• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="drmDevelopersGuide">
6  <bookinfo>
7    <title>Linux DRM Developer's Guide</title>
8
9    <authorgroup>
10      <author>
11	<firstname>Jesse</firstname>
12	<surname>Barnes</surname>
13	<contrib>Initial version</contrib>
14	<affiliation>
15	  <orgname>Intel Corporation</orgname>
16	  <address>
17	    <email>jesse.barnes@intel.com</email>
18	  </address>
19	</affiliation>
20      </author>
21      <author>
22	<firstname>Laurent</firstname>
23	<surname>Pinchart</surname>
24	<contrib>Driver internals</contrib>
25	<affiliation>
26	  <orgname>Ideas on board SPRL</orgname>
27	  <address>
28	    <email>laurent.pinchart@ideasonboard.com</email>
29	  </address>
30	</affiliation>
31      </author>
32    </authorgroup>
33
34    <copyright>
35      <year>2008-2009</year>
36      <year>2012</year>
37      <holder>Intel Corporation</holder>
38      <holder>Laurent Pinchart</holder>
39    </copyright>
40
41    <legalnotice>
42      <para>
43	The contents of this file may be used under the terms of the GNU
44	General Public License version 2 (the "GPL") as distributed in
45	the kernel source COPYING file.
46      </para>
47    </legalnotice>
48
49    <revhistory>
50      <!-- Put document revisions here, newest first. -->
51      <revision>
52	<revnumber>1.0</revnumber>
53	<date>2012-07-13</date>
54	<authorinitials>LP</authorinitials>
55	<revremark>Added extensive documentation about driver internals.
56	</revremark>
57      </revision>
58    </revhistory>
59  </bookinfo>
60
61<toc></toc>
62
63  <!-- Introduction -->
64
65  <chapter id="drmIntroduction">
66    <title>Introduction</title>
67    <para>
68      The Linux DRM layer contains code intended to support the needs
69      of complex graphics devices, usually containing programmable
70      pipelines well suited to 3D graphics acceleration.  Graphics
71      drivers in the kernel may make use of DRM functions to make
72      tasks like memory management, interrupt handling and DMA easier,
73      and provide a uniform interface to applications.
74    </para>
75    <para>
76      A note on versions: this guide covers features found in the DRM
77      tree, including the TTM memory manager, output configuration and
78      mode setting, and the new vblank internals, in addition to all
79      the regular features found in current kernels.
80    </para>
81    <para>
82      [Insert diagram of typical DRM stack here]
83    </para>
84  </chapter>
85
86  <!-- Internals -->
87
88  <chapter id="drmInternals">
89    <title>DRM Internals</title>
90    <para>
91      This chapter documents DRM internals relevant to driver authors
92      and developers working to add support for the latest features to
93      existing drivers.
94    </para>
95    <para>
96      First, we go over some typical driver initialization
97      requirements, like setting up command buffers, creating an
98      initial output configuration, and initializing core services.
99      Subsequent sections cover core internals in more detail,
100      providing implementation notes and examples.
101    </para>
102    <para>
103      The DRM layer provides several services to graphics drivers,
104      many of them driven by the application interfaces it provides
105      through libdrm, the library that wraps most of the DRM ioctls.
106      These include vblank event handling, memory
107      management, output management, framebuffer management, command
108      submission &amp; fencing, suspend/resume support, and DMA
109      services.
110    </para>
111
112  <!-- Internals: driver init -->
113
114  <sect1>
115    <title>Driver Initialization</title>
116    <para>
117      At the core of every DRM driver is a <structname>drm_driver</structname>
118      structure. Drivers typically statically initialize a drm_driver structure,
119      and then pass it to one of the <function>drm_*_init()</function> functions
120      to register it with the DRM subsystem.
121    </para>
122    <para>
123      The <structname>drm_driver</structname> structure contains static
124      information that describes the driver and features it supports, and
125      pointers to methods that the DRM core will call to implement the DRM API.
126      We will first go through the <structname>drm_driver</structname> static
127      information fields, and will then describe individual operations in
128      details as they get used in later sections.
129    </para>
130    <sect2>
131      <title>Driver Information</title>
132      <sect3>
133        <title>Driver Features</title>
134        <para>
135          Drivers inform the DRM core about their requirements and supported
136          features by setting appropriate flags in the
137          <structfield>driver_features</structfield> field. Since those flags
138          influence the DRM core behaviour since registration time, most of them
139          must be set to registering the <structname>drm_driver</structname>
140          instance.
141        </para>
142        <synopsis>u32 driver_features;</synopsis>
143        <variablelist>
144          <title>Driver Feature Flags</title>
145          <varlistentry>
146            <term>DRIVER_USE_AGP</term>
147            <listitem><para>
148              Driver uses AGP interface, the DRM core will manage AGP resources.
149            </para></listitem>
150          </varlistentry>
151          <varlistentry>
152            <term>DRIVER_REQUIRE_AGP</term>
153            <listitem><para>
154              Driver needs AGP interface to function. AGP initialization failure
155              will become a fatal error.
156            </para></listitem>
157          </varlistentry>
158          <varlistentry>
159            <term>DRIVER_USE_MTRR</term>
160            <listitem><para>
161              Driver uses MTRR interface for mapping memory, the DRM core will
162              manage MTRR resources. Deprecated.
163            </para></listitem>
164          </varlistentry>
165          <varlistentry>
166            <term>DRIVER_PCI_DMA</term>
167            <listitem><para>
168              Driver is capable of PCI DMA, mapping of PCI DMA buffers to
169              userspace will be enabled. Deprecated.
170            </para></listitem>
171          </varlistentry>
172          <varlistentry>
173            <term>DRIVER_SG</term>
174            <listitem><para>
175              Driver can perform scatter/gather DMA, allocation and mapping of
176              scatter/gather buffers will be enabled. Deprecated.
177            </para></listitem>
178          </varlistentry>
179          <varlistentry>
180            <term>DRIVER_HAVE_DMA</term>
181            <listitem><para>
182              Driver supports DMA, the userspace DMA API will be supported.
183              Deprecated.
184            </para></listitem>
185          </varlistentry>
186          <varlistentry>
187            <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
188            <listitem><para>
189              DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler. The
190              DRM core will automatically register an interrupt handler when the
191              flag is set. DRIVER_IRQ_SHARED indicates whether the device &amp;
192              handler support shared IRQs (note that this is required of PCI
193              drivers).
194            </para></listitem>
195          </varlistentry>
196          <varlistentry>
197            <term>DRIVER_IRQ_VBL</term>
198            <listitem><para>Unused. Deprecated.</para></listitem>
199          </varlistentry>
200          <varlistentry>
201            <term>DRIVER_DMA_QUEUE</term>
202            <listitem><para>
203              Should be set if the driver queues DMA requests and completes them
204              asynchronously.  Deprecated.
205            </para></listitem>
206          </varlistentry>
207          <varlistentry>
208            <term>DRIVER_FB_DMA</term>
209            <listitem><para>
210              Driver supports DMA to/from the framebuffer, mapping of frambuffer
211              DMA buffers to userspace will be supported. Deprecated.
212            </para></listitem>
213          </varlistentry>
214          <varlistentry>
215            <term>DRIVER_IRQ_VBL2</term>
216            <listitem><para>Unused. Deprecated.</para></listitem>
217          </varlistentry>
218          <varlistentry>
219            <term>DRIVER_GEM</term>
220            <listitem><para>
221              Driver use the GEM memory manager.
222            </para></listitem>
223          </varlistentry>
224          <varlistentry>
225            <term>DRIVER_MODESET</term>
226            <listitem><para>
227              Driver supports mode setting interfaces (KMS).
228            </para></listitem>
229          </varlistentry>
230          <varlistentry>
231            <term>DRIVER_PRIME</term>
232            <listitem><para>
233              Driver implements DRM PRIME buffer sharing.
234            </para></listitem>
235          </varlistentry>
236        </variablelist>
237      </sect3>
238      <sect3>
239        <title>Major, Minor and Patchlevel</title>
240        <synopsis>int major;
241int minor;
242int patchlevel;</synopsis>
243        <para>
244          The DRM core identifies driver versions by a major, minor and patch
245          level triplet. The information is printed to the kernel log at
246          initialization time and passed to userspace through the
247          DRM_IOCTL_VERSION ioctl.
248        </para>
249        <para>
250          The major and minor numbers are also used to verify the requested driver
251          API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
252          between minor versions, applications can call DRM_IOCTL_SET_VERSION to
253          select a specific version of the API. If the requested major isn't equal
254          to the driver major, or the requested minor is larger than the driver
255          minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
256          the driver's set_version() method will be called with the requested
257          version.
258        </para>
259      </sect3>
260      <sect3>
261        <title>Name, Description and Date</title>
262        <synopsis>char *name;
263char *desc;
264char *date;</synopsis>
265        <para>
266          The driver name is printed to the kernel log at initialization time,
267          used for IRQ registration and passed to userspace through
268          DRM_IOCTL_VERSION.
269        </para>
270        <para>
271          The driver description is a purely informative string passed to
272          userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
273          the kernel.
274        </para>
275        <para>
276          The driver date, formatted as YYYYMMDD, is meant to identify the date of
277          the latest modification to the driver. However, as most drivers fail to
278          update it, its value is mostly useless. The DRM core prints it to the
279          kernel log at initialization time and passes it to userspace through the
280          DRM_IOCTL_VERSION ioctl.
281        </para>
282      </sect3>
283    </sect2>
284    <sect2>
285      <title>Driver Load</title>
286      <para>
287        The <methodname>load</methodname> method is the driver and device
288        initialization entry point. The method is responsible for allocating and
289        initializing driver private data, specifying supported performance
290        counters, performing resource allocation and mapping (e.g. acquiring
291        clocks, mapping registers or allocating command buffers), initializing
292        the memory manager (<xref linkend="drm-memory-management"/>), installing
293        the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up
294        vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode
295	setting (<xref linkend="drm-mode-setting"/>) and initial output
296	configuration (<xref linkend="drm-kms-init"/>).
297      </para>
298      <note><para>
299        If compatibility is a concern (e.g. with drivers converted over from
300        User Mode Setting to Kernel Mode Setting), care must be taken to prevent
301        device initialization and control that is incompatible with currently
302        active userspace drivers. For instance, if user level mode setting
303        drivers are in use, it would be problematic to perform output discovery
304        &amp; configuration at load time. Likewise, if user-level drivers
305        unaware of memory management are in use, memory management and command
306        buffer setup may need to be omitted. These requirements are
307        driver-specific, and care needs to be taken to keep both old and new
308        applications and libraries working.
