1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct * tsk);
63
__unhash_process(struct task_struct * p,bool group_dead)64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
__exit_signal(struct task_struct * tsk)83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 /*
119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct.
127 */
128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 }
141
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144
145 /*
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 */
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
152
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
158 }
159 }
160
delayed_put_task_struct(struct rcu_head * rhp)161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
168 }
169
170
release_task(struct task_struct * p)171 void release_task(struct task_struct * p)
172 {
173 struct task_struct *leader;
174 int zap_leader;
175 repeat:
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock();
181
182 proc_flush_task(p);
183
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
186 __exit_signal(p);
187
188 /*
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
192 */
193 zap_leader = 0;
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 /*
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
200 */
201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213 }
214
215 /*
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
219 *
220 * The caller must hold rcu lock or the tasklist lock.
221 */
session_of_pgrp(struct pid * pgrp)222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 struct task_struct *p;
225 struct pid *sid = NULL;
226
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
232
233 return sid;
234 }
235
236 /*
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
241 *
242 * "I ask you, have you ever known what it is to be an orphan?"
243 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 struct task_struct *p;
247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
253
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258
259 return 1;
260 }
261
is_current_pgrp_orphaned(void)262 int is_current_pgrp_orphaned(void)
263 {
264 int retval;
265
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
269
270 return retval;
271 }
272
has_stopped_jobs(struct pid * pgrp)273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 struct task_struct *p;
276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 return true;
280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281
282 return false;
283 }
284
285 /*
286 * Check to see if any process groups have become orphaned as
287 * a result of our exiting, and if they have any stopped jobs,
288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 */
290 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 struct pid *pgrp = task_pgrp(tsk);
294 struct task_struct *ignored_task = tsk;
295
296 if (!parent)
297 /* exit: our father is in a different pgrp than
298 * we are and we were the only connection outside.
299 */
300 parent = tsk->real_parent;
301 else
302 /* reparent: our child is in a different pgrp than
303 * we are, and it was the only connection outside.
304 */
305 ignored_task = NULL;
306
307 if (task_pgrp(parent) != pgrp &&
308 task_session(parent) == task_session(tsk) &&
309 will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 has_stopped_jobs(pgrp)) {
311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 }
314 }
315
__set_special_pids(struct pid * pid)316 void __set_special_pids(struct pid *pid)
317 {
318 struct task_struct *curr = current->group_leader;
319
320 if (task_session(curr) != pid)
321 change_pid(curr, PIDTYPE_SID, pid);
322
323 if (task_pgrp(curr) != pid)
324 change_pid(curr, PIDTYPE_PGID, pid);
325 }
326
327 /*
328 * Let kernel threads use this to say that they allow a certain signal.
329 * Must not be used if kthread was cloned with CLONE_SIGHAND.
330 */
allow_signal(int sig)331 int allow_signal(int sig)
332 {
333 if (!valid_signal(sig) || sig < 1)
334 return -EINVAL;
335
336 spin_lock_irq(¤t->sighand->siglock);
337 /* This is only needed for daemonize()'ed kthreads */
338 sigdelset(¤t->blocked, sig);
339 /*
340 * Kernel threads handle their own signals. Let the signal code
341 * know it'll be handled, so that they don't get converted to
342 * SIGKILL or just silently dropped.
343 */
344 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
345 recalc_sigpending();
346 spin_unlock_irq(¤t->sighand->siglock);
347 return 0;
348 }
349
350 EXPORT_SYMBOL(allow_signal);
351
disallow_signal(int sig)352 int disallow_signal(int sig)
353 {
354 if (!valid_signal(sig) || sig < 1)
355 return -EINVAL;
356
357 spin_lock_irq(¤t->sighand->siglock);
358 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
359 recalc_sigpending();
360 spin_unlock_irq(¤t->sighand->siglock);
361 return 0;
362 }
363
364 EXPORT_SYMBOL(disallow_signal);
365
366 #ifdef CONFIG_MM_OWNER
367 /*
368 * A task is exiting. If it owned this mm, find a new owner for the mm.
369 */
mm_update_next_owner(struct mm_struct * mm)370 void mm_update_next_owner(struct mm_struct *mm)
371 {
372 struct task_struct *c, *g, *p = current;
373
374 retry:
375 /*
376 * If the exiting or execing task is not the owner, it's
377 * someone else's problem.
378 */
379 if (mm->owner != p)
380 return;
381 /*
382 * The current owner is exiting/execing and there are no other
383 * candidates. Do not leave the mm pointing to a possibly
384 * freed task structure.
385 */
386 if (atomic_read(&mm->mm_users) <= 1) {
387 mm->owner = NULL;
388 return;
389 }
390
391 read_lock(&tasklist_lock);
392 /*
393 * Search in the children
394 */
395 list_for_each_entry(c, &p->children, sibling) {
396 if (c->mm == mm)
397 goto assign_new_owner;
398 }
399
400 /*
401 * Search in the siblings
402 */
403 list_for_each_entry(c, &p->real_parent->children, sibling) {
404 if (c->mm == mm)
405 goto assign_new_owner;
406 }
407
408 /*
409 * Search through everything else. We should not get
410 * here often
411 */
412 do_each_thread(g, c) {
413 if (c->mm == mm)
414 goto assign_new_owner;
415 } while_each_thread(g, c);
416
417 read_unlock(&tasklist_lock);
418 /*
419 * We found no owner yet mm_users > 1: this implies that we are
420 * most likely racing with swapoff (try_to_unuse()) or /proc or
421 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
422 */
423 mm->owner = NULL;
424 return;
425
426 assign_new_owner:
427 BUG_ON(c == p);
428 get_task_struct(c);
429 /*
430 * The task_lock protects c->mm from changing.
