnt_opts * opts)848 static int selinux_parse_opts_str(char *options,
849 struct security_mnt_opts *opts)
850 {
851 char *p;
852 char *context = NULL, *defcontext = NULL;
853 char *fscontext = NULL, *rootcontext = NULL;
854 int rc, num_mnt_opts = 0;
855
856 opts->num_mnt_opts = 0;
857
858 /* Standard string-based options. */
859 while ((p = strsep(&options, "|")) != NULL) {
860 int token;
861 substring_t args[MAX_OPT_ARGS];
862
863 if (!*p)
864 continue;
865
866 token = match_token(p, tokens, args);
867
868 switch (token) {
869 case Opt_context:
870 if (context || defcontext) {
871 rc = -EINVAL;
872 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
873 goto out_err;
874 }
875 context = match_strdup(&args[0]);
876 if (!context) {
877 rc = -ENOMEM;
878 goto out_err;
879 }
880 break;
881
882 case Opt_fscontext:
883 if (fscontext) {
884 rc = -EINVAL;
885 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
886 goto out_err;
887 }
888 fscontext = match_strdup(&args[0]);
889 if (!fscontext) {
890 rc = -ENOMEM;
891 goto out_err;
892 }
893 break;
894
895 case Opt_rootcontext:
896 if (rootcontext) {
897 rc = -EINVAL;
898 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
899 goto out_err;
900 }
901 rootcontext = match_strdup(&args[0]);
902 if (!rootcontext) {
903 rc = -ENOMEM;
904 goto out_err;
905 }
906 break;
907
908 case Opt_defcontext:
909 if (context || defcontext) {
910 rc = -EINVAL;
911 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
912 goto out_err;
913 }
914 defcontext = match_strdup(&args[0]);
915 if (!defcontext) {
916 rc = -ENOMEM;
917 goto out_err;
918 }
919 break;
920
921 default:
922 rc = -EINVAL;
923 printk(KERN_WARNING "SELinux: unknown mount option\n");
924 goto out_err;
925
926 }
927 }
928
929 rc = -ENOMEM;
930 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
931 if (!opts->mnt_opts)
932 goto out_err;
933
934 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
935 if (!opts->mnt_opts_flags) {
936 kfree(opts->mnt_opts);
937 goto out_err;
938 }
939
940 if (fscontext) {
941 opts->mnt_opts[num_mnt_opts] = fscontext;
942 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
943 }
944 if (context) {
945 opts->mnt_opts[num_mnt_opts] = context;
946 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
947 }
948 if (rootcontext) {
949 opts->mnt_opts[num_mnt_opts] = rootcontext;
950 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
951 }
952 if (defcontext) {
953 opts->mnt_opts[num_mnt_opts] = defcontext;
954 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
955 }
956
957 opts->num_mnt_opts = num_mnt_opts;
958 return 0;
959
960 out_err:
961 kfree(context);
962 kfree(defcontext);
963 kfree(fscontext);
964 kfree(rootcontext);
965 return rc;
966 }
967 /*
968 * string mount options parsing and call set the sbsec
969 */
superblock_doinit(struct super_block * sb,void * data)970 static int superblock_doinit(struct super_block *sb, void *data)
971 {
972 int rc = 0;
973 char *options = data;
974 struct security_mnt_opts opts;
975
976 security_init_mnt_opts(&opts);
977
978 if (!data)
979 goto out;
980
981 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
982
983 rc = selinux_parse_opts_str(options, &opts);
984 if (rc)
985 goto out_err;
986
987 out:
988 rc = selinux_set_mnt_opts(sb, &opts);
989
990 out_err:
991 security_free_mnt_opts(&opts);
992 return rc;
993 }
994
selinux_write_opts(struct seq_file * m,struct security_mnt_opts * opts)995 static void selinux_write_opts(struct seq_file *m,
996 struct security_mnt_opts *opts)
997 {
998 int i;
999 char *prefix;
1000
1001 for (i = 0; i < opts->num_mnt_opts; i++) {
1002 char *has_comma = strchr(opts->mnt_opts[i], ',');
1003
1004 switch (opts->mnt_opts_flags[i]) {
1005 case CONTEXT_MNT:
1006 prefix = CONTEXT_STR;
1007 break;
1008 case FSCONTEXT_MNT:
1009 prefix = FSCONTEXT_STR;
1010 break;
1011 case ROOTCONTEXT_MNT:
1012 prefix = ROOTCONTEXT_STR;
1013 break;
1014 case DEFCONTEXT_MNT:
1015 prefix = DEFCONTEXT_STR;
1016 break;
1017 default:
1018 BUG();
1019 };
1020 /* we need a comma before each option */
1021 seq_putc(m, ',');
1022 seq_puts(m, prefix);
1023 if (has_comma)
1024 seq_putc(m, '\"');
1025 seq_puts(m, opts->mnt_opts[i]);
1026 if (has_comma)
1027 seq_putc(m, '\"');
1028 }
1029 }
1030
selinux_sb_show_options(struct seq_file * m,struct super_block * sb)1031 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1032 {
1033 struct security_mnt_opts opts;
1034 int rc;
1035
1036 rc = selinux_get_mnt_opts(sb, &opts);
1037 if (rc) {
1038 /* before policy load we may get EINVAL, don't show anything */
1039 if (rc == -EINVAL)
1040 rc = 0;
1041 return rc;
1042 }
1043
1044 selinux_write_opts(m, &opts);
1045
1046 security_free_mnt_opts(&opts);
1047
1048 return rc;
1049 }
1050
inode_mode_to_security_class(umode_t mode)1051 static inline u16 inode_mode_to_security_class(umode_t mode)
1052 {
1053 switch (mode & S_IFMT) {
1054 case S_IFSOCK:
1055 return SECCLASS_SOCK_FILE;
1056 case S_IFLNK:
1057 return SECCLASS_LNK_FILE;
1058 case S_IFREG:
1059 return SECCLASS_FILE;
1060 case S_IFBLK:
1061 return SECCLASS_BLK_FILE;
1062 case S_IFDIR:
1063 return SECCLASS_DIR;
1064 case S_IFCHR:
1065 return SECCLASS_CHR_FILE;
1066 case S_IFIFO:
1067 return SECCLASS_FIFO_FILE;
1068
1069 }
1070
1071 return SECCLASS_FILE;
1072 }
1073
default_protocol_stream(int protocol)1074 static inline int default_protocol_stream(int protocol)
1075 {
1076 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1077 }
1078
default_protocol_dgram(int protocol)1079 static inline int default_protocol_dgram(int protocol)
1080 {
1081 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1082 }
1083
socket_type_to_security_class(int family,int type,int protocol)1084 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1085 {
1086 switch (family) {
1087 case PF_UNIX:
1088 switch (type) {
1089 case SOCK_STREAM:
1090 case SOCK_SEQPACKET:
1091 return SECCLASS_UNIX_STREAM_SOCKET;
1092 case SOCK_DGRAM:
1093 return SECCLASS_UNIX_DGRAM_SOCKET;
1094 }
1095 break;
1096 case PF_INET:
1097 case PF_INET6:
1098 switch (type) {
1099 case SOCK_STREAM:
1100 if (default_protocol_stream(protocol))
1101 return SECCLASS_TCP_SOCKET;
1102 else
1103 return SECCLASS_RAWIP_SOCKET;
1104 case SOCK_DGRAM:
1105 if (default_protocol_dgram(protocol))
1106 return SECCLASS_UDP_SOCKET;
1107 else
1108 return SECCLASS_RAWIP_SOCKET;
1109 case SOCK_DCCP:
1110 return SECCLASS_DCCP_SOCKET;
1111 default:
1112 return SECCLASS_RAWIP_SOCKET;
1113 }
1114 break;
1115 case PF_NETLINK:
1116 switch (protocol) {
1117 case NETLINK_ROUTE:
1118 return SECCLASS_NETLINK_ROUTE_SOCKET;
1119 case NETLINK_FIREWALL:
1120 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1121 case NETLINK_INET_DIAG:
1122 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1123 case NETLINK_NFLOG:
1124 return SECCLASS_NETLINK_NFLOG_SOCKET;
1125 case NETLINK_XFRM:
1126 return SECCLASS_NETLINK_XFRM_SOCKET;
1127 case NETLINK_SELINUX:
1128 return SECCLASS_NETLINK_SELINUX_SOCKET;
1129 case NETLINK_AUDIT:
1130 return SECCLASS_NETLINK_AUDIT_SOCKET;
1131 case NETLINK_IP6_FW:
1132 return SECCLASS_NETLINK_IP6FW_SOCKET;
1133 case NETLINK_DNRTMSG:
1134 return SECCLASS_NETLINK_DNRT_SOCKET;
1135 case NETLINK_KOBJECT_UEVENT:
1136 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1137 default:
1138 return SECCLASS_NETLINK_SOCKET;
1139 }
1140 case PF_PACKET:
1141 return SECCLASS_PACKET_SOCKET;
1142 case PF_KEY:
1143 return SECCLASS_KEY_SOCKET;
1144 case PF_APPLETALK:
1145 return SECCLASS_APPLETALK_SOCKET;
1146 }
1147
1148 return SECCLASS_SOCKET;
1149 }
1150
1151 #ifdef CONFIG_PROC_FS
selinux_proc_get_sid(struct proc_dir_entry * de,u16 tclass,u32 * sid)1152 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1153 u16 tclass,
1154 u32 *sid)
1155 {
1156 int buflen, rc;
1157 char *buffer, *path, *end;
1158
1159 buffer = (char *)__get_free_page(GFP_KERNEL);
1160 if (!buffer)
1161 return -ENOMEM;
1162
1163 buflen = PAGE_SIZE;
1164 end = buffer+buflen;
1165 *--end = '\0';
1166 buflen--;
1167 path = end-1;
1168 *path = '/';
1169 while (de && de != de->parent) {
1170 buflen -= de->namelen + 1;
1171 if (buflen < 0)
1172 break;
1173 end -= de->namelen;
1174 memcpy(end, de->name, de->namelen);
1175 *--end = '/';
1176 path = end;
1177 de = de->parent;
1178 }
1179 rc = security_genfs_sid("proc", path, tclass, sid);
1180 free_page((unsigned long)buffer);
1181 return rc;
1182 }
1183 #else
selinux_proc_get_sid(struct proc_dir_entry * de,u16 tclass,u32 * sid)1184 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1185 u16 tclass,
1186 u32 *sid)
1187 {
1188 return -EINVAL;
1189 }
1190 #endif
1191
1192 /* The inode's security attributes must be initialized before first use. */
inode_doinit_with_dentry(struct inode * inode,struct dentry * opt_dentry)1193 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1194 {
1195 struct superblock_security_struct *sbsec = NULL;
1196 struct inode_security_struct *isec = inode->i_security;
1197 u32 sid;
1198 struct dentry *dentry;
1199 #define INITCONTEXTLEN 255
1200 char *context = NULL;
1201 unsigned len = 0;
1202 int rc = 0;
1203
1204 if (isec->initialized)
1205 goto out;
1206
1207 mutex_lock(&isec->lock);
1208 if (isec->initialized)
1209 goto out_unlock;
1210
1211 sbsec = inode->i_sb->s_security;
1212 if (!sbsec->initialized) {
1213 /* Defer initialization until selinux_complete_init,
1214 after the initial policy is loaded and the security
1215 server is ready to handle calls. */
1216 spin_lock(&sbsec->isec_lock);
1217 if (list_empty(&isec->list))
1218 list_add(&isec->list, &sbsec->isec_head);
1219 spin_unlock(&sbsec->isec_lock);
1220 goto out_unlock;
1221 }
1222
1223 switch (sbsec->behavior) {
1224 case SECURITY_FS_USE_XATTR:
1225 if (!inode->i_op->getxattr) {
1226 isec->sid = sbsec->def_sid;
1227 break;
1228 }
1229
1230 /* Need a dentry, since the xattr API requires one.
1231 Life would be simpler if we could just pass the inode. */
1232 if (opt_dentry) {
1233 /* Called from d_instantiate or d_splice_alias. */
1234 dentry = dget(opt_dentry);
1235 } else {
1236 /* Called from selinux_complete_init, try to find a dentry. */
1237 dentry = d_find_alias(inode);
1238 }
1239 if (!dentry) {
1240 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s "
1241 "ino=%ld\n", __func__, inode->i_sb->s_id,
1242 inode->i_ino);
1243 goto out_unlock;
1244 }
1245
1246 len = INITCONTEXTLEN;
1247 context = kmalloc(len, GFP_NOFS);
1248 if (!context) {
1249 rc = -ENOMEM;
1250 dput(dentry);
1251 goto out_unlock;
1252 }
1253 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1254 context, len);
1255 if (rc == -ERANGE) {
1256 /* Need a larger buffer. Query for the right size. */
1257 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1258 NULL, 0);
1259 if (rc < 0) {
1260 dput(dentry);
1261 goto out_unlock;
1262 }
1263 kfree(context);
1264 len = rc;
1265 context = kmalloc(len, GFP_NOFS);
1266 if (!context) {
1267 rc = -ENOMEM;
1268 dput(dentry);
1269 goto out_unlock;
1270 }
1271 rc = inode->i_op->getxattr(dentry,
1272 XATTR_NAME_SELINUX,
1273 context, len);
1274 }
1275 dput(dentry);
1276 if (rc < 0) {
1277 if (rc != -ENODATA) {
1278 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1279 "%d for dev=%s ino=%ld\n", __func__,
1280 -rc, inode->i_sb->s_id, inode->i_ino);
1281 kfree(context);
1282 goto out_unlock;
1283 }
1284 /* Map ENODATA to the default file SID */
1285 sid = sbsec->def_sid;
1286 rc = 0;
1287 } else {
1288 rc = security_context_to_sid_default(context, rc, &sid,
1289 sbsec->def_sid,
1290 GFP_NOFS);
1291 if (rc) {
1292 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1293 "returned %d for dev=%s ino=%ld\n",
1294 __func__, context, -rc,
1295 inode->i_sb->s_id, inode->i_ino);
1296 kfree(context);
1297 /* Leave with the unlabeled SID */
1298 rc = 0;
1299 break;
1300 }
1301 }
1302 kfree(context);
1303 isec->sid = sid;
1304 break;
1305 case SECURITY_FS_USE_TASK:
1306 isec->sid = isec->task_sid;
1307 break;
1308 case SECURITY_FS_USE_TRANS:
1309 /* Default to the fs SID. */
1310 isec->sid = sbsec->sid;
1311
1312 /* Try to obtain a transition SID. */
1313 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1314 rc = security_transition_sid(isec->task_sid,
1315 sbsec->sid,
1316 isec->sclass,
1317 &sid);
1318 if (rc)
1319 goto out_unlock;
1320 isec->sid = sid;
1321 break;
1322 case SECURITY_FS_USE_MNTPOINT:
1323 isec->sid = sbsec->mntpoint_sid;
1324 break;
1325 default:
1326 /* Default to the fs superblock SID. */
1327 isec->sid = sbsec->sid;
1328
1329 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1330 struct proc_inode *proci = PROC_I(inode);
1331 if (proci->pde) {
1332 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1333 rc = selinux_proc_get_sid(proci->pde,
1334 isec->sclass,
1335 &sid);
1336 if (rc)
1337 goto out_unlock;
1338 isec->sid = sid;
1339 }
1340 }
1341 break;
1342 }
1343
1344 isec->initialized = 1;
1345
1346 out_unlock:
1347 mutex_unlock(&isec->lock);
1348 out:
1349 if (isec->sclass == SECCLASS_FILE)
1350 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1351 return rc;
1352 }
1353
1354 /* Convert a Linux signal to an access vector. */
signal_to_av(int sig)1355 static inline u32 signal_to_av(int sig)
1356 {
1357 u32 perm = 0;
1358
1359 switch (sig) {
1360 case SIGCHLD:
1361 /* Commonly granted from child to parent. */
1362 perm = PROCESS__SIGCHLD;
1363 break;
1364 case SIGKILL:
1365 /* Cannot be caught or ignored */
1366 perm = PROCESS__SIGKILL;
1367 break;
1368 case SIGSTOP:
1369 /* Cannot be caught or ignored */
1370 perm = PROCESS__SIGSTOP;
1371 break;
1372 default:
1373 /* All other signals. */
1374 perm = PROCESS__SIGNAL;
1375 break;
1376 }
1377
1378 return perm;
1379 }
1380
1381 /*
1382 * Check permission between a pair of credentials
1383 * fork check, ptrace check, etc.
1384 */
cred_has_perm(const struct cred * actor,const struct cred * target,u32 perms)1385 static int cred_has_perm(const struct cred *actor,
1386 const struct cred *target,
1387 u32 perms)
1388 {
1389 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1390
1391 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1392 }
1393
1394 /*
1395 * Check permission between a pair of tasks, e.g. signal checks,
1396 * fork check, ptrace check, etc.
1397 * tsk1 is the actor and tsk2 is the target
1398 * - this uses the default subjective creds of tsk1
1399 */
task_has_perm(const struct task_struct * tsk1,const struct task_struct * tsk2,u32 perms)1400 static int task_has_perm(const struct task_struct *tsk1,
1401 const struct task_struct *tsk2,
1402 u32 perms)
1403 {
1404 const struct task_security_struct *__tsec1, *__tsec2;
1405 u32 sid1, sid2;
1406
1407 rcu_read_lock();
1408 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1409 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1410 rcu_read_unlock();
1411 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1412 }
1413
1414 /*
1415 * Check permission between current and another task, e.g. signal checks,
1416 * fork check, ptrace check, etc.
1417 * current is the actor and tsk2 is the target
1418 * - this uses current's subjective creds
1419 */
current_has_perm(const struct task_struct * tsk,u32 perms)1420 static int current_has_perm(const struct task_struct *tsk,
1421 u32 perms)
1422 {
1423 u32 sid, tsid;
1424
1425 sid = current_sid();
1426 tsid = task_sid(tsk);
1427 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1428 }
1429
1430 #if CAP_LAST_CAP > 63
1431 #error Fix SELinux to handle capabilities > 63.
1432 #endif
1433
1434 /* Check whether a task is allowed to use a capability. */
task_has_capability(struct task_struct * tsk,const struct cred * cred,int cap,int audit)1435 static int task_has_capability(struct task_struct *tsk,
1436 const struct cred *cred,
1437 int cap, int audit)
1438 {
1439 struct avc_audit_data ad;
1440 struct av_decision avd;
1441 u16 sclass;
1442 u32 sid = cred_sid(cred);
1443 u32 av = CAP_TO_MASK(cap);
1444 int rc;
1445
1446 AVC_AUDIT_DATA_INIT(&ad, CAP);
1447 ad.tsk = tsk;
1448 ad.u.cap = cap;
1449
1450 switch (CAP_TO_INDEX(cap)) {
1451 case 0:
1452 sclass = SECCLASS_CAPABILITY;
1453 break;
1454 case 1:
1455 sclass = SECCLASS_CAPABILITY2;
1456 break;
1457 default:
1458 printk(KERN_ERR
1459 "SELinux: out of range capability %d\n", cap);
1460 BUG();
1461 }
1462
1463 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1464 if (audit == SECURITY_CAP_AUDIT)
1465 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1466 return rc;
1467 }
1468
1469 /* Check whether a task is allowed to use a system operation. */
task_has_system(struct task_struct * tsk,u32 perms)1470 static int task_has_system(struct task_struct *tsk,
1471 u32 perms)
1472 {
1473 u32 sid = task_sid(tsk);
1474
1475 return avc_has_perm(sid, SECINITSID_KERNEL,
1476 SECCLASS_SYSTEM, perms, NULL);
1477 }
1478
1479 /* Check whether a task has a particular permission to an inode.