309      </para></note>
310      <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis>
311      <para>
312        The method takes two arguments, a pointer to the newly created
313	<structname>drm_device</structname> and flags. The flags are used to
314	pass the <structfield>driver_data</structfield> field of the device id
315	corresponding to the device passed to <function>drm_*_init()</function>.
316	Only PCI devices currently use this, USB and platform DRM drivers have
317	their <methodname>load</methodname> method called with flags to 0.
318      </para>
319      <sect3>
320        <title>Driver Private &amp; Performance Counters</title>
321        <para>
322          The driver private hangs off the main
323          <structname>drm_device</structname> structure and can be used for
324          tracking various device-specific bits of information, like register
325          offsets, command buffer status, register state for suspend/resume, etc.
326          At load time, a driver may simply allocate one and set
327          <structname>drm_device</structname>.<structfield>dev_priv</structfield>
328          appropriately; it should be freed and
329          <structname>drm_device</structname>.<structfield>dev_priv</structfield>
330          set to NULL when the driver is unloaded.
331        </para>
332        <para>
333          DRM supports several counters which were used for rough performance
334          characterization. This stat counter system is deprecated and should not
335          be used. If performance monitoring is desired, the developer should
336          investigate and potentially enhance the kernel perf and tracing
337          infrastructure to export GPU related performance information for
338          consumption by performance monitoring tools and applications.
339        </para>
340      </sect3>
341      <sect3 id="drm-irq-registration">
342        <title>IRQ Registration</title>
343        <para>
344          The DRM core tries to facilitate IRQ handler registration and
345          unregistration by providing <function>drm_irq_install</function> and
346          <function>drm_irq_uninstall</function> functions. Those functions only
347          support a single interrupt per device.
348        </para>
349  <!--!Fdrivers/char/drm/drm_irq.c drm_irq_install-->
350        <para>
351          Both functions get the device IRQ by calling
352          <function>drm_dev_to_irq</function>. This inline function will call a
353          bus-specific operation to retrieve the IRQ number. For platform devices,
354          <function>platform_get_irq</function>(..., 0) is used to retrieve the
355          IRQ number.
356        </para>
357        <para>
358          <function>drm_irq_install</function> starts by calling the
359          <methodname>irq_preinstall</methodname> driver operation. The operation
360          is optional and must make sure that the interrupt will not get fired by
361          clearing all pending interrupt flags or disabling the interrupt.
362        </para>
363        <para>
364          The IRQ will then be requested by a call to
365          <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
366          feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
367          requested.
368        </para>
369        <para>
370          The IRQ handler function must be provided as the mandatory irq_handler
371          driver operation. It will get passed directly to
372          <function>request_irq</function> and thus has the same prototype as all
373          IRQ handlers. It will get called with a pointer to the DRM device as the
374          second argument.
375        </para>
376        <para>
377          Finally the function calls the optional
378          <methodname>irq_postinstall</methodname> driver operation. The operation
379          usually enables interrupts (excluding the vblank interrupt, which is
380          enabled separately), but drivers may choose to enable/disable interrupts
381          at a different time.
382        </para>
383        <para>
384          <function>drm_irq_uninstall</function> is similarly used to uninstall an
385          IRQ handler. It starts by waking up all processes waiting on a vblank
386          interrupt to make sure they don't hang, and then calls the optional
387          <methodname>irq_uninstall</methodname> driver operation. The operation
388          must disable all hardware interrupts. Finally the function frees the IRQ
389          by calling <function>free_irq</function>.
390        </para>
391      </sect3>
392      <sect3>
393        <title>Memory Manager Initialization</title>
394        <para>
395          Every DRM driver requires a memory manager which must be initialized at
396          load time. DRM currently contains two memory managers, the Translation
397          Table Manager (TTM) and the Graphics Execution Manager (GEM).
398          This document describes the use of the GEM memory manager only. See
399          <xref linkend="drm-memory-management"/> for details.
400        </para>
401      </sect3>
402      <sect3>
403        <title>Miscellaneous Device Configuration</title>
404        <para>
405          Another task that may be necessary for PCI devices during configuration
406          is mapping the video BIOS. On many devices, the VBIOS describes device
407          configuration, LCD panel timings (if any), and contains flags indicating
408          device state. Mapping the BIOS can be done using the pci_map_rom() call,
409          a convenience function that takes care of mapping the actual ROM,
410          whether it has been shadowed into memory (typically at address 0xc0000)
411          or exists on the PCI device in the ROM BAR. Note that after the ROM has
412          been mapped and any necessary information has been extracted, it should
413          be unmapped; on many devices, the ROM address decoder is shared with
414          other BARs, so leaving it mapped could cause undesired behaviour like
415          hangs or memory corruption.
416  <!--!Fdrivers/pci/rom.c pci_map_rom-->
417        </para>
418      </sect3>
419    </sect2>
420  </sect1>
421
422  <!-- Internals: memory management -->
423
424  <sect1 id="drm-memory-management">
425    <title>Memory management</title>
426    <para>
427      Modern Linux systems require large amount of graphics memory to store
428      frame buffers, textures, vertices and other graphics-related data. Given
429      the very dynamic nature of many of that data, managing graphics memory
430      efficiently is thus crucial for the graphics stack and plays a central
431      role in the DRM infrastructure.
432    </para>
433    <para>
434      The DRM core includes two memory managers, namely Translation Table Maps
435      (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
436      manager to be developed and tried to be a one-size-fits-them all
437      solution. It provides a single userspace API to accomodate the need of
438      all hardware, supporting both Unified Memory Architecture (UMA) devices
439      and devices with dedicated video RAM (i.e. most discrete video cards).
440      This resulted in a large, complex piece of code that turned out to be
441      hard to use for driver development.
442    </para>
443    <para>
444      GEM started as an Intel-sponsored project in reaction to TTM's
445      complexity. Its design philosophy is completely different: instead of
446      providing a solution to every graphics memory-related problems, GEM
447      identified common code between drivers and created a support library to
448      share it. GEM has simpler initialization and execution requirements than
449      TTM, but has no video RAM management capabitilies and is thus limited to
450      UMA devices.
451    </para>
452    <sect2>
453      <title>The Translation Table Manager (TTM)</title>
454      <para>
455	TTM design background and information belongs here.
456      </para>
457      <sect3>
458	<title>TTM initialization</title>
459        <warning><para>This section is outdated.</para></warning>
460        <para>
461          Drivers wishing to support TTM must fill out a drm_bo_driver
462          structure. The structure contains several fields with function
463          pointers for initializing the TTM, allocating and freeing memory,
464          waiting for command completion and fence synchronization, and memory
465          migration. See the radeon_ttm.c file for an example of usage.
466	</para>
467	<para>
468	  The ttm_global_reference structure is made up of several fields:
469	</para>
470	<programlisting>
471	  struct ttm_global_reference {
472	  	enum ttm_global_types global_type;
473	  	size_t size;
474	  	void *object;
475	  	int (*init) (struct ttm_global_reference *);
476	  	void (*release) (struct ttm_global_reference *);
477	  };
478	</programlisting>
479	<para>
480	  There should be one global reference structure for your memory
481	  manager as a whole, and there will be others for each object
482	  created by the memory manager at runtime.  Your global TTM should
483	  have a type of TTM_GLOBAL_TTM_MEM.  The size field for the global
484	  object should be sizeof(struct ttm_mem_global), and the init and
485	  release hooks should point at your driver-specific init and
486	  release routines, which probably eventually call
487	  ttm_mem_global_init and ttm_mem_global_release, respectively.
488	</para>
489	<para>
490	  Once your global TTM accounting structure is set up and initialized
491	  by calling ttm_global_item_ref() on it,
492	  you need to create a buffer object TTM to
493	  provide a pool for buffer object allocation by clients and the
494	  kernel itself.  The type of this object should be TTM_GLOBAL_TTM_BO,
495	  and its size should be sizeof(struct ttm_bo_global).  Again,
496	  driver-specific init and release functions may be provided,
497	  likely eventually calling ttm_bo_global_init() and
498	  ttm_bo_global_release(), respectively.  Also, like the previous
499	  object, ttm_global_item_ref() is used to create an initial reference
500	  count for the TTM, which will call your initialization function.
501	</para>
502      </sect3>
503    </sect2>
504    <sect2 id="drm-gem">
505      <title>The Graphics Execution Manager (GEM)</title>
506      <para>
507        The GEM design approach has resulted in a memory manager that doesn't
508        provide full coverage of all (or even all common) use cases in its
509        userspace or kernel API. GEM exposes a set of standard memory-related
510        operations to userspace and a set of helper functions to drivers, and let
511        drivers implement hardware-specific operations with their own private API.
512      </para>
513      <para>
514        The GEM userspace API is described in the
515        <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
516        Execution Manager</citetitle></ulink> article on LWN. While slightly
517        outdated, the document provides a good overview of the GEM API principles.
518        Buffer allocation and read and write operations, described as part of the
519        common GEM API, are currently implemented using driver-specific ioctls.
520      </para>
521      <para>
522        GEM is data-agnostic. It manages abstract buffer objects without knowing
523        what individual buffers contain. APIs that require knowledge of buffer
524        contents or purpose, such as buffer allocation or synchronization
525        primitives, are thus outside of the scope of GEM and must be implemented
526        using driver-specific ioctls.
527      </para>
528      <para>
529	On a fundamental level, GEM involves several operations:
530	<itemizedlist>
531	  <listitem>Memory allocation and freeing</listitem>
532	  <listitem>Command execution</listitem>
533	  <listitem>Aperture management at command execution time</listitem>
534	</itemizedlist>
535	Buffer object allocation is relatively straightforward and largely
536        provided by Linux's shmem layer, which provides memory to back each
537        object.
538      </para>
539      <para>
540        Device-specific operations, such as command execution, pinning, buffer
541	read &amp; write, mapping, and domain ownership transfers are left to
542        driver-specific ioctls.
543      </para>
544      <sect3>
545        <title>GEM Initialization</title>
546        <para>
547          Drivers that use GEM must set the DRIVER_GEM bit in the struct
548          <structname>drm_driver</structname>
549          <structfield>driver_features</structfield> field. The DRM core will
550          then automatically initialize the GEM core before calling the
551          <methodname>load</methodname> operation. Behind the scene, this will
552          create a DRM Memory Manager object which provides an address space
553          pool for object allocation.