431 * We always want mm->owner->mm == mm
432 */
433 task_lock(c);
434 /*
435 * Delay read_unlock() till we have the task_lock()
436 * to ensure that c does not slip away underneath us
437 */
438 read_unlock(&tasklist_lock);
439 if (c->mm != mm) {
440 task_unlock(c);
441 put_task_struct(c);
442 goto retry;
443 }
444 mm->owner = c;
445 task_unlock(c);
446 put_task_struct(c);
447 }
448 #endif /* CONFIG_MM_OWNER */
449
450 /*
451 * Turn us into a lazy TLB process if we
452 * aren't already..
453 */
exit_mm(struct task_struct * tsk)454 static void exit_mm(struct task_struct * tsk)
455 {
456 struct mm_struct *mm = tsk->mm;
457 struct core_state *core_state;
458
459 mm_release(tsk, mm);
460 if (!mm)
461 return;
462 sync_mm_rss(mm);
463 /*
464 * Serialize with any possible pending coredump.
465 * We must hold mmap_sem around checking core_state
466 * and clearing tsk->mm. The core-inducing thread
467 * will increment ->nr_threads for each thread in the
468 * group with ->mm != NULL.
469 */
470 down_read(&mm->mmap_sem);
471 core_state = mm->core_state;
472 if (core_state) {
473 struct core_thread self;
474 up_read(&mm->mmap_sem);
475
476 self.task = tsk;
477 self.next = xchg(&core_state->dumper.next, &self);
478 /*
479 * Implies mb(), the result of xchg() must be visible
480 * to core_state->dumper.
481 */
482 if (atomic_dec_and_test(&core_state->nr_threads))
483 complete(&core_state->startup);
484
485 for (;;) {
486 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
487 if (!self.task) /* see coredump_finish() */
488 break;
489 freezable_schedule();
490 }
491 __set_task_state(tsk, TASK_RUNNING);
492 down_read(&mm->mmap_sem);
493 }
494 atomic_inc(&mm->mm_count);
495 BUG_ON(mm != tsk->active_mm);
496 /* more a memory barrier than a real lock */
497 task_lock(tsk);
498 tsk->mm = NULL;
499 up_read(&mm->mmap_sem);
500 enter_lazy_tlb(mm, current);
501 task_unlock(tsk);
502 mm_update_next_owner(mm);
503 mmput(mm);
504 }
505
506 /*
507 * When we die, we re-parent all our children, and try to:
508 * 1. give them to another thread in our thread group, if such a member exists
509 * 2. give it to the first ancestor process which prctl'd itself as a
510 * child_subreaper for its children (like a service manager)
511 * 3. give it to the init process (PID 1) in our pid namespace
512 */
find_new_reaper(struct task_struct * father)513 static struct task_struct *find_new_reaper(struct task_struct *father)
514 __releases(&tasklist_lock)
515 __acquires(&tasklist_lock)
516 {
517 struct pid_namespace *pid_ns = task_active_pid_ns(father);
518 struct task_struct *thread;
519
520 thread = father;
521 while_each_thread(father, thread) {
522 if (thread->flags & PF_EXITING)
523 continue;
524 if (unlikely(pid_ns->child_reaper == father))
525 pid_ns->child_reaper = thread;
526 return thread;
527 }
528
529 if (unlikely(pid_ns->child_reaper == father)) {
530 write_unlock_irq(&tasklist_lock);
531 if (unlikely(pid_ns == &init_pid_ns)) {
532 panic("Attempted to kill init! exitcode=0x%08x\n",
533 father->signal->group_exit_code ?:
534 father->exit_code);
535 }
536
537 zap_pid_ns_processes(pid_ns);
538 write_lock_irq(&tasklist_lock);
539 } else if (father->signal->has_child_subreaper) {
540 struct task_struct *reaper;
541
542 /*
543 * Find the first ancestor marked as child_subreaper.
544 * Note that the code below checks same_thread_group(reaper,
545 * pid_ns->child_reaper). This is what we need to DTRT in a
546 * PID namespace. However we still need the check above, see
547 * http://marc.info/?l=linux-kernel&m=131385460420380
548 */
549 for (reaper = father->real_parent;
550 reaper != &init_task;
551 reaper = reaper->real_parent) {
552 if (same_thread_group(reaper, pid_ns->child_reaper))
553 break;
554 if (!reaper->signal->is_child_subreaper)
555 continue;
556 thread = reaper;
557 do {
558 if (!(thread->flags & PF_EXITING))
559 return reaper;
560 } while_each_thread(reaper, thread);
561 }
562 }
563
564 return pid_ns->child_reaper;
565 }
566
567 /*
568 * Any that need to be release_task'd are put on the @dead list.
569 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)570 static void reparent_leader(struct task_struct *father, struct task_struct *p,
571 struct list_head *dead)
572 {
573 list_move_tail(&p->sibling, &p->real_parent->children);
574
575 if (p->exit_state == EXIT_DEAD)
576 return;
577 /*
578 * If this is a threaded reparent there is no need to
579 * notify anyone anything has happened.
580 */
581 if (same_thread_group(p->real_parent, father))
582 return;
583
584 /* We don't want people slaying init. */
585 p->exit_signal = SIGCHLD;
586
587 /* If it has exited notify the new parent about this child's death. */
588 if (!p->ptrace &&
589 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
590 if (do_notify_parent(p, p->exit_signal)) {
591 p->exit_state = EXIT_DEAD;
592 list_move_tail(&p->sibling, dead);
593 }
594 }
595
596 kill_orphaned_pgrp(p, father);
597 }
598
forget_original_parent(struct task_struct * father)599 static void forget_original_parent(struct task_struct *father)
600 {
601 struct task_struct *p, *n, *reaper;
602 LIST_HEAD(dead_children);
603
604 write_lock_irq(&tasklist_lock);
605 /*
606 * Note that exit_ptrace() and find_new_reaper() might
607 * drop tasklist_lock and reacquire it.