1480 The 'adp' parameter is optional and allows other audit
1481 data to be passed (e.g. the dentry). */
inode_has_perm(const struct cred * cred,struct inode * inode,u32 perms,struct avc_audit_data * adp)1482 static int inode_has_perm(const struct cred *cred,
1483 struct inode *inode,
1484 u32 perms,
1485 struct avc_audit_data *adp)
1486 {
1487 struct inode_security_struct *isec;
1488 struct avc_audit_data ad;
1489 u32 sid;
1490
1491 if (unlikely(IS_PRIVATE(inode)))
1492 return 0;
1493
1494 sid = cred_sid(cred);
1495 isec = inode->i_security;
1496
1497 if (!adp) {
1498 adp = &ad;
1499 AVC_AUDIT_DATA_INIT(&ad, FS);
1500 ad.u.fs.inode = inode;
1501 }
1502
1503 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1504 }
1505
1506 /* Same as inode_has_perm, but pass explicit audit data containing
1507 the dentry to help the auditing code to more easily generate the
1508 pathname if needed. */
dentry_has_perm(const struct cred * cred,struct vfsmount * mnt,struct dentry * dentry,u32 av)1509 static inline int dentry_has_perm(const struct cred *cred,
1510 struct vfsmount *mnt,
1511 struct dentry *dentry,
1512 u32 av)
1513 {
1514 struct inode *inode = dentry->d_inode;
1515 struct avc_audit_data ad;
1516
1517 AVC_AUDIT_DATA_INIT(&ad, FS);
1518 ad.u.fs.path.mnt = mnt;
1519 ad.u.fs.path.dentry = dentry;
1520 return inode_has_perm(cred, inode, av, &ad);
1521 }
1522
1523 /* Check whether a task can use an open file descriptor to
1524 access an inode in a given way. Check access to the
1525 descriptor itself, and then use dentry_has_perm to
1526 check a particular permission to the file.
1527 Access to the descriptor is implicitly granted if it
1528 has the same SID as the process. If av is zero, then
1529 access to the file is not checked, e.g. for cases
1530 where only the descriptor is affected like seek. */
file_has_perm(const struct cred * cred,struct file * file,u32 av)1531 static int file_has_perm(const struct cred *cred,
1532 struct file *file,
1533 u32 av)
1534 {
1535 struct file_security_struct *fsec = file->f_security;
1536 struct inode *inode = file->f_path.dentry->d_inode;
1537 struct avc_audit_data ad;
1538 u32 sid = cred_sid(cred);
1539 int rc;
1540
1541 AVC_AUDIT_DATA_INIT(&ad, FS);
1542 ad.u.fs.path = file->f_path;
1543
1544 if (sid != fsec->sid) {
1545 rc = avc_has_perm(sid, fsec->sid,
1546 SECCLASS_FD,
1547 FD__USE,
1548 &ad);
1549 if (rc)
1550 goto out;
1551 }
1552
1553 /* av is zero if only checking access to the descriptor. */
1554 rc = 0;
1555 if (av)
1556 rc = inode_has_perm(cred, inode, av, &ad);
1557
1558 out:
1559 return rc;
1560 }
1561
1562 /* Check whether a task can create a file. */
may_create(struct inode * dir,struct dentry * dentry,u16 tclass)1563 static int may_create(struct inode *dir,
1564 struct dentry *dentry,
1565 u16 tclass)
1566 {
1567 const struct cred *cred = current_cred();
1568 const struct task_security_struct *tsec = cred->security;
1569 struct inode_security_struct *dsec;
1570 struct superblock_security_struct *sbsec;
1571 u32 sid, newsid;
1572 struct avc_audit_data ad;
1573 int rc;
1574
1575 dsec = dir->i_security;
1576 sbsec = dir->i_sb->s_security;
1577
1578 sid = tsec->sid;
1579 newsid = tsec->create_sid;
1580
1581 AVC_AUDIT_DATA_INIT(&ad, FS);
1582 ad.u.fs.path.dentry = dentry;
1583
1584 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1585 DIR__ADD_NAME | DIR__SEARCH,
1586 &ad);
1587 if (rc)
1588 return rc;
1589
1590 if (!newsid || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) {
1591 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1592 if (rc)
1593 return rc;
1594 }
1595
1596 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1597 if (rc)
1598 return rc;
1599
1600 return avc_has_perm(newsid, sbsec->sid,
1601 SECCLASS_FILESYSTEM,
1602 FILESYSTEM__ASSOCIATE, &ad);
1603 }
1604
1605 /* Check whether a task can create a key. */
may_create_key(u32 ksid,struct task_struct * ctx)1606 static int may_create_key(u32 ksid,
1607 struct task_struct *ctx)
1608 {
1609 u32 sid = task_sid(ctx);
1610
1611 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1612 }
1613
1614 #define MAY_LINK 0
1615 #define MAY_UNLINK 1
1616 #define MAY_RMDIR 2
1617
1618 /* Check whether a task can link, unlink, or rmdir a file/directory. */
may_link(struct inode * dir,struct dentry * dentry,int kind)1619 static int may_link(struct inode *dir,
1620 struct dentry *dentry,
1621 int kind)
1622
1623 {
1624 struct inode_security_struct *dsec, *isec;
1625 struct avc_audit_data ad;
1626 u32 sid = current_sid();
1627 u32 av;
1628 int rc;
1629
1630 dsec = dir->i_security;
1631 isec = dentry->d_inode->i_security;
1632
1633 AVC_AUDIT_DATA_INIT(&ad, FS);
1634 ad.u.fs.path.dentry = dentry;
1635
1636 av = DIR__SEARCH;
1637 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1638 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1639 if (rc)
1640 return rc;
1641
1642 switch (kind) {
1643 case MAY_LINK:
1644 av = FILE__LINK;
1645 break;
1646 case MAY_UNLINK:
1647 av = FILE__UNLINK;
1648 break;
1649 case MAY_RMDIR:
1650 av = DIR__RMDIR;
1651 break;
1652 default:
1653 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1654 __func__, kind);
1655 return 0;
1656 }
1657
1658 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1659 return rc;
1660 }
1661
may_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1662 static inline int may_rename(struct inode *old_dir,
1663 struct dentry *old_dentry,
1664 struct inode *new_dir,
1665 struct dentry *new_dentry)
1666 {
1667 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1668 struct avc_audit_data ad;
1669 u32 sid = current_sid();
1670 u32 av;
1671 int old_is_dir, new_is_dir;
1672 int rc;
1673
1674 old_dsec = old_dir->i_security;
1675 old_isec = old_dentry->d_inode->i_security;
1676 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1677 new_dsec = new_dir->i_security;
1678
1679 AVC_AUDIT_DATA_INIT(&ad, FS);
1680
1681 ad.u.fs.path.dentry = old_dentry;
1682 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1683 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1684 if (rc)
1685 return rc;
1686 rc = avc_has_perm(sid, old_isec->sid,
1687 old_isec->sclass, FILE__RENAME, &ad);
1688 if (rc)
1689 return rc;
1690 if (old_is_dir && new_dir != old_dir) {
1691 rc = avc_has_perm(sid, old_isec->sid,
1692 old_isec->sclass, DIR__REPARENT, &ad);
1693 if (rc)
1694 return rc;
1695 }
1696
1697 ad.u.fs.path.dentry = new_dentry;
1698 av = DIR__ADD_NAME | DIR__SEARCH;
1699 if (new_dentry->d_inode)
1700 av |= DIR__REMOVE_NAME;
1701 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1702 if (rc)
1703 return rc;
1704 if (new_dentry->d_inode) {
1705 new_isec = new_dentry->d_inode->i_security;
1706 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1707 rc = avc_has_perm(sid, new_isec->sid,
1708 new_isec->sclass,
1709 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1710 if (rc)
1711 return rc;
1712 }
1713
1714 return 0;
1715 }
1716
1717 /* Check whether a task can perform a filesystem operation. */
superblock_has_perm(const struct cred * cred,struct super_block * sb,u32 perms,struct avc_audit_data * ad)1718 static int superblock_has_perm(const struct cred *cred,
1719 struct super_block *sb,
1720 u32 perms,
1721 struct avc_audit_data *ad)
1722 {
1723 struct superblock_security_struct *sbsec;
1724 u32 sid = cred_sid(cred);
1725
1726 sbsec = sb->s_security;
1727 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1728 }
1729
1730 /* Convert a Linux mode and permission mask to an access vector. */
file_mask_to_av(int mode,int mask)1731 static inline u32 file_mask_to_av(int mode, int mask)
1732 {
1733 u32 av = 0;
1734
1735 if ((mode & S_IFMT) != S_IFDIR) {
1736 if (mask & MAY_EXEC)
1737 av |= FILE__EXECUTE;
1738 if (mask & MAY_READ)
1739 av |= FILE__READ;
1740
1741 if (mask & MAY_APPEND)
1742 av |= FILE__APPEND;
1743 else if (mask & MAY_WRITE)
1744 av |= FILE__WRITE;
1745
1746 } else {
1747 if (mask & MAY_EXEC)
1748 av |= DIR__SEARCH;
1749 if (mask & MAY_WRITE)
1750 av |= DIR__WRITE;
1751 if (mask & MAY_READ)
1752 av |= DIR__READ;
1753 }
1754
1755 return av;
1756 }
1757
1758 /* Convert a Linux file to an access vector. */
file_to_av(struct file * file)1759 static inline u32 file_to_av(struct file *file)
1760 {
1761 u32 av = 0;
1762
1763 if (file->f_mode & FMODE_READ)
1764 av |= FILE__READ;
1765 if (file->f_mode & FMODE_WRITE) {
1766 if (file->f_flags & O_APPEND)
1767 av |= FILE__APPEND;
1768 else
1769 av |= FILE__WRITE;
1770 }
1771 if (!av) {
1772 /*
1773 * Special file opened with flags 3 for ioctl-only use.
1774 */
1775 av = FILE__IOCTL;
1776 }
1777
1778 return av;
1779 }
1780
1781 /*
1782 * Convert a file to an access vector and include the correct open
1783 * open permission.
1784 */
open_file_to_av(struct file * file)1785 static inline u32 open_file_to_av(struct file *file)
1786 {
1787 u32 av = file_to_av(file);
1788
1789 if (selinux_policycap_openperm) {
1790 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1791 /*
1792 * lnk files and socks do not really have an 'open'
1793 */
1794 if (S_ISREG(mode))
1795 av |= FILE__OPEN;
1796 else if (S_ISCHR(mode))
1797 av |= CHR_FILE__OPEN;
1798 else if (S_ISBLK(mode))
1799 av |= BLK_FILE__OPEN;
1800 else if (S_ISFIFO(mode))
1801 av |= FIFO_FILE__OPEN;
1802 else if (S_ISDIR(mode))
1803 av |= DIR__OPEN;
1804 else
1805 printk(KERN_ERR "SELinux: WARNING: inside %s with "
1806 "unknown mode:%o\n", __func__, mode);
1807 }
1808 return av;
1809 }
1810
1811 /* Hook functions begin here. */
1812
selinux_ptrace_may_access(struct task_struct * child,unsigned int mode)1813 static int selinux_ptrace_may_access(struct task_struct *child,
1814 unsigned int mode)
1815 {
1816 int rc;
1817
1818 rc = secondary_ops->ptrace_may_access(child, mode);
1819 if (rc)
1820 return rc;
1821
1822 if (mode == PTRACE_MODE_READ) {
1823 u32 sid = current_sid();
1824 u32 csid = task_sid(child);
1825 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1826 }
1827
1828 return current_has_perm(child, PROCESS__PTRACE);
1829 }
1830
selinux_ptrace_traceme(struct task_struct * parent)1831 static int selinux_ptrace_traceme(struct task_struct *parent)
1832 {
1833 int rc;
1834
1835 rc = secondary_ops->ptrace_traceme(parent);
1836 if (rc)
1837 return rc;
1838
1839 return task_has_perm(parent, current, PROCESS__PTRACE);
1840 }
1841
selinux_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)1842 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1843 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1844 {
1845 int error;
1846
1847 error = current_has_perm(target, PROCESS__GETCAP);
1848 if (error)
1849 return error;
1850
1851 return secondary_ops->capget(target, effective, inheritable, permitted);
1852 }
1853
selinux_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)1854 static int selinux_capset(struct cred *new, const struct cred *old,
1855 const kernel_cap_t *effective,
1856 const kernel_cap_t *inheritable,
1857 const kernel_cap_t *permitted)
1858 {
1859 int error;
1860
1861 error = secondary_ops->capset(new, old,
1862 effective, inheritable, permitted);
1863 if (error)
1864 return error;
1865
1866 return cred_has_perm(old, new, PROCESS__SETCAP);
1867 }
1868
selinux_capable(struct task_struct * tsk,const struct cred * cred,int cap,int audit)1869 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1870 int cap, int audit)
1871 {
1872 int rc;
1873
1874 rc = secondary_ops->capable(tsk, cred, cap, audit);
1875 if (rc)
1876 return rc;
1877
1878 return task_has_capability(tsk, cred, cap, audit);
1879 }
1880
selinux_sysctl_get_sid(ctl_table * table,u16 tclass,u32 * sid)1881 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1882 {
1883 int buflen, rc;
1884 char *buffer, *path, *end;
1885
1886 rc = -ENOMEM;
1887 buffer = (char *)__get_free_page(GFP_KERNEL);
1888 if (!buffer)
1889 goto out;
1890
1891 buflen = PAGE_SIZE;
1892 end = buffer+buflen;
1893 *--end = '\0';
1894 buflen--;
1895 path = end-1;
1896 *path = '/';
1897 while (table) {
1898 const char *name = table->procname;
1899 size_t namelen = strlen(name);
1900 buflen -= namelen + 1;
1901 if (buflen < 0)
1902 goto out_free;
1903 end -= namelen;
1904 memcpy(end, name, namelen);
1905 *--end = '/';
1906 path = end;
1907 table = table->parent;
1908 }
1909 buflen -= 4;
1910 if (buflen < 0)
1911 goto out_free;
1912 end -= 4;
1913 memcpy(end, "/sys", 4);
1914 path = end;
1915 rc = security_genfs_sid("proc", path, tclass, sid);
1916 out_free:
1917 free_page((unsigned long)buffer);
1918 out:
1919 return rc;
1920 }
1921
selinux_sysctl(ctl_table * table,int op)1922 static int selinux_sysctl(ctl_table *table, int op)
1923 {
1924 int error = 0;
1925 u32 av;
1926 u32 tsid, sid;
1927 int rc;
1928
1929 rc = secondary_ops->sysctl(table, op);
1930 if (rc)
1931 return rc;
1932
1933 sid = current_sid();
1934
1935 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1936 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1937 if (rc) {
1938 /* Default to the well-defined sysctl SID. */
1939 tsid = SECINITSID_SYSCTL;
1940 }
1941
1942 /* The op values are "defined" in sysctl.c, thereby creating
1943 * a bad coupling between this module and sysctl.c */
1944 if (op == 001) {
1945 error = avc_has_perm(sid, tsid,
1946 SECCLASS_DIR, DIR__SEARCH, NULL);
1947 } else {
1948 av = 0;
1949 if (op & 004)
1950 av |= FILE__READ;
1951 if (op & 002)
1952 av |= FILE__WRITE;
1953 if (av)
1954 error = avc_has_perm(sid, tsid,
1955 SECCLASS_FILE, av, NULL);
1956 }
1957
1958 return error;
1959 }
1960
selinux_quotactl(int cmds,int type,int id,struct super_block * sb)1961 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1962 {
1963 const struct cred *cred = current_cred();
1964 int rc = 0;
1965
1966 if (!sb)
1967 return 0;
1968
1969 switch (cmds) {
1970 case Q_SYNC:
1971 case Q_QUOTAON:
1972 case Q_QUOTAOFF:
1973 case Q_SETINFO:
1974 case Q_SETQUOTA:
1975 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1976 break;
1977 case Q_GETFMT:
1978 case Q_GETINFO:
1979 case Q_GETQUOTA:
1980 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1981 break;
1982 default:
1983 rc = 0; /* let the kernel handle invalid cmds */
1984 break;
1985 }
1986 return rc;
1987 }
1988
selinux_quota_on(struct dentry * dentry)1989 static int selinux_quota_on(struct dentry *dentry)
1990 {
1991 const struct cred *cred = current_cred();
1992
1993 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1994 }
1995
selinux_syslog(int type)1996 static int selinux_syslog(int type)
1997 {
1998 int rc;
1999
2000 rc = secondary_ops->syslog(type);
2001 if (rc)
2002 return rc;
2003
2004 switch (type) {
2005 case 3: /* Read last kernel messages */
2006 case 10: /* Return size of the log buffer */
2007 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2008 break;
2009 case 6: /* Disable logging to console */
2010 case 7: /* Enable logging to console */
2011 case 8: /* Set level of messages printed to console */
2012 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2013 break;
2014 case 0: /* Close log */
2015 case 1: /* Open log */
2016 case 2: /* Read from log */
2017 case 4: /* Read/clear last kernel messages */
2018 case 5: /* Clear ring buffer */
2019 default:
2020 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2021 break;
2022 }
2023 return rc;
2024 }
2025
2026 /*
2027 * Check that a process has enough memory to allocate a new virtual
2028 * mapping. 0 means there is enough memory for the allocation to
2029 * succeed and -ENOMEM implies there is not.
2030 *
2031 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
2032 * if the capability is granted, but __vm_enough_memory requires 1 if
2033 * the capability is granted.
2034 *
2035 * Do not audit the selinux permission check, as this is applied to all
2036 * processes that allocate mappings.
2037 */
selinux_vm_enough_memory(struct mm_struct * mm,long pages)2038 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2039 {
2040 int rc, cap_sys_admin = 0;
2041
2042 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2043 SECURITY_CAP_NOAUDIT);
2044 if (rc == 0)
2045 cap_sys_admin = 1;
2046
2047 return __vm_enough_memory(mm, pages, cap_sys_admin);
2048 }
2049
2050 /* binprm security operations */
2051
selinux_bprm_set_creds(struct linux_binprm * bprm)2052 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2053 {
2054 const struct task_security_struct *old_tsec;
2055 struct task_security_struct *new_tsec;
2056 struct inode_security_struct *isec;
2057 struct avc_audit_data ad;
2058 struct inode *inode = bprm->file->f_path.dentry->d_inode;
2059 int rc;
2060
2061 rc = secondary_ops->bprm_set_creds(bprm);
2062 if (rc)
2063 return rc;
2064
2065 /* SELinux context only depends on initial program or script and not
2066 * the script interpreter */
2067 if (bprm->cred_prepared)
2068 return 0;
2069
2070 old_tsec = current_security();
2071 new_tsec = bprm->cred->security;
2072 isec = inode->i_security;
2073
2074 /* Default to the current task SID. */
2075 new_tsec->sid = old_tsec->sid;
2076 new_tsec->osid = old_tsec->sid;
2077
2078 /* Reset fs, key, and sock SIDs on execve. */
2079 new_tsec->create_sid = 0;
2080 new_tsec->keycreate_sid = 0;
2081 new_tsec->sockcreate_sid = 0;
2082
2083 if (old_tsec->exec_sid) {
2084 new_tsec->sid = old_tsec->exec_sid;
2085 /* Reset exec SID on execve. */
2086 new_tsec->exec_sid = 0;
2087 } else {
2088 /* Check for a default transition on this program. */
2089 rc = security_transition_sid(old_tsec->sid, isec->sid,
2090 SECCLASS_PROCESS, &new_tsec->sid);
2091 if (rc)
2092 return rc;
2093 }
2094
2095 AVC_AUDIT_DATA_INIT(&ad, FS);
2096 ad.u.fs.path = bprm->file->f_path;
2097
2098 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2099 new_tsec->sid = old_tsec->sid;
2100
2101 if (new_tsec->sid == old_tsec->sid) {
2102 rc = avc_has_perm(old_tsec->sid, isec->sid,
2103 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2104 if (rc)
2105 return rc;
2106 } else {
2107 /* Check permissions for the transition. */
2108 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2109 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2110 if (rc)
2111 return rc;
2112
2113 rc = avc_has_perm(new_tsec->sid, isec->sid,
2114 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2115 if (rc)
2116 return rc;
2117
2118 /* Check for shared state */
2119 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2120 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2121 SECCLASS_PROCESS, PROCESS__SHARE,
2122 NULL);
2123 if (rc)
2124 return -EPERM;
2125 }
2126
2127 /* Make sure that anyone attempting to ptrace over a task that
2128 * changes its SID has the appropriate permit */
2129 if (bprm->unsafe &
2130 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2131 struct task_struct *tracer;
2132 struct task_security_struct *sec;
2133 u32 ptsid = 0;
2134
2135 rcu_read_lock();
2136 tracer = tracehook_tracer_task(current);
2137 if (likely(tracer != NULL)) {
2138 sec = __task_cred(tracer)->security;
2139 ptsid = sec->sid;
2140 }
2141 rcu_read_unlock();
2142
2143 if (ptsid != 0) {
2144 rc = avc_has_perm(ptsid, new_tsec->sid,
2145 SECCLASS_PROCESS,
2146 PROCESS__PTRACE, NULL);
2147 if (rc)
2148 return -EPERM;
2149 }
2150 }
2151
2152 /* Clear any possibly unsafe personality bits on exec: */
2153 bprm->per_clear |= PER_CLEAR_ON_SETID;
2154 }
2155
2156 return 0;
2157 }
2158
selinux_bprm_check_security(struct linux_binprm * bprm)2159 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2160 {
2161 return secondary_ops->bprm_check_security(bprm);
2162 }
2163
selinux_bprm_secureexec(struct linux_binprm * bprm)2164 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2165 {
2166 const struct cred *cred = current_cred();
2167 const struct task_security_struct *tsec = cred->security;
2168 u32 sid, osid;
2169 int atsecure = 0;
2170
2171 sid = tsec->sid;
2172 osid = tsec->osid;
2173
2174 if (osid != sid) {
2175 /* Enable secure mode for SIDs transitions unless
2176 the noatsecure permission is granted between
2177 the two SIDs, i.e. ahp returns 0. */
2178 atsecure = avc_has_perm(osid, sid,
2179 SECCLASS_PROCESS,
2180 PROCESS__NOATSECURE, NULL);
2181 }
2182
2183 return (atsecure || secondary_ops->bprm_secureexec(bprm));
2184 }
2185
2186 extern struct vfsmount *selinuxfs_mount;
2187 extern struct dentry *selinux_null;
2188
2189 /* Derived from fs/exec.c:flush_old_files. */
flush_unauthorized_files(const struct cred * cred,struct files_struct * files)2190 static inline void flush_unauthorized_files(const struct cred *cred,
2191 struct files_struct *files)
2192 {
2193 struct avc_audit_data ad;
2194 struct file *file, *devnull = NULL;
2195 struct tty_struct *tty;
2196 struct fdtable *fdt;
2197 long j = -1;
2198 int drop_tty = 0;
2199
2200 tty = get_current_tty();
2201 if (tty) {
2202 file_list_lock();
2203 if (!list_empty(&tty->tty_files)) {
2204 struct inode *inode;
2205
2206 /* Revalidate access to controlling tty.
