• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61 
62 static void exit_mm(struct task_struct * tsk);
63 
__unhash_process(struct task_struct * p,bool group_dead)64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 	nr_threads--;
67 	detach_pid(p, PIDTYPE_PID);
68 	if (group_dead) {
69 		detach_pid(p, PIDTYPE_PGID);
70 		detach_pid(p, PIDTYPE_SID);
71 
72 		list_del_rcu(&p->tasks);
73 		list_del_init(&p->sibling);
74 		__this_cpu_dec(process_counts);
75 	}
76 	list_del_rcu(&p->thread_group);
77 	list_del_rcu(&p->thread_node);
78 }
79 
80 /*
81  * This function expects the tasklist_lock write-locked.
82  */
__exit_signal(struct task_struct * tsk)83 static void __exit_signal(struct task_struct *tsk)
84 {
85 	struct signal_struct *sig = tsk->signal;
86 	bool group_dead = thread_group_leader(tsk);
87 	struct sighand_struct *sighand;
88 	struct tty_struct *uninitialized_var(tty);
89 	cputime_t utime, stime;
90 
91 	sighand = rcu_dereference_check(tsk->sighand,
92 					lockdep_tasklist_lock_is_held());
93 	spin_lock(&sighand->siglock);
94 
95 	posix_cpu_timers_exit(tsk);
96 	if (group_dead) {
97 		posix_cpu_timers_exit_group(tsk);
98 		tty = sig->tty;
99 		sig->tty = NULL;
100 	} else {
101 		/*
102 		 * This can only happen if the caller is de_thread().
103 		 * FIXME: this is the temporary hack, we should teach
104 		 * posix-cpu-timers to handle this case correctly.
105 		 */
106 		if (unlikely(has_group_leader_pid(tsk)))
107 			posix_cpu_timers_exit_group(tsk);
108 
109 		/*
110 		 * If there is any task waiting for the group exit
111 		 * then notify it:
112 		 */
113 		if (sig->notify_count > 0 && !--sig->notify_count)
114 			wake_up_process(sig->group_exit_task);
115 
116 		if (tsk == sig->curr_target)
117 			sig->curr_target = next_thread(tsk);
118 		/*
119 		 * Accumulate here the counters for all threads but the
120 		 * group leader as they die, so they can be added into
121 		 * the process-wide totals when those are taken.
122 		 * The group leader stays around as a zombie as long
123 		 * as there are other threads.  When it gets reaped,
124 		 * the exit.c code will add its counts into these totals.
125 		 * We won't ever get here for the group leader, since it
126 		 * will have been the last reference on the signal_struct.
127 		 */
128 		task_cputime(tsk, &utime, &stime);
129 		sig->utime += utime;
130 		sig->stime += stime;
131 		sig->gtime += task_gtime(tsk);
132 		sig->min_flt += tsk->min_flt;
133 		sig->maj_flt += tsk->maj_flt;
134 		sig->nvcsw += tsk->nvcsw;
135 		sig->nivcsw += tsk->nivcsw;
136 		sig->inblock += task_io_get_inblock(tsk);
137 		sig->oublock += task_io_get_oublock(tsk);
138 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 	}
141 
142 	sig->nr_threads--;
143 	__unhash_process(tsk, group_dead);
144 
145 	/*
146 	 * Do this under ->siglock, we can race with another thread
147 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 	 */
149 	flush_sigqueue(&tsk->pending);
150 	tsk->sighand = NULL;
151 	spin_unlock(&sighand->siglock);
152 
153 	__cleanup_sighand(sighand);
154 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 	if (group_dead) {
156 		flush_sigqueue(&sig->shared_pending);
157 		tty_kref_put(tty);
158 	}
159 }
160 
delayed_put_task_struct(struct rcu_head * rhp)161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164 
165 	perf_event_delayed_put(tsk);
166 	trace_sched_process_free(tsk);
167 	put_task_struct(tsk);
168 }
169 
170 
release_task(struct task_struct * p)171 void release_task(struct task_struct * p)
172 {
173 	struct task_struct *leader;
174 	int zap_leader;
175 repeat:
176 	/* don't need to get the RCU readlock here - the process is dead and
177 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 	rcu_read_lock();
179 	atomic_dec(&__task_cred(p)->user->processes);
180 	rcu_read_unlock();
181 
182 	proc_flush_task(p);
183 
184 	write_lock_irq(&tasklist_lock);
185 	ptrace_release_task(p);
186 	__exit_signal(p);
187 
188 	/*
189 	 * If we are the last non-leader member of the thread
190 	 * group, and the leader is zombie, then notify the
191 	 * group leader's parent process. (if it wants notification.)
192 	 */
193 	zap_leader = 0;
194 	leader = p->group_leader;
195 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 		/*
197 		 * If we were the last child thread and the leader has
198 		 * exited already, and the leader's parent ignores SIGCHLD,
199 		 * then we are the one who should release the leader.
200 		 */
201 		zap_leader = do_notify_parent(leader, leader->exit_signal);
202 		if (zap_leader)
203 			leader->exit_state = EXIT_DEAD;
204 	}
205 
206 	write_unlock_irq(&tasklist_lock);
207 	release_thread(p);
208 	call_rcu(&p->rcu, delayed_put_task_struct);
209 
210 	p = leader;
211 	if (unlikely(zap_leader))
212 		goto repeat;
213 }
214 
215 /*
216  * This checks not only the pgrp, but falls back on the pid if no
217  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218  * without this...
219  *
220  * The caller must hold rcu lock or the tasklist lock.
221  */
session_of_pgrp(struct pid * pgrp)222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 	struct task_struct *p;
225 	struct pid *sid = NULL;
226 
227 	p = pid_task(pgrp, PIDTYPE_PGID);
228 	if (p == NULL)
229 		p = pid_task(pgrp, PIDTYPE_PID);
230 	if (p != NULL)
231 		sid = task_session(p);
232 
233 	return sid;
234 }
235 
236 /*
237  * Determine if a process group is "orphaned", according to the POSIX
238  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
239  * by terminal-generated stop signals.  Newly orphaned process groups are
240  * to receive a SIGHUP and a SIGCONT.
241  *
242  * "I ask you, have you ever known what it is to be an orphan?"