608 */
609 exit_ptrace(father);
610 reaper = find_new_reaper(father);
611
612 list_for_each_entry_safe(p, n, &father->children, sibling) {
613 struct task_struct *t = p;
614 do {
615 t->real_parent = reaper;
616 if (t->parent == father) {
617 BUG_ON(t->ptrace);
618 t->parent = t->real_parent;
619 }
620 if (t->pdeath_signal)
621 group_send_sig_info(t->pdeath_signal,
622 SEND_SIG_NOINFO, t);
623 } while_each_thread(p, t);
624 reparent_leader(father, p, &dead_children);
625 }
626 write_unlock_irq(&tasklist_lock);
627
628 BUG_ON(!list_empty(&father->children));
629
630 list_for_each_entry_safe(p, n, &dead_children, sibling) {
631 list_del_init(&p->sibling);
632 release_task(p);
633 }
634 }
635
636 /*
637 * Send signals to all our closest relatives so that they know
638 * to properly mourn us..
639 */
exit_notify(struct task_struct * tsk,int group_dead)640 static void exit_notify(struct task_struct *tsk, int group_dead)
641 {
642 bool autoreap;
643
644 /*
645 * This does two things:
646 *
647 * A. Make init inherit all the child processes
648 * B. Check to see if any process groups have become orphaned
649 * as a result of our exiting, and if they have any stopped
650 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
651 */
652 forget_original_parent(tsk);
653
654 write_lock_irq(&tasklist_lock);
655 if (group_dead)
656 kill_orphaned_pgrp(tsk->group_leader, NULL);
657
658 if (unlikely(tsk->ptrace)) {
659 int sig = thread_group_leader(tsk) &&
660 thread_group_empty(tsk) &&
661 !ptrace_reparented(tsk) ?
662 tsk->exit_signal : SIGCHLD;
663 autoreap = do_notify_parent(tsk, sig);
664 } else if (thread_group_leader(tsk)) {
665 autoreap = thread_group_empty(tsk) &&
666 do_notify_parent(tsk, tsk->exit_signal);
667 } else {
668 autoreap = true;
669 }
670
671 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
672
673 /* mt-exec, de_thread() is waiting for group leader */
674 if (unlikely(tsk->signal->notify_count < 0))
675 wake_up_process(tsk->signal->group_exit_task);
676 write_unlock_irq(&tasklist_lock);
677
678 /* If the process is dead, release it - nobody will wait for it */
679 if (autoreap)
680 release_task(tsk);
681 }
682
683 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)684 static void check_stack_usage(void)
685 {
686 static DEFINE_SPINLOCK(low_water_lock);
687 static int lowest_to_date = THREAD_SIZE;
688 unsigned long free;
689
690 free = stack_not_used(current);
691
692 if (free >= lowest_to_date)
693 return;
694
695 spin_lock(&low_water_lock);
696 if (free < lowest_to_date) {
697 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
698 "%lu bytes left\n",
699 current->comm, task_pid_nr(current), free);
700 lowest_to_date = free;
701 }
702 spin_unlock(&low_water_lock);
703 }
704 #else
check_stack_usage(void)705 static inline void check_stack_usage(void) {}
706 #endif
707
do_exit(long code)708 void do_exit(long code)
709 {
710 struct task_struct *tsk = current;
711 int group_dead;
712
713 profile_task_exit(tsk);
714
715 WARN_ON(blk_needs_flush_plug(tsk));
716
717 if (unlikely(in_interrupt()))
718 panic("Aiee, killing interrupt handler!");
719 if (unlikely(!tsk->pid))
720 panic("Attempted to kill the idle task!");
721
722 /*
723 * If do_exit is called because this processes oopsed, it's possible
724 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
725 * continuing. Amongst other possible reasons, this is to prevent
726 * mm_release()->clear_child_tid() from writing to a user-controlled
727 * kernel address.
728 */
729 set_fs(USER_DS);
730
731 ptrace_event(PTRACE_EVENT_EXIT, code);
732
733 validate_creds_for_do_exit(tsk);
734
735 /*
736 * We're taking recursive faults here in do_exit. Safest is to just
737 * leave this task alone and wait for reboot.
738 */
739 if (unlikely(tsk->flags & PF_EXITING)) {
740 printk(KERN_ALERT
741 "Fixing recursive fault but reboot is needed!\n");
742 /*
743 * We can do this unlocked here. The futex code uses
744 * this flag just to verify whether the pi state
745 * cleanup has been done or not. In the worst case it
746 * loops once more. We pretend that the cleanup was
747 * done as there is no way to return. Either the
748 * OWNER_DIED bit is set by now or we push the blocked
749 * task into the wait for ever nirwana as well.
750 */
751 tsk->flags |= PF_EXITPIDONE;
752 set_current_state(TASK_UNINTERRUPTIBLE);
753 schedule();
754 }
755
756 exit_signals(tsk); /* sets PF_EXITING */
757 /*
758 * tsk->flags are checked in the futex code to protect against
759 * an exiting task cleaning up the robust pi futexes.