2207 Use inode_has_perm on the tty inode directly rather
2208 than using file_has_perm, as this particular open
2209 file may belong to another process and we are only
2210 interested in the inode-based check here. */
2211 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2212 inode = file->f_path.dentry->d_inode;
2213 if (inode_has_perm(cred, inode,
2214 FILE__READ | FILE__WRITE, NULL)) {
2215 drop_tty = 1;
2216 }
2217 }
2218 file_list_unlock();
2219 tty_kref_put(tty);
2220 }
2221 /* Reset controlling tty. */
2222 if (drop_tty)
2223 no_tty();
2224
2225 /* Revalidate access to inherited open files. */
2226
2227 AVC_AUDIT_DATA_INIT(&ad, FS);
2228
2229 spin_lock(&files->file_lock);
2230 for (;;) {
2231 unsigned long set, i;
2232 int fd;
2233
2234 j++;
2235 i = j * __NFDBITS;
2236 fdt = files_fdtable(files);
2237 if (i >= fdt->max_fds)
2238 break;
2239 set = fdt->open_fds->fds_bits[j];
2240 if (!set)
2241 continue;
2242 spin_unlock(&files->file_lock);
2243 for ( ; set ; i++, set >>= 1) {
2244 if (set & 1) {
2245 file = fget(i);
2246 if (!file)
2247 continue;
2248 if (file_has_perm(cred,
2249 file,
2250 file_to_av(file))) {
2251 sys_close(i);
2252 fd = get_unused_fd();
2253 if (fd != i) {
2254 if (fd >= 0)
2255 put_unused_fd(fd);
2256 fput(file);
2257 continue;
2258 }
2259 if (devnull) {
2260 get_file(devnull);
2261 } else {
2262 devnull = dentry_open(
2263 dget(selinux_null),
2264 mntget(selinuxfs_mount),
2265 O_RDWR, cred);
2266 if (IS_ERR(devnull)) {
2267 devnull = NULL;
2268 put_unused_fd(fd);
2269 fput(file);
2270 continue;
2271 }
2272 }
2273 fd_install(fd, devnull);
2274 }
2275 fput(file);
2276 }
2277 }
2278 spin_lock(&files->file_lock);
2279
2280 }
2281 spin_unlock(&files->file_lock);
2282 }
2283
2284 /*
2285 * Prepare a process for imminent new credential changes due to exec
2286 */
selinux_bprm_committing_creds(struct linux_binprm * bprm)2287 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2288 {
2289 struct task_security_struct *new_tsec;
2290 struct rlimit *rlim, *initrlim;
2291 int rc, i;
2292
2293 secondary_ops->bprm_committing_creds(bprm);
2294
2295 new_tsec = bprm->cred->security;
2296 if (new_tsec->sid == new_tsec->osid)
2297 return;
2298
2299 /* Close files for which the new task SID is not authorized. */
2300 flush_unauthorized_files(bprm->cred, current->files);
2301
2302 /* Always clear parent death signal on SID transitions. */
2303 current->pdeath_signal = 0;
2304
2305 /* Check whether the new SID can inherit resource limits from the old
2306 * SID. If not, reset all soft limits to the lower of the current
2307 * task's hard limit and the init task's soft limit.
2308 *
2309 * Note that the setting of hard limits (even to lower them) can be
2310 * controlled by the setrlimit check. The inclusion of the init task's
2311 * soft limit into the computation is to avoid resetting soft limits
2312 * higher than the default soft limit for cases where the default is
2313 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2314 */
2315 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2316 PROCESS__RLIMITINH, NULL);
2317 if (rc) {
2318 for (i = 0; i < RLIM_NLIMITS; i++) {
2319 rlim = current->signal->rlim + i;
2320 initrlim = init_task.signal->rlim + i;
2321 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2322 }
2323 update_rlimit_cpu(rlim->rlim_cur);
2324 }
2325 }
2326
2327 /*
2328 * Clean up the process immediately after the installation of new credentials
2329 * due to exec
2330 */
selinux_bprm_committed_creds(struct linux_binprm * bprm)2331 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2332 {
2333 const struct task_security_struct *tsec = current_security();
2334 struct itimerval itimer;
2335 struct sighand_struct *psig;
2336 u32 osid, sid;
2337 int rc, i;
2338 unsigned long flags;
2339
2340 secondary_ops->bprm_committed_creds(bprm);
2341
2342 osid = tsec->osid;
2343 sid = tsec->sid;
2344
2345 if (sid == osid)
2346 return;
2347
2348 /* Check whether the new SID can inherit signal state from the old SID.
2349 * If not, clear itimers to avoid subsequent signal generation and
2350 * flush and unblock signals.
2351 *
2352 * This must occur _after_ the task SID has been updated so that any
2353 * kill done after the flush will be checked against the new SID.
2354 */
2355 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2356 if (rc) {
2357 memset(&itimer, 0, sizeof itimer);
2358 for (i = 0; i < 3; i++)
2359 do_setitimer(i, &itimer, NULL);
2360 flush_signals(current);
2361 spin_lock_irq(¤t->sighand->siglock);
2362 flush_signal_handlers(current, 1);
2363 sigemptyset(¤t->blocked);
2364 recalc_sigpending();
2365 spin_unlock_irq(¤t->sighand->siglock);
2366 }
2367
2368 /* Wake up the parent if it is waiting so that it can recheck
2369 * wait permission to the new task SID. */
2370 read_lock_irq(&tasklist_lock);
2371 psig = current->parent->sighand;
2372 spin_lock_irqsave(&psig->siglock, flags);
2373 wake_up_interruptible(¤t->parent->signal->wait_chldexit);
2374 spin_unlock_irqrestore(&psig->siglock, flags);
2375 read_unlock_irq(&tasklist_lock);
2376 }
2377
2378 /* superblock security operations */
2379
selinux_sb_alloc_security(struct super_block * sb)2380 static int selinux_sb_alloc_security(struct super_block *sb)
2381 {
2382 return superblock_alloc_security(sb);
2383 }
2384
selinux_sb_free_security(struct super_block * sb)2385 static void selinux_sb_free_security(struct super_block *sb)
2386 {
2387 superblock_free_security(sb);
2388 }
2389
match_prefix(char * prefix,int plen,char * option,int olen)2390 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2391 {
2392 if (plen > olen)
2393 return 0;
2394
2395 return !memcmp(prefix, option, plen);
2396 }
2397
selinux_option(char * option,int len)2398 static inline int selinux_option(char *option, int len)
2399 {
2400 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2401 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2402 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2403 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2404 }
2405
take_option(char ** to,char * from,int * first,int len)2406 static inline void take_option(char **to, char *from, int *first, int len)
2407 {
2408 if (!*first) {
2409 **to = ',';
2410 *to += 1;
2411 } else
2412 *first = 0;
2413 memcpy(*to, from, len);
2414 *to += len;
2415 }
2416
take_selinux_option(char ** to,char * from,int * first,int len)2417 static inline void take_selinux_option(char **to, char *from, int *first,
2418 int len)
2419 {
2420 int current_size = 0;
2421
2422 if (!*first) {
2423 **to = '|';
2424 *to += 1;
2425 } else
2426 *first = 0;
2427
2428 while (current_size < len) {
2429 if (*from != '"') {
2430 **to = *from;
2431 *to += 1;
2432 }
2433 from += 1;
2434 current_size += 1;
2435 }
2436 }
2437
selinux_sb_copy_data(char * orig,char * copy)2438 static int selinux_sb_copy_data(char *orig, char *copy)
2439 {
2440 int fnosec, fsec, rc = 0;
2441 char *in_save, *in_curr, *in_end;
2442 char *sec_curr, *nosec_save, *nosec;
2443 int open_quote = 0;
2444
2445 in_curr = orig;
2446 sec_curr = copy;
2447
2448 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2449 if (!nosec) {
2450 rc = -ENOMEM;
2451 goto out;
2452 }
2453
2454 nosec_save = nosec;
2455 fnosec = fsec = 1;
2456 in_save = in_end = orig;
2457
2458 do {
2459 if (*in_end == '"')
2460 open_quote = !open_quote;
2461 if ((*in_end == ',' && open_quote == 0) ||
2462 *in_end == '\0') {
2463 int len = in_end - in_curr;
2464
2465 if (selinux_option(in_curr, len))
2466 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2467 else
2468 take_option(&nosec, in_curr, &fnosec, len);
2469
2470 in_curr = in_end + 1;
2471 }
2472 } while (*in_end++);
2473
2474 strcpy(in_save, nosec_save);
2475 free_page((unsigned long)nosec_save);
2476 out:
2477 return rc;
2478 }
2479
selinux_sb_kern_mount(struct super_block * sb,int flags,void * data)2480 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2481 {
2482 const struct cred *cred = current_cred();
2483 struct avc_audit_data ad;
2484 int rc;
2485
2486 rc = superblock_doinit(sb, data);
2487 if (rc)
2488 return rc;
2489
2490 /* Allow all mounts performed by the kernel */
2491 if (flags & MS_KERNMOUNT)
2492 return 0;
2493
2494 AVC_AUDIT_DATA_INIT(&ad, FS);
2495 ad.u.fs.path.dentry = sb->s_root;
2496 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2497 }
2498
selinux_sb_statfs(struct dentry * dentry)2499 static int selinux_sb_statfs(struct dentry *dentry)
2500 {
2501 const struct cred *cred = current_cred();
2502 struct avc_audit_data ad;
2503
2504 AVC_AUDIT_DATA_INIT(&ad, FS);
2505 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2506 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2507 }
2508
selinux_mount(char * dev_name,struct path * path,char * type,unsigned long flags,void * data)2509 static int selinux_mount(char *dev_name,
2510 struct path *path,
2511 char *type,
2512 unsigned long flags,
2513 void *data)
2514 {
2515 const struct cred *cred = current_cred();
2516 int rc;
2517
2518 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2519 if (rc)
2520 return rc;
2521
2522 if (flags & MS_REMOUNT)
2523 return superblock_has_perm(cred, path->mnt->mnt_sb,
2524 FILESYSTEM__REMOUNT, NULL);
2525 else
2526 return dentry_has_perm(cred, path->mnt, path->dentry,
2527 FILE__MOUNTON);
2528 }
2529
selinux_umount(struct vfsmount * mnt,int flags)2530 static int selinux_umount(struct vfsmount *mnt, int flags)
2531 {
2532 const struct cred *cred = current_cred();
2533 int rc;
2534
2535 rc = secondary_ops->sb_umount(mnt, flags);
2536 if (rc)
2537 return rc;
2538
2539 return superblock_has_perm(cred, mnt->mnt_sb,
2540 FILESYSTEM__UNMOUNT, NULL);
2541 }
2542
2543 /* inode security operations */
2544
selinux_inode_alloc_security(struct inode * inode)2545 static int selinux_inode_alloc_security(struct inode *inode)
2546 {
2547 return inode_alloc_security(inode);
2548 }
2549
selinux_inode_free_security(struct inode * inode)2550 static void selinux_inode_free_security(struct inode *inode)
2551 {
2552 inode_free_security(inode);
2553 }
2554
selinux_inode_init_security(struct inode * inode,struct inode * dir,char ** name,void ** value,size_t * len)2555 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2556 char **name, void **value,
2557 size_t *len)
2558 {
2559 const struct cred *cred = current_cred();
2560 const struct task_security_struct *tsec = cred->security;
2561 struct inode_security_struct *dsec;
2562 struct superblock_security_struct *sbsec;
2563 u32 sid, newsid, clen;
2564 int rc;
2565 char *namep = NULL, *context;
2566
2567 dsec = dir->i_security;
2568 sbsec = dir->i_sb->s_security;
2569
2570 sid = tsec->sid;
2571 newsid = tsec->create_sid;
2572
2573 if (!newsid || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) {
2574 rc = security_transition_sid(sid, dsec->sid,
2575 inode_mode_to_security_class(inode->i_mode),
2576 &newsid);
2577 if (rc) {
2578 printk(KERN_WARNING "%s: "
2579 "security_transition_sid failed, rc=%d (dev=%s "
2580 "ino=%ld)\n",
2581 __func__,
2582 -rc, inode->i_sb->s_id, inode->i_ino);
2583 return rc;
2584 }
2585 }
2586
2587 /* Possibly defer initialization to selinux_complete_init. */
2588 if (sbsec->initialized) {
2589 struct inode_security_struct *isec = inode->i_security;
2590 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2591 isec->sid = newsid;
2592 isec->initialized = 1;
2593 }
2594
2595 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2596 return -EOPNOTSUPP;
2597
2598 if (name) {
2599 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2600 if (!namep)
2601 return -ENOMEM;
2602 *name = namep;
2603 }
2604
2605 if (value && len) {
2606 rc = security_sid_to_context_force(newsid, &context, &clen);
2607 if (rc) {
2608 kfree(namep);
2609 return rc;
2610 }
2611 *value = context;
2612 *len = clen;
2613 }
2614
2615 return 0;
2616 }
2617
selinux_inode_create(struct inode * dir,struct dentry * dentry,int mask)2618 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2619 {
2620 return may_create(dir, dentry, SECCLASS_FILE);
2621 }
2622
selinux_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2623 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2624 {
2625 int rc;
2626
2627 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2628 if (rc)
2629 return rc;
2630 return may_link(dir, old_dentry, MAY_LINK);
2631 }
2632
selinux_inode_unlink(struct inode * dir,struct dentry * dentry)2633 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2634 {
2635 int rc;
2636
2637 rc = secondary_ops->inode_unlink(dir, dentry);
2638 if (rc)
2639 return rc;
2640 return may_link(dir, dentry, MAY_UNLINK);
2641 }
2642
selinux_inode_symlink(struct inode * dir,struct dentry * dentry,const char * name)2643 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2644 {
2645 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2646 }
2647
selinux_inode_mkdir(struct inode * dir,struct dentry * dentry,int mask)2648 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2649 {
2650 return may_create(dir, dentry, SECCLASS_DIR);
2651 }
2652
selinux_inode_rmdir(struct inode * dir,struct dentry * dentry)2653 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2654 {
2655 return may_link(dir, dentry, MAY_RMDIR);
2656 }
2657
selinux_inode_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t dev)2658 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2659 {
2660 int rc;
2661
2662 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2663 if (rc)
2664 return rc;
2665
2666 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2667 }
2668
selinux_inode_rename(struct inode * old_inode,struct dentry * old_dentry,struct inode * new_inode,struct dentry * new_dentry)2669 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2670 struct inode *new_inode, struct dentry *new_dentry)
2671 {
2672 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2673 }
2674
selinux_inode_readlink(struct dentry * dentry)2675 static int selinux_inode_readlink(struct dentry *dentry)
2676 {
2677 const struct cred *cred = current_cred();
2678
2679 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2680 }
2681
selinux_inode_follow_link(struct dentry * dentry,struct nameidata * nameidata)2682 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2683 {
2684 const struct cred *cred = current_cred();
2685 int rc;
2686
2687 rc = secondary_ops->inode_follow_link(dentry, nameidata);
2688 if (rc)
2689 return rc;
2690 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2691 }
2692
selinux_inode_permission(struct inode * inode,int mask)2693 static int selinux_inode_permission(struct inode *inode, int mask)
2694 {
2695 const struct cred *cred = current_cred();
2696 int rc;
2697
2698 rc = secondary_ops->inode_permission(inode, mask);
2699 if (rc)
2700 return rc;
2701
2702 if (!mask) {
2703 /* No permission to check. Existence test. */
2704 return 0;
2705 }
2706
2707 return inode_has_perm(cred, inode,
2708 file_mask_to_av(inode->i_mode, mask), NULL);
2709 }
2710
selinux_inode_setattr(struct dentry * dentry,struct iattr * iattr)2711 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2712 {
2713 const struct cred *cred = current_cred();
2714 int rc;
2715
2716 rc = secondary_ops->inode_setattr(dentry, iattr);
2717 if (rc)
2718 return rc;
2719
2720 if (iattr->ia_valid & ATTR_FORCE)
2721 return 0;
2722
2723 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2724 ATTR_ATIME_SET | ATTR_MTIME_SET))
2725 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2726
2727 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2728 }
2729
selinux_inode_getattr(struct vfsmount * mnt,struct dentry * dentry)2730 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2731 {
2732 const struct cred *cred = current_cred();
2733
2734 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2735 }
2736
selinux_inode_setotherxattr(struct dentry * dentry,const char * name)2737 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2738 {
2739 const struct cred *cred = current_cred();
2740
2741 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2742 sizeof XATTR_SECURITY_PREFIX - 1)) {
2743 if (!strcmp(name, XATTR_NAME_CAPS)) {
2744 if (!capable(CAP_SETFCAP))
2745 return -EPERM;
2746 } else if (!capable(CAP_SYS_ADMIN)) {
2747 /* A different attribute in the security namespace.