554        </para>
555        <para>
556          In a KMS configuration, drivers need to allocate and initialize a
557          command ring buffer following core GEM initialization if required by
558          the hardware. UMA devices usually have what is called a "stolen"
559          memory region, which provides space for the initial framebuffer and
560          large, contiguous memory regions required by the device. This space is
561          typically not managed by GEM, and must be initialized separately into
562          its own DRM MM object.
563        </para>
564      </sect3>
565      <sect3>
566        <title>GEM Objects Creation</title>
567        <para>
568          GEM splits creation of GEM objects and allocation of the memory that
569          backs them in two distinct operations.
570        </para>
571        <para>
572          GEM objects are represented by an instance of struct
573          <structname>drm_gem_object</structname>. Drivers usually need to extend
574          GEM objects with private information and thus create a driver-specific
575          GEM object structure type that embeds an instance of struct
576          <structname>drm_gem_object</structname>.
577        </para>
578        <para>
579          To create a GEM object, a driver allocates memory for an instance of its
580          specific GEM object type and initializes the embedded struct
581          <structname>drm_gem_object</structname> with a call to
582          <function>drm_gem_object_init</function>. The function takes a pointer to
583          the DRM device, a pointer to the GEM object and the buffer object size
584          in bytes.
585        </para>
586        <para>
587          GEM uses shmem to allocate anonymous pageable memory.
588          <function>drm_gem_object_init</function> will create an shmfs file of
589          the requested size and store it into the struct
590          <structname>drm_gem_object</structname> <structfield>filp</structfield>
591          field. The memory is used as either main storage for the object when the
592          graphics hardware uses system memory directly or as a backing store
593          otherwise.
594        </para>
595        <para>
596          Drivers are responsible for the actual physical pages allocation by
597          calling <function>shmem_read_mapping_page_gfp</function> for each page.
598          Note that they can decide to allocate pages when initializing the GEM
599          object, or to delay allocation until the memory is needed (for instance
600          when a page fault occurs as a result of a userspace memory access or
601          when the driver needs to start a DMA transfer involving the memory).
602        </para>
603        <para>
604          Anonymous pageable memory allocation is not always desired, for instance
605          when the hardware requires physically contiguous system memory as is
606          often the case in embedded devices. Drivers can create GEM objects with
607          no shmfs backing (called private GEM objects) by initializing them with
608          a call to <function>drm_gem_private_object_init</function> instead of
609          <function>drm_gem_object_init</function>. Storage for private GEM
610          objects must be managed by drivers.
611        </para>
612        <para>
613          Drivers that do not need to extend GEM objects with private information
614          can call the <function>drm_gem_object_alloc</function> function to
615          allocate and initialize a struct <structname>drm_gem_object</structname>
616          instance. The GEM core will call the optional driver
617          <methodname>gem_init_object</methodname> operation after initializing
618          the GEM object with <function>drm_gem_object_init</function>.
619          <synopsis>int (*gem_init_object) (struct drm_gem_object *obj);</synopsis>
620        </para>
621        <para>
622          No alloc-and-init function exists for private GEM objects.
623        </para>
624      </sect3>
625      <sect3>
626        <title>GEM Objects Lifetime</title>
627        <para>
628          All GEM objects are reference-counted by the GEM core. References can be
629          acquired and release by <function>calling drm_gem_object_reference</function>
630          and <function>drm_gem_object_unreference</function> respectively. The
631          caller must hold the <structname>drm_device</structname>
632          <structfield>struct_mutex</structfield> lock. As a convenience, GEM
633          provides the <function>drm_gem_object_reference_unlocked</function> and
634          <function>drm_gem_object_unreference_unlocked</function> functions that
635          can be called without holding the lock.
636        </para>
637        <para>
638          When the last reference to a GEM object is released the GEM core calls
639          the <structname>drm_driver</structname>
640          <methodname>gem_free_object</methodname> operation. That operation is
641          mandatory for GEM-enabled drivers and must free the GEM object and all
642          associated resources.
643        </para>
644        <para>
645          <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
646          Drivers are responsible for freeing all GEM object resources, including
647          the resources created by the GEM core. If an mmap offset has been
648          created for the object (in which case
649          <structname>drm_gem_object</structname>::<structfield>map_list</structfield>::<structfield>map</structfield>
650          is not NULL) it must be freed by a call to
651          <function>drm_gem_free_mmap_offset</function>. The shmfs backing store
652          must be released by calling <function>drm_gem_object_release</function>
653          (that function can safely be called if no shmfs backing store has been
654          created).
655        </para>
656      </sect3>
657      <sect3>
658        <title>GEM Objects Naming</title>
659        <para>
660          Communication between userspace and the kernel refers to GEM objects
661          using local handles, global names or, more recently, file descriptors.
662          All of those are 32-bit integer values; the usual Linux kernel limits
663          apply to the file descriptors.
664        </para>
665        <para>
666          GEM handles are local to a DRM file. Applications get a handle to a GEM
667          object through a driver-specific ioctl, and can use that handle to refer
668          to the GEM object in other standard or driver-specific ioctls. Closing a
669          DRM file handle frees all its GEM handles and dereferences the
670          associated GEM objects.
671        </para>
672        <para>
673          To create a handle for a GEM object drivers call
674          <function>drm_gem_handle_create</function>. The function takes a pointer
675          to the DRM file and the GEM object and returns a locally unique handle.
676          When the handle is no longer needed drivers delete it with a call to
677          <function>drm_gem_handle_delete</function>. Finally the GEM object
678          associated with a handle can be retrieved by a call to
679          <function>drm_gem_object_lookup</function>.
680        </para>
681        <para>
682          Handles don't take ownership of GEM objects, they only take a reference
683          to the object that will be dropped when the handle is destroyed. To
684          avoid leaking GEM objects, drivers must make sure they drop the
685          reference(s) they own (such as the initial reference taken at object
686          creation time) as appropriate, without any special consideration for the
687          handle. For example, in the particular case of combined GEM object and
688          handle creation in the implementation of the
689          <methodname>dumb_create</methodname> operation, drivers must drop the
690          initial reference to the GEM object before returning the handle.
691        </para>
692        <para>
693          GEM names are similar in purpose to handles but are not local to DRM
694          files. They can be passed between processes to reference a GEM object
695          globally. Names can't be used directly to refer to objects in the DRM
696          API, applications must convert handles to names and names to handles
697          using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
698          respectively. The conversion is handled by the DRM core without any
699          driver-specific support.
700        </para>
701        <para>
702          Similar to global names, GEM file descriptors are also used to share GEM
703          objects across processes. They offer additional security: as file
704          descriptors must be explictly sent over UNIX domain sockets to be shared
705          between applications, they can't be guessed like the globally unique GEM
706          names.
707        </para>
708        <para>
709          Drivers that support GEM file descriptors, also known as the DRM PRIME
710          API, must set the DRIVER_PRIME bit in the struct
711          <structname>drm_driver</structname>
712          <structfield>driver_features</structfield> field, and implement the
713          <methodname>prime_handle_to_fd</methodname> and
714          <methodname>prime_fd_to_handle</methodname> operations.
715        </para>
716        <para>
717          <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
718                            struct drm_file *file_priv, uint32_t handle,
719                            uint32_t flags, int *prime_fd);
720  int (*prime_fd_to_handle)(struct drm_device *dev,
721                            struct drm_file *file_priv, int prime_fd,
722                            uint32_t *handle);</synopsis>
723          Those two operations convert a handle to a PRIME file descriptor and
724          vice versa. Drivers must use the kernel dma-buf buffer sharing framework
725          to manage the PRIME file descriptors.
726        </para>
727        <para>
728          While non-GEM drivers must implement the operations themselves, GEM
729          drivers must use the <function>drm_gem_prime_handle_to_fd</function>
730          and <function>drm_gem_prime_fd_to_handle</function> helper functions.
731          Those helpers rely on the driver
732          <methodname>gem_prime_export</methodname> and
733          <methodname>gem_prime_import</methodname> operations to create a dma-buf
734          instance from a GEM object (dma-buf exporter role) and to create a GEM
735          object from a dma-buf instance (dma-buf importer role).
736        </para>
737        <para>
738          <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
739                                       struct drm_gem_object *obj,
740                                       int flags);
741  struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
742                                              struct dma_buf *dma_buf);</synopsis>
743          These two operations are mandatory for GEM drivers that support DRM
744          PRIME.
745        </para>
746        <sect4>
747          <title>DRM PRIME Helper Functions Reference</title>
748!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
749        </sect4>
750      </sect3>
751      <sect3 id="drm-gem-objects-mapping">
752        <title>GEM Objects Mapping</title>
753        <para>
754          Because mapping operations are fairly heavyweight GEM favours
755          read/write-like access to buffers, implemented through driver-specific
756          ioctls, over mapping buffers to userspace. However, when random access
757          to the buffer is needed (to perform software rendering for instance),
758          direct access to the object can be more efficient.
759        </para>
760        <para>
761          The mmap system call can't be used directly to map GEM objects, as they
762          don't have their own file handle. Two alternative methods currently
763          co-exist to map GEM objects to userspace. The first method uses a
764          driver-specific ioctl to perform the mapping operation, calling
765          <function>do_mmap</function> under the hood. This is often considered
766          dubious, seems to be discouraged for new GEM-enabled drivers, and will
767          thus not be described here.
768        </para>
769        <para>
770          The second method uses the mmap system call on the DRM file handle.
771          <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
772             off_t offset);</synopsis>
773          DRM identifies the GEM object to be mapped by a fake offset passed
774          through the mmap offset argument. Prior to being mapped, a GEM object
775          must thus be associated with a fake offset. To do so, drivers must call
776          <function>drm_gem_create_mmap_offset</function> on the object. The
777          function allocates a fake offset range from a pool and stores the
778          offset divided by PAGE_SIZE in
779          <literal>obj-&gt;map_list.hash.key</literal>. Care must be taken not to
780          call <function>drm_gem_create_mmap_offset</function> if a fake offset
781          has already been allocated for the object. This can be tested by
782          <literal>obj-&gt;map_list.map</literal> being non-NULL.