760 */
761 smp_mb();
762 raw_spin_unlock_wait(&tsk->pi_lock);
763
764 if (unlikely(in_atomic()))
765 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
766 current->comm, task_pid_nr(current),
767 preempt_count());
768
769 acct_update_integrals(tsk);
770 /* sync mm's RSS info before statistics gathering */
771 if (tsk->mm)
772 sync_mm_rss(tsk->mm);
773 group_dead = atomic_dec_and_test(&tsk->signal->live);
774 if (group_dead) {
775 hrtimer_cancel(&tsk->signal->real_timer);
776 exit_itimers(tsk->signal);
777 if (tsk->mm)
778 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
779 }
780 acct_collect(code, group_dead);
781 if (group_dead)
782 tty_audit_exit();
783 audit_free(tsk);
784
785 tsk->exit_code = code;
786 taskstats_exit(tsk, group_dead);
787
788 exit_mm(tsk);
789
790 if (group_dead)
791 acct_process();
792 trace_sched_process_exit(tsk);
793
794 exit_sem(tsk);
795 exit_shm(tsk);
796 exit_files(tsk);
797 exit_fs(tsk);
798 exit_task_namespaces(tsk);
799 exit_task_work(tsk);
800 check_stack_usage();
801 exit_thread();
802
803 /*
804 * Flush inherited counters to the parent - before the parent
805 * gets woken up by child-exit notifications.
806 *
807 * because of cgroup mode, must be called before cgroup_exit()
808 */
809 perf_event_exit_task(tsk);
810
811 cgroup_exit(tsk, 1);
812
813 if (group_dead)
814 disassociate_ctty(1);
815
816 module_put(task_thread_info(tsk)->exec_domain->module);
817
818 proc_exit_connector(tsk);
819
820 /*
821 * FIXME: do that only when needed, using sched_exit tracepoint
822 */
823 ptrace_put_breakpoints(tsk);
824
825 exit_notify(tsk, group_dead);
826 #ifdef CONFIG_NUMA
827 task_lock(tsk);
828 mpol_put(tsk->mempolicy);
829 tsk->mempolicy = NULL;
830 task_unlock(tsk);
831 #endif
832 #ifdef CONFIG_FUTEX
833 if (unlikely(current->pi_state_cache))
834 kfree(current->pi_state_cache);
835 #endif
836 /*
837 * Make sure we are holding no locks:
838 */
839 debug_check_no_locks_held();
840 /*
841 * We can do this unlocked here. The futex code uses this flag
842 * just to verify whether the pi state cleanup has been done
843 * or not. In the worst case it loops once more.
844 */
845 tsk->flags |= PF_EXITPIDONE;
846
847 if (tsk->io_context)
848 exit_io_context(tsk);
849
850 if (tsk->splice_pipe)
851 free_pipe_info(tsk->splice_pipe);
852
853 if (tsk->task_frag.page)
854 put_page(tsk->task_frag.page);
855
856 validate_creds_for_do_exit(tsk);
857
858 preempt_disable();
859 if (tsk->nr_dirtied)
860 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
861 exit_rcu();
862
863 /*
864 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
865 * when the following two conditions become true.
866 * - There is race condition of mmap_sem (It is acquired by
867 * exit_mm()), and
868 * - SMI occurs before setting TASK_RUNINNG.
869 * (or hypervisor of virtual machine switches to other guest)
870 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
871 *
872 * To avoid it, we have to wait for releasing tsk->pi_lock which
873 * is held by try_to_wake_up()
874 */
875 smp_mb();
876 raw_spin_unlock_wait(&tsk->pi_lock);
877
878 /* causes final put_task_struct in finish_task_switch(). */
879 tsk->state = TASK_DEAD;
880 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
881 schedule();
882 BUG();
883 /* Avoid "noreturn function does return". */
884 for (;;)
885 cpu_relax(); /* For when BUG is null */
886 }
887
888 EXPORT_SYMBOL_GPL(do_exit);
889
complete_and_exit(struct completion * comp,long code)890 void complete_and_exit(struct completion *comp, long code)
891 {
892 if (comp)
893 complete(comp);
894
895 do_exit(code);
896 }
897
898 EXPORT_SYMBOL(complete_and_exit);
899
SYSCALL_DEFINE1(exit,int,error_code)900 SYSCALL_DEFINE1(exit, int, error_code)
901 {
902 do_exit((error_code&0xff)<<8);
903 }
904
905 /*
906 * Take down every thread in the group. This is called by fatal signals
907 * as well as by sys_exit_group (below).
908 */
909 void
do_group_exit(int exit_code)910 do_group_exit(int exit_code)
911 {
912 struct signal_struct *sig = current->signal;
913
914 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
915
916 if (signal_group_exit(sig))
917 exit_code = sig->group_exit_code;
918 else if (!thread_group_empty(current)) {
919 struct sighand_struct *const sighand = current->sighand;
920 spin_lock_irq(&sighand->siglock);
921 if (signal_group_exit(sig))
922 /* Another thread got here before we took the lock. */
923 exit_code = sig->group_exit_code;
924 else {
925 sig->group_exit_code = exit_code;
926 sig->flags = SIGNAL_GROUP_EXIT;
927 zap_other_threads(current);
928 }
929 spin_unlock_irq(&sighand->siglock);
930 }
931
932 do_exit(exit_code);
933 /* NOTREACHED */
934 }
935
936 /*
937 * this kills every thread in the thread group. Note that any externally
938 * wait4()-ing process will get the correct exit code - even if this
939 * thread is not the thread group leader.