243  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 	struct task_struct *p;
247 
248 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 		if ((p == ignored_task) ||
250 		    (p->exit_state && thread_group_empty(p)) ||
251 		    is_global_init(p->real_parent))
252 			continue;
253 
254 		if (task_pgrp(p->real_parent) != pgrp &&
255 		    task_session(p->real_parent) == task_session(p))
256 			return 0;
257 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 
259 	return 1;
260 }
261 
is_current_pgrp_orphaned(void)262 int is_current_pgrp_orphaned(void)
263 {
264 	int retval;
265 
266 	read_lock(&tasklist_lock);
267 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 	read_unlock(&tasklist_lock);
269 
270 	return retval;
271 }
272 
has_stopped_jobs(struct pid * pgrp)273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 	struct task_struct *p;
276 
277 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 			return true;
280 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281 
282 	return false;
283 }
284 
285 /*
286  * Check to see if any process groups have become orphaned as
287  * a result of our exiting, and if they have any stopped jobs,
288  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289  */
290 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 	struct pid *pgrp = task_pgrp(tsk);
294 	struct task_struct *ignored_task = tsk;
295 
296 	if (!parent)
297 		 /* exit: our father is in a different pgrp than
298 		  * we are and we were the only connection outside.
299 		  */
300 		parent = tsk->real_parent;
301 	else
302 		/* reparent: our child is in a different pgrp than
303 		 * we are, and it was the only connection outside.
304 		 */
305 		ignored_task = NULL;
306 
307 	if (task_pgrp(parent) != pgrp &&
308 	    task_session(parent) == task_session(tsk) &&
309 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 	    has_stopped_jobs(pgrp)) {
311 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 	}
314 }
315 
__set_special_pids(struct pid * pid)316 void __set_special_pids(struct pid *pid)
317 {
318 	struct task_struct *curr = current->group_leader;
319 
320 	if (task_session(curr) != pid)
321 		change_pid(curr, PIDTYPE_SID, pid);
322 
323 	if (task_pgrp(curr) != pid)
324 		change_pid(curr, PIDTYPE_PGID, pid);
325 }
326 
327 /*
328  * Let kernel threads use this to say that they allow a certain signal.
329  * Must not be used if kthread was cloned with CLONE_SIGHAND.
330  */
allow_signal(int sig)331 int allow_signal(int sig)
332 {
333 	if (!valid_signal(sig) || sig < 1)
334 		return -EINVAL;
335 
336 	spin_lock_irq(&current->sighand->siglock);
337 	/* This is only needed for daemonize()'ed kthreads */
338 	sigdelset(&current->blocked, sig);
339 	/*
340 	 * Kernel threads handle their own signals. Let the signal code
341 	 * know it'll be handled, so that they don't get converted to
342 	 * SIGKILL or just silently dropped.
343 	 */
344 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
345 	recalc_sigpending();
346 	spin_unlock_irq(&current->sighand->siglock);
347 	return 0;
348 }
349 
350 EXPORT_SYMBOL(allow_signal);
351 
disallow_signal(int sig)352 int disallow_signal(int sig)
353 {
354 	if (!valid_signal(sig) || sig < 1)
355 		return -EINVAL;
356 
357 	spin_lock_irq(&current->sighand->siglock);
358 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
359 	recalc_sigpending();
360 	spin_unlock_irq(&current->sighand->siglock);
361 	return 0;
362 }
363 
364 EXPORT_SYMBOL(disallow_signal);
365 
366 #ifdef CONFIG_MM_OWNER
367 /*
368  * A task is exiting.   If it owned this mm, find a new owner for the mm.
369  */
mm_update_next_owner(struct mm_struct * mm)370 void mm_update_next_owner(struct mm_struct *mm)
371 {
372 	struct task_struct *c, *g, *p = current;
373 
374 retry:
375 	/*
376 	 * If the exiting or execing task is not the owner, it's
377 	 * someone else's problem.
378 	 */
379 	if (mm->owner != p)
380 		return;
381 	/*
382 	 * The current owner is exiting/execing and there are no other
383 	 * candidates.  Do not leave the mm pointing to a possibly
384 	 * freed task structure.
385 	 */
386 	if (atomic_read(&mm->mm_users) <= 1) {
387 		mm->owner = NULL;
388 		return;
389 	}
390 
391 	read_lock(&tasklist_lock);
392 	/*
393 	 * Search in the children
394 	 */
395 	list_for_each_entry(c, &p->children, sibling) {
396 		if (c->mm == mm)
397 			goto assign_new_owner;
398 	}
399 
400 	/*
401 	 * Search in the siblings
402 	 */
403 	list_for_each_entry(c, &p->real_parent->children, sibling) {
404 		if (c->mm == mm)
405 			goto assign_new_owner;
406 	}
407 
408 	/*
409 	 * Search through everything else. We should not get
410 	 * here often
411 	 */
412 	do_each_thread(g, c) {
413 		if (c->mm == mm)
414 			goto assign_new_owner;
415 	} while_each_thread(g, c);
416 
417 	read_unlock(&tasklist_lock);
418 	/*
419 	 * We found no owner yet mm_users > 1: this implies that we are
420 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
421 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
422 	 */
423 	mm->owner = NULL;
424 	return;
425 
426 assign_new_owner:
427 	BUG_ON(c == p);
428 	get_task_struct(c);
429 	/*
430 	 * The task_lock protects c->mm from changing.
431 	 * We always want mm->owner->mm == mm
432 	 */
433 	task_lock(c);
434 	/*
435 	 * Delay read_unlock() till we have the task_lock()
436 	 * to ensure that c does not slip away underneath us
437 	 */
438 	read_unlock(&tasklist_lock);
439 	if (c->mm != mm) {
440 		task_unlock(c);
441 		put_task_struct(c);
442 		goto retry;
443 	}
444 	mm->owner = c;
445 	task_unlock(c);
446 	put_task_struct(c);
447 }
448 #endif /* CONFIG_MM_OWNER */
449 
450 /*
451  * Turn us into a lazy TLB process if we
452  * aren't already..
453  */
exit_mm(struct task_struct * tsk)454 static void exit_mm(struct task_struct * tsk)
455 {
456 	struct mm_struct *mm = tsk->mm;
457 	struct core_state *core_state;
458 
459 	mm_release(tsk, mm);
460 	if (!mm)
461 		return;
462 	sync_mm_rss(mm);
463 	/*
464 	 * Serialize with any possible pending coredump.
465 	 * We must hold mmap_sem around checking core_state
466 	 * and clearing tsk->mm.  The core-inducing thread
467 	 * will increment ->nr_threads for each thread in the
468 	 * group with ->mm != NULL.
469 	 */
470 	down_read(&mm->mmap_sem);
471 	core_state = mm->core_state;
472 	if (core_state) {
473 		struct core_thread self;
474 		up_read(&mm->mmap_sem);
475 
476 		self.task = tsk;
477 		self.next = xchg(&core_state->dumper.next, &self);
478 		/*
479 		 * Implies mb(), the result of xchg() must be visible
480 		 * to core_state->dumper.