2748 Restrict to administrator. */
2749 return -EPERM;
2750 }
2751 }
2752
2753 /* Not an attribute we recognize, so just check the
2754 ordinary setattr permission. */
2755 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2756 }
2757
selinux_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2758 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2759 const void *value, size_t size, int flags)
2760 {
2761 struct inode *inode = dentry->d_inode;
2762 struct inode_security_struct *isec = inode->i_security;
2763 struct superblock_security_struct *sbsec;
2764 struct avc_audit_data ad;
2765 u32 newsid, sid = current_sid();
2766 int rc = 0;
2767
2768 if (strcmp(name, XATTR_NAME_SELINUX))
2769 return selinux_inode_setotherxattr(dentry, name);
2770
2771 sbsec = inode->i_sb->s_security;
2772 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2773 return -EOPNOTSUPP;
2774
2775 if (!is_owner_or_cap(inode))
2776 return -EPERM;
2777
2778 AVC_AUDIT_DATA_INIT(&ad, FS);
2779 ad.u.fs.path.dentry = dentry;
2780
2781 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2782 FILE__RELABELFROM, &ad);
2783 if (rc)
2784 return rc;
2785
2786 rc = security_context_to_sid(value, size, &newsid);
2787 if (rc == -EINVAL) {
2788 if (!capable(CAP_MAC_ADMIN))
2789 return rc;
2790 rc = security_context_to_sid_force(value, size, &newsid);
2791 }
2792 if (rc)
2793 return rc;
2794
2795 rc = avc_has_perm(sid, newsid, isec->sclass,
2796 FILE__RELABELTO, &ad);
2797 if (rc)
2798 return rc;
2799
2800 rc = security_validate_transition(isec->sid, newsid, sid,
2801 isec->sclass);
2802 if (rc)
2803 return rc;
2804
2805 return avc_has_perm(newsid,
2806 sbsec->sid,
2807 SECCLASS_FILESYSTEM,
2808 FILESYSTEM__ASSOCIATE,
2809 &ad);
2810 }
2811
selinux_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2812 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2813 const void *value, size_t size,
2814 int flags)
2815 {
2816 struct inode *inode = dentry->d_inode;
2817 struct inode_security_struct *isec = inode->i_security;
2818 u32 newsid;
2819 int rc;
2820
2821 if (strcmp(name, XATTR_NAME_SELINUX)) {
2822 /* Not an attribute we recognize, so nothing to do. */
2823 return;
2824 }
2825
2826 rc = security_context_to_sid_force(value, size, &newsid);
2827 if (rc) {
2828 printk(KERN_ERR "SELinux: unable to map context to SID"
2829 "for (%s, %lu), rc=%d\n",
2830 inode->i_sb->s_id, inode->i_ino, -rc);
2831 return;
2832 }
2833
2834 isec->sid = newsid;
2835 return;
2836 }
2837
selinux_inode_getxattr(struct dentry * dentry,const char * name)2838 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2839 {
2840 const struct cred *cred = current_cred();
2841
2842 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2843 }
2844
selinux_inode_listxattr(struct dentry * dentry)2845 static int selinux_inode_listxattr(struct dentry *dentry)
2846 {
2847 const struct cred *cred = current_cred();
2848
2849 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2850 }
2851
selinux_inode_removexattr(struct dentry * dentry,const char * name)2852 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2853 {
2854 if (strcmp(name, XATTR_NAME_SELINUX))
2855 return selinux_inode_setotherxattr(dentry, name);
2856
2857 /* No one is allowed to remove a SELinux security label.
2858 You can change the label, but all data must be labeled. */
2859 return -EACCES;
2860 }
2861
2862 /*
2863 * Copy the inode security context value to the user.
2864 *
2865 * Permission check is handled by selinux_inode_getxattr hook.
2866 */
selinux_inode_getsecurity(const struct inode * inode,const char * name,void ** buffer,bool alloc)2867 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2868 {
2869 u32 size;
2870 int error;
2871 char *context = NULL;
2872 struct inode_security_struct *isec = inode->i_security;
2873
2874 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2875 return -EOPNOTSUPP;
2876
2877 /*
2878 * If the caller has CAP_MAC_ADMIN, then get the raw context
2879 * value even if it is not defined by current policy; otherwise,
2880 * use the in-core value under current policy.
2881 * Use the non-auditing forms of the permission checks since
2882 * getxattr may be called by unprivileged processes commonly
2883 * and lack of permission just means that we fall back to the
2884 * in-core context value, not a denial.
2885 */
2886 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2887 SECURITY_CAP_NOAUDIT);
2888 if (!error)
2889 error = security_sid_to_context_force(isec->sid, &context,
2890 &size);
2891 else
2892 error = security_sid_to_context(isec->sid, &context, &size);
2893 if (error)
2894 return error;
2895 error = size;
2896 if (alloc) {
2897 *buffer = context;
2898 goto out_nofree;
2899 }
2900 kfree(context);
2901 out_nofree:
2902 return error;
2903 }
2904
selinux_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)2905 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2906 const void *value, size_t size, int flags)
2907 {
2908 struct inode_security_struct *isec = inode->i_security;
2909 u32 newsid;
2910 int rc;
2911
2912 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2913 return -EOPNOTSUPP;
2914
2915 if (!value || !size)
2916 return -EACCES;
2917
2918 rc = security_context_to_sid((void *)value, size, &newsid);
2919 if (rc)
2920 return rc;
2921
2922 isec->sid = newsid;
2923 return 0;
2924 }
2925
selinux_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)2926 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2927 {
2928 const int len = sizeof(XATTR_NAME_SELINUX);
2929 if (buffer && len <= buffer_size)
2930 memcpy(buffer, XATTR_NAME_SELINUX, len);
2931 return len;
2932 }
2933
selinux_inode_need_killpriv(struct dentry * dentry)2934 static int selinux_inode_need_killpriv(struct dentry *dentry)
2935 {
2936 return secondary_ops->inode_need_killpriv(dentry);
2937 }
2938
selinux_inode_killpriv(struct dentry * dentry)2939 static int selinux_inode_killpriv(struct dentry *dentry)
2940 {
2941 return secondary_ops->inode_killpriv(dentry);
2942 }
2943
selinux_inode_getsecid(const struct inode * inode,u32 * secid)2944 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2945 {
2946 struct inode_security_struct *isec = inode->i_security;
2947 *secid = isec->sid;
2948 }
2949
2950 /* file security operations */
2951
selinux_revalidate_file_permission(struct file * file,int mask)2952 static int selinux_revalidate_file_permission(struct file *file, int mask)
2953 {
2954 const struct cred *cred = current_cred();
2955 int rc;
2956 struct inode *inode = file->f_path.dentry->d_inode;
2957
2958 if (!mask) {
2959 /* No permission to check. Existence test. */
2960 return 0;
2961 }
2962
2963 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2964 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2965 mask |= MAY_APPEND;
2966
2967 rc = file_has_perm(cred, file,
2968 file_mask_to_av(inode->i_mode, mask));
2969 if (rc)
2970 return rc;
2971
2972 return selinux_netlbl_inode_permission(inode, mask);
2973 }
2974
selinux_file_permission(struct file * file,int mask)2975 static int selinux_file_permission(struct file *file, int mask)
2976 {
2977 struct inode *inode = file->f_path.dentry->d_inode;
2978 struct file_security_struct *fsec = file->f_security;
2979 struct inode_security_struct *isec = inode->i_security;
2980 u32 sid = current_sid();
2981
2982 if (!mask) {
2983 /* No permission to check. Existence test. */
2984 return 0;
2985 }
2986
2987 if (sid == fsec->sid && fsec->isid == isec->sid
2988 && fsec->pseqno == avc_policy_seqno())
2989 return selinux_netlbl_inode_permission(inode, mask);
2990
2991 return selinux_revalidate_file_permission(file, mask);
2992 }
2993
selinux_file_alloc_security(struct file * file)2994 static int selinux_file_alloc_security(struct file *file)
2995 {
2996 return file_alloc_security(file);
2997 }
2998
selinux_file_free_security(struct file * file)2999 static void selinux_file_free_security(struct file *file)
3000 {
3001 file_free_security(file);
3002 }
3003
selinux_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3004 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3005 unsigned long arg)
3006 {
3007 const struct cred *cred = current_cred();
3008 u32 av = 0;
3009
3010 if (_IOC_DIR(cmd) & _IOC_WRITE)
3011 av |= FILE__WRITE;
3012 if (_IOC_DIR(cmd) & _IOC_READ)
3013 av |= FILE__READ;
3014 if (!av)
3015 av = FILE__IOCTL;
3016
3017 return file_has_perm(cred, file, av);
3018 }
3019
file_map_prot_check(struct file * file,unsigned long prot,int shared)3020 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3021 {
3022 const struct cred *cred = current_cred();
3023 int rc = 0;
3024
3025 #ifndef CONFIG_PPC32
3026 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3027 /*
3028 * We are making executable an anonymous mapping or a
3029 * private file mapping that will also be writable.
3030 * This has an additional check.
3031 */
3032 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3033 if (rc)
3034 goto error;
3035 }
3036 #endif
3037
3038 if (file) {
3039 /* read access is always possible with a mapping */
3040 u32 av = FILE__READ;
3041
3042 /* write access only matters if the mapping is shared */
3043 if (shared && (prot & PROT_WRITE))
3044 av |= FILE__WRITE;
3045
3046 if (prot & PROT_EXEC)
3047 av |= FILE__EXECUTE;
3048
3049 return file_has_perm(cred, file, av);
3050 }
3051
3052 error:
3053 return rc;
3054 }
3055
selinux_file_mmap(struct file * file,unsigned long reqprot,unsigned long prot,unsigned long flags,unsigned long addr,unsigned long addr_only)3056 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3057 unsigned long prot, unsigned long flags,
3058 unsigned long addr, unsigned long addr_only)
3059 {
3060 int rc = 0;
3061 u32 sid = current_sid();
3062
3063 if (addr < mmap_min_addr)
3064 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3065 MEMPROTECT__MMAP_ZERO, NULL);
3066 if (rc || addr_only)
3067 return rc;
3068
3069 if (selinux_checkreqprot)
3070 prot = reqprot;
3071
3072 return file_map_prot_check(file, prot,
3073 (flags & MAP_TYPE) == MAP_SHARED);
3074 }
3075
selinux_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)3076 static int selinux_file_mprotect(struct vm_area_struct *vma,
3077 unsigned long reqprot,
3078 unsigned long prot)
3079 {
3080 const struct cred *cred = current_cred();
3081 int rc;
3082
3083 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3084 if (rc)
3085 return rc;
3086
3087 if (selinux_checkreqprot)
3088 prot = reqprot;
3089
3090 #ifndef CONFIG_PPC32
3091 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3092 rc = 0;
3093 if (vma->vm_start >= vma->vm_mm->start_brk &&
3094 vma->vm_end <= vma->vm_mm->brk) {
3095 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3096 } else if (!vma->vm_file &&
3097 vma->vm_start <= vma->vm_mm->start_stack &&
3098 vma->vm_end >= vma->vm_mm->start_stack) {
3099 rc = current_has_perm(current, PROCESS__EXECSTACK);
3100 } else if (vma->vm_file && vma->anon_vma) {
3101 /*
3102 * We are making executable a file mapping that has
3103 * had some COW done. Since pages might have been
3104 * written, check ability to execute the possibly
3105 * modified content. This typically should only
3106 * occur for text relocations.
3107 */
3108 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3109 }
3110 if (rc)
3111 return rc;
3112 }
3113 #endif
3114
3115 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3116 }
3117
selinux_file_lock(struct file * file,unsigned int cmd)3118 static int selinux_file_lock(struct file *file, unsigned int cmd)
3119 {
3120 const struct cred *cred = current_cred();
3121
3122 return file_has_perm(cred, file, FILE__LOCK);
3123 }
3124
selinux_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)3125 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3126 unsigned long arg)
3127 {
3128 const struct cred *cred = current_cred();
3129 int err = 0;
3130
3131 switch (cmd) {
3132 case F_SETFL:
3133 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3134 err = -EINVAL;
3135 break;
3136 }
3137
3138 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3139 err = file_has_perm(cred, file, FILE__WRITE);
3140 break;
3141 }
3142 /* fall through */
3143 case F_SETOWN:
3144 case F_SETSIG:
3145 case F_GETFL:
3146 case F_GETOWN:
3147 case F_GETSIG:
3148 /* Just check FD__USE permission */
3149 err = file_has_perm(cred, file, 0);
3150 break;
3151 case F_GETLK:
3152 case F_SETLK:
3153 case F_SETLKW:
3154 #if BITS_PER_LONG == 32
3155 case F_GETLK64:
3156 case F_SETLK64:
3157 case F_SETLKW64:
3158 #endif
3159 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3160 err = -EINVAL;
3161 break;
3162 }
3163 err = file_has_perm(cred, file, FILE__LOCK);
3164 break;
3165 }
3166
3167 return err;
3168 }
3169
selinux_file_set_fowner(struct file * file)3170 static int selinux_file_set_fowner(struct file *file)
3171 {
3172 struct file_security_struct *fsec;
3173
3174 fsec = file->f_security;
3175 fsec->fown_sid = current_sid();
3176
3177 return 0;
3178 }
3179
selinux_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int signum)3180 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3181 struct fown_struct *fown, int signum)
3182 {
3183 struct file *file;
3184 u32 sid = current_sid();
3185 u32 perm;
3186 struct file_security_struct *fsec;
3187
3188 /* struct fown_struct is never outside the context of a struct file */
3189 file = container_of(fown, struct file, f_owner);
3190
3191 fsec = file->f_security;
3192
3193 if (!signum)
3194 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3195 else
3196 perm = signal_to_av(signum);
3197
3198 return avc_has_perm(fsec->fown_sid, sid,
3199 SECCLASS_PROCESS, perm, NULL);
3200 }
3201
selinux_file_receive(struct file * file)3202 static int selinux_file_receive(struct file *file)
3203 {
3204 const struct cred *cred = current_cred();
3205
3206 return file_has_perm(cred, file, file_to_av(file));
3207 }
3208
selinux_dentry_open(struct file * file,const struct cred * cred)3209 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3210 {
3211 struct file_security_struct *fsec;
3212 struct inode *inode;
3213 struct inode_security_struct *isec;
3214
3215 inode = file->f_path.dentry->d_inode;
3216 fsec = file->f_security;
3217 isec = inode->i_security;
3218 /*
3219 * Save inode label and policy sequence number
3220 * at open-time so that selinux_file_permission
3221 * can determine whether revalidation is necessary.
3222 * Task label is already saved in the file security
3223 * struct as its SID.
3224 */
3225 fsec->isid = isec->sid;
3226 fsec->pseqno = avc_policy_seqno();
3227 /*
3228 * Since the inode label or policy seqno may have changed
3229 * between the selinux_inode_permission check and the saving
3230 * of state above, recheck that access is still permitted.
3231 * Otherwise, access might never be revalidated against the
3232 * new inode label or new policy.
3233 * This check is not redundant - do not remove.
3234 */
3235 return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3236 }
3237
3238 /* task security operations */
3239
selinux_task_create(unsigned long clone_flags)3240 static int selinux_task_create(unsigned long clone_flags)
3241 {
3242 int rc;
3243
3244 rc = secondary_ops->task_create(clone_flags);
3245 if (rc)
3246 return rc;
3247
3248 return current_has_perm(current, PROCESS__FORK);
3249 }
3250
3251 /*
3252 * detach and free the LSM part of a set of credentials
3253 */
selinux_cred_free(struct cred * cred)3254 static void selinux_cred_free(struct cred *cred)
3255 {
3256 struct task_security_struct *tsec = cred->security;
3257 cred->security = NULL;
3258 kfree(tsec);
3259 }
3260
3261 /*
3262 * prepare a new set of credentials for modification
3263 */
selinux_cred_prepare(struct cred * new,const struct cred * old,gfp_t gfp)3264 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3265 gfp_t gfp)
3266 {
3267 const struct task_security_struct *old_tsec;
3268 struct task_security_struct *tsec;
3269
3270 old_tsec = old->security;
3271
3272 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3273 if (!tsec)
3274 return -ENOMEM;
3275
3276 new->security = tsec;
3277 return 0;
3278 }
3279
3280 /*
3281 * commit new credentials
3282 */
selinux_cred_commit(struct cred * new,const struct cred * old)3283 static void selinux_cred_commit(struct cred *new, const struct cred *old)
3284 {
3285 secondary_ops->cred_commit(new, old);
3286 }
3287
3288 /*
3289 * set the security data for a kernel service
3290 * - all the creation contexts are set to unlabelled
3291 */
selinux_kernel_act_as(struct cred * new,u32 secid)3292 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3293 {
3294 struct task_security_struct *tsec = new->security;
3295 u32 sid = current_sid();
3296 int ret;
3297
3298 ret = avc_has_perm(sid, secid,
3299 SECCLASS_KERNEL_SERVICE,
3300 KERNEL_SERVICE__USE_AS_OVERRIDE,
3301 NULL);
3302 if (ret == 0) {
3303 tsec->sid = secid;
3304 tsec->create_sid = 0;
3305 tsec->keycreate_sid = 0;
3306 tsec->sockcreate_sid = 0;
3307 }
3308 return ret;
3309 }
3310
3311 /*
3312 * set the file creation context in a security record to the same as the
3313 * objective context of the specified inode
3314 */