940 */
SYSCALL_DEFINE1(exit_group,int,error_code)941 SYSCALL_DEFINE1(exit_group, int, error_code)
942 {
943 do_group_exit((error_code & 0xff) << 8);
944 /* NOTREACHED */
945 return 0;
946 }
947
948 struct wait_opts {
949 enum pid_type wo_type;
950 int wo_flags;
951 struct pid *wo_pid;
952
953 struct siginfo __user *wo_info;
954 int __user *wo_stat;
955 struct rusage __user *wo_rusage;
956
957 wait_queue_t child_wait;
958 int notask_error;
959 };
960
961 static inline
task_pid_type(struct task_struct * task,enum pid_type type)962 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
963 {
964 if (type != PIDTYPE_PID)
965 task = task->group_leader;
966 return task->pids[type].pid;
967 }
968
eligible_pid(struct wait_opts * wo,struct task_struct * p)969 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
970 {
971 return wo->wo_type == PIDTYPE_MAX ||
972 task_pid_type(p, wo->wo_type) == wo->wo_pid;
973 }
974
eligible_child(struct wait_opts * wo,struct task_struct * p)975 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
976 {
977 if (!eligible_pid(wo, p))
978 return 0;
979 /* Wait for all children (clone and not) if __WALL is set;
980 * otherwise, wait for clone children *only* if __WCLONE is
981 * set; otherwise, wait for non-clone children *only*. (Note:
982 * A "clone" child here is one that reports to its parent
983 * using a signal other than SIGCHLD.) */
984 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
985 && !(wo->wo_flags & __WALL))
986 return 0;
987
988 return 1;
989 }
990
wait_noreap_copyout(struct wait_opts * wo,struct task_struct * p,pid_t pid,uid_t uid,int why,int status)991 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
992 pid_t pid, uid_t uid, int why, int status)
993 {
994 struct siginfo __user *infop;
995 int retval = wo->wo_rusage
996 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
997
998 put_task_struct(p);
999 infop = wo->wo_info;
1000 if (infop) {
1001 if (!retval)
1002 retval = put_user(SIGCHLD, &infop->si_signo);
1003 if (!retval)
1004 retval = put_user(0, &infop->si_errno);
1005 if (!retval)
1006 retval = put_user((short)why, &infop->si_code);
1007 if (!retval)
1008 retval = put_user(pid, &infop->si_pid);
1009 if (!retval)
1010 retval = put_user(uid, &infop->si_uid);
1011 if (!retval)
1012 retval = put_user(status, &infop->si_status);
1013 }
1014 if (!retval)
1015 retval = pid;
1016 return retval;
1017 }
1018
1019 /*
1020 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1021 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1022 * the lock and this task is uninteresting. If we return nonzero, we have
1023 * released the lock and the system call should return.
1024 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1025 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1026 {
1027 unsigned long state;
1028 int retval, status, traced;
1029 pid_t pid = task_pid_vnr(p);
1030 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1031 struct siginfo __user *infop;
1032
1033 if (!likely(wo->wo_flags & WEXITED))
1034 return 0;
1035
1036 if (unlikely(wo->wo_flags & WNOWAIT)) {
1037 int exit_code = p->exit_code;
1038 int why;
1039
1040 get_task_struct(p);
1041 read_unlock(&tasklist_lock);
1042 if ((exit_code & 0x7f) == 0) {
1043 why = CLD_EXITED;
1044 status = exit_code >> 8;
1045 } else {
1046 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1047 status = exit_code & 0x7f;
1048 }
1049 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1050 }
1051
1052 /*
1053 * Try to move the task's state to DEAD
1054 * only one thread is allowed to do this:
1055 */
1056 state = xchg(&p->exit_state, EXIT_DEAD);
1057 if (state != EXIT_ZOMBIE) {
1058 BUG_ON(state != EXIT_DEAD);
1059 return 0;
1060 }
1061
1062 traced = ptrace_reparented(p);
1063 /*
1064 * It can be ptraced but not reparented, check
1065 * thread_group_leader() to filter out sub-threads.
1066 */
1067 if (likely(!traced) && thread_group_leader(p)) {
1068 struct signal_struct *psig;
1069 struct signal_struct *sig;
1070 unsigned long maxrss;
1071 cputime_t tgutime, tgstime;
1072
1073 /*
1074 * The resource counters for the group leader are in its
1075 * own task_struct. Those for dead threads in the group
1076 * are in its signal_struct, as are those for the child
1077 * processes it has previously reaped. All these
1078 * accumulate in the parent's signal_struct c* fields.
1079 *
1080 * We don't bother to take a lock here to protect these
1081 * p->signal fields, because they are only touched by
1082 * __exit_signal, which runs with tasklist_lock
1083 * write-locked anyway, and so is excluded here. We do
1084 * need to protect the access to parent->signal fields,
1085 * as other threads in the parent group can be right
1086 * here reaping other children at the same time.
1087 *
1088 * We use thread_group_cputime_adjusted() to get times for the thread
1089 * group, which consolidates times for all threads in the
1090 * group including the group leader.
1091 */
1092 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1093 spin_lock_irq(&p->real_parent->sighand->siglock);
1094 psig = p->real_parent->signal;
1095 sig = p->signal;
1096 psig->cutime += tgutime + sig->cutime;
1097 psig->cstime += tgstime + sig->cstime;
1098 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1099 psig->cmin_flt +=
1100 p->min_flt + sig->min_flt + sig->cmin_flt;
1101 psig->cmaj_flt +=
1102 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1103 psig->cnvcsw +=
1104 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1105 psig->cnivcsw +=
1106 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1107 psig->cinblock +=
1108 task_io_get_inblock(p) +
1109 sig->inblock + sig->cinblock;
1110 psig->coublock +=
1111 task_io_get_oublock(p) +
1112 sig->oublock + sig->coublock;
1113 maxrss = max(sig->maxrss, sig->cmaxrss);
1114 if (psig->cmaxrss < maxrss)
1115 psig->cmaxrss = maxrss;
1116 task_io_accounting_add(&psig->ioac, &p->ioac);
1117 task_io_accounting_add(&psig->ioac, &sig->ioac);
1118 spin_unlock_irq(&p->real_parent->sighand->siglock);
1119 }
1120
1121 /*
1122 * Now we are sure this task is interesting, and no other
1123 * thread can reap it because we set its state to EXIT_DEAD.