481 		 */
482 		if (atomic_dec_and_test(&core_state->nr_threads))
483 			complete(&core_state->startup);
484 
485 		for (;;) {
486 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
487 			if (!self.task) /* see coredump_finish() */
488 				break;
489 			freezable_schedule();
490 		}
491 		__set_task_state(tsk, TASK_RUNNING);
492 		down_read(&mm->mmap_sem);
493 	}
494 	atomic_inc(&mm->mm_count);
495 	BUG_ON(mm != tsk->active_mm);
496 	/* more a memory barrier than a real lock */
497 	task_lock(tsk);
498 	tsk->mm = NULL;
499 	up_read(&mm->mmap_sem);
500 	enter_lazy_tlb(mm, current);
501 	task_unlock(tsk);
502 	mm_update_next_owner(mm);
503 	mmput(mm);
504 }
505 
506 /*
507  * When we die, we re-parent all our children, and try to:
508  * 1. give them to another thread in our thread group, if such a member exists
509  * 2. give it to the first ancestor process which prctl'd itself as a
510  *    child_subreaper for its children (like a service manager)
511  * 3. give it to the init process (PID 1) in our pid namespace
512  */
find_new_reaper(struct task_struct * father)513 static struct task_struct *find_new_reaper(struct task_struct *father)
514 	__releases(&tasklist_lock)
515 	__acquires(&tasklist_lock)
516 {
517 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
518 	struct task_struct *thread;
519 
520 	thread = father;
521 	while_each_thread(father, thread) {
522 		if (thread->flags & PF_EXITING)
523 			continue;
524 		if (unlikely(pid_ns->child_reaper == father))
525 			pid_ns->child_reaper = thread;
526 		return thread;
527 	}
528 
529 	if (unlikely(pid_ns->child_reaper == father)) {
530 		write_unlock_irq(&tasklist_lock);
531 		if (unlikely(pid_ns == &init_pid_ns)) {
532 			panic("Attempted to kill init! exitcode=0x%08x\n",
533 				father->signal->group_exit_code ?:
534 					father->exit_code);
535 		}
536 
537 		zap_pid_ns_processes(pid_ns);
538 		write_lock_irq(&tasklist_lock);
539 	} else if (father->signal->has_child_subreaper) {
540 		struct task_struct *reaper;
541 
542 		/*
543 		 * Find the first ancestor marked as child_subreaper.
544 		 * Note that the code below checks same_thread_group(reaper,
545 		 * pid_ns->child_reaper).  This is what we need to DTRT in a
546 		 * PID namespace. However we still need the check above, see
547 		 * http://marc.info/?l=linux-kernel&m=131385460420380
548 		 */
549 		for (reaper = father->real_parent;
550 		     reaper != &init_task;
551 		     reaper = reaper->real_parent) {
552 			if (same_thread_group(reaper, pid_ns->child_reaper))
553 				break;
554 			if (!reaper->signal->is_child_subreaper)
555 				continue;
556 			thread = reaper;
557 			do {
558 				if (!(thread->flags & PF_EXITING))
559 					return reaper;
560 			} while_each_thread(reaper, thread);
561 		}
562 	}
563 
564 	return pid_ns->child_reaper;
565 }
566 
567 /*
568 * Any that need to be release_task'd are put on the @dead list.
569  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)570 static void reparent_leader(struct task_struct *father, struct task_struct *p,
571 				struct list_head *dead)
572 {
573 	list_move_tail(&p->sibling, &p->real_parent->children);
574 
575 	if (p->exit_state == EXIT_DEAD)
576 		return;
577 	/*
578 	 * If this is a threaded reparent there is no need to
579 	 * notify anyone anything has happened.
580 	 */
581 	if (same_thread_group(p->real_parent, father))
582 		return;
583 
584 	/* We don't want people slaying init.  */
585 	p->exit_signal = SIGCHLD;
586 
587 	/* If it has exited notify the new parent about this child's death. */
588 	if (!p->ptrace &&
589 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
590 		if (do_notify_parent(p, p->exit_signal)) {
591 			p->exit_state = EXIT_DEAD;
592 			list_move_tail(&p->sibling, dead);
593 		}
594 	}
595 
596 	kill_orphaned_pgrp(p, father);
597 }
598 
forget_original_parent(struct task_struct * father)599 static void forget_original_parent(struct task_struct *father)
600 {
601 	struct task_struct *p, *n, *reaper;
602 	LIST_HEAD(dead_children);
603 
604 	write_lock_irq(&tasklist_lock);
605 	/*
606 	 * Note that exit_ptrace() and find_new_reaper() might
607 	 * drop tasklist_lock and reacquire it.
608 	 */
609 	exit_ptrace(father);
610 	reaper = find_new_reaper(father);
611 
612 	list_for_each_entry_safe(p, n, &father->children, sibling) {
613 		struct task_struct *t = p;
614 		do {
615 			t->real_parent = reaper;
616 			if (t->parent == father) {
617 				BUG_ON(t->ptrace);
618 				t->parent = t->real_parent;
619 			}
620 			if (t->pdeath_signal)
621 				group_send_sig_info(t->pdeath_signal,
622 						    SEND_SIG_NOINFO, t);
623 		} while_each_thread(p, t);
624 		reparent_leader(father, p, &dead_children);
625 	}
626 	write_unlock_irq(&tasklist_lock);
627 
628 	BUG_ON(!list_empty(&father->children));
629 
630 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
631 		list_del_init(&p->sibling);
632 		release_task(p);
633 	}
634 }
635 
636 /*
637  * Send signals to all our closest relatives so that they know
638  * to properly mourn us..
639  */
exit_notify(struct task_struct * tsk,int group_dead)640 static void exit_notify(struct task_struct *tsk, int group_dead)
641 {
642 	bool autoreap;
643 
644 	/*
645 	 * This does two things:
646 	 *
647   	 * A.  Make init inherit all the child processes
648 	 * B.  Check to see if any process groups have become orphaned
649 	 *	as a result of our exiting, and if they have any stopped
650 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
651 	 */
652 	forget_original_parent(tsk);
653 
654 	write_lock_irq(&tasklist_lock);
655 	if (group_dead)
656 		kill_orphaned_pgrp(tsk->group_leader, NULL);
657 
658 	if (unlikely(tsk->ptrace)) {
659 		int sig = thread_group_leader(tsk) &&
660 				thread_group_empty(tsk) &&
661 				!ptrace_reparented(tsk) ?