selinux_kernel_create_files_as(struct cred * new,struct inode * inode)3315 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3316 {
3317 struct inode_security_struct *isec = inode->i_security;
3318 struct task_security_struct *tsec = new->security;
3319 u32 sid = current_sid();
3320 int ret;
3321
3322 ret = avc_has_perm(sid, isec->sid,
3323 SECCLASS_KERNEL_SERVICE,
3324 KERNEL_SERVICE__CREATE_FILES_AS,
3325 NULL);
3326
3327 if (ret == 0)
3328 tsec->create_sid = isec->sid;
3329 return 0;
3330 }
3331
selinux_task_setuid(uid_t id0,uid_t id1,uid_t id2,int flags)3332 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3333 {
3334 /* Since setuid only affects the current process, and
3335 since the SELinux controls are not based on the Linux
3336 identity attributes, SELinux does not need to control
3337 this operation. However, SELinux does control the use
3338 of the CAP_SETUID and CAP_SETGID capabilities using the
3339 capable hook. */
3340 return 0;
3341 }
3342
selinux_task_fix_setuid(struct cred * new,const struct cred * old,int flags)3343 static int selinux_task_fix_setuid(struct cred *new, const struct cred *old,
3344 int flags)
3345 {
3346 return secondary_ops->task_fix_setuid(new, old, flags);
3347 }
3348
selinux_task_setgid(gid_t id0,gid_t id1,gid_t id2,int flags)3349 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3350 {
3351 /* See the comment for setuid above. */
3352 return 0;
3353 }
3354
selinux_task_setpgid(struct task_struct * p,pid_t pgid)3355 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3356 {
3357 return current_has_perm(p, PROCESS__SETPGID);
3358 }
3359
selinux_task_getpgid(struct task_struct * p)3360 static int selinux_task_getpgid(struct task_struct *p)
3361 {
3362 return current_has_perm(p, PROCESS__GETPGID);
3363 }
3364
selinux_task_getsid(struct task_struct * p)3365 static int selinux_task_getsid(struct task_struct *p)
3366 {
3367 return current_has_perm(p, PROCESS__GETSESSION);
3368 }
3369
selinux_task_getsecid(struct task_struct * p,u32 * secid)3370 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3371 {
3372 *secid = task_sid(p);
3373 }
3374
selinux_task_setgroups(struct group_info * group_info)3375 static int selinux_task_setgroups(struct group_info *group_info)
3376 {
3377 /* See the comment for setuid above. */
3378 return 0;
3379 }
3380
selinux_task_setnice(struct task_struct * p,int nice)3381 static int selinux_task_setnice(struct task_struct *p, int nice)
3382 {
3383 int rc;
3384
3385 rc = secondary_ops->task_setnice(p, nice);
3386 if (rc)
3387 return rc;
3388
3389 return current_has_perm(p, PROCESS__SETSCHED);
3390 }
3391
selinux_task_setioprio(struct task_struct * p,int ioprio)3392 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3393 {
3394 int rc;
3395
3396 rc = secondary_ops->task_setioprio(p, ioprio);
3397 if (rc)
3398 return rc;
3399
3400 return current_has_perm(p, PROCESS__SETSCHED);
3401 }
3402
selinux_task_getioprio(struct task_struct * p)3403 static int selinux_task_getioprio(struct task_struct *p)
3404 {
3405 return current_has_perm(p, PROCESS__GETSCHED);
3406 }
3407
selinux_task_setrlimit(unsigned int resource,struct rlimit * new_rlim)3408 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3409 {
3410 struct rlimit *old_rlim = current->signal->rlim + resource;
3411 int rc;
3412
3413 rc = secondary_ops->task_setrlimit(resource, new_rlim);
3414 if (rc)
3415 return rc;
3416
3417 /* Control the ability to change the hard limit (whether
3418 lowering or raising it), so that the hard limit can
3419 later be used as a safe reset point for the soft limit
3420 upon context transitions. See selinux_bprm_committing_creds. */
3421 if (old_rlim->rlim_max != new_rlim->rlim_max)
3422 return current_has_perm(current, PROCESS__SETRLIMIT);
3423
3424 return 0;
3425 }
3426
selinux_task_setscheduler(struct task_struct * p,int policy,struct sched_param * lp)3427 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3428 {
3429 int rc;
3430
3431 rc = secondary_ops->task_setscheduler(p, policy, lp);
3432 if (rc)
3433 return rc;
3434
3435 return current_has_perm(p, PROCESS__SETSCHED);
3436 }
3437
selinux_task_getscheduler(struct task_struct * p)3438 static int selinux_task_getscheduler(struct task_struct *p)
3439 {
3440 return current_has_perm(p, PROCESS__GETSCHED);
3441 }
3442
selinux_task_movememory(struct task_struct * p)3443 static int selinux_task_movememory(struct task_struct *p)
3444 {
3445 return current_has_perm(p, PROCESS__SETSCHED);
3446 }
3447
selinux_task_kill(struct task_struct * p,struct siginfo * info,int sig,u32 secid)3448 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3449 int sig, u32 secid)
3450 {
3451 u32 perm;
3452 int rc;
3453
3454 rc = secondary_ops->task_kill(p, info, sig, secid);
3455 if (rc)
3456 return rc;
3457
3458 if (!sig)
3459 perm = PROCESS__SIGNULL; /* null signal; existence test */
3460 else
3461 perm = signal_to_av(sig);
3462 if (secid)
3463 rc = avc_has_perm(secid, task_sid(p),
3464 SECCLASS_PROCESS, perm, NULL);
3465 else
3466 rc = current_has_perm(p, perm);
3467 return rc;
3468 }
3469
selinux_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)3470 static int selinux_task_prctl(int option,
3471 unsigned long arg2,
3472 unsigned long arg3,
3473 unsigned long arg4,
3474 unsigned long arg5)
3475 {
3476 /* The current prctl operations do not appear to require
3477 any SELinux controls since they merely observe or modify
3478 the state of the current process. */
3479 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5);
3480 }
3481
selinux_task_wait(struct task_struct * p)3482 static int selinux_task_wait(struct task_struct *p)
3483 {
3484 return task_has_perm(p, current, PROCESS__SIGCHLD);
3485 }
3486
selinux_task_to_inode(struct task_struct * p,struct inode * inode)3487 static void selinux_task_to_inode(struct task_struct *p,
3488 struct inode *inode)
3489 {
3490 struct inode_security_struct *isec = inode->i_security;
3491 u32 sid = task_sid(p);
3492
3493 isec->sid = sid;
3494 isec->initialized = 1;
3495 }
3496
3497 /* Returns error only if unable to parse addresses */
selinux_parse_skb_ipv4(struct sk_buff * skb,struct avc_audit_data * ad,u8 * proto)3498 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3499 struct avc_audit_data *ad, u8 *proto)
3500 {
3501 int offset, ihlen, ret = -EINVAL;
3502 struct iphdr _iph, *ih;
3503
3504 offset = skb_network_offset(skb);
3505 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3506 if (ih == NULL)
3507 goto out;
3508
3509 ihlen = ih->ihl * 4;
3510 if (ihlen < sizeof(_iph))
3511 goto out;
3512
3513 ad->u.net.v4info.saddr = ih->saddr;
3514 ad->u.net.v4info.daddr = ih->daddr;
3515 ret = 0;
3516
3517 if (proto)
3518 *proto = ih->protocol;
3519
3520 switch (ih->protocol) {
3521 case IPPROTO_TCP: {
3522 struct tcphdr _tcph, *th;
3523
3524 if (ntohs(ih->frag_off) & IP_OFFSET)
3525 break;
3526
3527 offset += ihlen;
3528 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3529 if (th == NULL)
3530 break;
3531
3532 ad->u.net.sport = th->source;
3533 ad->u.net.dport = th->dest;
3534 break;
3535 }
3536
3537 case IPPROTO_UDP: {
3538 struct udphdr _udph, *uh;
3539
3540 if (ntohs(ih->frag_off) & IP_OFFSET)
3541 break;
3542
3543 offset += ihlen;
3544 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3545 if (uh == NULL)
3546 break;
3547
3548 ad->u.net.sport = uh->source;
3549 ad->u.net.dport = uh->dest;
3550 break;
3551 }
3552
3553 case IPPROTO_DCCP: {
3554 struct dccp_hdr _dccph, *dh;
3555
3556 if (ntohs(ih->frag_off) & IP_OFFSET)
3557 break;
3558
3559 offset += ihlen;
3560 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3561 if (dh == NULL)
3562 break;
3563
3564 ad->u.net.sport = dh->dccph_sport;
3565 ad->u.net.dport = dh->dccph_dport;
3566 break;
3567 }
3568
3569 default:
3570 break;
3571 }
3572 out:
3573 return ret;
3574 }
3575
3576 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3577
3578 /* Returns error only if unable to parse addresses */
selinux_parse_skb_ipv6(struct sk_buff * skb,struct avc_audit_data * ad,u8 * proto)3579 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3580 struct avc_audit_data *ad, u8 *proto)
3581 {
3582 u8 nexthdr;
3583 int ret = -EINVAL, offset;
3584 struct ipv6hdr _ipv6h, *ip6;
3585
3586 offset = skb_network_offset(skb);
3587 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3588 if (ip6 == NULL)
3589 goto out;
3590
3591 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3592 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3593 ret = 0;
3594
3595 nexthdr = ip6->nexthdr;
3596 offset += sizeof(_ipv6h);
3597 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3598 if (offset < 0)
3599 goto out;
3600
3601 if (proto)
3602 *proto = nexthdr;
3603
3604 switch (nexthdr) {
3605 case IPPROTO_TCP: {
3606 struct tcphdr _tcph, *th;
3607
3608 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3609 if (th == NULL)
3610 break;
3611
3612 ad->u.net.sport = th->source;
3613 ad->u.net.dport = th->dest;
3614 break;
3615 }
3616
3617 case IPPROTO_UDP: {
3618 struct udphdr _udph, *uh;
3619
3620 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3621 if (uh == NULL)
3622 break;
3623
3624 ad->u.net.sport = uh->source;
3625 ad->u.net.dport = uh->dest;
3626 break;
3627 }
3628
3629 case IPPROTO_DCCP: {
3630 struct dccp_hdr _dccph, *dh;
3631
3632 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3633 if (dh == NULL)
3634 break;
3635
3636 ad->u.net.sport = dh->dccph_sport;
3637 ad->u.net.dport = dh->dccph_dport;
3638 break;
3639 }
3640
3641 /* includes fragments */
3642 default:
3643 break;
3644 }
3645 out:
3646 return ret;
3647 }
3648
3649 #endif /* IPV6 */
3650
selinux_parse_skb(struct sk_buff * skb,struct avc_audit_data * ad,char ** _addrp,int src,u8 * proto)3651 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3652 char **_addrp, int src, u8 *proto)
3653 {
3654 char *addrp;
3655 int ret;
3656
3657 switch (ad->u.net.family) {
3658 case PF_INET:
3659 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3660 if (ret)
3661 goto parse_error;
3662 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3663 &ad->u.net.v4info.daddr);
3664 goto okay;
3665
3666 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3667 case PF_INET6:
3668 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3669 if (ret)
3670 goto parse_error;
3671 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3672 &ad->u.net.v6info.daddr);
3673 goto okay;
3674 #endif /* IPV6 */
3675 default:
3676 addrp = NULL;
3677 goto okay;
3678 }
3679
3680 parse_error:
3681 printk(KERN_WARNING
3682 "SELinux: failure in selinux_parse_skb(),"
3683 " unable to parse packet\n");
3684 return ret;
3685
3686 okay:
3687 if (_addrp)
3688 *_addrp = addrp;
3689 return 0;
3690 }
3691
3692 /**
3693 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3694 * @skb: the packet
3695 * @family: protocol family
3696 * @sid: the packet's peer label SID
3697 *
3698 * Description:
3699 * Check the various different forms of network peer labeling and determine
3700 * the peer label/SID for the packet; most of the magic actually occurs in
3701 * the security server function security_net_peersid_cmp(). The function
3702 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3703 * or -EACCES if @sid is invalid due to inconsistencies with the different
3704 * peer labels.
3705 *
3706 */
selinux_skb_peerlbl_sid(struct sk_buff * skb,u16 family,u32 * sid)3707 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3708 {
3709 int err;
3710 u32 xfrm_sid;
3711 u32 nlbl_sid;
3712 u32 nlbl_type;
3713
3714 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3715 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3716
3717 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3718 if (unlikely(err)) {
3719 printk(KERN_WARNING
3720 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3721 " unable to determine packet's peer label\n");
3722 return -EACCES;
3723 }
3724
3725 return 0;
3726 }
3727
3728 /* socket security operations */
socket_has_perm(struct task_struct * task,struct socket * sock,u32 perms)3729 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3730 u32 perms)
3731 {
3732 struct inode_security_struct *isec;
3733 struct avc_audit_data ad;
3734 u32 sid;
3735 int err = 0;
3736
3737 isec = SOCK_INODE(sock)->i_security;
3738
3739 if (isec->sid == SECINITSID_KERNEL)
3740 goto out;
3741 sid = task_sid(task);
3742
3743 AVC_AUDIT_DATA_INIT(&ad, NET);
3744 ad.u.net.sk = sock->sk;
3745 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3746
3747 out:
3748 return err;
3749 }
3750
selinux_socket_create(int family,int type,int protocol,int kern)3751 static int selinux_socket_create(int family, int type,
3752 int protocol, int kern)
3753 {
3754 const struct cred *cred = current_cred();
3755 const struct task_security_struct *tsec = cred->security;
3756 u32 sid, newsid;
3757 u16 secclass;
3758 int err = 0;
3759
3760 if (kern)
3761 goto out;
3762
3763 sid = tsec->sid;
3764 newsid = tsec->sockcreate_sid ?: sid;
3765
3766 secclass = socket_type_to_security_class(family, type, protocol);
3767 err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3768
3769 out:
3770 return err;
3771 }
3772
selinux_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)3773 static int selinux_socket_post_create(struct socket *sock, int family,
3774 int type, int protocol, int kern)
3775 {
3776 const struct cred *cred = current_cred();
3777 const struct task_security_struct *tsec = cred->security;
3778 struct inode_security_struct *isec;
3779 struct sk_security_struct *sksec;
3780 u32 sid, newsid;
3781 int err = 0;
3782
3783 sid = tsec->sid;
3784 newsid = tsec->sockcreate_sid;
3785
3786 isec = SOCK_INODE(sock)->i_security;
3787
3788 if (kern)
3789 isec->sid = SECINITSID_KERNEL;
3790 else if (newsid)
3791 isec->sid = newsid;
3792 else
3793 isec->sid = sid;
3794
3795 isec->sclass = socket_type_to_security_class(family, type, protocol);
3796 isec->initialized = 1;
3797
3798 if (sock->sk) {
3799 sksec = sock->sk->sk_security;
3800 sksec->sid = isec->sid;
3801 sksec->sclass = isec->sclass;
3802 err = selinux_netlbl_socket_post_create(sock);
3803 }
3804
3805 return err;
3806 }
3807
3808 /* Range of port numbers used to automatically bind.
3809 Need to determine whether we should perform a name_bind
3810 permission check between the socket and the port number. */
3811
selinux_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)3812 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3813 {
3814 u16 family;
3815 int err;
3816
3817 err = socket_has_perm(current, sock, SOCKET__BIND);
3818 if (err)
3819 goto out;
3820
3821 /*
3822 * If PF_INET or PF_INET6, check name_bind permission for the port.
3823 * Multiple address binding for SCTP is not supported yet: we just
3824 * check the first address now.
3825 */
3826 family = sock->sk->sk_family;
3827 if (family == PF_INET || family == PF_INET6) {
3828 char *addrp;
3829 struct inode_security_struct *isec;
3830 struct avc_audit_data ad;
3831 struct sockaddr_in *addr4 = NULL;
3832 struct sockaddr_in6 *addr6 = NULL;
3833 unsigned short snum;
3834 struct sock *sk = sock->sk;
3835 u32 sid, node_perm;
3836
3837 isec = SOCK_INODE(sock)->i_security;
3838
3839 if (family == PF_INET) {
3840 addr4 = (struct sockaddr_in *)address;
3841 snum = ntohs(addr4->sin_port);
3842 addrp = (char *)&addr4->sin_addr.s_addr;
3843 } else {
3844 addr6 = (struct sockaddr_in6 *)address;
3845 snum = ntohs(addr6->sin6_port);
3846 addrp = (char *)&addr6->sin6_addr.s6_addr;
3847 }
3848
3849 if (snum) {
3850 int low, high;
3851
3852 inet_get_local_port_range(&low, &high);
3853
3854 if (snum < max(PROT_SOCK, low) || snum > high) {
3855 err = sel_netport_sid(sk->sk_protocol,
3856 snum, &sid);
3857 if (err)
3858 goto out;
3859 AVC_AUDIT_DATA_INIT(&ad, NET);
3860 ad.u.net.sport = htons(snum);
3861 ad.u.net.family = family;
3862 err = avc_has_perm(isec->sid, sid,
3863 isec->sclass,
3864 SOCKET__NAME_BIND, &ad);
3865 if (err)
3866 goto out;
3867 }
3868 }
3869
3870 switch (isec->sclass) {
3871 case SECCLASS_TCP_SOCKET:
3872 node_perm = TCP_SOCKET__NODE_BIND;
3873 break;
3874
3875 case SECCLASS_UDP_SOCKET:
3876 node_perm = UDP_SOCKET__NODE_BIND;
3877 break;
3878
3879 case SECCLASS_DCCP_SOCKET:
3880 node_perm = DCCP_SOCKET__NODE_BIND;
3881 break;
3882
3883 default:
3884 node_perm = RAWIP_SOCKET__NODE_BIND;
3885 break;
3886 }
3887
3888 err = sel_netnode_sid(addrp, family, &sid);
3889 if (err)
3890 goto out;
3891
3892 AVC_AUDIT_DATA_INIT(&ad, NET);
3893 ad.u.net.sport = htons(snum);
3894 ad.u.net.family = family;
3895
3896 if (family == PF_INET)
3897 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3898 else
3899 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3900
3901 err = avc_has_perm(isec->sid, sid,
3902 isec->sclass, node_perm, &ad);
3903 if (err)
3904 goto out;
3905 }
3906 out:
3907 return err;
3908 }
3909
selinux_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)3910 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3911 {
3912 struct sock *sk = sock->sk;
3913 struct inode_security_struct *isec;
3914 int err;
3915
3916 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3917 if (err)
3918 return err;
3919
3920 /*
3921 * If a TCP or DCCP socket, check name_connect permission for the port.