783        </para>
784        <para>
785          Once allocated, the fake offset value
786          (<literal>obj-&gt;map_list.hash.key &lt;&lt; PAGE_SHIFT</literal>)
787          must be passed to the application in a driver-specific way and can then
788          be used as the mmap offset argument.
789        </para>
790        <para>
791          The GEM core provides a helper method <function>drm_gem_mmap</function>
792          to handle object mapping. The method can be set directly as the mmap
793          file operation handler. It will look up the GEM object based on the
794          offset value and set the VMA operations to the
795          <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
796          field. Note that <function>drm_gem_mmap</function> doesn't map memory to
797          userspace, but relies on the driver-provided fault handler to map pages
798          individually.
799        </para>
800        <para>
801          To use <function>drm_gem_mmap</function>, drivers must fill the struct
802          <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
803          field with a pointer to VM operations.
804        </para>
805        <para>
806          <synopsis>struct vm_operations_struct *gem_vm_ops
807
808  struct vm_operations_struct {
809          void (*open)(struct vm_area_struct * area);
810          void (*close)(struct vm_area_struct * area);
811          int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
812  };</synopsis>
813        </para>
814        <para>
815          The <methodname>open</methodname> and <methodname>close</methodname>
816          operations must update the GEM object reference count. Drivers can use
817          the <function>drm_gem_vm_open</function> and
818          <function>drm_gem_vm_close</function> helper functions directly as open
819          and close handlers.
820        </para>
821        <para>
822          The fault operation handler is responsible for mapping individual pages
823          to userspace when a page fault occurs. Depending on the memory
824          allocation scheme, drivers can allocate pages at fault time, or can
825          decide to allocate memory for the GEM object at the time the object is
826          created.
827        </para>
828        <para>
829          Drivers that want to map the GEM object upfront instead of handling page
830          faults can implement their own mmap file operation handler.
831        </para>
832      </sect3>
833      <sect3>
834        <title>Dumb GEM Objects</title>
835        <para>
836          The GEM API doesn't standardize GEM objects creation and leaves it to
837          driver-specific ioctls. While not an issue for full-fledged graphics
838          stacks that include device-specific userspace components (in libdrm for
839          instance), this limit makes DRM-based early boot graphics unnecessarily
840          complex.
841        </para>
842        <para>
843          Dumb GEM objects partly alleviate the problem by providing a standard
844          API to create dumb buffers suitable for scanout, which can then be used
845          to create KMS frame buffers.
846        </para>
847        <para>
848          To support dumb GEM objects drivers must implement the
849          <methodname>dumb_create</methodname>,
850          <methodname>dumb_destroy</methodname> and
851          <methodname>dumb_map_offset</methodname> operations.
852        </para>
853        <itemizedlist>
854          <listitem>
855            <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
856                     struct drm_mode_create_dumb *args);</synopsis>
857            <para>
858              The <methodname>dumb_create</methodname> operation creates a GEM
859              object suitable for scanout based on the width, height and depth
860              from the struct <structname>drm_mode_create_dumb</structname>
861              argument. It fills the argument's <structfield>handle</structfield>,
862              <structfield>pitch</structfield> and <structfield>size</structfield>
863              fields with a handle for the newly created GEM object and its line
864              pitch and size in bytes.
865            </para>
866          </listitem>
867          <listitem>
868            <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
869                      uint32_t handle);</synopsis>
870            <para>
871              The <methodname>dumb_destroy</methodname> operation destroys a dumb
872              GEM object created by <methodname>dumb_create</methodname>.
873            </para>
874          </listitem>
875          <listitem>
876            <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
877                         uint32_t handle, uint64_t *offset);</synopsis>
878            <para>
879              The <methodname>dumb_map_offset</methodname> operation associates an
880              mmap fake offset with the GEM object given by the handle and returns
881              it. Drivers must use the
882              <function>drm_gem_create_mmap_offset</function> function to
883              associate the fake offset as described in
884              <xref linkend="drm-gem-objects-mapping"/>.
885            </para>
886          </listitem>
887        </itemizedlist>
888      </sect3>
889      <sect3>
890        <title>Memory Coherency</title>
891        <para>
892          When mapped to the device or used in a command buffer, backing pages
893          for an object are flushed to memory and marked write combined so as to
894          be coherent with the GPU. Likewise, if the CPU accesses an object
895          after the GPU has finished rendering to the object, then the object
896          must be made coherent with the CPU's view of memory, usually involving
897          GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU
898          coherency management is provided by a device-specific ioctl, which
899          evaluates an object's current domain and performs any necessary
900          flushing or synchronization to put the object into the desired
901          coherency domain (note that the object may be busy, i.e. an active
902          render target; in that case, setting the domain blocks the client and
903          waits for rendering to complete before performing any necessary
904          flushing operations).
905        </para>
906      </sect3>
907      <sect3>
908        <title>Command Execution</title>
909        <para>
910	  Perhaps the most important GEM function for GPU devices is providing a
911          command execution interface to clients. Client programs construct
912          command buffers containing references to previously allocated memory
913          objects, and then submit them to GEM. At that point, GEM takes care to
914          bind all the objects into the GTT, execute the buffer, and provide
915          necessary synchronization between clients accessing the same buffers.
916          This often involves evicting some objects from the GTT and re-binding
917          others (a fairly expensive operation), and providing relocation
918          support which hides fixed GTT offsets from clients. Clients must take
919          care not to submit command buffers that reference more objects than
920          can fit in the GTT; otherwise, GEM will reject them and no rendering
921          will occur. Similarly, if several objects in the buffer require fence
922          registers to be allocated for correct rendering (e.g. 2D blits on
923          pre-965 chips), care must be taken not to require more fence registers
924          than are available to the client. Such resource management should be
925          abstracted from the client in libdrm.
926        </para>
927      </sect3>
928    </sect2>
929  </sect1>
930
931  <!-- Internals: mode setting -->
932
933  <sect1 id="drm-mode-setting">
934    <title>Mode Setting</title>
935    <para>
936      Drivers must initialize the mode setting core by calling
937      <function>drm_mode_config_init</function> on the DRM device. The function
938      initializes the <structname>drm_device</structname>
939      <structfield>mode_config</structfield> field and never fails. Once done,
940      mode configuration must be setup by initializing the following fields.
941    </para>
942    <itemizedlist>
943      <listitem>
944        <synopsis>int min_width, min_height;
945int max_width, max_height;</synopsis>
946        <para>
947	  Minimum and maximum width and height of the frame buffers in pixel
948	  units.
949	</para>
950      </listitem>
951      <listitem>
952        <synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
953	<para>Mode setting functions.</para>
954      </listitem>
955    </itemizedlist>
956    <sect2>
957      <title>Frame Buffer Creation</title>
958      <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
959				     struct drm_file *file_priv,
960				     struct drm_mode_fb_cmd2 *mode_cmd);</synopsis>
961      <para>
962        Frame buffers are abstract memory objects that provide a source of
963        pixels to scanout to a CRTC. Applications explicitly request the
964        creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
965        receive an opaque handle that can be passed to the KMS CRTC control,
966        plane configuration and page flip functions.
967      </para>
968      <para>
969        Frame buffers rely on the underneath memory manager for low-level memory
970        operations. When creating a frame buffer applications pass a memory
971        handle (or a list of memory handles for multi-planar formats) through
972        the <parameter>drm_mode_fb_cmd2</parameter> argument. This document
973        assumes that the driver uses GEM, those handles thus reference GEM
974        objects.
975      </para>
976      <para>
977        Drivers must first validate the requested frame buffer parameters passed
978        through the mode_cmd argument. In particular this is where invalid
979        sizes, pixel formats or pitches can be caught.
980      </para>
981      <para>
982        If the parameters are deemed valid, drivers then create, initialize and
983        return an instance of struct <structname>drm_framebuffer</structname>.
984        If desired the instance can be embedded in a larger driver-specific
985	structure. Drivers must fill its <structfield>width</structfield>,
986	<structfield>height</structfield>, <structfield>pitches</structfield>,
987        <structfield>offsets</structfield>, <structfield>depth</structfield>,
988        <structfield>bits_per_pixel</structfield> and
989        <structfield>pixel_format</structfield> fields from the values passed
990        through the <parameter>drm_mode_fb_cmd2</parameter> argument. They
991        should call the <function>drm_helper_mode_fill_fb_struct</function>
992        helper function to do so.
993      </para>
994
995      <para>
996	The initailization of the new framebuffer instance is finalized with a
997	call to <function>drm_framebuffer_init</function> which takes a pointer
998	to DRM frame buffer operations (struct
999	<structname>drm_framebuffer_funcs</structname>). Note that this function
1000	publishes the framebuffer and so from this point on it can be accessed
1001	concurrently from other threads. Hence it must be the last step in the
1002	driver's framebuffer initialization sequence. Frame buffer operations
1003	are
1004        <itemizedlist>
1005          <listitem>
1006            <synopsis>int (*create_handle)(struct drm_framebuffer *fb,
1007		     struct drm_file *file_priv, unsigned int *handle);</synopsis>
1008            <para>
1009              Create a handle to the frame buffer underlying memory object. If
1010              the frame buffer uses a multi-plane format, the handle will
1011              reference the memory object associated with the first plane.
1012            </para>
1013            <para>
1014              Drivers call <function>drm_gem_handle_create</function> to create
1015              the handle.
1016            </para>
1017          </listitem>
1018          <listitem>
1019            <synopsis>void (*destroy)(struct drm_framebuffer *framebuffer);</synopsis>
1020            <para>
1021              Destroy the frame buffer object and frees all associated
1022              resources. Drivers must call
1023              <function>drm_framebuffer_cleanup</function> to free resources
1024              allocated by the DRM core for the frame buffer object, and must
1025              make sure to unreference all memory objects associated with the
1026              frame buffer. Handles created by the
1027              <methodname>create_handle</methodname> operation are released by
1028              the DRM core.
1029            </para>
1030          </listitem>
1031          <listitem>
1032            <synopsis>int (*dirty)(struct drm_framebuffer *framebuffer,
1033	     struct drm_file *file_priv, unsigned flags, unsigned color,
1034	     struct drm_clip_rect *clips, unsigned num_clips);</synopsis>
1035            <para>
1036              This optional operation notifies the driver that a region of the
1037              frame buffer has changed in response to a DRM_IOCTL_MODE_DIRTYFB
1038              ioctl call.