662 			tsk->exit_signal : SIGCHLD;
663 		autoreap = do_notify_parent(tsk, sig);
664 	} else if (thread_group_leader(tsk)) {
665 		autoreap = thread_group_empty(tsk) &&
666 			do_notify_parent(tsk, tsk->exit_signal);
667 	} else {
668 		autoreap = true;
669 	}
670 
671 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
672 
673 	/* mt-exec, de_thread() is waiting for group leader */
674 	if (unlikely(tsk->signal->notify_count < 0))
675 		wake_up_process(tsk->signal->group_exit_task);
676 	write_unlock_irq(&tasklist_lock);
677 
678 	/* If the process is dead, release it - nobody will wait for it */
679 	if (autoreap)
680 		release_task(tsk);
681 }
682 
683 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)684 static void check_stack_usage(void)
685 {
686 	static DEFINE_SPINLOCK(low_water_lock);
687 	static int lowest_to_date = THREAD_SIZE;
688 	unsigned long free;
689 
690 	free = stack_not_used(current);
691 
692 	if (free >= lowest_to_date)
693 		return;
694 
695 	spin_lock(&low_water_lock);
696 	if (free < lowest_to_date) {
697 		printk(KERN_WARNING "%s (%d) used greatest stack depth: "
698 				"%lu bytes left\n",
699 				current->comm, task_pid_nr(current), free);
700 		lowest_to_date = free;
701 	}
702 	spin_unlock(&low_water_lock);
703 }
704 #else
check_stack_usage(void)705 static inline void check_stack_usage(void) {}
706 #endif
707 
do_exit(long code)708 void do_exit(long code)
709 {
710 	struct task_struct *tsk = current;
711 	int group_dead;
712 
713 	profile_task_exit(tsk);
714 
715 	WARN_ON(blk_needs_flush_plug(tsk));
716 
717 	if (unlikely(in_interrupt()))
718 		panic("Aiee, killing interrupt handler!");
719 	if (unlikely(!tsk->pid))
720 		panic("Attempted to kill the idle task!");
721 
722 	/*
723 	 * If do_exit is called because this processes oopsed, it's possible
724 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
725 	 * continuing. Amongst other possible reasons, this is to prevent
726 	 * mm_release()->clear_child_tid() from writing to a user-controlled
727 	 * kernel address.
728 	 */
729 	set_fs(USER_DS);
730 
731 	ptrace_event(PTRACE_EVENT_EXIT, code);
732 
733 	validate_creds_for_do_exit(tsk);
734 
735 	/*
736 	 * We're taking recursive faults here in do_exit. Safest is to just
737 	 * leave this task alone and wait for reboot.
738 	 */
739 	if (unlikely(tsk->flags & PF_EXITING)) {
740 		printk(KERN_ALERT
741 			"Fixing recursive fault but reboot is needed!\n");
742 		/*
743 		 * We can do this unlocked here. The futex code uses
744 		 * this flag just to verify whether the pi state
745 		 * cleanup has been done or not. In the worst case it
746 		 * loops once more. We pretend that the cleanup was
747 		 * done as there is no way to return. Either the
748 		 * OWNER_DIED bit is set by now or we push the blocked
749 		 * task into the wait for ever nirwana as well.
750 		 */
751 		tsk->flags |= PF_EXITPIDONE;
752 		set_current_state(TASK_UNINTERRUPTIBLE);
753 		schedule();
754 	}
755 
756 	exit_signals(tsk);  /* sets PF_EXITING */
757 	/*
758 	 * tsk->flags are checked in the futex code to protect against
759 	 * an exiting task cleaning up the robust pi futexes.
760 	 */
761 	smp_mb();
762 	raw_spin_unlock_wait(&tsk->pi_lock);
763 
764 	if (unlikely(in_atomic()))
765 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
766 				current->comm, task_pid_nr(current),
767 				preempt_count());
768 
769 	acct_update_integrals(tsk);
770 	/* sync mm's RSS info before statistics gathering */
771 	if (tsk->mm)
772 		sync_mm_rss(tsk->mm);
773 	group_dead = atomic_dec_and_test(&tsk->signal->live);
774 	if (group_dead) {
775 		hrtimer_cancel(&tsk->signal->real_timer);
776 		exit_itimers(tsk->signal);
777 		if (tsk->mm)
778 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
779 	}
780 	acct_collect(code, group_dead);
781 	if (group_dead)
782 		tty_audit_exit();
783 	audit_free(tsk);
784 
785 	tsk->exit_code = code;
786 	taskstats_exit(tsk, group_dead);
787 
788 	exit_mm(tsk);
789 
790 	if (group_dead)
791 		acct_process();
792 	trace_sched_process_exit(tsk);
793 
794 	exit_sem(tsk);
795 	exit_shm(tsk);
796 	exit_files(tsk);
797 	exit_fs(tsk);
798 	exit_task_namespaces(tsk);
799 	exit_task_work(tsk);
800 	check_stack_usage();
801 	exit_thread();
802 
803 	/*
804 	 * Flush inherited counters to the parent - before the parent
805 	 * gets woken up by child-exit notifications.
806 	 *
807 	 * because of cgroup mode, must be called before cgroup_exit()
808 	 */
809 	perf_event_exit_task(tsk);
810 
811 	cgroup_exit(tsk, 1);
812 
813 	if (group_dead)
814 		disassociate_ctty(1);
815 
816 	module_put(task_thread_info(tsk)->exec_domain->module);
817 
818 	proc_exit_connector(tsk);
819 
820 	/*
821 	 * FIXME: do that only when needed, using sched_exit tracepoint
822 	 */
823 	ptrace_put_breakpoints(tsk);
824 
825 	exit_notify(tsk, group_dead);
826 #ifdef CONFIG_NUMA
827 	task_lock(tsk);
828 	mpol_put(tsk->mempolicy);
829 	tsk->mempolicy = NULL;
830 	task_unlock(tsk);
831 #endif
832 #ifdef CONFIG_FUTEX
833 	if (unlikely(current->pi_state_cache))
834 		kfree(current->pi_state_cache);
835 #endif
836 	/*
837 	 * Make sure we are holding no locks:
838 	 */
839 	debug_check_no_locks_held();
840 	/*
841 	 * We can do this unlocked here. The futex code uses this flag
842 	 * just to verify whether the pi state cleanup has been done
843 	 * or not. In the worst case it loops once more.
844 	 */
845 	tsk->flags |= PF_EXITPIDONE;
846 
847 	if (tsk->io_context)
848 		exit_io_context(tsk);
849 
850 	if (tsk->splice_pipe)
851 		free_pipe_info(tsk->splice_pipe);
852 
853 	if (tsk->task_frag.page)
854 		put_page(tsk->task_frag.page);
855 
856 	validate_creds_for_do_exit(tsk);
857 
858 	preempt_disable();
859 	if (tsk->nr_dirtied)
860 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
861 	exit_rcu();
862 
863 	/*
864 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
865 	 * when the following two conditions become true.
866 	 *   - There is race condition of mmap_sem (It is acquired by
867 	 *     exit_mm()), and
868 	 *   - SMI occurs before setting TASK_RUNINNG.