1124 */
1125 read_unlock(&tasklist_lock);
1126
1127 retval = wo->wo_rusage
1128 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1129 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1130 ? p->signal->group_exit_code : p->exit_code;
1131 if (!retval && wo->wo_stat)
1132 retval = put_user(status, wo->wo_stat);
1133
1134 infop = wo->wo_info;
1135 if (!retval && infop)
1136 retval = put_user(SIGCHLD, &infop->si_signo);
1137 if (!retval && infop)
1138 retval = put_user(0, &infop->si_errno);
1139 if (!retval && infop) {
1140 int why;
1141
1142 if ((status & 0x7f) == 0) {
1143 why = CLD_EXITED;
1144 status >>= 8;
1145 } else {
1146 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1147 status &= 0x7f;
1148 }
1149 retval = put_user((short)why, &infop->si_code);
1150 if (!retval)
1151 retval = put_user(status, &infop->si_status);
1152 }
1153 if (!retval && infop)
1154 retval = put_user(pid, &infop->si_pid);
1155 if (!retval && infop)
1156 retval = put_user(uid, &infop->si_uid);
1157 if (!retval)
1158 retval = pid;
1159
1160 if (traced) {
1161 write_lock_irq(&tasklist_lock);
1162 /* We dropped tasklist, ptracer could die and untrace */
1163 ptrace_unlink(p);
1164 /*
1165 * If this is not a sub-thread, notify the parent.
1166 * If parent wants a zombie, don't release it now.
1167 */
1168 if (thread_group_leader(p) &&
1169 !do_notify_parent(p, p->exit_signal)) {
1170 p->exit_state = EXIT_ZOMBIE;
1171 p = NULL;
1172 }
1173 write_unlock_irq(&tasklist_lock);
1174 }
1175 if (p != NULL)
1176 release_task(p);
1177
1178 return retval;
1179 }
1180
task_stopped_code(struct task_struct * p,bool ptrace)1181 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1182 {
1183 if (ptrace) {
1184 if (task_is_stopped_or_traced(p) &&
1185 !(p->jobctl & JOBCTL_LISTENING))
1186 return &p->exit_code;
1187 } else {
1188 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1189 return &p->signal->group_exit_code;
1190 }
1191 return NULL;
1192 }
1193
1194 /**
1195 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1196 * @wo: wait options
1197 * @ptrace: is the wait for ptrace
1198 * @p: task to wait for
1199 *
1200 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1201 *
1202 * CONTEXT:
1203 * read_lock(&tasklist_lock), which is released if return value is
1204 * non-zero. Also, grabs and releases @p->sighand->siglock.
1205 *
1206 * RETURNS:
1207 * 0 if wait condition didn't exist and search for other wait conditions
1208 * should continue. Non-zero return, -errno on failure and @p's pid on
1209 * success, implies that tasklist_lock is released and wait condition
1210 * search should terminate.
1211 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1212 static int wait_task_stopped(struct wait_opts *wo,
1213 int ptrace, struct task_struct *p)
1214 {
1215 struct siginfo __user *infop;
1216 int retval, exit_code, *p_code, why;
1217 uid_t uid = 0; /* unneeded, required by compiler */
1218 pid_t pid;
1219
1220 /*
1221 * Traditionally we see ptrace'd stopped tasks regardless of options.
1222 */
1223 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1224 return 0;
1225
1226 if (!task_stopped_code(p, ptrace))
1227 return 0;
1228
1229 exit_code = 0;
1230 spin_lock_irq(&p->sighand->siglock);
1231
1232 p_code = task_stopped_code(p, ptrace);
1233 if (unlikely(!p_code))
1234 goto unlock_sig;
1235
1236 exit_code = *p_code;
1237 if (!exit_code)
1238 goto unlock_sig;
1239
1240 if (!unlikely(wo->wo_flags & WNOWAIT))
1241 *p_code = 0;
1242
1243 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1244 unlock_sig:
1245 spin_unlock_irq(&p->sighand->siglock);
1246 if (!exit_code)
1247 return 0;
1248
1249 /*
1250 * Now we are pretty sure this task is interesting.
1251 * Make sure it doesn't get reaped out from under us while we
1252 * give up the lock and then examine it below. We don't want to
1253 * keep holding onto the tasklist_lock while we call getrusage and
1254 * possibly take page faults for user memory.
1255 */
1256 get_task_struct(p);
1257 pid = task_pid_vnr(p);
1258 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1259 read_unlock(&tasklist_lock);
1260
1261 if (unlikely(wo->wo_flags & WNOWAIT))
1262 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1263
1264 retval = wo->wo_rusage
1265 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1266 if (!retval && wo->wo_stat)
1267 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1268
1269 infop = wo->wo_info;
1270 if (!retval && infop)
1271 retval = put_user(SIGCHLD, &infop->si_signo);
1272 if (!retval && infop)
1273 retval = put_user(0, &infop->si_errno);
1274 if (!retval && infop)
1275 retval = put_user((short)why, &infop->si_code);
1276 if (!retval && infop)
1277 retval = put_user(exit_code, &infop->si_status);
1278 if (!retval && infop)
1279 retval = put_user(pid, &infop->si_pid);
1280 if (!retval && infop)
1281 retval = put_user(uid, &infop->si_uid);
1282 if (!retval)
1283 retval = pid;
1284 put_task_struct(p);
1285
1286 BUG_ON(!retval);
1287 return retval;
1288 }
1289
1290 /*
1291 * Handle do_wait work for one task in a live, non-stopped state.
1292 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1293 * the lock and this task is uninteresting. If we return nonzero, we have
1294 * released the lock and the system call should return.