1039            </para>
1040          </listitem>
1041        </itemizedlist>
1042      </para>
1043      <para>
1044	The lifetime of a drm framebuffer is controlled with a reference count,
1045	drivers can grab additional references with
1046	<function>drm_framebuffer_reference</function> </para> and drop them
1047	again with <function>drm_framebuffer_unreference</function>. For
1048	driver-private framebuffers for which the last reference is never
1049	dropped (e.g. for the fbdev framebuffer when the struct
1050	<structname>drm_framebuffer</structname> is embedded into the fbdev
1051	helper struct) drivers can manually clean up a framebuffer at module
1052	unload time with
1053	<function>drm_framebuffer_unregister_private</function>.
1054    </sect2>
1055    <sect2>
1056      <title>Output Polling</title>
1057      <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
1058      <para>
1059        This operation notifies the driver that the status of one or more
1060        connectors has changed. Drivers that use the fb helper can just call the
1061        <function>drm_fb_helper_hotplug_event</function> function to handle this
1062        operation.
1063      </para>
1064    </sect2>
1065    <sect2>
1066      <title>Locking</title>
1067      <para>
1068        Beside some lookup structures with their own locking (which is hidden
1069	behind the interface functions) most of the modeset state is protected
1070	by the <code>dev-&lt;mode_config.lock</code> mutex and additionally
1071	per-crtc locks to allow cursor updates, pageflips and similar operations
1072	to occur concurrently with background tasks like output detection.
1073	Operations which cross domains like a full modeset always grab all
1074	locks. Drivers there need to protect resources shared between crtcs with
1075	additional locking. They also need to be careful to always grab the
1076	relevant crtc locks if a modset functions touches crtc state, e.g. for
1077	load detection (which does only grab the <code>mode_config.lock</code>
1078	to allow concurrent screen updates on live crtcs).
1079      </para>
1080    </sect2>
1081  </sect1>
1082
1083  <!-- Internals: kms initialization and cleanup -->
1084
1085  <sect1 id="drm-kms-init">
1086    <title>KMS Initialization and Cleanup</title>
1087    <para>
1088      A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
1089      and connectors. KMS drivers must thus create and initialize all those
1090      objects at load time after initializing mode setting.
1091    </para>
1092    <sect2>
1093      <title>CRTCs (struct <structname>drm_crtc</structname>)</title>
1094      <para>
1095        A CRTC is an abstraction representing a part of the chip that contains a
1096	pointer to a scanout buffer. Therefore, the number of CRTCs available
1097	determines how many independent scanout buffers can be active at any
1098	given time. The CRTC structure contains several fields to support this:
1099	a pointer to some video memory (abstracted as a frame buffer object), a
1100	display mode, and an (x, y) offset into the video memory to support
1101	panning or configurations where one piece of video memory spans multiple
1102	CRTCs.
1103      </para>
1104      <sect3>
1105        <title>CRTC Initialization</title>
1106        <para>
1107          A KMS device must create and register at least one struct
1108          <structname>drm_crtc</structname> instance. The instance is allocated
1109          and zeroed by the driver, possibly as part of a larger structure, and
1110          registered with a call to <function>drm_crtc_init</function> with a
1111          pointer to CRTC functions.
1112        </para>
1113      </sect3>
1114      <sect3>
1115        <title>CRTC Operations</title>
1116        <sect4>
1117          <title>Set Configuration</title>
1118          <synopsis>int (*set_config)(struct drm_mode_set *set);</synopsis>
1119          <para>
1120            Apply a new CRTC configuration to the device. The configuration
1121            specifies a CRTC, a frame buffer to scan out from, a (x,y) position in
1122            the frame buffer, a display mode and an array of connectors to drive
1123            with the CRTC if possible.
1124          </para>
1125          <para>
1126            If the frame buffer specified in the configuration is NULL, the driver
1127            must detach all encoders connected to the CRTC and all connectors
1128            attached to those encoders and disable them.
1129          </para>
1130          <para>
1131            This operation is called with the mode config lock held.
1132          </para>
1133          <note><para>
1134            FIXME: How should set_config interact with DPMS? If the CRTC is
1135            suspended, should it be resumed?
1136          </para></note>
1137        </sect4>
1138        <sect4>
1139          <title>Page Flipping</title>
1140          <synopsis>int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1141                   struct drm_pending_vblank_event *event);</synopsis>
1142          <para>
1143            Schedule a page flip to the given frame buffer for the CRTC. This
1144            operation is called with the mode config mutex held.
1145          </para>
1146          <para>
1147            Page flipping is a synchronization mechanism that replaces the frame
1148            buffer being scanned out by the CRTC with a new frame buffer during
1149            vertical blanking, avoiding tearing. When an application requests a page
1150            flip the DRM core verifies that the new frame buffer is large enough to
1151            be scanned out by  the CRTC in the currently configured mode and then
1152            calls the CRTC <methodname>page_flip</methodname> operation with a
1153            pointer to the new frame buffer.
1154          </para>
1155          <para>
1156            The <methodname>page_flip</methodname> operation schedules a page flip.
1157            Once any pending rendering targetting the new frame buffer has
1158            completed, the CRTC will be reprogrammed to display that frame buffer
1159            after the next vertical refresh. The operation must return immediately
1160            without waiting for rendering or page flip to complete and must block
1161            any new rendering to the frame buffer until the page flip completes.
1162          </para>
1163          <para>
1164            If a page flip can be successfully scheduled the driver must set the
1165            <code>drm_crtc-&lt;fb</code> field to the new framebuffer pointed to
1166            by <code>fb</code>. This is important so that the reference counting
1167            on framebuffers stays balanced.
1168          </para>
1169          <para>
1170            If a page flip is already pending, the
1171            <methodname>page_flip</methodname> operation must return
1172            -<errorname>EBUSY</errorname>.
1173          </para>
1174          <para>
1175            To synchronize page flip to vertical blanking the driver will likely
1176            need to enable vertical blanking interrupts. It should call
1177            <function>drm_vblank_get</function> for that purpose, and call
1178            <function>drm_vblank_put</function> after the page flip completes.
1179          </para>
1180          <para>
1181            If the application has requested to be notified when page flip completes
1182            the <methodname>page_flip</methodname> operation will be called with a
1183            non-NULL <parameter>event</parameter> argument pointing to a
1184            <structname>drm_pending_vblank_event</structname> instance. Upon page
1185            flip completion the driver must call <methodname>drm_send_vblank_event</methodname>
1186            to fill in the event and send to wake up any waiting processes.
1187            This can be performed with
1188            <programlisting><![CDATA[
1189            spin_lock_irqsave(&dev->event_lock, flags);
1190            ...
1191            drm_send_vblank_event(dev, pipe, event);
1192            spin_unlock_irqrestore(&dev->event_lock, flags);
1193            ]]></programlisting>
1194          </para>
1195          <note><para>
1196            FIXME: Could drivers that don't need to wait for rendering to complete
1197            just add the event to <literal>dev-&gt;vblank_event_list</literal> and
1198            let the DRM core handle everything, as for "normal" vertical blanking
1199            events?
1200          </para></note>
1201          <para>
1202            While waiting for the page flip to complete, the
1203            <literal>event-&gt;base.link</literal> list head can be used freely by
1204            the driver to store the pending event in a driver-specific list.
1205          </para>
1206          <para>
1207            If the file handle is closed before the event is signaled, drivers must
1208            take care to destroy the event in their
1209            <methodname>preclose</methodname> operation (and, if needed, call
1210            <function>drm_vblank_put</function>).
1211          </para>
1212        </sect4>
1213        <sect4>
1214          <title>Miscellaneous</title>
1215          <itemizedlist>
1216            <listitem>
1217              <synopsis>void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1218                        uint32_t start, uint32_t size);</synopsis>
1219              <para>
1220                Apply a gamma table to the device. The operation is optional.
1221              </para>
1222            </listitem>
1223            <listitem>
1224              <synopsis>void (*destroy)(struct drm_crtc *crtc);</synopsis>
1225              <para>
1226                Destroy the CRTC when not needed anymore. See
1227                <xref linkend="drm-kms-init"/>.
1228              </para>
1229            </listitem>
1230          </itemizedlist>
1231        </sect4>
1232      </sect3>
1233    </sect2>
1234    <sect2>
1235      <title>Planes (struct <structname>drm_plane</structname>)</title>
1236      <para>
1237        A plane represents an image source that can be blended with or overlayed
1238	on top of a CRTC during the scanout process. Planes are associated with
1239	a frame buffer to crop a portion of the image memory (source) and
1240	optionally scale it to a destination size. The result is then blended
1241	with or overlayed on top of a CRTC.
1242      </para>
1243      <sect3>
1244        <title>Plane Initialization</title>
1245        <para>
1246          Planes are optional. To create a plane, a KMS drivers allocates and
1247          zeroes an instances of struct <structname>drm_plane</structname>
1248          (possibly as part of a larger structure) and registers it with a call
1249          to <function>drm_plane_init</function>. The function takes a bitmask
1250          of the CRTCs that can be associated with the plane, a pointer to the
1251          plane functions and a list of format supported formats.
1252        </para>
1253      </sect3>
1254      <sect3>
1255        <title>Plane Operations</title>
1256        <itemizedlist>
1257          <listitem>
1258            <synopsis>int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc,
1259                        struct drm_framebuffer *fb, int crtc_x, int crtc_y,
1260                        unsigned int crtc_w, unsigned int crtc_h,
1261                        uint32_t src_x, uint32_t src_y,
1262                        uint32_t src_w, uint32_t src_h);</synopsis>
1263            <para>
1264              Enable and configure the plane to use the given CRTC and frame buffer.
1265            </para>
1266            <para>
1267              The source rectangle in frame buffer memory coordinates is given by
1268              the <parameter>src_x</parameter>, <parameter>src_y</parameter>,
1269              <parameter>src_w</parameter> and <parameter>src_h</parameter>
1270              parameters (as 16.16 fixed point values). Devices that don't support
1271              subpixel plane coordinates can ignore the fractional part.
1272            </para>
1273            <para>
1274              The destination rectangle in CRTC coordinates is given by the
1275              <parameter>crtc_x</parameter>, <parameter>crtc_y</parameter>,
1276              <parameter>crtc_w</parameter> and <parameter>crtc_h</parameter>
1277              parameters (as integer values). Devices scale the source rectangle to
1278              the destination rectangle. If scaling is not supported, and the source
1279              rectangle size doesn't match the destination rectangle size, the
1280              driver must return a -<errorname>EINVAL</errorname> error.