869 	 *     (or hypervisor of virtual machine switches to other guest)
870 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
871 	 *
872 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
873 	 * is held by try_to_wake_up()
874 	 */
875 	smp_mb();
876 	raw_spin_unlock_wait(&tsk->pi_lock);
877 
878 	/* causes final put_task_struct in finish_task_switch(). */
879 	tsk->state = TASK_DEAD;
880 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
881 	schedule();
882 	BUG();
883 	/* Avoid "noreturn function does return".  */
884 	for (;;)
885 		cpu_relax();	/* For when BUG is null */
886 }
887 
888 EXPORT_SYMBOL_GPL(do_exit);
889 
complete_and_exit(struct completion * comp,long code)890 void complete_and_exit(struct completion *comp, long code)
891 {
892 	if (comp)
893 		complete(comp);
894 
895 	do_exit(code);
896 }
897 
898 EXPORT_SYMBOL(complete_and_exit);
899 
SYSCALL_DEFINE1(exit,int,error_code)900 SYSCALL_DEFINE1(exit, int, error_code)
901 {
902 	do_exit((error_code&0xff)<<8);
903 }
904 
905 /*
906  * Take down every thread in the group.  This is called by fatal signals
907  * as well as by sys_exit_group (below).
908  */
909 void
do_group_exit(int exit_code)910 do_group_exit(int exit_code)
911 {
912 	struct signal_struct *sig = current->signal;
913 
914 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
915 
916 	if (signal_group_exit(sig))
917 		exit_code = sig->group_exit_code;
918 	else if (!thread_group_empty(current)) {
919 		struct sighand_struct *const sighand = current->sighand;
920 		spin_lock_irq(&sighand->siglock);
921 		if (signal_group_exit(sig))
922 			/* Another thread got here before we took the lock.  */
923 			exit_code = sig->group_exit_code;
924 		else {
925 			sig->group_exit_code = exit_code;
926 			sig->flags = SIGNAL_GROUP_EXIT;
927 			zap_other_threads(current);
928 		}
929 		spin_unlock_irq(&sighand->siglock);
930 	}
931 
932 	do_exit(exit_code);
933 	/* NOTREACHED */
934 }
935 
936 /*
937  * this kills every thread in the thread group. Note that any externally
938  * wait4()-ing process will get the correct exit code - even if this
939  * thread is not the thread group leader.
940  */
SYSCALL_DEFINE1(exit_group,int,error_code)941 SYSCALL_DEFINE1(exit_group, int, error_code)
942 {
943 	do_group_exit((error_code & 0xff) << 8);
944 	/* NOTREACHED */
945 	return 0;
946 }
947 
948 struct wait_opts {
949 	enum pid_type		wo_type;
950 	int			wo_flags;
951 	struct pid		*wo_pid;
952 
953 	struct siginfo __user	*wo_info;
954 	int __user		*wo_stat;
955 	struct rusage __user	*wo_rusage;
956 
957 	wait_queue_t		child_wait;
958 	int			notask_error;
959 };
960 
961 static inline
task_pid_type(struct task_struct * task,enum pid_type type)962 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
963 {
964 	if (type != PIDTYPE_PID)
965 		task = task->group_leader;
966 	return task->pids[type].pid;
967 }
968 
eligible_pid(struct wait_opts * wo,struct task_struct * p)969 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
970 {
971 	return	wo->wo_type == PIDTYPE_MAX ||
972 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
973 }
974 
eligible_child(struct wait_opts * wo,struct task_struct * p)975 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
976 {
977 	if (!eligible_pid(wo, p))
978 		return 0;
979 	/* Wait for all children (clone and not) if __WALL is set;
980 	 * otherwise, wait for clone children *only* if __WCLONE is
981 	 * set; otherwise, wait for non-clone children *only*.  (Note:
982 	 * A "clone" child here is one that reports to its parent
983 	 * using a signal other than SIGCHLD.) */
984 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
985 	    && !(wo->wo_flags & __WALL))
986 		return 0;
987 
988 	return 1;
989 }
990 
wait_noreap_copyout(struct wait_opts * wo,struct task_struct * p,pid_t pid,uid_t uid,int why,int status)991 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
992 				pid_t pid, uid_t uid, int why, int status)
993 {
994 	struct siginfo __user *infop;
995 	int retval = wo->wo_rusage
996 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
997 
998 	put_task_struct(p);
999 	infop = wo->wo_info;
1000 	if (infop) {
1001 		if (!retval)
1002 			retval = put_user(SIGCHLD, &infop->si_signo);
1003 		if (!retval)
1004 			retval = put_user(0, &infop->si_errno);
1005 		if (!retval)
1006 			retval = put_user((short)why, &infop->si_code);
1007 		if (!retval)
1008 			retval = put_user(pid, &infop->si_pid);
1009 		if (!retval)
1010 			retval = put_user(uid, &infop->si_uid);
1011 		if (!retval)
1012 			retval = put_user(status, &infop->si_status);
1013 	}
1014 	if (!retval)
1015 		retval = pid;
1016 	return retval;
1017 }
1018 
1019 /*
1020  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1021  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1022  * the lock and this task is uninteresting.  If we return nonzero, we have
1023  * released the lock and the system call should return.
1024  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1025 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1026 {
1027 	unsigned long state;
1028 	int retval, status, traced;
1029 	pid_t pid = task_pid_vnr(p);
1030 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1031 	struct siginfo __user *infop;
1032 
1033 	if (!likely(wo->wo_flags & WEXITED))
1034 		return 0;
1035 
1036 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1037 		int exit_code = p->exit_code;
1038 		int why;
1039 
1040 		get_task_struct(p);
1041 		read_unlock(&tasklist_lock);
1042 		if ((exit_code & 0x7f) == 0) {
1043 			why = CLD_EXITED;
1044 			status = exit_code >> 8;
1045 		} else {
1046 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1047 			status = exit_code & 0x7f;
1048 		}
1049 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1050 	}
1051 
1052 	/*
1053 	 * Try to move the task's state to DEAD
1054 	 * only one thread is allowed to do this:
1055 	 */
1056 	state = xchg(&p->exit_state, EXIT_DEAD);
1057 	if (state != EXIT_ZOMBIE) {
1058 		BUG_ON(state != EXIT_DEAD);
1059 		return 0;
1060 	}
1061 
1062 	traced = ptrace_reparented(p);
1063 	/*
1064 	 * It can be ptraced but not reparented, check
1065 	 * thread_group_leader() to filter out sub-threads.
1066 	 */
1067 	if (likely(!traced) && thread_group_leader(p)) {
1068 		struct signal_struct *psig;
1069 		struct signal_struct *sig;
1070 		unsigned long maxrss;
1071 		cputime_t tgutime, tgstime;
1072 
1073 		/*
1074 		 * The resource counters for the group leader are in its
1075 		 * own task_struct.  Those for dead threads in the group
1076 		 * are in its signal_struct, as are those for the child
1077 		 * processes it has previously reaped.  All these
1078 		 * accumulate in the parent's signal_struct c* fields.