3922 */
3923 isec = SOCK_INODE(sock)->i_security;
3924 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3925 isec->sclass == SECCLASS_DCCP_SOCKET) {
3926 struct avc_audit_data ad;
3927 struct sockaddr_in *addr4 = NULL;
3928 struct sockaddr_in6 *addr6 = NULL;
3929 unsigned short snum;
3930 u32 sid, perm;
3931
3932 if (sk->sk_family == PF_INET) {
3933 addr4 = (struct sockaddr_in *)address;
3934 if (addrlen < sizeof(struct sockaddr_in))
3935 return -EINVAL;
3936 snum = ntohs(addr4->sin_port);
3937 } else {
3938 addr6 = (struct sockaddr_in6 *)address;
3939 if (addrlen < SIN6_LEN_RFC2133)
3940 return -EINVAL;
3941 snum = ntohs(addr6->sin6_port);
3942 }
3943
3944 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3945 if (err)
3946 goto out;
3947
3948 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3949 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3950
3951 AVC_AUDIT_DATA_INIT(&ad, NET);
3952 ad.u.net.dport = htons(snum);
3953 ad.u.net.family = sk->sk_family;
3954 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3955 if (err)
3956 goto out;
3957 }
3958
3959 err = selinux_netlbl_socket_connect(sk, address);
3960
3961 out:
3962 return err;
3963 }
3964
selinux_socket_listen(struct socket * sock,int backlog)3965 static int selinux_socket_listen(struct socket *sock, int backlog)
3966 {
3967 return socket_has_perm(current, sock, SOCKET__LISTEN);
3968 }
3969
selinux_socket_accept(struct socket * sock,struct socket * newsock)3970 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3971 {
3972 int err;
3973 struct inode_security_struct *isec;
3974 struct inode_security_struct *newisec;
3975
3976 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3977 if (err)
3978 return err;
3979
3980 newisec = SOCK_INODE(newsock)->i_security;
3981
3982 isec = SOCK_INODE(sock)->i_security;
3983 newisec->sclass = isec->sclass;
3984 newisec->sid = isec->sid;
3985 newisec->initialized = 1;
3986
3987 return 0;
3988 }
3989
selinux_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)3990 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3991 int size)
3992 {
3993 int rc;
3994
3995 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3996 if (rc)
3997 return rc;
3998
3999 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
4000 }
4001
selinux_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)4002 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4003 int size, int flags)
4004 {
4005 return socket_has_perm(current, sock, SOCKET__READ);
4006 }
4007
selinux_socket_getsockname(struct socket * sock)4008 static int selinux_socket_getsockname(struct socket *sock)
4009 {
4010 return socket_has_perm(current, sock, SOCKET__GETATTR);
4011 }
4012
selinux_socket_getpeername(struct socket * sock)4013 static int selinux_socket_getpeername(struct socket *sock)
4014 {
4015 return socket_has_perm(current, sock, SOCKET__GETATTR);
4016 }
4017
selinux_socket_setsockopt(struct socket * sock,int level,int optname)4018 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4019 {
4020 int err;
4021
4022 err = socket_has_perm(current, sock, SOCKET__SETOPT);
4023 if (err)
4024 return err;
4025
4026 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4027 }
4028
selinux_socket_getsockopt(struct socket * sock,int level,int optname)4029 static int selinux_socket_getsockopt(struct socket *sock, int level,
4030 int optname)
4031 {
4032 return socket_has_perm(current, sock, SOCKET__GETOPT);
4033 }
4034
selinux_socket_shutdown(struct socket * sock,int how)4035 static int selinux_socket_shutdown(struct socket *sock, int how)
4036 {
4037 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4038 }
4039
selinux_socket_unix_stream_connect(struct socket * sock,struct socket * other,struct sock * newsk)4040 static int selinux_socket_unix_stream_connect(struct socket *sock,
4041 struct socket *other,
4042 struct sock *newsk)
4043 {
4044 struct sk_security_struct *ssec;
4045 struct inode_security_struct *isec;
4046 struct inode_security_struct *other_isec;
4047 struct avc_audit_data ad;
4048 int err;
4049
4050 err = secondary_ops->unix_stream_connect(sock, other, newsk);
4051 if (err)
4052 return err;
4053
4054 isec = SOCK_INODE(sock)->i_security;
4055 other_isec = SOCK_INODE(other)->i_security;
4056
4057 AVC_AUDIT_DATA_INIT(&ad, NET);
4058 ad.u.net.sk = other->sk;
4059
4060 err = avc_has_perm(isec->sid, other_isec->sid,
4061 isec->sclass,
4062 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4063 if (err)
4064 return err;
4065
4066 /* connecting socket */
4067 ssec = sock->sk->sk_security;
4068 ssec->peer_sid = other_isec->sid;
4069
4070 /* server child socket */
4071 ssec = newsk->sk_security;
4072 ssec->peer_sid = isec->sid;
4073 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4074
4075 return err;
4076 }
4077
selinux_socket_unix_may_send(struct socket * sock,struct socket * other)4078 static int selinux_socket_unix_may_send(struct socket *sock,
4079 struct socket *other)
4080 {
4081 struct inode_security_struct *isec;
4082 struct inode_security_struct *other_isec;
4083 struct avc_audit_data ad;
4084 int err;
4085
4086 isec = SOCK_INODE(sock)->i_security;
4087 other_isec = SOCK_INODE(other)->i_security;
4088
4089 AVC_AUDIT_DATA_INIT(&ad, NET);
4090 ad.u.net.sk = other->sk;
4091
4092 err = avc_has_perm(isec->sid, other_isec->sid,
4093 isec->sclass, SOCKET__SENDTO, &ad);
4094 if (err)
4095 return err;
4096
4097 return 0;
4098 }
4099
selinux_inet_sys_rcv_skb(int ifindex,char * addrp,u16 family,u32 peer_sid,struct avc_audit_data * ad)4100 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4101 u32 peer_sid,
4102 struct avc_audit_data *ad)
4103 {
4104 int err;
4105 u32 if_sid;
4106 u32 node_sid;
4107
4108 err = sel_netif_sid(ifindex, &if_sid);
4109 if (err)
4110 return err;
4111 err = avc_has_perm(peer_sid, if_sid,
4112 SECCLASS_NETIF, NETIF__INGRESS, ad);
4113 if (err)
4114 return err;
4115
4116 err = sel_netnode_sid(addrp, family, &node_sid);
4117 if (err)
4118 return err;
4119 return avc_has_perm(peer_sid, node_sid,
4120 SECCLASS_NODE, NODE__RECVFROM, ad);
4121 }
4122
selinux_sock_rcv_skb_iptables_compat(struct sock * sk,struct sk_buff * skb,struct avc_audit_data * ad,u16 family,char * addrp)4123 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4124 struct sk_buff *skb,
4125 struct avc_audit_data *ad,
4126 u16 family,
4127 char *addrp)
4128 {
4129 int err;
4130 struct sk_security_struct *sksec = sk->sk_security;
4131 u16 sk_class;
4132 u32 netif_perm, node_perm, recv_perm;
4133 u32 port_sid, node_sid, if_sid, sk_sid;
4134
4135 sk_sid = sksec->sid;
4136 sk_class = sksec->sclass;
4137
4138 switch (sk_class) {
4139 case SECCLASS_UDP_SOCKET:
4140 netif_perm = NETIF__UDP_RECV;
4141 node_perm = NODE__UDP_RECV;
4142 recv_perm = UDP_SOCKET__RECV_MSG;
4143 break;
4144 case SECCLASS_TCP_SOCKET:
4145 netif_perm = NETIF__TCP_RECV;
4146 node_perm = NODE__TCP_RECV;
4147 recv_perm = TCP_SOCKET__RECV_MSG;
4148 break;
4149 case SECCLASS_DCCP_SOCKET:
4150 netif_perm = NETIF__DCCP_RECV;
4151 node_perm = NODE__DCCP_RECV;
4152 recv_perm = DCCP_SOCKET__RECV_MSG;
4153 break;
4154 default:
4155 netif_perm = NETIF__RAWIP_RECV;
4156 node_perm = NODE__RAWIP_RECV;
4157 recv_perm = 0;
4158 break;
4159 }
4160
4161 err = sel_netif_sid(skb->iif, &if_sid);
4162 if (err)
4163 return err;
4164 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4165 if (err)
4166 return err;
4167
4168 err = sel_netnode_sid(addrp, family, &node_sid);
4169 if (err)
4170 return err;
4171 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4172 if (err)
4173 return err;
4174
4175 if (!recv_perm)
4176 return 0;
4177 err = sel_netport_sid(sk->sk_protocol,
4178 ntohs(ad->u.net.sport), &port_sid);
4179 if (unlikely(err)) {
4180 printk(KERN_WARNING
4181 "SELinux: failure in"
4182 " selinux_sock_rcv_skb_iptables_compat(),"
4183 " network port label not found\n");
4184 return err;
4185 }
4186 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4187 }
4188
selinux_sock_rcv_skb_compat(struct sock * sk,struct sk_buff * skb,u16 family)4189 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4190 u16 family)
4191 {
4192 int err = 0;
4193 struct sk_security_struct *sksec = sk->sk_security;
4194 u32 peer_sid;
4195 u32 sk_sid = sksec->sid;
4196 struct avc_audit_data ad;
4197 char *addrp;
4198
4199 AVC_AUDIT_DATA_INIT(&ad, NET);
4200 ad.u.net.netif = skb->iif;
4201 ad.u.net.family = family;
4202 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4203 if (err)
4204 return err;
4205
4206 if (selinux_compat_net)
4207 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4208 family, addrp);
4209 else if (selinux_secmark_enabled())
4210 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4211 PACKET__RECV, &ad);
4212 if (err)
4213 return err;
4214
4215 if (selinux_policycap_netpeer) {
4216 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4217 if (err)
4218 return err;
4219 err = avc_has_perm(sk_sid, peer_sid,
4220 SECCLASS_PEER, PEER__RECV, &ad);
4221 if (err)
4222 selinux_netlbl_err(skb, err, 0);
4223 } else {
4224 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4225 if (err)
4226 return err;
4227 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4228 }
4229
4230 return err;
4231 }
4232
selinux_socket_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)4233 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4234 {
4235 int err;
4236 struct sk_security_struct *sksec = sk->sk_security;
4237 u16 family = sk->sk_family;
4238 u32 sk_sid = sksec->sid;
4239 struct avc_audit_data ad;
4240 char *addrp;
4241 u8 secmark_active;
4242 u8 peerlbl_active;
4243
4244 if (family != PF_INET && family != PF_INET6)
4245 return 0;
4246
4247 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4248 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4249 family = PF_INET;
4250
4251 /* If any sort of compatibility mode is enabled then handoff processing
4252 * to the selinux_sock_rcv_skb_compat() function to deal with the
4253 * special handling. We do this in an attempt to keep this function
4254 * as fast and as clean as possible. */
4255 if (selinux_compat_net || !selinux_policycap_netpeer)
4256 return selinux_sock_rcv_skb_compat(sk, skb, family);
4257
4258 secmark_active = selinux_secmark_enabled();
4259 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4260 if (!secmark_active && !peerlbl_active)
4261 return 0;
4262
4263 AVC_AUDIT_DATA_INIT(&ad, NET);
4264 ad.u.net.netif = skb->iif;
4265 ad.u.net.family = family;
4266 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4267 if (err)
4268 return err;
4269
4270 if (peerlbl_active) {
4271 u32 peer_sid;
4272
4273 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4274 if (err)
4275 return err;
4276 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4277 peer_sid, &ad);
4278 if (err) {
4279 selinux_netlbl_err(skb, err, 0);
4280 return err;
4281 }
4282 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4283 PEER__RECV, &ad);
4284 if (err)
4285 selinux_netlbl_err(skb, err, 0);
4286 }
4287
4288 if (secmark_active) {
4289 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4290 PACKET__RECV, &ad);
4291 if (err)
4292 return err;
4293 }
4294
4295 return err;
4296 }
4297
selinux_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)4298 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4299 int __user *optlen, unsigned len)
4300 {
4301 int err = 0;
4302 char *scontext;
4303 u32 scontext_len;
4304 struct sk_security_struct *ssec;
4305 struct inode_security_struct *isec;
4306 u32 peer_sid = SECSID_NULL;
4307
4308 isec = SOCK_INODE(sock)->i_security;
4309
4310 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4311 isec->sclass == SECCLASS_TCP_SOCKET) {
4312 ssec = sock->sk->sk_security;
4313 peer_sid = ssec->peer_sid;
4314 }
4315 if (peer_sid == SECSID_NULL) {
4316 err = -ENOPROTOOPT;
4317 goto out;
4318 }
4319
4320 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4321
4322 if (err)
4323 goto out;
4324
4325 if (scontext_len > len) {
4326 err = -ERANGE;
4327 goto out_len;
4328 }
4329
4330 if (copy_to_user(optval, scontext, scontext_len))
4331 err = -EFAULT;
4332
4333 out_len:
4334 if (put_user(scontext_len, optlen))
4335 err = -EFAULT;
4336
4337 kfree(scontext);
4338 out:
4339 return err;
4340 }
4341
selinux_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)4342 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4343 {
4344 u32 peer_secid = SECSID_NULL;
4345 u16 family;
4346
4347 if (skb && skb->protocol == htons(ETH_P_IP))
4348 family = PF_INET;
4349 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4350 family = PF_INET6;
4351 else if (sock)
4352 family = sock->sk->sk_family;
4353 else
4354 goto out;
4355
4356 if (sock && family == PF_UNIX)
4357 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4358 else if (skb)
4359 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4360
4361 out:
4362 *secid = peer_secid;
4363 if (peer_secid == SECSID_NULL)
4364 return -EINVAL;
4365 return 0;
4366 }
4367
selinux_sk_alloc_security(struct sock * sk,int family,gfp_t priority)4368 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4369 {
4370 return sk_alloc_security(sk, family, priority);
4371 }
4372
selinux_sk_free_security(struct sock * sk)4373 static void selinux_sk_free_security(struct sock *sk)
4374 {
4375 sk_free_security(sk);
4376 }
4377
selinux_sk_clone_security(const struct sock * sk,struct sock * newsk)4378 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4379 {
4380 struct sk_security_struct *ssec = sk->sk_security;
4381 struct sk_security_struct *newssec = newsk->sk_security;
4382
4383 newssec->sid = ssec->sid;
4384 newssec->peer_sid = ssec->peer_sid;
4385 newssec->sclass = ssec->sclass;
4386
4387 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4388 }
4389
selinux_sk_getsecid(struct sock * sk,u32 * secid)4390 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4391 {
4392 if (!sk)
4393 *secid = SECINITSID_ANY_SOCKET;
4394 else {
4395 struct sk_security_struct *sksec = sk->sk_security;
4396
4397 *secid = sksec->sid;
4398 }
4399 }
4400
selinux_sock_graft(struct sock * sk,struct socket * parent)4401 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4402 {
4403 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4404 struct sk_security_struct *sksec = sk->sk_security;
4405
4406 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4407 sk->sk_family == PF_UNIX)
4408 isec->sid = sksec->sid;
4409 sksec->sclass = isec->sclass;
4410 }
4411
selinux_inet_conn_request(struct sock * sk,struct sk_buff * skb,struct request_sock * req)4412 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4413 struct request_sock *req)
4414 {
4415 struct sk_security_struct *sksec = sk->sk_security;
4416 int err;
4417 u16 family = sk->sk_family;
4418 u32 newsid;
4419 u32 peersid;
4420
4421 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4422 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4423 family = PF_INET;
4424
4425 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4426 if (err)
4427 return err;
4428 if (peersid == SECSID_NULL) {
4429 req->secid = sksec->sid;
4430 req->peer_secid = SECSID_NULL;
4431 return 0;
4432 }
4433
4434 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4435 if (err)
4436 return err;
4437
4438 req->secid = newsid;
4439 req->peer_secid = peersid;
4440 return 0;
4441 }
4442
selinux_inet_csk_clone(struct sock * newsk,const struct request_sock * req)4443 static void selinux_inet_csk_clone(struct sock *newsk,
4444 const struct request_sock *req)
4445 {
4446 struct sk_security_struct *newsksec = newsk->sk_security;
4447
4448 newsksec->sid = req->secid;
4449 newsksec->peer_sid = req->peer_secid;
4450 /* NOTE: Ideally, we should also get the isec->sid for the
4451 new socket in sync, but we don't have the isec available yet.
4452 So we will wait until sock_graft to do it, by which
4453 time it will have been created and available. */
4454
4455 /* We don't need to take any sort of lock here as we are the only
4456 * thread with access to newsksec */
4457 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4458 }
4459
selinux_inet_conn_established(struct sock * sk,struct sk_buff * skb)4460 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4461 {
4462 u16 family = sk->sk_family;
4463 struct sk_security_struct *sksec = sk->sk_security;
4464
4465 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4466 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4467 family = PF_INET;
4468
4469 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4470
4471 selinux_netlbl_inet_conn_established(sk, family);
4472 }
4473
selinux_req_classify_flow(const struct request_sock * req,struct flowi * fl)4474 static void selinux_req_classify_flow(const struct request_sock *req,
4475 struct flowi *fl)
4476 {
4477 fl->secid = req->secid;
4478 }
4479
selinux_nlmsg_perm(struct sock * sk,struct sk_buff * skb)4480 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4481 {
4482 int err = 0;
4483 u32 perm;
4484 struct nlmsghdr *nlh;
4485 struct socket *sock = sk->sk_socket;
4486 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4487
4488 if (skb->len < NLMSG_SPACE(0)) {
4489 err = -EINVAL;
4490 goto out;
4491 }
4492 nlh = nlmsg_hdr(skb);
4493
4494 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4495 if (err) {
4496 if (err == -EINVAL) {
4497 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4498 "SELinux: unrecognized netlink message"
4499 " type=%hu for sclass=%hu\n",
4500 nlh->nlmsg_type, isec->sclass);
4501 if (!selinux_enforcing || security_get_allow_unknown())
4502 err = 0;
4503 }
4504
4505 /* Ignore */
4506 if (err == -ENOENT)
4507 err = 0;
4508 goto out;
4509 }
4510
4511 err = socket_has_perm(current, sock, perm);
4512 out:
4513 return err;
4514 }
4515
4516 #ifdef CONFIG_NETFILTER
4517
selinux_ip_forward(struct sk_buff * skb,int ifindex,u16 family)4518 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4519 u16 family)
4520 {
4521 int err;
4522 char *addrp;
4523 u32 peer_sid;
4524 struct avc_audit_data ad;
4525 u8 secmark_active;
4526 u8 netlbl_active;
4527 u8 peerlbl_active;
4528
4529 if (!selinux_policycap_netpeer)
4530 return NF_ACCEPT;
4531
4532 secmark_active = selinux_secmark_enabled();
4533 netlbl_active = netlbl_enabled();
4534 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4535 if (!secmark_active && !peerlbl_active)
4536 return NF_ACCEPT;
4537
4538 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4539 return NF_DROP;
4540
4541 AVC_AUDIT_DATA_INIT(&ad, NET);
4542 ad.u.net.netif = ifindex;
4543 ad.u.net.family = family;
4544 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4545 return NF_DROP;
4546
4547 if (peerlbl_active) {
4548 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4549 peer_sid, &ad);
4550 if (err) {
4551 selinux_netlbl_err(skb, err, 1);
4552 return NF_DROP;
4553 }
4554 }
4555
4556 if (secmark_active)
4557 if (avc_has_perm(peer_sid, skb->secmark,
4558 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4559 return NF_DROP;
4560
4561 if (netlbl_active)
4562 /* we do this in the FORWARD path and not the POST_ROUTING
4563 * path because we want to make sure we apply the necessary
4564 * labeling before IPsec is applied so we can leverage AH
4565 * protection */
4566 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4567 return NF_DROP;
4568
4569 return NF_ACCEPT;
4570 }
4571
selinux_ipv4_forward(unsigned int hooknum,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))4572 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4573 struct sk_buff *skb,
4574 const struct net_device *in,
4575 const struct net_device *out,
4576 int (*okfn)(struct sk_buff *))
4577 {
4578 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4579 }
4580
4581 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
selinux_ipv6_forward(unsigned int hooknum,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))4582 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4583 struct sk_buff *skb,
4584 const struct net_device *in,
4585 const struct net_device *out,
4586 int (*okfn)(struct sk_buff *))
4587 {
4588 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4589 }
4590 #endif /* IPV6 */
4591
selinux_ip_output(struct sk_buff * skb,u16 family)4592 static unsigned int selinux_ip_output(struct sk_buff *skb,
4593 u16 family)
4594 {
4595 u32 sid;
4596
4597 if (!netlbl_enabled())
4598 return NF_ACCEPT;
4599
4600 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4601 * because we want to make sure we apply the necessary labeling
4602 * before IPsec is applied so we can leverage AH protection */
4603 if (skb->sk) {
4604 struct sk_security_struct *sksec = skb->sk->sk_security;
4605 sid = sksec->sid;
4606 } else
4607 sid = SECINITSID_KERNEL;
4608 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4609 return NF_DROP;
4610
4611 return NF_ACCEPT;
4612 }
4613
selinux_ipv4_output(unsigned int hooknum,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))4614 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4615 struct sk_buff *skb,
4616 const struct net_device *in,
4617 const struct net_device *out,
4618 int (*okfn)(struct sk_buff *))
4619 {
4620 return selinux_ip_output(skb, PF_INET);
4621 }
4622
selinux_ip_postroute_iptables_compat(struct sock * sk,int ifindex,struct avc_audit_data * ad,u16 family,char * addrp)4623 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4624 int ifindex,
4625 struct avc_audit_data *ad,
4626 u16 family, char *addrp)
4627 {
4628 int err;
4629 struct sk_security_struct *sksec = sk->sk_security;
4630 u16 sk_class;
4631 u32 netif_perm, node_perm, send_perm;
4632 u32 port_sid, node_sid, if_sid, sk_sid;
4633
4634 sk_sid = sksec->sid;
4635 sk_class = sksec->sclass;
4636
4637 switch (sk_class) {
4638 case SECCLASS_UDP_SOCKET:
4639 netif_perm = NETIF__UDP_SEND;
4640 node_perm = NODE__UDP_SEND;
4641 send_perm = UDP_SOCKET__SEND_MSG;
4642 break;
4643 case SECCLASS_TCP_SOCKET:
4644 netif_perm = NETIF__TCP_SEND;
4645 node_perm = NODE__TCP_SEND;
4646 send_perm = TCP_SOCKET__SEND_MSG;
4647 break;
4648 case SECCLASS_DCCP_SOCKET:
4649 netif_perm = NETIF__DCCP_SEND;
4650 node_perm = NODE__DCCP_SEND;
4651 send_perm = DCCP_SOCKET__SEND_MSG;
4652 break;
4653 default:
4654 netif_perm = NETIF__RAWIP_SEND;
4655 node_perm = NODE__RAWIP_SEND;
4656 send_perm = 0;
4657 break;
4658 }
4659
4660 err = sel_netif_sid(ifindex, &if_sid);
4661 if (err)
4662 return err;
4663 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4664 return err;
4665
4666 err = sel_netnode_sid(addrp, family, &node_sid);
4667 if (err)
4668 return err;
4669 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4670 if (err)
4671 return err;
4672
4673 if (send_perm != 0)
4674 return 0;
4675
4676 err = sel_netport_sid(sk->sk_protocol,
4677 ntohs(ad->u.net.dport), &port_sid);
4678 if (unlikely(err)) {
4679 printk(KERN_WARNING
4680 "SELinux: failure in"
4681 " selinux_ip_postroute_iptables_compat(),"
4682 " network port label not found\n");
4683 return err;
4684 }
4685 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4686 }
4687
selinux_ip_postroute_compat(struct sk_buff * skb,int ifindex,u16 family)4688 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4689 int ifindex,
4690 u16 family)
4691 {
4692 struct sock *sk = skb->sk;
4693 struct sk_security_struct *sksec;
4694 struct avc_audit_data ad;
4695 char *addrp;
4696 u8 proto;
4697
4698 if (sk == NULL)
4699 return NF_ACCEPT;
4700 sksec = sk->sk_security;
4701
4702 AVC_AUDIT_DATA_INIT(&ad, NET);
4703 ad.u.net.netif = ifindex;
4704 ad.u.net.family = family;
4705 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4706 return NF_DROP;
4707
4708 if (selinux_compat_net) {
4709 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4710 &ad, family, addrp))
4711 return NF_DROP;
4712 } else if (selinux_secmark_enabled()) {
4713 if (avc_has_perm(sksec->sid, skb->secmark,
4714 SECCLASS_PACKET, PACKET__SEND, &ad))
4715 return NF_DROP;
4716 }
4717
4718 if (selinux_policycap_netpeer)
4719 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4720 return NF_DROP;
4721
4722 return NF_ACCEPT;
4723 }
4724
selinux_ip_postroute(struct sk_buff * skb,int ifindex,u16 family)4725 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4726 u16 family)
4727 {
4728 u32 secmark_perm;
4729 u32 peer_sid;
4730 struct sock *sk;
4731 struct avc_audit_data ad;
4732 char *addrp;
4733 u8 secmark_active;
4734 u8 peerlbl_active;
4735
4736 /* If any sort of compatibility mode is enabled then handoff processing
4737 * to the selinux_ip_postroute_compat() function to deal with the
4738 * special handling. We do this in an attempt to keep this function
4739 * as fast and as clean as possible. */
4740 if (selinux_compat_net || !selinux_policycap_netpeer)
4741 return selinux_ip_postroute_compat(skb, ifindex, family);
4742 #ifdef CONFIG_XFRM
4743 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4744 * packet transformation so allow the packet to pass without any checks
4745 * since we'll have another chance to perform access control checks
4746 * when the packet is on it's final way out.