1281            </para>
1282          </listitem>
1283          <listitem>
1284            <synopsis>int (*disable_plane)(struct drm_plane *plane);</synopsis>
1285            <para>
1286              Disable the plane. The DRM core calls this method in response to a
1287              DRM_IOCTL_MODE_SETPLANE ioctl call with the frame buffer ID set to 0.
1288              Disabled planes must not be processed by the CRTC.
1289            </para>
1290          </listitem>
1291          <listitem>
1292            <synopsis>void (*destroy)(struct drm_plane *plane);</synopsis>
1293            <para>
1294              Destroy the plane when not needed anymore. See
1295              <xref linkend="drm-kms-init"/>.
1296            </para>
1297          </listitem>
1298        </itemizedlist>
1299      </sect3>
1300    </sect2>
1301    <sect2>
1302      <title>Encoders (struct <structname>drm_encoder</structname>)</title>
1303      <para>
1304        An encoder takes pixel data from a CRTC and converts it to a format
1305	suitable for any attached connectors. On some devices, it may be
1306	possible to have a CRTC send data to more than one encoder. In that
1307	case, both encoders would receive data from the same scanout buffer,
1308	resulting in a "cloned" display configuration across the connectors
1309	attached to each encoder.
1310      </para>
1311      <sect3>
1312        <title>Encoder Initialization</title>
1313        <para>
1314          As for CRTCs, a KMS driver must create, initialize and register at
1315          least one struct <structname>drm_encoder</structname> instance. The
1316          instance is allocated and zeroed by the driver, possibly as part of a
1317          larger structure.
1318        </para>
1319        <para>
1320          Drivers must initialize the struct <structname>drm_encoder</structname>
1321          <structfield>possible_crtcs</structfield> and
1322          <structfield>possible_clones</structfield> fields before registering the
1323          encoder. Both fields are bitmasks of respectively the CRTCs that the
1324          encoder can be connected to, and sibling encoders candidate for cloning.
1325        </para>
1326        <para>
1327          After being initialized, the encoder must be registered with a call to
1328          <function>drm_encoder_init</function>. The function takes a pointer to
1329          the encoder functions and an encoder type. Supported types are
1330          <itemizedlist>
1331            <listitem>
1332              DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
1333              </listitem>
1334            <listitem>
1335              DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
1336            </listitem>
1337            <listitem>
1338              DRM_MODE_ENCODER_LVDS for display panels
1339            </listitem>
1340            <listitem>
1341              DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
1342              SCART)
1343            </listitem>
1344            <listitem>
1345              DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
1346            </listitem>
1347          </itemizedlist>
1348        </para>
1349        <para>
1350          Encoders must be attached to a CRTC to be used. DRM drivers leave
1351          encoders unattached at initialization time. Applications (or the fbdev
1352          compatibility layer when implemented) are responsible for attaching the
1353          encoders they want to use to a CRTC.
1354        </para>
1355      </sect3>
1356      <sect3>
1357        <title>Encoder Operations</title>
1358        <itemizedlist>
1359          <listitem>
1360            <synopsis>void (*destroy)(struct drm_encoder *encoder);</synopsis>
1361            <para>
1362              Called to destroy the encoder when not needed anymore. See
1363              <xref linkend="drm-kms-init"/>.
1364            </para>
1365          </listitem>
1366        </itemizedlist>
1367      </sect3>
1368    </sect2>
1369    <sect2>
1370      <title>Connectors (struct <structname>drm_connector</structname>)</title>
1371      <para>
1372        A connector is the final destination for pixel data on a device, and
1373	usually connects directly to an external display device like a monitor
1374	or laptop panel. A connector can only be attached to one encoder at a
1375	time. The connector is also the structure where information about the
1376	attached display is kept, so it contains fields for display data, EDID
1377	data, DPMS &amp; connection status, and information about modes
1378	supported on the attached displays.
1379      </para>
1380      <sect3>
1381        <title>Connector Initialization</title>
1382        <para>
1383          Finally a KMS driver must create, initialize, register and attach at
1384          least one struct <structname>drm_connector</structname> instance. The
1385          instance is created as other KMS objects and initialized by setting the
1386          following fields.
1387        </para>
1388        <variablelist>
1389          <varlistentry>
1390            <term><structfield>interlace_allowed</structfield></term>
1391            <listitem><para>
1392              Whether the connector can handle interlaced modes.
1393            </para></listitem>
1394          </varlistentry>
1395          <varlistentry>
1396            <term><structfield>doublescan_allowed</structfield></term>
1397            <listitem><para>
1398              Whether the connector can handle doublescan.
1399            </para></listitem>
1400          </varlistentry>
1401          <varlistentry>
1402            <term><structfield>display_info
1403            </structfield></term>
1404            <listitem><para>
1405              Display information is filled from EDID information when a display
1406              is detected. For non hot-pluggable displays such as flat panels in
1407              embedded systems, the driver should initialize the
1408              <structfield>display_info</structfield>.<structfield>width_mm</structfield>
1409              and
1410              <structfield>display_info</structfield>.<structfield>height_mm</structfield>
1411              fields with the physical size of the display.
1412            </para></listitem>
1413          </varlistentry>
1414          <varlistentry>
1415            <term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
1416            <listitem><para>
1417              Connector polling mode, a combination of
1418              <variablelist>
1419                <varlistentry>
1420                  <term>DRM_CONNECTOR_POLL_HPD</term>
1421                  <listitem><para>
1422                    The connector generates hotplug events and doesn't need to be
1423                    periodically polled. The CONNECT and DISCONNECT flags must not
1424                    be set together with the HPD flag.
1425                  </para></listitem>
1426                </varlistentry>
1427                <varlistentry>
1428                  <term>DRM_CONNECTOR_POLL_CONNECT</term>
1429                  <listitem><para>
1430                    Periodically poll the connector for connection.
1431                  </para></listitem>
1432                </varlistentry>
1433                <varlistentry>
1434                  <term>DRM_CONNECTOR_POLL_DISCONNECT</term>
1435                  <listitem><para>
1436                    Periodically poll the connector for disconnection.
1437                  </para></listitem>
1438                </varlistentry>
1439              </variablelist>
1440              Set to 0 for connectors that don't support connection status
1441              discovery.
1442            </para></listitem>
1443          </varlistentry>
1444        </variablelist>
1445        <para>
1446          The connector is then registered with a call to
1447          <function>drm_connector_init</function> with a pointer to the connector
1448          functions and a connector type, and exposed through sysfs with a call to
1449          <function>drm_sysfs_connector_add</function>.
1450        </para>
1451        <para>
1452          Supported connector types are
1453          <itemizedlist>
1454            <listitem>DRM_MODE_CONNECTOR_VGA</listitem>
1455            <listitem>DRM_MODE_CONNECTOR_DVII</listitem>
1456            <listitem>DRM_MODE_CONNECTOR_DVID</listitem>
1457            <listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
1458            <listitem>DRM_MODE_CONNECTOR_Composite</listitem>
1459            <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
1460            <listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
1461            <listitem>DRM_MODE_CONNECTOR_Component</listitem>
1462            <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
1463            <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
1464            <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
1465            <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
1466            <listitem>DRM_MODE_CONNECTOR_TV</listitem>
1467            <listitem>DRM_MODE_CONNECTOR_eDP</listitem>
1468            <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
1469          </itemizedlist>
1470        </para>
1471        <para>
1472          Connectors must be attached to an encoder to be used. For devices that
1473          map connectors to encoders 1:1, the connector should be attached at
1474          initialization time with a call to
1475          <function>drm_mode_connector_attach_encoder</function>. The driver must
1476          also set the <structname>drm_connector</structname>
1477          <structfield>encoder</structfield> field to point to the attached
1478          encoder.
1479        </para>
1480        <para>
1481          Finally, drivers must initialize the connectors state change detection
1482          with a call to <function>drm_kms_helper_poll_init</function>. If at
1483          least one connector is pollable but can't generate hotplug interrupts
1484          (indicated by the DRM_CONNECTOR_POLL_CONNECT and
1485          DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
1486          automatically be queued to periodically poll for changes. Connectors
1487          that can generate hotplug interrupts must be marked with the
1488          DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
1489          call <function>drm_helper_hpd_irq_event</function>. The function will
1490          queue a delayed work to check the state of all connectors, but no
1491          periodic polling will be done.
1492        </para>
1493      </sect3>
1494      <sect3>
1495        <title>Connector Operations</title>
1496        <note><para>
1497          Unless otherwise state, all operations are mandatory.
1498        </para></note>
1499        <sect4>
1500          <title>DPMS</title>
1501          <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
1502          <para>
1503            The DPMS operation sets the power state of a connector. The mode
1504            argument is one of
1505            <itemizedlist>
1506              <listitem><para>DRM_MODE_DPMS_ON</para></listitem>
1507              <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
1508              <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
1509              <listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
1510            </itemizedlist>
1511          </para>
1512          <para>
1513            In all but DPMS_ON mode the encoder to which the connector is attached
1514            should put the display in low-power mode by driving its signals
1515            appropriately. If more than one connector is attached to the encoder
1516            care should be taken not to change the power state of other displays as
1517            a side effect. Low-power mode should be propagated to the encoders and
1518            CRTCs when all related connectors are put in low-power mode.
1519          </para>
1520        </sect4>
1521        <sect4>
1522          <title>Modes</title>
1523          <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
1524                      uint32_t max_height);</synopsis>
1525          <para>
1526            Fill the mode list with all supported modes for the connector. If the
1527            <parameter>max_width</parameter> and <parameter>max_height</parameter>
1528            arguments are non-zero, the implementation must ignore all modes wider
1529            than <parameter>max_width</parameter> or higher than
1530            <parameter>max_height</parameter>.
1531          </para>
1532          <para>
1533            The connector must also fill in this operation its
1534            <structfield>display_info</structfield>
1535            <structfield>width_mm</structfield> and
1536            <structfield>height_mm</structfield> fields with the connected display
1537            physical size in millimeters. The fields should be set to 0 if the value
1538            isn't known or is not applicable (for instance for projector devices).
1539          </para>
1540        </sect4>
1541        <sect4>
1542          <title>Connection Status</title>
1543          <para>
1544            The connection status is updated through polling or hotplug events when
1545            supported (see <xref linkend="drm-kms-connector-polled"/>). The status
1546            value is reported to userspace through ioctls and must not be used
1547            inside the driver, as it only gets initialized by a call to
1548            <function>drm_mode_getconnector</function> from userspace.