1079 		 *
1080 		 * We don't bother to take a lock here to protect these
1081 		 * p->signal fields, because they are only touched by
1082 		 * __exit_signal, which runs with tasklist_lock
1083 		 * write-locked anyway, and so is excluded here.  We do
1084 		 * need to protect the access to parent->signal fields,
1085 		 * as other threads in the parent group can be right
1086 		 * here reaping other children at the same time.
1087 		 *
1088 		 * We use thread_group_cputime_adjusted() to get times for the thread
1089 		 * group, which consolidates times for all threads in the
1090 		 * group including the group leader.
1091 		 */
1092 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1093 		spin_lock_irq(&p->real_parent->sighand->siglock);
1094 		psig = p->real_parent->signal;
1095 		sig = p->signal;
1096 		psig->cutime += tgutime + sig->cutime;
1097 		psig->cstime += tgstime + sig->cstime;
1098 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1099 		psig->cmin_flt +=
1100 			p->min_flt + sig->min_flt + sig->cmin_flt;
1101 		psig->cmaj_flt +=
1102 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1103 		psig->cnvcsw +=
1104 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1105 		psig->cnivcsw +=
1106 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1107 		psig->cinblock +=
1108 			task_io_get_inblock(p) +
1109 			sig->inblock + sig->cinblock;
1110 		psig->coublock +=
1111 			task_io_get_oublock(p) +
1112 			sig->oublock + sig->coublock;
1113 		maxrss = max(sig->maxrss, sig->cmaxrss);
1114 		if (psig->cmaxrss < maxrss)
1115 			psig->cmaxrss = maxrss;
1116 		task_io_accounting_add(&psig->ioac, &p->ioac);
1117 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1118 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1119 	}
1120 
1121 	/*
1122 	 * Now we are sure this task is interesting, and no other
1123 	 * thread can reap it because we set its state to EXIT_DEAD.
1124 	 */
1125 	read_unlock(&tasklist_lock);
1126 
1127 	retval = wo->wo_rusage
1128 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1129 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1130 		? p->signal->group_exit_code : p->exit_code;
1131 	if (!retval && wo->wo_stat)
1132 		retval = put_user(status, wo->wo_stat);
1133 
1134 	infop = wo->wo_info;
1135 	if (!retval && infop)
1136 		retval = put_user(SIGCHLD, &infop->si_signo);
1137 	if (!retval && infop)
1138 		retval = put_user(0, &infop->si_errno);
1139 	if (!retval && infop) {
1140 		int why;
1141 
1142 		if ((status & 0x7f) == 0) {
1143 			why = CLD_EXITED;
1144 			status >>= 8;
1145 		} else {
1146 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1147 			status &= 0x7f;
1148 		}
1149 		retval = put_user((short)why, &infop->si_code);
1150 		if (!retval)
1151 			retval = put_user(status, &infop->si_status);
1152 	}
1153 	if (!retval && infop)
1154 		retval = put_user(pid, &infop->si_pid);
1155 	if (!retval && infop)
1156 		retval = put_user(uid, &infop->si_uid);
1157 	if (!retval)
1158 		retval = pid;
1159 
1160 	if (traced) {
1161 		write_lock_irq(&tasklist_lock);
1162 		/* We dropped tasklist, ptracer could die and untrace */
1163 		ptrace_unlink(p);
1164 		/*
1165 		 * If this is not a sub-thread, notify the parent.
1166 		 * If parent wants a zombie, don't release it now.
1167 		 */
1168 		if (thread_group_leader(p) &&
1169 		    !do_notify_parent(p, p->exit_signal)) {
1170 			p->exit_state = EXIT_ZOMBIE;
1171 			p = NULL;
1172 		}
1173 		write_unlock_irq(&tasklist_lock);
1174 	}
1175 	if (p != NULL)
1176 		release_task(p);
1177 
1178 	return retval;
1179 }
1180 
task_stopped_code(struct task_struct * p,bool ptrace)1181 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1182 {
1183 	if (ptrace) {
1184 		if (task_is_stopped_or_traced(p) &&
1185 		    !(p->jobctl & JOBCTL_LISTENING))
1186 			return &p->exit_code;
1187 	} else {
1188 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1189 			return &p->signal->group_exit_code;
1190 	}
1191 	return NULL;
1192 }
1193 
1194 /**
1195  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1196  * @wo: wait options
1197  * @ptrace: is the wait for ptrace
1198  * @p: task to wait for
1199  *
1200  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1201  *
1202  * CONTEXT:
1203  * read_lock(&tasklist_lock), which is released if return value is
1204  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1205  *
1206  * RETURNS:
1207  * 0 if wait condition didn't exist and search for other wait conditions
1208  * should continue.  Non-zero return, -errno on failure and @p's pid on
1209  * success, implies that tasklist_lock is released and wait condition
1210  * search should terminate.
1211  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1212 static int wait_task_stopped(struct wait_opts *wo,
1213 				int ptrace, struct task_struct *p)
1214 {
1215 	struct siginfo __user *infop;
1216 	int retval, exit_code, *p_code, why;
1217 	uid_t uid = 0; /* unneeded, required by compiler */
1218 	pid_t pid;
1219 
1220 	/*
1221 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1222 	 */
1223 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1224 		return 0;
1225 
1226 	if (!task_stopped_code(p, ptrace))
1227 		return 0;
1228 
1229 	exit_code = 0;
1230 	spin_lock_irq(&p->sighand->siglock);
1231 
1232 	p_code = task_stopped_code(p, ptrace);
1233 	if (unlikely(!p_code))
1234 		goto unlock_sig;
1235 
1236 	exit_code = *p_code;
1237 	if (!exit_code)
1238 		goto unlock_sig;
1239 
1240 	if (!unlikely(wo->wo_flags & WNOWAIT))
1241 		*p_code = 0;
1242 
1243 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1244 unlock_sig:
1245 	spin_unlock_irq(&p->sighand->siglock);
1246 	if (!exit_code)
1247 		return 0;
1248 
1249 	/*
1250 	 * Now we are pretty sure this task is interesting.
1251 	 * Make sure it doesn't get reaped out from under us while we
1252 	 * give up the lock and then examine it below.  We don't want to
1253 	 * keep holding onto the tasklist_lock while we call getrusage and
1254 	 * possibly take page faults for user memory.