4747 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4748 * is NULL, in this case go ahead and apply access control. */
4749 if (skb->dst != NULL && skb->dst->xfrm != NULL)
4750 return NF_ACCEPT;
4751 #endif
4752 secmark_active = selinux_secmark_enabled();
4753 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4754 if (!secmark_active && !peerlbl_active)
4755 return NF_ACCEPT;
4756
4757 /* if the packet is being forwarded then get the peer label from the
4758 * packet itself; otherwise check to see if it is from a local
4759 * application or the kernel, if from an application get the peer label
4760 * from the sending socket, otherwise use the kernel's sid */
4761 sk = skb->sk;
4762 if (sk == NULL) {
4763 switch (family) {
4764 case PF_INET:
4765 if (IPCB(skb)->flags & IPSKB_FORWARDED)
4766 secmark_perm = PACKET__FORWARD_OUT;
4767 else
4768 secmark_perm = PACKET__SEND;
4769 break;
4770 case PF_INET6:
4771 if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4772 secmark_perm = PACKET__FORWARD_OUT;
4773 else
4774 secmark_perm = PACKET__SEND;
4775 break;
4776 default:
4777 return NF_DROP;
4778 }
4779 if (secmark_perm == PACKET__FORWARD_OUT) {
4780 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4781 return NF_DROP;
4782 } else
4783 peer_sid = SECINITSID_KERNEL;
4784 } else {
4785 struct sk_security_struct *sksec = sk->sk_security;
4786 peer_sid = sksec->sid;
4787 secmark_perm = PACKET__SEND;
4788 }
4789
4790 AVC_AUDIT_DATA_INIT(&ad, NET);
4791 ad.u.net.netif = ifindex;
4792 ad.u.net.family = family;
4793 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4794 return NF_DROP;
4795
4796 if (secmark_active)
4797 if (avc_has_perm(peer_sid, skb->secmark,
4798 SECCLASS_PACKET, secmark_perm, &ad))
4799 return NF_DROP;
4800
4801 if (peerlbl_active) {
4802 u32 if_sid;
4803 u32 node_sid;
4804
4805 if (sel_netif_sid(ifindex, &if_sid))
4806 return NF_DROP;
4807 if (avc_has_perm(peer_sid, if_sid,
4808 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4809 return NF_DROP;
4810
4811 if (sel_netnode_sid(addrp, family, &node_sid))
4812 return NF_DROP;
4813 if (avc_has_perm(peer_sid, node_sid,
4814 SECCLASS_NODE, NODE__SENDTO, &ad))
4815 return NF_DROP;
4816 }
4817
4818 return NF_ACCEPT;
4819 }
4820
selinux_ipv4_postroute(unsigned int hooknum,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))4821 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4822 struct sk_buff *skb,
4823 const struct net_device *in,
4824 const struct net_device *out,
4825 int (*okfn)(struct sk_buff *))
4826 {
4827 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4828 }
4829
4830 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
selinux_ipv6_postroute(unsigned int hooknum,struct sk_buff * skb,const struct net_device * in,const struct net_device * out,int (* okfn)(struct sk_buff *))4831 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4832 struct sk_buff *skb,
4833 const struct net_device *in,
4834 const struct net_device *out,
4835 int (*okfn)(struct sk_buff *))
4836 {
4837 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4838 }
4839 #endif /* IPV6 */
4840
4841 #endif /* CONFIG_NETFILTER */
4842
selinux_netlink_send(struct sock * sk,struct sk_buff * skb)4843 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4844 {
4845 int err;
4846
4847 err = secondary_ops->netlink_send(sk, skb);
4848 if (err)
4849 return err;
4850
4851 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4852 err = selinux_nlmsg_perm(sk, skb);
4853
4854 return err;
4855 }
4856
selinux_netlink_recv(struct sk_buff * skb,int capability)4857 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4858 {
4859 int err;
4860 struct avc_audit_data ad;
4861
4862 err = secondary_ops->netlink_recv(skb, capability);
4863 if (err)
4864 return err;
4865
4866 AVC_AUDIT_DATA_INIT(&ad, CAP);
4867 ad.u.cap = capability;
4868
4869 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4870 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4871 }
4872
ipc_alloc_security(struct task_struct * task,struct kern_ipc_perm * perm,u16 sclass)4873 static int ipc_alloc_security(struct task_struct *task,
4874 struct kern_ipc_perm *perm,
4875 u16 sclass)
4876 {
4877 struct ipc_security_struct *isec;
4878 u32 sid;
4879
4880 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4881 if (!isec)
4882 return -ENOMEM;
4883
4884 sid = task_sid(task);
4885 isec->sclass = sclass;
4886 isec->sid = sid;
4887 perm->security = isec;
4888
4889 return 0;
4890 }
4891
ipc_free_security(struct kern_ipc_perm * perm)4892 static void ipc_free_security(struct kern_ipc_perm *perm)
4893 {
4894 struct ipc_security_struct *isec = perm->security;
4895 perm->security = NULL;
4896 kfree(isec);
4897 }
4898
msg_msg_alloc_security(struct msg_msg * msg)4899 static int msg_msg_alloc_security(struct msg_msg *msg)
4900 {
4901 struct msg_security_struct *msec;
4902
4903 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4904 if (!msec)
4905 return -ENOMEM;
4906
4907 msec->sid = SECINITSID_UNLABELED;
4908 msg->security = msec;
4909
4910 return 0;
4911 }
4912
msg_msg_free_security(struct msg_msg * msg)4913 static void msg_msg_free_security(struct msg_msg *msg)
4914 {
4915 struct msg_security_struct *msec = msg->security;
4916
4917 msg->security = NULL;
4918 kfree(msec);
4919 }
4920
ipc_has_perm(struct kern_ipc_perm * ipc_perms,u32 perms)4921 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4922 u32 perms)
4923 {
4924 struct ipc_security_struct *isec;
4925 struct avc_audit_data ad;
4926 u32 sid = current_sid();
4927
4928 isec = ipc_perms->security;
4929
4930 AVC_AUDIT_DATA_INIT(&ad, IPC);
4931 ad.u.ipc_id = ipc_perms->key;
4932
4933 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4934 }
4935
selinux_msg_msg_alloc_security(struct msg_msg * msg)4936 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4937 {
4938 return msg_msg_alloc_security(msg);
4939 }
4940
selinux_msg_msg_free_security(struct msg_msg * msg)4941 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4942 {
4943 msg_msg_free_security(msg);
4944 }
4945
4946 /* message queue security operations */
selinux_msg_queue_alloc_security(struct msg_queue * msq)4947 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4948 {
4949 struct ipc_security_struct *isec;
4950 struct avc_audit_data ad;
4951 u32 sid = current_sid();
4952 int rc;
4953
4954 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4955 if (rc)
4956 return rc;
4957
4958 isec = msq->q_perm.security;
4959
4960 AVC_AUDIT_DATA_INIT(&ad, IPC);
4961 ad.u.ipc_id = msq->q_perm.key;
4962
4963 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4964 MSGQ__CREATE, &ad);
4965 if (rc) {
4966 ipc_free_security(&msq->q_perm);
4967 return rc;
4968 }
4969 return 0;
4970 }
4971
selinux_msg_queue_free_security(struct msg_queue * msq)4972 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4973 {
4974 ipc_free_security(&msq->q_perm);
4975 }
4976
selinux_msg_queue_associate(struct msg_queue * msq,int msqflg)4977 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4978 {
4979 struct ipc_security_struct *isec;
4980 struct avc_audit_data ad;
4981 u32 sid = current_sid();
4982
4983 isec = msq->q_perm.security;
4984
4985 AVC_AUDIT_DATA_INIT(&ad, IPC);
4986 ad.u.ipc_id = msq->q_perm.key;
4987
4988 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4989 MSGQ__ASSOCIATE, &ad);
4990 }
4991
selinux_msg_queue_msgctl(struct msg_queue * msq,int cmd)4992 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4993 {
4994 int err;
4995 int perms;
4996
4997 switch (cmd) {
4998 case IPC_INFO:
4999 case MSG_INFO:
5000 /* No specific object, just general system-wide information. */
5001 return task_has_system(current, SYSTEM__IPC_INFO);
5002 case IPC_STAT:
5003 case MSG_STAT:
5004 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5005 break;
5006 case IPC_SET:
5007 perms = MSGQ__SETATTR;
5008 break;
5009 case IPC_RMID:
5010 perms = MSGQ__DESTROY;
5011 break;
5012 default:
5013 return 0;
5014 }
5015
5016 err = ipc_has_perm(&msq->q_perm, perms);
5017 return err;
5018 }
5019
selinux_msg_queue_msgsnd(struct msg_queue * msq,struct msg_msg * msg,int msqflg)5020 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5021 {
5022 struct ipc_security_struct *isec;
5023 struct msg_security_struct *msec;
5024 struct avc_audit_data ad;
5025 u32 sid = current_sid();
5026 int rc;
5027
5028 isec = msq->q_perm.security;
5029 msec = msg->security;
5030
5031 /*
5032 * First time through, need to assign label to the message
5033 */
5034 if (msec->sid == SECINITSID_UNLABELED) {
5035 /*
5036 * Compute new sid based on current process and
5037 * message queue this message will be stored in
5038 */
5039 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5040 &msec->sid);
5041 if (rc)
5042 return rc;
5043 }
5044
5045 AVC_AUDIT_DATA_INIT(&ad, IPC);
5046 ad.u.ipc_id = msq->q_perm.key;
5047
5048 /* Can this process write to the queue? */
5049 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5050 MSGQ__WRITE, &ad);
5051 if (!rc)
5052 /* Can this process send the message */
5053 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5054 MSG__SEND, &ad);
5055 if (!rc)
5056 /* Can the message be put in the queue? */
5057 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5058 MSGQ__ENQUEUE, &ad);
5059
5060 return rc;
5061 }
5062
selinux_msg_queue_msgrcv(struct msg_queue * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)5063 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5064 struct task_struct *target,
5065 long type, int mode)
5066 {
5067 struct ipc_security_struct *isec;
5068 struct msg_security_struct *msec;
5069 struct avc_audit_data ad;
5070 u32 sid = task_sid(target);
5071 int rc;
5072
5073 isec = msq->q_perm.security;
5074 msec = msg->security;
5075
5076 AVC_AUDIT_DATA_INIT(&ad, IPC);
5077 ad.u.ipc_id = msq->q_perm.key;
5078
5079 rc = avc_has_perm(sid, isec->sid,
5080 SECCLASS_MSGQ, MSGQ__READ, &ad);
5081 if (!rc)
5082 rc = avc_has_perm(sid, msec->sid,
5083 SECCLASS_MSG, MSG__RECEIVE, &ad);
5084 return rc;
5085 }
5086
5087 /* Shared Memory security operations */
selinux_shm_alloc_security(struct shmid_kernel * shp)5088 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5089 {
5090 struct ipc_security_struct *isec;
5091 struct avc_audit_data ad;
5092 u32 sid = current_sid();
5093 int rc;
5094
5095 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5096 if (rc)
5097 return rc;
5098
5099 isec = shp->shm_perm.security;
5100
5101 AVC_AUDIT_DATA_INIT(&ad, IPC);
5102 ad.u.ipc_id = shp->shm_perm.key;
5103
5104 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5105 SHM__CREATE, &ad);
5106 if (rc) {
5107 ipc_free_security(&shp->shm_perm);
5108 return rc;
5109 }
5110 return 0;
5111 }
5112
selinux_shm_free_security(struct shmid_kernel * shp)5113 static void selinux_shm_free_security(struct shmid_kernel *shp)
5114 {
5115 ipc_free_security(&shp->shm_perm);
5116 }
5117
selinux_shm_associate(struct shmid_kernel * shp,int shmflg)5118 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5119 {
5120 struct ipc_security_struct *isec;
5121 struct avc_audit_data ad;
5122 u32 sid = current_sid();
5123
5124 isec = shp->shm_perm.security;
5125
5126 AVC_AUDIT_DATA_INIT(&ad, IPC);
5127 ad.u.ipc_id = shp->shm_perm.key;
5128
5129 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5130 SHM__ASSOCIATE, &ad);
5131 }
5132
5133 /* Note, at this point, shp is locked down */
selinux_shm_shmctl(struct shmid_kernel * shp,int cmd)5134 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5135 {
5136 int perms;
5137 int err;
5138
5139 switch (cmd) {
5140 case IPC_INFO:
5141 case SHM_INFO:
5142 /* No specific object, just general system-wide information. */
5143 return task_has_system(current, SYSTEM__IPC_INFO);
5144 case IPC_STAT:
5145 case SHM_STAT:
5146 perms = SHM__GETATTR | SHM__ASSOCIATE;
5147 break;
5148 case IPC_SET:
5149 perms = SHM__SETATTR;
5150 break;
5151 case SHM_LOCK:
5152 case SHM_UNLOCK:
5153 perms = SHM__LOCK;
5154 break;
5155 case IPC_RMID:
5156 perms = SHM__DESTROY;
5157 break;
5158 default:
5159 return 0;
5160 }
5161
5162 err = ipc_has_perm(&shp->shm_perm, perms);
5163 return err;
5164 }
5165
selinux_shm_shmat(struct shmid_kernel * shp,char __user * shmaddr,int shmflg)5166 static int selinux_shm_shmat(struct shmid_kernel *shp,
5167 char __user *shmaddr, int shmflg)
5168 {
5169 u32 perms;
5170 int rc;
5171
5172 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5173 if (rc)
5174 return rc;
5175
5176 if (shmflg & SHM_RDONLY)
5177 perms = SHM__READ;
5178 else
5179 perms = SHM__READ | SHM__WRITE;
5180
5181 return ipc_has_perm(&shp->shm_perm, perms);
5182 }
5183
5184 /* Semaphore security operations */
selinux_sem_alloc_security(struct sem_array * sma)5185 static int selinux_sem_alloc_security(struct sem_array *sma)
5186 {
5187 struct ipc_security_struct *isec;
5188 struct avc_audit_data ad;
5189 u32 sid = current_sid();
5190 int rc;
5191
5192 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5193 if (rc)
5194 return rc;
5195
5196 isec = sma->sem_perm.security;
5197
5198 AVC_AUDIT_DATA_INIT(&ad, IPC);
5199 ad.u.ipc_id = sma->sem_perm.key;
5200
5201 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5202 SEM__CREATE, &ad);
5203 if (rc) {
5204 ipc_free_security(&sma->sem_perm);
5205 return rc;
5206 }
5207 return 0;
5208 }
5209
selinux_sem_free_security(struct sem_array * sma)5210 static void selinux_sem_free_security(struct sem_array *sma)
5211 {
5212 ipc_free_security(&sma->sem_perm);
5213 }
5214
selinux_sem_associate(struct sem_array * sma,int semflg)5215 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5216 {
5217 struct ipc_security_struct *isec;
5218 struct avc_audit_data ad;
5219 u32 sid = current_sid();
5220
5221 isec = sma->sem_perm.security;
5222
5223 AVC_AUDIT_DATA_INIT(&ad, IPC);
5224 ad.u.ipc_id = sma->sem_perm.key;
5225
5226 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5227 SEM__ASSOCIATE, &ad);
5228 }
5229
5230 /* Note, at this point, sma is locked down */
selinux_sem_semctl(struct sem_array * sma,int cmd)5231 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5232 {
5233 int err;
5234 u32 perms;
5235
5236 switch (cmd) {
5237 case IPC_INFO:
5238 case SEM_INFO:
5239 /* No specific object, just general system-wide information. */
5240 return task_has_system(current, SYSTEM__IPC_INFO);
5241 case GETPID:
5242 case GETNCNT:
5243 case GETZCNT:
5244 perms = SEM__GETATTR;
5245 break;
5246 case GETVAL:
5247 case GETALL:
5248 perms = SEM__READ;
5249 break;
5250 case SETVAL:
5251 case SETALL:
5252 perms = SEM__WRITE;
5253 break;
5254 case IPC_RMID:
5255 perms = SEM__DESTROY;
5256 break;
5257 case IPC_SET:
5258 perms = SEM__SETATTR;
5259 break;
5260 case IPC_STAT:
5261 case SEM_STAT:
5262 perms = SEM__GETATTR | SEM__ASSOCIATE;
5263 break;
5264 default:
5265 return 0;
5266 }
5267
5268 err = ipc_has_perm(&sma->sem_perm, perms);
5269 return err;
5270 }
5271
selinux_sem_semop(struct sem_array * sma,struct sembuf * sops,unsigned nsops,int alter)5272 static int selinux_sem_semop(struct sem_array *sma,
5273 struct sembuf *sops, unsigned nsops, int alter)
5274 {
5275 u32 perms;
5276
5277 if (alter)
5278 perms = SEM__READ | SEM__WRITE;
5279 else
5280 perms = SEM__READ;
5281
5282 return ipc_has_perm(&sma->sem_perm, perms);
5283 }
5284
selinux_ipc_permission(struct kern_ipc_perm * ipcp,short flag)5285 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5286 {
5287 u32 av = 0;
5288
5289 av = 0;
5290 if (flag & S_IRUGO)
5291 av |= IPC__UNIX_READ;
5292 if (flag & S_IWUGO)
5293 av |= IPC__UNIX_WRITE;
5294
5295 if (av == 0)
5296 return 0;
5297
5298 return ipc_has_perm(ipcp, av);
5299 }
5300
selinux_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)5301 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5302 {
5303 struct ipc_security_struct *isec = ipcp->security;
5304 *secid = isec->sid;
5305 }
5306
selinux_d_instantiate(struct dentry * dentry,struct inode * inode)5307 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5308 {
5309 if (inode)
5310 inode_doinit_with_dentry(inode, dentry);
5311 }
5312
selinux_getprocattr(struct task_struct * p,char * name,char ** value)5313 static int selinux_getprocattr(struct task_struct *p,
5314 char *name, char **value)
5315 {
5316 const struct task_security_struct *__tsec;
5317 u32 sid;
5318 int error;
5319 unsigned len;
5320
5321 if (current != p) {
5322 error = current_has_perm(p, PROCESS__GETATTR);
5323 if (error)
5324 return error;
5325 }
5326
5327 rcu_read_lock();
5328 __tsec = __task_cred(p)->security;
5329
5330 if (!strcmp(name, "current"))
5331 sid = __tsec->sid;
5332 else if (!strcmp(name, "prev"))
5333 sid = __tsec->osid;
5334 else if (!strcmp(name, "exec"))
5335 sid = __tsec->exec_sid;
5336 else if (!strcmp(name, "fscreate"))
5337 sid = __tsec->create_sid;
5338 else if (!strcmp(name, "keycreate"))
5339 sid = __tsec->keycreate_sid;
5340 else if (!strcmp(name, "sockcreate"))
5341 sid = __tsec->sockcreate_sid;
5342 else
5343 goto invalid;
5344 rcu_read_unlock();
5345
5346 if (!sid)
5347 return 0;
5348
5349 error = security_sid_to_context(sid, value, &len);
5350 if (error)
5351 return error;
5352 return len;
5353
5354 invalid:
5355 rcu_read_unlock();
5356 return -EINVAL;
5357 }
5358
selinux_setprocattr(struct task_struct * p,char * name,void * value,size_t size)5359 static int selinux_setprocattr(struct task_struct *p,
5360 char *name, void *value, size_t size)
5361 {
5362 struct task_security_struct *tsec;
5363 struct task_struct *tracer;
5364 struct cred *new;
5365 u32 sid = 0, ptsid;
5366 int error;
5367 char *str = value;
5368
5369 if (current != p) {
5370 /* SELinux only allows a process to change its own
5371 security attributes. */
5372 return -EACCES;
5373 }
5374
5375 /*
5376 * Basic control over ability to set these attributes at all.
5377 * current == p, but we'll pass them separately in case the
5378 * above restriction is ever removed.