1295 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1296 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1297 {
1298 int retval;
1299 pid_t pid;
1300 uid_t uid;
1301
1302 if (!unlikely(wo->wo_flags & WCONTINUED))
1303 return 0;
1304
1305 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1306 return 0;
1307
1308 spin_lock_irq(&p->sighand->siglock);
1309 /* Re-check with the lock held. */
1310 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1311 spin_unlock_irq(&p->sighand->siglock);
1312 return 0;
1313 }
1314 if (!unlikely(wo->wo_flags & WNOWAIT))
1315 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1316 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1317 spin_unlock_irq(&p->sighand->siglock);
1318
1319 pid = task_pid_vnr(p);
1320 get_task_struct(p);
1321 read_unlock(&tasklist_lock);
1322
1323 if (!wo->wo_info) {
1324 retval = wo->wo_rusage
1325 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1326 put_task_struct(p);
1327 if (!retval && wo->wo_stat)
1328 retval = put_user(0xffff, wo->wo_stat);
1329 if (!retval)
1330 retval = pid;
1331 } else {
1332 retval = wait_noreap_copyout(wo, p, pid, uid,
1333 CLD_CONTINUED, SIGCONT);
1334 BUG_ON(retval == 0);
1335 }
1336
1337 return retval;
1338 }
1339
1340 /*
1341 * Consider @p for a wait by @parent.
1342 *
1343 * -ECHILD should be in ->notask_error before the first call.
1344 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1345 * Returns zero if the search for a child should continue;
1346 * then ->notask_error is 0 if @p is an eligible child,
1347 * or another error from security_task_wait(), or still -ECHILD.
1348 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1349 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1350 struct task_struct *p)
1351 {
1352 int ret = eligible_child(wo, p);
1353 if (!ret)
1354 return ret;
1355
1356 ret = security_task_wait(p);
1357 if (unlikely(ret < 0)) {
1358 /*
1359 * If we have not yet seen any eligible child,
1360 * then let this error code replace -ECHILD.
1361 * A permission error will give the user a clue
1362 * to look for security policy problems, rather
1363 * than for mysterious wait bugs.
1364 */
1365 if (wo->notask_error)
1366 wo->notask_error = ret;
1367 return 0;
1368 }
1369
1370 /* dead body doesn't have much to contribute */
1371 if (unlikely(p->exit_state == EXIT_DEAD)) {
1372 /*
1373 * But do not ignore this task until the tracer does
1374 * wait_task_zombie()->do_notify_parent().
1375 */
1376 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1377 wo->notask_error = 0;
1378 return 0;
1379 }
1380
1381 /* slay zombie? */
1382 if (p->exit_state == EXIT_ZOMBIE) {
1383 /*
1384 * A zombie ptracee is only visible to its ptracer.
1385 * Notification and reaping will be cascaded to the real
1386 * parent when the ptracer detaches.
1387 */
1388 if (likely(!ptrace) && unlikely(p->ptrace)) {
1389 /* it will become visible, clear notask_error */
1390 wo->notask_error = 0;
1391 return 0;
1392 }
1393
1394 /* we don't reap group leaders with subthreads */
1395 if (!delay_group_leader(p))
1396 return wait_task_zombie(wo, p);
1397
1398 /*
1399 * Allow access to stopped/continued state via zombie by
1400 * falling through. Clearing of notask_error is complex.
1401 *
1402 * When !@ptrace:
1403 *
1404 * If WEXITED is set, notask_error should naturally be
1405 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1406 * so, if there are live subthreads, there are events to
1407 * wait for. If all subthreads are dead, it's still safe
1408 * to clear - this function will be called again in finite
1409 * amount time once all the subthreads are released and
1410 * will then return without clearing.
1411 *
1412 * When @ptrace:
1413 *
1414 * Stopped state is per-task and thus can't change once the
1415 * target task dies. Only continued and exited can happen.
1416 * Clear notask_error if WCONTINUED | WEXITED.
1417 */
1418 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1419 wo->notask_error = 0;
1420 } else {
1421 /*
1422 * If @p is ptraced by a task in its real parent's group,
1423 * hide group stop/continued state when looking at @p as
1424 * the real parent; otherwise, a single stop can be
1425 * reported twice as group and ptrace stops.
1426 *
1427 * If a ptracer wants to distinguish the two events for its
1428 * own children, it should create a separate process which
1429 * takes the role of real parent.
1430 */
1431 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1432 return 0;
1433
1434 /*
1435 * @p is alive and it's gonna stop, continue or exit, so
1436 * there always is something to wait for.
1437 */
1438 wo->notask_error = 0;
1439 }
1440
1441 /*
1442 * Wait for stopped. Depending on @ptrace, different stopped state
1443 * is used and the two don't interact with each other.
1444 */
1445 ret = wait_task_stopped(wo, ptrace, p);
1446 if (ret)
1447 return ret;
1448
1449 /*
1450 * Wait for continued. There's only one continued state and the
1451 * ptracer can consume it which can confuse the real parent. Don't
1452 * use WCONTINUED from ptracer. You don't need or want it.
1453 */
1454 return wait_task_continued(wo, p);
1455 }
1456
1457 /*
1458 * Do the work of do_wait() for one thread in the group, @tsk.
1459 *
1460 * -ECHILD should be in ->notask_error before the first call.
1461 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1462 * Returns zero if the search for a child should continue; then
1463 * ->notask_error is 0 if there were any eligible children,
1464 * or another error from security_task_wait(), or still -ECHILD.