1255 	 */
1256 	get_task_struct(p);
1257 	pid = task_pid_vnr(p);
1258 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1259 	read_unlock(&tasklist_lock);
1260 
1261 	if (unlikely(wo->wo_flags & WNOWAIT))
1262 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1263 
1264 	retval = wo->wo_rusage
1265 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1266 	if (!retval && wo->wo_stat)
1267 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1268 
1269 	infop = wo->wo_info;
1270 	if (!retval && infop)
1271 		retval = put_user(SIGCHLD, &infop->si_signo);
1272 	if (!retval && infop)
1273 		retval = put_user(0, &infop->si_errno);
1274 	if (!retval && infop)
1275 		retval = put_user((short)why, &infop->si_code);
1276 	if (!retval && infop)
1277 		retval = put_user(exit_code, &infop->si_status);
1278 	if (!retval && infop)
1279 		retval = put_user(pid, &infop->si_pid);
1280 	if (!retval && infop)
1281 		retval = put_user(uid, &infop->si_uid);
1282 	if (!retval)
1283 		retval = pid;
1284 	put_task_struct(p);
1285 
1286 	BUG_ON(!retval);
1287 	return retval;
1288 }
1289 
1290 /*
1291  * Handle do_wait work for one task in a live, non-stopped state.
1292  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1293  * the lock and this task is uninteresting.  If we return nonzero, we have
1294  * released the lock and the system call should return.
1295  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1296 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1297 {
1298 	int retval;
1299 	pid_t pid;
1300 	uid_t uid;
1301 
1302 	if (!unlikely(wo->wo_flags & WCONTINUED))
1303 		return 0;
1304 
1305 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1306 		return 0;
1307 
1308 	spin_lock_irq(&p->sighand->siglock);
1309 	/* Re-check with the lock held.  */
1310 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1311 		spin_unlock_irq(&p->sighand->siglock);
1312 		return 0;
1313 	}
1314 	if (!unlikely(wo->wo_flags & WNOWAIT))
1315 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1316 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1317 	spin_unlock_irq(&p->sighand->siglock);
1318 
1319 	pid = task_pid_vnr(p);
1320 	get_task_struct(p);
1321 	read_unlock(&tasklist_lock);
1322 
1323 	if (!wo->wo_info) {
1324 		retval = wo->wo_rusage
1325 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1326 		put_task_struct(p);
1327 		if (!retval && wo->wo_stat)
1328 			retval = put_user(0xffff, wo->wo_stat);
1329 		if (!retval)
1330 			retval = pid;
1331 	} else {
1332 		retval = wait_noreap_copyout(wo, p, pid, uid,
1333 					     CLD_CONTINUED, SIGCONT);
1334 		BUG_ON(retval == 0);
1335 	}
1336 
1337 	return retval;
1338 }
1339 
1340 /*
1341  * Consider @p for a wait by @parent.
1342  *
1343  * -ECHILD should be in ->notask_error before the first call.
1344  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1345  * Returns zero if the search for a child should continue;
1346  * then ->notask_error is 0 if @p is an eligible child,
1347  * or another error from security_task_wait(), or still -ECHILD.
1348  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1349 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1350 				struct task_struct *p)
1351 {
1352 	int ret = eligible_child(wo, p);
1353 	if (!ret)
1354 		return ret;
1355 
1356 	ret = security_task_wait(p);
1357 	if (unlikely(ret < 0)) {
1358 		/*
1359 		 * If we have not yet seen any eligible child,
1360 		 * then let this error code replace -ECHILD.
1361 		 * A permission error will give the user a clue
1362 		 * to look for security policy problems, rather
1363 		 * than for mysterious wait bugs.
1364 		 */
1365 		if (wo->notask_error)
1366 			wo->notask_error = ret;
1367 		return 0;
1368 	}
1369 
1370 	/* dead body doesn't have much to contribute */
1371 	if (unlikely(p->exit_state == EXIT_DEAD)) {
1372 		/*
1373 		 * But do not ignore this task until the tracer does
1374 		 * wait_task_zombie()->do_notify_parent().
1375 		 */
1376 		if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1377 			wo->notask_error = 0;
1378 		return 0;
1379 	}
1380 
1381 	/* slay zombie? */
1382 	if (p->exit_state == EXIT_ZOMBIE) {
1383 		/*
1384 		 * A zombie ptracee is only visible to its ptracer.
1385 		 * Notification and reaping will be cascaded to the real
1386 		 * parent when the ptracer detaches.
1387 		 */
1388 		if (likely(!ptrace) && unlikely(p->ptrace)) {
1389 			/* it will become visible, clear notask_error */
1390 			wo->notask_error = 0;
1391 			return 0;
1392 		}
1393 
1394 		/* we don't reap group leaders with subthreads */
1395 		if (!delay_group_leader(p))
1396 			return wait_task_zombie(wo, p);
1397 
1398 		/*
1399 		 * Allow access to stopped/continued state via zombie by
1400 		 * falling through.  Clearing of notask_error is complex.
1401 		 *
1402 		 * When !@ptrace:
1403 		 *
1404 		 * If WEXITED is set, notask_error should naturally be
1405 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1406 		 * so, if there are live subthreads, there are events to
1407 		 * wait for.  If all subthreads are dead, it's still safe
1408 		 * to clear - this function will be called again in finite
1409 		 * amount time once all the subthreads are released and
1410 		 * will then return without clearing.
1411 		 *
1412 		 * When @ptrace:
1413 		 *
1414 		 * Stopped state is per-task and thus can't change once the
1415 		 * target task dies.  Only continued and exited can happen.
1416 		 * Clear notask_error if WCONTINUED | WEXITED.
1417 		 */
1418 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1419 			wo->notask_error = 0;
1420 	} else {
1421 		/*
1422 		 * If @p is ptraced by a task in its real parent's group,
1423 		 * hide group stop/continued state when looking at @p as
1424 		 * the real parent; otherwise, a single stop can be
1425 		 * reported twice as group and ptrace stops.
1426 		 *
1427 		 * If a ptracer wants to distinguish the two events for its
1428 		 * own children, it should create a separate process which
1429 		 * takes the role of real parent.
1430 		 */
1431 		if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1432 			return 0;
1433 
1434 		/*
1435 		 * @p is alive and it's gonna stop, continue or exit, so
1436 		 * there always is something to wait for.
1437 		 */
1438 		wo->notask_error = 0;
1439 	}
1440 
1441 	/*
1442 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1443 	 * is used and the two don't interact with each other.
1444 	 */
1445 	ret = wait_task_stopped(wo, ptrace, p);
1446 	if (ret)
1447 		return ret;
1448 
1449 	/*
1450 	 * Wait for continued.  There's only one continued state and the
1451 	 * ptracer can consume it which can confuse the real parent.  Don't
1452 	 * use WCONTINUED from ptracer.  You don't need or want it.
1453 	 */
1454 	return wait_task_continued(wo, p);
1455 }
1456 
1457 /*
1458  * Do the work of do_wait() for one thread in the group, @tsk.