1549          </para>
1550          <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
1551                                        bool force);</synopsis>
1552          <para>
1553            Check to see if anything is attached to the connector. The
1554            <parameter>force</parameter> parameter is set to false whilst polling or
1555            to true when checking the connector due to user request.
1556            <parameter>force</parameter> can be used by the driver to avoid
1557            expensive, destructive operations during automated probing.
1558          </para>
1559          <para>
1560            Return connector_status_connected if something is connected to the
1561            connector, connector_status_disconnected if nothing is connected and
1562            connector_status_unknown if the connection state isn't known.
1563          </para>
1564          <para>
1565            Drivers should only return connector_status_connected if the connection
1566            status has really been probed as connected. Connectors that can't detect
1567            the connection status, or failed connection status probes, should return
1568            connector_status_unknown.
1569          </para>
1570        </sect4>
1571        <sect4>
1572          <title>Miscellaneous</title>
1573          <itemizedlist>
1574            <listitem>
1575              <synopsis>void (*destroy)(struct drm_connector *connector);</synopsis>
1576              <para>
1577                Destroy the connector when not needed anymore. See
1578                <xref linkend="drm-kms-init"/>.
1579              </para>
1580            </listitem>
1581          </itemizedlist>
1582        </sect4>
1583      </sect3>
1584    </sect2>
1585    <sect2>
1586      <title>Cleanup</title>
1587      <para>
1588        The DRM core manages its objects' lifetime. When an object is not needed
1589	anymore the core calls its destroy function, which must clean up and
1590	free every resource allocated for the object. Every
1591	<function>drm_*_init</function> call must be matched with a
1592	corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
1593	(<function>drm_crtc_cleanup</function>), planes
1594	(<function>drm_plane_cleanup</function>), encoders
1595	(<function>drm_encoder_cleanup</function>) and connectors
1596	(<function>drm_connector_cleanup</function>). Furthermore, connectors
1597	that have been added to sysfs must be removed by a call to
1598	<function>drm_sysfs_connector_remove</function> before calling
1599	<function>drm_connector_cleanup</function>.
1600      </para>
1601      <para>
1602        Connectors state change detection must be cleanup up with a call to
1603	<function>drm_kms_helper_poll_fini</function>.
1604      </para>
1605    </sect2>
1606    <sect2>
1607      <title>Output discovery and initialization example</title>
1608      <programlisting><![CDATA[
1609void intel_crt_init(struct drm_device *dev)
1610{
1611	struct drm_connector *connector;
1612	struct intel_output *intel_output;
1613
1614	intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
1615	if (!intel_output)
1616		return;
1617
1618	connector = &intel_output->base;
1619	drm_connector_init(dev, &intel_output->base,
1620			   &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1621
1622	drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
1623			 DRM_MODE_ENCODER_DAC);
1624
1625	drm_mode_connector_attach_encoder(&intel_output->base,
1626					  &intel_output->enc);
1627
1628	/* Set up the DDC bus. */
1629	intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
1630	if (!intel_output->ddc_bus) {
1631		dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
1632			   "failed.\n");
1633		return;
1634	}
1635
1636	intel_output->type = INTEL_OUTPUT_ANALOG;
1637	connector->interlace_allowed = 0;
1638	connector->doublescan_allowed = 0;
1639
1640	drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
1641	drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
1642
1643	drm_sysfs_connector_add(connector);
1644}]]></programlisting>
1645      <para>
1646        In the example above (taken from the i915 driver), a CRTC, connector and
1647        encoder combination is created. A device-specific i2c bus is also
1648        created for fetching EDID data and performing monitor detection. Once
1649        the process is complete, the new connector is registered with sysfs to
1650        make its properties available to applications.
1651      </para>
1652    </sect2>
1653    <sect2>
1654      <title>KMS API Functions</title>
1655!Edrivers/gpu/drm/drm_crtc.c
1656    </sect2>
1657  </sect1>
1658
1659  <!-- Internals: kms helper functions -->
1660
1661  <sect1>
1662    <title>Mode Setting Helper Functions</title>
1663    <para>
1664      The CRTC, encoder and connector functions provided by the drivers
1665      implement the DRM API. They're called by the DRM core and ioctl handlers
1666      to handle device state changes and configuration request. As implementing
1667      those functions often requires logic not specific to drivers, mid-layer
1668      helper functions are available to avoid duplicating boilerplate code.
1669    </para>
1670    <para>
1671      The DRM core contains one mid-layer implementation. The mid-layer provides
1672      implementations of several CRTC, encoder and connector functions (called
1673      from the top of the mid-layer) that pre-process requests and call
1674      lower-level functions provided by the driver (at the bottom of the
1675      mid-layer). For instance, the
1676      <function>drm_crtc_helper_set_config</function> function can be used to
1677      fill the struct <structname>drm_crtc_funcs</structname>
1678      <structfield>set_config</structfield> field. When called, it will split
1679      the <methodname>set_config</methodname> operation in smaller, simpler
1680      operations and call the driver to handle them.
1681    </para>
1682    <para>
1683      To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
1684      <function>drm_encoder_helper_add</function> and
1685      <function>drm_connector_helper_add</function> functions to install their
1686      mid-layer bottom operations handlers, and fill the
1687      <structname>drm_crtc_funcs</structname>,
1688      <structname>drm_encoder_funcs</structname> and
1689      <structname>drm_connector_funcs</structname> structures with pointers to
1690      the mid-layer top API functions. Installing the mid-layer bottom operation
1691      handlers is best done right after registering the corresponding KMS object.
1692    </para>
1693    <para>
1694      The mid-layer is not split between CRTC, encoder and connector operations.
1695      To use it, a driver must provide bottom functions for all of the three KMS
1696      entities.
1697    </para>
1698    <sect2>
1699      <title>Helper Functions</title>
1700      <itemizedlist>
1701        <listitem>
1702          <synopsis>int drm_crtc_helper_set_config(struct drm_mode_set *set);</synopsis>
1703          <para>
1704            The <function>drm_crtc_helper_set_config</function> helper function
1705            is a CRTC <methodname>set_config</methodname> implementation. It
1706            first tries to locate the best encoder for each connector by calling
1707            the connector <methodname>best_encoder</methodname> helper
1708            operation.
1709          </para>
1710          <para>
1711            After locating the appropriate encoders, the helper function will
1712            call the <methodname>mode_fixup</methodname> encoder and CRTC helper
1713            operations to adjust the requested mode, or reject it completely in
1714            which case an error will be returned to the application. If the new
1715            configuration after mode adjustment is identical to the current
1716            configuration the helper function will return without performing any
1717            other operation.
1718          </para>
1719          <para>
1720            If the adjusted mode is identical to the current mode but changes to
1721            the frame buffer need to be applied, the
1722            <function>drm_crtc_helper_set_config</function> function will call
1723            the CRTC <methodname>mode_set_base</methodname> helper operation. If
1724            the adjusted mode differs from the current mode, or if the
1725            <methodname>mode_set_base</methodname> helper operation is not
1726            provided, the helper function performs a full mode set sequence by
1727            calling the <methodname>prepare</methodname>,
1728            <methodname>mode_set</methodname> and
1729            <methodname>commit</methodname> CRTC and encoder helper operations,
1730            in that order.
1731          </para>
1732        </listitem>
1733        <listitem>
1734          <synopsis>void drm_helper_connector_dpms(struct drm_connector *connector, int mode);</synopsis>
1735          <para>
1736            The <function>drm_helper_connector_dpms</function> helper function
1737            is a connector <methodname>dpms</methodname> implementation that
1738            tracks power state of connectors. To use the function, drivers must
1739            provide <methodname>dpms</methodname> helper operations for CRTCs
1740            and encoders to apply the DPMS state to the device.
1741          </para>
1742          <para>
1743            The mid-layer doesn't track the power state of CRTCs and encoders.
1744            The <methodname>dpms</methodname> helper operations can thus be
1745            called with a mode identical to the currently active mode.
1746          </para>
1747        </listitem>
1748        <listitem>
1749          <synopsis>int drm_helper_probe_single_connector_modes(struct drm_connector *connector,
1750                                            uint32_t maxX, uint32_t maxY);</synopsis>
1751          <para>
1752            The <function>drm_helper_probe_single_connector_modes</function> helper
1753            function is a connector <methodname>fill_modes</methodname>
1754            implementation that updates the connection status for the connector
1755            and then retrieves a list of modes by calling the connector
1756            <methodname>get_modes</methodname> helper operation.
1757          </para>
1758          <para>
1759            The function filters out modes larger than
1760            <parameter>max_width</parameter> and <parameter>max_height</parameter>
1761            if specified. It then calls the connector
1762            <methodname>mode_valid</methodname> helper operation for  each mode in
1763            the probed list to check whether the mode is valid for the connector.
1764          </para>
1765        </listitem>
1766      </itemizedlist>
1767    </sect2>
1768    <sect2>
1769      <title>CRTC Helper Operations</title>
1770      <itemizedlist>
1771        <listitem id="drm-helper-crtc-mode-fixup">
1772          <synopsis>bool (*mode_fixup)(struct drm_crtc *crtc,
1773                       const struct drm_display_mode *mode,
1774                       struct drm_display_mode *adjusted_mode);</synopsis>
1775          <para>
1776            Let CRTCs adjust the requested mode or reject it completely. This
1777            operation returns true if the mode is accepted (possibly after being
1778            adjusted) or false if it is rejected.
1779          </para>
1780          <para>
1781            The <methodname>mode_fixup</methodname> operation should reject the
1782            mode if it can't reasonably use it. The definition of "reasonable"
1783            is currently fuzzy in this context. One possible behaviour would be
1784            to set the adjusted mode to the panel timings when a fixed-mode
1785            panel is used with hardware capable of scaling. Another behaviour
1786            would be to accept any input mode and adjust it to the closest mode
1787            supported by the hardware (FIXME: This needs to be clarified).
1788          </para>
1789        </listitem>
1790        <listitem>
1791          <synopsis>int (*mode_set_base)(struct drm_crtc *crtc, int x, int y,
1792                     struct drm_framebuffer *old_fb)</synopsis>
1793          <para>
1794            Move the CRTC on the current frame buffer (stored in
1795            <literal>crtc-&gt;fb</literal>) to position (x,y). Any of the frame
1796            buffer, x position or y position may have been modified.