1465 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1466 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1467 {
1468 struct task_struct *p;
1469
1470 list_for_each_entry(p, &tsk->children, sibling) {
1471 int ret = wait_consider_task(wo, 0, p);
1472 if (ret)
1473 return ret;
1474 }
1475
1476 return 0;
1477 }
1478
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1479 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1480 {
1481 struct task_struct *p;
1482
1483 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1484 int ret = wait_consider_task(wo, 1, p);
1485 if (ret)
1486 return ret;
1487 }
1488
1489 return 0;
1490 }
1491
child_wait_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1492 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1493 int sync, void *key)
1494 {
1495 struct wait_opts *wo = container_of(wait, struct wait_opts,
1496 child_wait);
1497 struct task_struct *p = key;
1498
1499 if (!eligible_pid(wo, p))
1500 return 0;
1501
1502 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1503 return 0;
1504
1505 return default_wake_function(wait, mode, sync, key);
1506 }
1507
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1508 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1509 {
1510 __wake_up_sync_key(&parent->signal->wait_chldexit,
1511 TASK_INTERRUPTIBLE, 1, p);
1512 }
1513
do_wait(struct wait_opts * wo)1514 static long do_wait(struct wait_opts *wo)
1515 {
1516 struct task_struct *tsk;
1517 int retval;
1518
1519 trace_sched_process_wait(wo->wo_pid);
1520
1521 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1522 wo->child_wait.private = current;
1523 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1524 repeat:
1525 /*
1526 * If there is nothing that can match our critiera just get out.
1527 * We will clear ->notask_error to zero if we see any child that
1528 * might later match our criteria, even if we are not able to reap
1529 * it yet.
1530 */
1531 wo->notask_error = -ECHILD;
1532 if ((wo->wo_type < PIDTYPE_MAX) &&
1533 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1534 goto notask;
1535
1536 set_current_state(TASK_INTERRUPTIBLE);
1537 read_lock(&tasklist_lock);
1538 tsk = current;
1539 do {
1540 retval = do_wait_thread(wo, tsk);
1541 if (retval)
1542 goto end;
1543
1544 retval = ptrace_do_wait(wo, tsk);
1545 if (retval)
1546 goto end;
1547
1548 if (wo->wo_flags & __WNOTHREAD)
1549 break;
1550 } while_each_thread(current, tsk);
1551 read_unlock(&tasklist_lock);
1552
1553 notask:
1554 retval = wo->notask_error;
1555 if (!retval && !(wo->wo_flags & WNOHANG)) {
1556 retval = -ERESTARTSYS;
1557 if (!signal_pending(current)) {
1558 schedule();
1559 goto repeat;
1560 }
1561 }
1562 end:
1563 __set_current_state(TASK_RUNNING);
1564 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1565 return retval;
1566 }
1567
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1568 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1569 infop, int, options, struct rusage __user *, ru)
1570 {
1571 struct wait_opts wo;
1572 struct pid *pid = NULL;
1573 enum pid_type type;
1574 long ret;
1575
1576 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1577 return -EINVAL;
1578 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1579 return -EINVAL;
1580
1581 switch (which) {
1582 case P_ALL:
1583 type = PIDTYPE_MAX;
1584 break;
1585 case P_PID:
1586 type = PIDTYPE_PID;
1587 if (upid <= 0)
1588 return -EINVAL;
1589 break;
1590 case P_PGID:
1591 type = PIDTYPE_PGID;
1592 if (upid <= 0)
1593 return -EINVAL;
1594 break;
1595 default:
1596 return -EINVAL;
1597 }
1598
1599 if (type < PIDTYPE_MAX)
1600 pid = find_get_pid(upid);
1601
1602 wo.wo_type = type;
1603 wo.wo_pid = pid;
1604 wo.wo_flags = options;
1605 wo.wo_info = infop;
1606 wo.wo_stat = NULL;
1607 wo.wo_rusage = ru;
1608 ret = do_wait(&wo);
1609
1610 if (ret > 0) {
1611 ret = 0;
1612 } else if (infop) {
1613 /*
1614 * For a WNOHANG return, clear out all the fields
1615 * we would set so the user can easily tell the
1616 * difference.
1617 */
1618 if (!ret)
1619 ret = put_user(0, &infop->si_signo);
1620 if (!ret)
1621 ret = put_user(0, &infop->si_errno);
1622 if (!ret)
1623 ret = put_user(0, &infop->si_code);
1624 if (!ret)
1625 ret = put_user(0, &infop->si_pid);
1626 if (!ret)
1627 ret = put_user(0, &infop->si_uid);
1628 if (!ret)
1629 ret = put_user(0, &infop->si_status);
1630 }
1631
1632 put_pid(pid);
1633 return ret;
1634 }
1635
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1636 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1637 int, options, struct rusage __user *, ru)
1638 {
1639 struct wait_opts wo;
1640 struct pid *pid = NULL;
1641 enum pid_type type;
1642 long ret;
1643
1644 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1645 __WNOTHREAD|__WCLONE|__WALL))
1646 return -EINVAL;
1647
1648 if (upid == -1)
1649 type = PIDTYPE_MAX;
1650 else if (upid < 0) {
1651 type = PIDTYPE_PGID;
1652 pid = find_get_pid(-upid);
1653 } else if (upid == 0) {
1654 type = PIDTYPE_PGID;
1655 pid = get_task_pid(current, PIDTYPE_PGID);
1656 } else /* upid > 0 */ {
1657 type = PIDTYPE_PID;
1658 pid = find_get_pid(upid);
1659 }
1660
1661 wo.wo_type = type;
1662 wo.wo_pid = pid;
1663 wo.wo_flags = options | WEXITED;
1664 wo.wo_info = NULL;
1665 wo.wo_stat = stat_addr;
1666 wo.wo_rusage = ru;
1667 ret = do_wait(&wo);
1668 put_pid(pid);
1669
1670 return ret;
1671 }
1672
1673 #ifdef __ARCH_WANT_SYS_WAITPID
1674
1675 /*
1676 * sys_waitpid() remains for compatibility. waitpid() should be
1677 * implemented by calling sys_wait4() from libc.a.
1678 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1679 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1680 {
1681 return sys_wait4(pid, stat_addr, options, NULL);
1682 }
1683
1684 #endif
1685