1459  *
1460  * -ECHILD should be in ->notask_error before the first call.
1461  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1462  * Returns zero if the search for a child should continue; then
1463  * ->notask_error is 0 if there were any eligible children,
1464  * or another error from security_task_wait(), or still -ECHILD.
1465  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1466 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1467 {
1468 	struct task_struct *p;
1469 
1470 	list_for_each_entry(p, &tsk->children, sibling) {
1471 		int ret = wait_consider_task(wo, 0, p);
1472 		if (ret)
1473 			return ret;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1479 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1480 {
1481 	struct task_struct *p;
1482 
1483 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1484 		int ret = wait_consider_task(wo, 1, p);
1485 		if (ret)
1486 			return ret;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
child_wait_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1492 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1493 				int sync, void *key)
1494 {
1495 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1496 						child_wait);
1497 	struct task_struct *p = key;
1498 
1499 	if (!eligible_pid(wo, p))
1500 		return 0;
1501 
1502 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1503 		return 0;
1504 
1505 	return default_wake_function(wait, mode, sync, key);
1506 }
1507 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1508 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1509 {
1510 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1511 				TASK_INTERRUPTIBLE, 1, p);
1512 }
1513 
do_wait(struct wait_opts * wo)1514 static long do_wait(struct wait_opts *wo)
1515 {
1516 	struct task_struct *tsk;
1517 	int retval;
1518 
1519 	trace_sched_process_wait(wo->wo_pid);
1520 
1521 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1522 	wo->child_wait.private = current;
1523 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1524 repeat:
1525 	/*
1526 	 * If there is nothing that can match our critiera just get out.
1527 	 * We will clear ->notask_error to zero if we see any child that
1528 	 * might later match our criteria, even if we are not able to reap
1529 	 * it yet.
1530 	 */
1531 	wo->notask_error = -ECHILD;
1532 	if ((wo->wo_type < PIDTYPE_MAX) &&
1533 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1534 		goto notask;
1535 
1536 	set_current_state(TASK_INTERRUPTIBLE);
1537 	read_lock(&tasklist_lock);
1538 	tsk = current;
1539 	do {
1540 		retval = do_wait_thread(wo, tsk);
1541 		if (retval)
1542 			goto end;
1543 
1544 		retval = ptrace_do_wait(wo, tsk);
1545 		if (retval)
1546 			goto end;
1547 
1548 		if (wo->wo_flags & __WNOTHREAD)
1549 			break;
1550 	} while_each_thread(current, tsk);
1551 	read_unlock(&tasklist_lock);
1552 
1553 notask:
1554 	retval = wo->notask_error;
1555 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1556 		retval = -ERESTARTSYS;
1557 		if (!signal_pending(current)) {
1558 			schedule();
1559 			goto repeat;
1560 		}
1561 	}
1562 end:
1563 	__set_current_state(TASK_RUNNING);
1564 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1565 	return retval;
1566 }
1567 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1568 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1569 		infop, int, options, struct rusage __user *, ru)
1570 {
1571 	struct wait_opts wo;
1572 	struct pid *pid = NULL;
1573 	enum pid_type type;
1574 	long ret;
1575 
1576 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1577 		return -EINVAL;
1578 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1579 		return -EINVAL;
1580 
1581 	switch (which) {
1582 	case P_ALL:
1583 		type = PIDTYPE_MAX;
1584 		break;
1585 	case P_PID:
1586 		type = PIDTYPE_PID;
1587 		if (upid <= 0)
1588 			return -EINVAL;
1589 		break;
1590 	case P_PGID:
1591 		type = PIDTYPE_PGID;
1592 		if (upid <= 0)
1593 			return -EINVAL;
1594 		break;
1595 	default:
1596 		return -EINVAL;
1597 	}
1598 
1599 	if (type < PIDTYPE_MAX)
1600 		pid = find_get_pid(upid);
1601 
1602 	wo.wo_type	= type;
1603 	wo.wo_pid	= pid;
1604 	wo.wo_flags	= options;
1605 	wo.wo_info	= infop;
1606 	wo.wo_stat	= NULL;
1607 	wo.wo_rusage	= ru;
1608 	ret = do_wait(&wo);
1609 
1610 	if (ret > 0) {
1611 		ret = 0;
1612 	} else if (infop) {
1613 		/*
1614 		 * For a WNOHANG return, clear out all the fields
1615 		 * we would set so the user can easily tell the
1616 		 * difference.
1617 		 */
1618 		if (!ret)
1619 			ret = put_user(0, &infop->si_signo);
1620 		if (!ret)
1621 			ret = put_user(0, &infop->si_errno);
1622 		if (!ret)
1623 			ret = put_user(0, &infop->si_code);
1624 		if (!ret)
1625 			ret = put_user(0, &infop->si_pid);
1626 		if (!ret)
1627 			ret = put_user(0, &infop->si_uid);
1628 		if (!ret)
1629 			ret = put_user(0, &infop->si_status);
1630 	}
1631 
1632 	put_pid(pid);
1633 	return ret;
1634 }
1635 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1636 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1637 		int, options, struct rusage __user *, ru)
1638 {
1639 	struct wait_opts wo;
1640 	struct pid *pid = NULL;
1641 	enum pid_type type;
1642 	long ret;
1643 
1644 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1645 			__WNOTHREAD|__WCLONE|__WALL))
1646 		return -EINVAL;
1647 
1648 	if (upid == -1)
1649 		type = PIDTYPE_MAX;
1650 	else if (upid < 0) {
1651 		type = PIDTYPE_PGID;
1652 		pid = find_get_pid(-upid);
1653 	} else if (upid == 0) {
1654 		type = PIDTYPE_PGID;
1655 		pid = get_task_pid(current, PIDTYPE_PGID);
1656 	} else /* upid > 0 */ {
1657 		type = PIDTYPE_PID;
1658 		pid = find_get_pid(upid);
1659 	}
1660 
1661 	wo.wo_type	= type;
1662 	wo.wo_pid	= pid;
1663 	wo.wo_flags	= options | WEXITED;
1664 	wo.wo_info	= NULL;
1665 	wo.wo_stat	= stat_addr;
1666 	wo.wo_rusage	= ru;
1667 	ret = do_wait(&wo);
1668 	put_pid(pid);
1669 
1670 	return ret;
1671 }
1672 
1673 #ifdef __ARCH_WANT_SYS_WAITPID
1674 
1675 /*
1676  * sys_waitpid() remains for compatibility. waitpid() should be
1677  * implemented by calling sys_wait4() from libc.a.
1678  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1679 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1680 {
1681 	return sys_wait4(pid, stat_addr, options, NULL);
1682 }
1683 
1684 #endif
1685