5379 */
5380 if (!strcmp(name, "exec"))
5381 error = current_has_perm(p, PROCESS__SETEXEC);
5382 else if (!strcmp(name, "fscreate"))
5383 error = current_has_perm(p, PROCESS__SETFSCREATE);
5384 else if (!strcmp(name, "keycreate"))
5385 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5386 else if (!strcmp(name, "sockcreate"))
5387 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5388 else if (!strcmp(name, "current"))
5389 error = current_has_perm(p, PROCESS__SETCURRENT);
5390 else
5391 error = -EINVAL;
5392 if (error)
5393 return error;
5394
5395 /* Obtain a SID for the context, if one was specified. */
5396 if (size && str[1] && str[1] != '\n') {
5397 if (str[size-1] == '\n') {
5398 str[size-1] = 0;
5399 size--;
5400 }
5401 error = security_context_to_sid(value, size, &sid);
5402 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5403 if (!capable(CAP_MAC_ADMIN))
5404 return error;
5405 error = security_context_to_sid_force(value, size,
5406 &sid);
5407 }
5408 if (error)
5409 return error;
5410 }
5411
5412 new = prepare_creds();
5413 if (!new)
5414 return -ENOMEM;
5415
5416 /* Permission checking based on the specified context is
5417 performed during the actual operation (execve,
5418 open/mkdir/...), when we know the full context of the
5419 operation. See selinux_bprm_set_creds for the execve
5420 checks and may_create for the file creation checks. The
5421 operation will then fail if the context is not permitted. */
5422 tsec = new->security;
5423 if (!strcmp(name, "exec")) {
5424 tsec->exec_sid = sid;
5425 } else if (!strcmp(name, "fscreate")) {
5426 tsec->create_sid = sid;
5427 } else if (!strcmp(name, "keycreate")) {
5428 error = may_create_key(sid, p);
5429 if (error)
5430 goto abort_change;
5431 tsec->keycreate_sid = sid;
5432 } else if (!strcmp(name, "sockcreate")) {
5433 tsec->sockcreate_sid = sid;
5434 } else if (!strcmp(name, "current")) {
5435 error = -EINVAL;
5436 if (sid == 0)
5437 goto abort_change;
5438
5439 /* Only allow single threaded processes to change context */
5440 error = -EPERM;
5441 if (!is_single_threaded(p)) {
5442 error = security_bounded_transition(tsec->sid, sid);
5443 if (error)
5444 goto abort_change;
5445 }
5446
5447 /* Check permissions for the transition. */
5448 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5449 PROCESS__DYNTRANSITION, NULL);
5450 if (error)
5451 goto abort_change;
5452
5453 /* Check for ptracing, and update the task SID if ok.
5454 Otherwise, leave SID unchanged and fail. */
5455 ptsid = 0;
5456 task_lock(p);
5457 tracer = tracehook_tracer_task(p);
5458 if (tracer)
5459 ptsid = task_sid(tracer);
5460 task_unlock(p);
5461
5462 if (tracer) {
5463 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5464 PROCESS__PTRACE, NULL);
5465 if (error)
5466 goto abort_change;
5467 }
5468
5469 tsec->sid = sid;
5470 } else {
5471 error = -EINVAL;
5472 goto abort_change;
5473 }
5474
5475 commit_creds(new);
5476 return size;
5477
5478 abort_change:
5479 abort_creds(new);
5480 return error;
5481 }
5482
selinux_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)5483 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5484 {
5485 return security_sid_to_context(secid, secdata, seclen);
5486 }
5487
selinux_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)5488 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5489 {
5490 return security_context_to_sid(secdata, seclen, secid);
5491 }
5492
selinux_release_secctx(char * secdata,u32 seclen)5493 static void selinux_release_secctx(char *secdata, u32 seclen)
5494 {
5495 kfree(secdata);
5496 }
5497
5498 #ifdef CONFIG_KEYS
5499
selinux_key_alloc(struct key * k,const struct cred * cred,unsigned long flags)5500 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5501 unsigned long flags)
5502 {
5503 const struct task_security_struct *tsec;
5504 struct key_security_struct *ksec;
5505
5506 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5507 if (!ksec)
5508 return -ENOMEM;
5509
5510 tsec = cred->security;
5511 if (tsec->keycreate_sid)
5512 ksec->sid = tsec->keycreate_sid;
5513 else
5514 ksec->sid = tsec->sid;
5515
5516 k->security = ksec;
5517 return 0;
5518 }
5519
selinux_key_free(struct key * k)5520 static void selinux_key_free(struct key *k)
5521 {
5522 struct key_security_struct *ksec = k->security;
5523
5524 k->security = NULL;
5525 kfree(ksec);
5526 }
5527
selinux_key_permission(key_ref_t key_ref,const struct cred * cred,key_perm_t perm)5528 static int selinux_key_permission(key_ref_t key_ref,
5529 const struct cred *cred,
5530 key_perm_t perm)
5531 {
5532 struct key *key;
5533 struct key_security_struct *ksec;
5534 u32 sid;
5535
5536 /* if no specific permissions are requested, we skip the
5537 permission check. No serious, additional covert channels
5538 appear to be created. */
5539 if (perm == 0)
5540 return 0;
5541
5542 sid = cred_sid(cred);
5543
5544 key = key_ref_to_ptr(key_ref);
5545 ksec = key->security;
5546
5547 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5548 }
5549
selinux_key_getsecurity(struct key * key,char ** _buffer)5550 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5551 {
5552 struct key_security_struct *ksec = key->security;
5553 char *context = NULL;
5554 unsigned len;
5555 int rc;
5556
5557 rc = security_sid_to_context(ksec->sid, &context, &len);
5558 if (!rc)
5559 rc = len;
5560 *_buffer = context;
5561 return rc;
5562 }
5563
5564 #endif
5565
5566 static struct security_operations selinux_ops = {
5567 .name = "selinux",
5568
5569 .ptrace_may_access = selinux_ptrace_may_access,
5570 .ptrace_traceme = selinux_ptrace_traceme,
5571 .capget = selinux_capget,
5572 .capset = selinux_capset,
5573 .sysctl = selinux_sysctl,
5574 .capable = selinux_capable,
5575 .quotactl = selinux_quotactl,
5576 .quota_on = selinux_quota_on,
5577 .syslog = selinux_syslog,
5578 .vm_enough_memory = selinux_vm_enough_memory,
5579
5580 .netlink_send = selinux_netlink_send,
5581 .netlink_recv = selinux_netlink_recv,
5582
5583 .bprm_set_creds = selinux_bprm_set_creds,
5584 .bprm_check_security = selinux_bprm_check_security,
5585 .bprm_committing_creds = selinux_bprm_committing_creds,
5586 .bprm_committed_creds = selinux_bprm_committed_creds,
5587 .bprm_secureexec = selinux_bprm_secureexec,
5588
5589 .sb_alloc_security = selinux_sb_alloc_security,
5590 .sb_free_security = selinux_sb_free_security,
5591 .sb_copy_data = selinux_sb_copy_data,
5592 .sb_kern_mount = selinux_sb_kern_mount,
5593 .sb_show_options = selinux_sb_show_options,
5594 .sb_statfs = selinux_sb_statfs,
5595 .sb_mount = selinux_mount,
5596 .sb_umount = selinux_umount,
5597 .sb_set_mnt_opts = selinux_set_mnt_opts,
5598 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5599 .sb_parse_opts_str = selinux_parse_opts_str,
5600
5601
5602 .inode_alloc_security = selinux_inode_alloc_security,
5603 .inode_free_security = selinux_inode_free_security,
5604 .inode_init_security = selinux_inode_init_security,
5605 .inode_create = selinux_inode_create,
5606 .inode_link = selinux_inode_link,
5607 .inode_unlink = selinux_inode_unlink,
5608 .inode_symlink = selinux_inode_symlink,
5609 .inode_mkdir = selinux_inode_mkdir,
5610 .inode_rmdir = selinux_inode_rmdir,
5611 .inode_mknod = selinux_inode_mknod,
5612 .inode_rename = selinux_inode_rename,
5613 .inode_readlink = selinux_inode_readlink,
5614 .inode_follow_link = selinux_inode_follow_link,
5615 .inode_permission = selinux_inode_permission,
5616 .inode_setattr = selinux_inode_setattr,
5617 .inode_getattr = selinux_inode_getattr,
5618 .inode_setxattr = selinux_inode_setxattr,
5619 .inode_post_setxattr = selinux_inode_post_setxattr,
5620 .inode_getxattr = selinux_inode_getxattr,
5621 .inode_listxattr = selinux_inode_listxattr,
5622 .inode_removexattr = selinux_inode_removexattr,
5623 .inode_getsecurity = selinux_inode_getsecurity,
5624 .inode_setsecurity = selinux_inode_setsecurity,
5625 .inode_listsecurity = selinux_inode_listsecurity,
5626 .inode_need_killpriv = selinux_inode_need_killpriv,
5627 .inode_killpriv = selinux_inode_killpriv,
5628 .inode_getsecid = selinux_inode_getsecid,
5629
5630 .file_permission = selinux_file_permission,
5631 .file_alloc_security = selinux_file_alloc_security,
5632 .file_free_security = selinux_file_free_security,
5633 .file_ioctl = selinux_file_ioctl,
5634 .file_mmap = selinux_file_mmap,
5635 .file_mprotect = selinux_file_mprotect,
5636 .file_lock = selinux_file_lock,
5637 .file_fcntl = selinux_file_fcntl,
5638 .file_set_fowner = selinux_file_set_fowner,
5639 .file_send_sigiotask = selinux_file_send_sigiotask,
5640 .file_receive = selinux_file_receive,
5641
5642 .dentry_open = selinux_dentry_open,
5643
5644 .task_create = selinux_task_create,
5645 .cred_free = selinux_cred_free,
5646 .cred_prepare = selinux_cred_prepare,
5647 .cred_commit = selinux_cred_commit,
5648 .kernel_act_as = selinux_kernel_act_as,
5649 .kernel_create_files_as = selinux_kernel_create_files_as,
5650 .task_setuid = selinux_task_setuid,
5651 .task_fix_setuid = selinux_task_fix_setuid,
5652 .task_setgid = selinux_task_setgid,
5653 .task_setpgid = selinux_task_setpgid,
5654 .task_getpgid = selinux_task_getpgid,
5655 .task_getsid = selinux_task_getsid,
5656 .task_getsecid = selinux_task_getsecid,
5657 .task_setgroups = selinux_task_setgroups,
5658 .task_setnice = selinux_task_setnice,
5659 .task_setioprio = selinux_task_setioprio,
5660 .task_getioprio = selinux_task_getioprio,
5661 .task_setrlimit = selinux_task_setrlimit,
5662 .task_setscheduler = selinux_task_setscheduler,
5663 .task_getscheduler = selinux_task_getscheduler,
5664 .task_movememory = selinux_task_movememory,
5665 .task_kill = selinux_task_kill,
5666 .task_wait = selinux_task_wait,
5667 .task_prctl = selinux_task_prctl,
5668 .task_to_inode = selinux_task_to_inode,
5669
5670 .ipc_permission = selinux_ipc_permission,
5671 .ipc_getsecid = selinux_ipc_getsecid,
5672
5673 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5674 .msg_msg_free_security = selinux_msg_msg_free_security,
5675
5676 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5677 .msg_queue_free_security = selinux_msg_queue_free_security,
5678 .msg_queue_associate = selinux_msg_queue_associate,
5679 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5680 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5681 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5682
5683 .shm_alloc_security = selinux_shm_alloc_security,
5684 .shm_free_security = selinux_shm_free_security,
5685 .shm_associate = selinux_shm_associate,
5686 .shm_shmctl = selinux_shm_shmctl,
5687 .shm_shmat = selinux_shm_shmat,
5688
5689 .sem_alloc_security = selinux_sem_alloc_security,
5690 .sem_free_security = selinux_sem_free_security,
5691 .sem_associate = selinux_sem_associate,
5692 .sem_semctl = selinux_sem_semctl,
5693 .sem_semop = selinux_sem_semop,
5694
5695 .d_instantiate = selinux_d_instantiate,
5696
5697 .getprocattr = selinux_getprocattr,
5698 .setprocattr = selinux_setprocattr,
5699
5700 .secid_to_secctx = selinux_secid_to_secctx,
5701 .secctx_to_secid = selinux_secctx_to_secid,
5702 .release_secctx = selinux_release_secctx,
5703
5704 .unix_stream_connect = selinux_socket_unix_stream_connect,
5705 .unix_may_send = selinux_socket_unix_may_send,
5706
5707 .socket_create = selinux_socket_create,
5708 .socket_post_create = selinux_socket_post_create,
5709 .socket_bind = selinux_socket_bind,
5710 .socket_connect = selinux_socket_connect,
5711 .socket_listen = selinux_socket_listen,
5712 .socket_accept = selinux_socket_accept,
5713 .socket_sendmsg = selinux_socket_sendmsg,
5714 .socket_recvmsg = selinux_socket_recvmsg,
5715 .socket_getsockname = selinux_socket_getsockname,
5716 .socket_getpeername = selinux_socket_getpeername,
5717 .socket_getsockopt = selinux_socket_getsockopt,
5718 .socket_setsockopt = selinux_socket_setsockopt,
5719 .socket_shutdown = selinux_socket_shutdown,
5720 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5721 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5722 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5723 .sk_alloc_security = selinux_sk_alloc_security,
5724 .sk_free_security = selinux_sk_free_security,
5725 .sk_clone_security = selinux_sk_clone_security,
5726 .sk_getsecid = selinux_sk_getsecid,
5727 .sock_graft = selinux_sock_graft,
5728 .inet_conn_request = selinux_inet_conn_request,
5729 .inet_csk_clone = selinux_inet_csk_clone,
5730 .inet_conn_established = selinux_inet_conn_established,
5731 .req_classify_flow = selinux_req_classify_flow,
5732
5733 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5734 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5735 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5736 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5737 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5738 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5739 .xfrm_state_free_security = selinux_xfrm_state_free,
5740 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5741 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5742 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5743 .xfrm_decode_session = selinux_xfrm_decode_session,
5744 #endif
5745
5746 #ifdef CONFIG_KEYS
5747 .key_alloc = selinux_key_alloc,
5748 .key_free = selinux_key_free,
5749 .key_permission = selinux_key_permission,
5750 .key_getsecurity = selinux_key_getsecurity,
5751 #endif
5752
5753 #ifdef CONFIG_AUDIT
5754 .audit_rule_init = selinux_audit_rule_init,
5755 .audit_rule_known = selinux_audit_rule_known,
5756 .audit_rule_match = selinux_audit_rule_match,
5757 .audit_rule_free = selinux_audit_rule_free,
5758 #endif
5759 };
5760
selinux_init(void)5761 static __init int selinux_init(void)
5762 {
5763 if (!security_module_enable(&selinux_ops)) {
5764 selinux_enabled = 0;
5765 return 0;
5766 }
5767
5768 if (!selinux_enabled) {
5769 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5770 return 0;
5771 }
5772
5773 printk(KERN_INFO "SELinux: Initializing.\n");
5774
5775 /* Set the security state for the initial task. */
5776 cred_init_security();
5777
5778 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5779 sizeof(struct inode_security_struct),
5780 0, SLAB_PANIC, NULL);
5781 avc_init();
5782
5783 secondary_ops = security_ops;
5784 if (!secondary_ops)
5785 panic("SELinux: No initial security operations\n");
5786 if (register_security(&selinux_ops))
5787 panic("SELinux: Unable to register with kernel.\n");
5788
5789 if (selinux_enforcing)
5790 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5791 else
5792 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5793
5794 return 0;
5795 }
5796
selinux_complete_init(void)5797 void selinux_complete_init(void)
5798 {
5799 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5800
5801 /* Set up any superblocks initialized prior to the policy load. */
5802 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5803 spin_lock(&sb_lock);
5804 spin_lock(&sb_security_lock);
5805 next_sb:
5806 if (!list_empty(&superblock_security_head)) {
5807 struct superblock_security_struct *sbsec =
5808 list_entry(superblock_security_head.next,
5809 struct superblock_security_struct,
5810 list);
5811 struct super_block *sb = sbsec->sb;
5812 sb->s_count++;
5813 spin_unlock(&sb_security_lock);
5814 spin_unlock(&sb_lock);
5815 down_read(&sb->s_umount);
5816 if (sb->s_root)
5817 superblock_doinit(sb, NULL);
5818 drop_super(sb);
5819 spin_lock(&sb_lock);
5820 spin_lock(&sb_security_lock);
5821 list_del_init(&sbsec->list);
5822 goto next_sb;
5823 }
5824 spin_unlock(&sb_security_lock);
5825 spin_unlock(&sb_lock);
5826 }
5827
5828 /* SELinux requires early initialization in order to label
5829 all processes and objects when they are created. */
5830 security_initcall(selinux_init);
5831
5832 #if defined(CONFIG_NETFILTER)
5833
5834 static struct nf_hook_ops selinux_ipv4_ops[] = {
5835 {
5836 .hook = selinux_ipv4_postroute,
5837 .owner = THIS_MODULE,
5838 .pf = PF_INET,
5839 .hooknum = NF_INET_POST_ROUTING,
5840 .priority = NF_IP_PRI_SELINUX_LAST,
5841 },
5842 {
5843 .hook = selinux_ipv4_forward,
5844 .owner = THIS_MODULE,
5845 .pf = PF_INET,
5846 .hooknum = NF_INET_FORWARD,
5847 .priority = NF_IP_PRI_SELINUX_FIRST,
5848 },
5849 {
5850 .hook = selinux_ipv4_output,
5851 .owner = THIS_MODULE,
5852 .pf = PF_INET,
5853 .hooknum = NF_INET_LOCAL_OUT,
5854 .priority = NF_IP_PRI_SELINUX_FIRST,
5855 }
5856 };
5857
5858 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5859
5860 static struct nf_hook_ops selinux_ipv6_ops[] = {
5861 {
5862 .hook = selinux_ipv6_postroute,
5863 .owner = THIS_MODULE,
5864 .pf = PF_INET6,
5865 .hooknum = NF_INET_POST_ROUTING,
5866 .priority = NF_IP6_PRI_SELINUX_LAST,
5867 },
5868 {
5869 .hook = selinux_ipv6_forward,
5870 .owner = THIS_MODULE,
5871 .pf = PF_INET6,
5872 .hooknum = NF_INET_FORWARD,
5873 .priority = NF_IP6_PRI_SELINUX_FIRST,
5874 }
5875 };
5876
5877 #endif /* IPV6 */
5878
selinux_nf_ip_init(void)5879 static int __init selinux_nf_ip_init(void)
5880 {
5881 int err = 0;
5882
5883 if (!selinux_enabled)
5884 goto out;
5885
5886 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5887
5888 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5889 if (err)
5890 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5891
5892 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5893 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5894 if (err)
5895 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5896 #endif /* IPV6 */
5897
5898 out:
5899 return err;
5900 }
5901
5902 __initcall(selinux_nf_ip_init);
5903
5904 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
selinux_nf_ip_exit(void)5905 static void selinux_nf_ip_exit(void)
5906 {
5907 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5908
5909 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5910 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5911 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5912 #endif /* IPV6 */
5913 }
5914 #endif
5915
5916 #else /* CONFIG_NETFILTER */
5917
5918 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5919 #define selinux_nf_ip_exit()
5920 #endif
5921
5922 #endif /* CONFIG_NETFILTER */
5923
5924 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5925 static int selinux_disabled;
5926
selinux_disable(void)5927 int selinux_disable(void)
5928 {
5929 extern void exit_sel_fs(void);
5930
5931 if (ss_initialized) {
5932 /* Not permitted after initial policy load. */
5933 return -EINVAL;
5934 }
5935
5936 if (selinux_disabled) {
5937 /* Only do this once. */
5938 return -EINVAL;
5939 }
5940
5941 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5942
5943 selinux_disabled = 1;
5944 selinux_enabled = 0;
5945
5946 /* Reset security_ops to the secondary module, dummy or capability. */
5947 security_ops = secondary_ops;
5948
5949 /* Unregister netfilter hooks. */
5950 selinux_nf_ip_exit();
5951
5952 /* Unregister selinuxfs. */
5953 exit_sel_fs();
5954
5955 return 0;
5956 }
5957 #endif
5958