1797          </para>
1798          <para>
1799            This helper operation is optional. If not provided, the
1800            <function>drm_crtc_helper_set_config</function> function will fall
1801            back to the <methodname>mode_set</methodname> helper operation.
1802          </para>
1803          <note><para>
1804            FIXME: Why are x and y passed as arguments, as they can be accessed
1805            through <literal>crtc-&gt;x</literal> and
1806            <literal>crtc-&gt;y</literal>?
1807          </para></note>
1808        </listitem>
1809        <listitem>
1810          <synopsis>void (*prepare)(struct drm_crtc *crtc);</synopsis>
1811          <para>
1812            Prepare the CRTC for mode setting. This operation is called after
1813            validating the requested mode. Drivers use it to perform
1814            device-specific operations required before setting the new mode.
1815          </para>
1816        </listitem>
1817        <listitem>
1818          <synopsis>int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode,
1819                struct drm_display_mode *adjusted_mode, int x, int y,
1820                struct drm_framebuffer *old_fb);</synopsis>
1821          <para>
1822            Set a new mode, position and frame buffer. Depending on the device
1823            requirements, the mode can be stored internally by the driver and
1824            applied in the <methodname>commit</methodname> operation, or
1825            programmed to the hardware immediately.
1826          </para>
1827          <para>
1828            The <methodname>mode_set</methodname> operation returns 0 on success
1829	    or a negative error code if an error occurs.
1830          </para>
1831        </listitem>
1832        <listitem>
1833          <synopsis>void (*commit)(struct drm_crtc *crtc);</synopsis>
1834          <para>
1835            Commit a mode. This operation is called after setting the new mode.
1836            Upon return the device must use the new mode and be fully
1837            operational.
1838          </para>
1839        </listitem>
1840      </itemizedlist>
1841    </sect2>
1842    <sect2>
1843      <title>Encoder Helper Operations</title>
1844      <itemizedlist>
1845        <listitem>
1846          <synopsis>bool (*mode_fixup)(struct drm_encoder *encoder,
1847                       const struct drm_display_mode *mode,
1848                       struct drm_display_mode *adjusted_mode);</synopsis>
1849          <note><para>
1850            FIXME: The mode argument be const, but the i915 driver modifies
1851            mode-&gt;clock in <function>intel_dp_mode_fixup</function>.
1852          </para></note>
1853          <para>
1854            Let encoders adjust the requested mode or reject it completely. This
1855            operation returns true if the mode is accepted (possibly after being
1856            adjusted) or false if it is rejected. See the
1857            <link linkend="drm-helper-crtc-mode-fixup">mode_fixup CRTC helper
1858            operation</link> for an explanation of the allowed adjustments.
1859          </para>
1860        </listitem>
1861        <listitem>
1862          <synopsis>void (*prepare)(struct drm_encoder *encoder);</synopsis>
1863          <para>
1864            Prepare the encoder for mode setting. This operation is called after
1865            validating the requested mode. Drivers use it to perform
1866            device-specific operations required before setting the new mode.
1867          </para>
1868        </listitem>
1869        <listitem>
1870          <synopsis>void (*mode_set)(struct drm_encoder *encoder,
1871                 struct drm_display_mode *mode,
1872                 struct drm_display_mode *adjusted_mode);</synopsis>
1873          <para>
1874            Set a new mode. Depending on the device requirements, the mode can
1875            be stored internally by the driver and applied in the
1876            <methodname>commit</methodname> operation, or programmed to the
1877            hardware immediately.
1878          </para>
1879        </listitem>
1880        <listitem>
1881          <synopsis>void (*commit)(struct drm_encoder *encoder);</synopsis>
1882          <para>
1883            Commit a mode. This operation is called after setting the new mode.
1884            Upon return the device must use the new mode and be fully
1885            operational.
1886          </para>
1887        </listitem>
1888      </itemizedlist>
1889    </sect2>
1890    <sect2>
1891      <title>Connector Helper Operations</title>
1892      <itemizedlist>
1893        <listitem>
1894          <synopsis>struct drm_encoder *(*best_encoder)(struct drm_connector *connector);</synopsis>
1895          <para>
1896            Return a pointer to the best encoder for the connecter. Device that
1897            map connectors to encoders 1:1 simply return the pointer to the
1898            associated encoder. This operation is mandatory.
1899          </para>
1900        </listitem>
1901        <listitem>
1902          <synopsis>int (*get_modes)(struct drm_connector *connector);</synopsis>
1903          <para>
1904            Fill the connector's <structfield>probed_modes</structfield> list
1905            by parsing EDID data with <function>drm_add_edid_modes</function> or
1906            calling <function>drm_mode_probed_add</function> directly for every
1907            supported mode and return the number of modes it has detected. This
1908            operation is mandatory.
1909          </para>
1910          <para>
1911            When adding modes manually the driver creates each mode with a call to
1912            <function>drm_mode_create</function> and must fill the following fields.
1913            <itemizedlist>
1914              <listitem>
1915                <synopsis>__u32 type;</synopsis>
1916                <para>
1917                  Mode type bitmask, a combination of
1918                  <variablelist>
1919                    <varlistentry>
1920                      <term>DRM_MODE_TYPE_BUILTIN</term>
1921                      <listitem><para>not used?</para></listitem>
1922                    </varlistentry>
1923                    <varlistentry>
1924                      <term>DRM_MODE_TYPE_CLOCK_C</term>
1925                      <listitem><para>not used?</para></listitem>
1926                    </varlistentry>
1927                    <varlistentry>
1928                      <term>DRM_MODE_TYPE_CRTC_C</term>
1929                      <listitem><para>not used?</para></listitem>
1930                    </varlistentry>
1931                    <varlistentry>
1932                      <term>
1933        DRM_MODE_TYPE_PREFERRED - The preferred mode for the connector
1934                      </term>
1935                      <listitem>
1936                        <para>not used?</para>
1937                      </listitem>
1938                    </varlistentry>
1939                    <varlistentry>
1940                      <term>DRM_MODE_TYPE_DEFAULT</term>
1941                      <listitem><para>not used?</para></listitem>
1942                    </varlistentry>
1943                    <varlistentry>
1944                      <term>DRM_MODE_TYPE_USERDEF</term>
1945                      <listitem><para>not used?</para></listitem>
1946                    </varlistentry>
1947                    <varlistentry>
1948                      <term>DRM_MODE_TYPE_DRIVER</term>
1949                      <listitem>
1950                        <para>
1951                          The mode has been created by the driver (as opposed to
1952                          to user-created modes).
1953                        </para>
1954                      </listitem>
1955                    </varlistentry>
1956                  </variablelist>
1957                  Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they
1958                  create, and set the DRM_MODE_TYPE_PREFERRED bit for the preferred
1959                  mode.
1960                </para>
1961              </listitem>
1962              <listitem>
1963                <synopsis>__u32 clock;</synopsis>
1964                <para>Pixel clock frequency in kHz unit</para>
1965              </listitem>
1966              <listitem>
1967                <synopsis>__u16 hdisplay, hsync_start, hsync_end, htotal;
1968    __u16 vdisplay, vsync_start, vsync_end, vtotal;</synopsis>
1969                <para>Horizontal and vertical timing information</para>
1970                <screen><![CDATA[
1971             Active                 Front           Sync           Back
1972             Region                 Porch                          Porch
1973    <-----------------------><----------------><-------------><-------------->
1974
1975      //////////////////////|
1976     ////////////////////// |
1977    //////////////////////  |..................               ................
1978                                               _______________
1979
1980    <----- [hv]display ----->
1981    <------------- [hv]sync_start ------------>
1982    <--------------------- [hv]sync_end --------------------->
1983    <-------------------------------- [hv]total ----------------------------->
1984]]></screen>
1985              </listitem>
1986              <listitem>
1987                <synopsis>__u16 hskew;
1988    __u16 vscan;</synopsis>
1989                <para>Unknown</para>
1990              </listitem>
1991              <listitem>
1992                <synopsis>__u32 flags;</synopsis>
1993                <para>
1994                  Mode flags, a combination of
1995                  <variablelist>
1996                    <varlistentry>
1997                      <term>DRM_MODE_FLAG_PHSYNC</term>
1998                      <listitem><para>
1999                        Horizontal sync is active high
2000                      </para></listitem>
2001                    </varlistentry>
2002                    <varlistentry>
2003                      <term>DRM_MODE_FLAG_NHSYNC</term>
2004                      <listitem><para>
2005                        Horizontal sync is active low
2006                      </para></listitem>
2007                    </varlistentry>
2008                    <varlistentry>
2009                      <term>DRM_MODE_FLAG_PVSYNC</term>
2010                      <listitem><para>
2011                        Vertical sync is active high
2012                      </para></listitem>
2013                    </varlistentry>
2014                    <varlistentry>
2015                      <term>DRM_MODE_FLAG_NVSYNC</term>
2016                      <listitem><para>
2017                        Vertical sync is active low
2018                      </para></listitem>
2019                    </varlistentry>
2020                    <varlistentry>
2021                      <term>DRM_MODE_FLAG_INTERLACE</term>
2022                      <listitem><para>
2023                        Mode is interlaced
2024                      </para></listitem>
2025                    </varlistentry>
2026                    <varlistentry>
2027                      <term>DRM_MODE_FLAG_DBLSCAN</term>
2028                      <listitem><para>
2029                        Mode uses doublescan
2030                      </para></listitem>
2031                    </varlistentry>
2032                    <varlistentry>
2033                      <term>DRM_MODE_FLAG_CSYNC</term>
2034                      <listitem><para>
2035                        Mode uses composite sync
2036                      </para></listitem>
2037                    </varlistentry>
2038                    <varlistentry>
2039                      <term>DRM_MODE_FLAG_PCSYNC</term>
2040                      <listitem><para>
2041                        Composite sync is active high
2042                      </para></listitem>
2043                    </varlistentry>
2044                    <varlistentry>
2045                      <term>DRM_MODE_FLAG_NCSYNC</term>
2046                      <listitem><para>
2047                        Composite sync is active low
2048                      </para></listitem>
2049                    </varlistentry>
2050                    <varlistentry>
2051                      <term>DRM_MODE_FLAG_HSKEW</term>
2052                      <listitem><para>
2053                        hskew provided (not used?)
2054                      </para></listitem>
2055                    </varlistentry>
2056                    <varlistentry>
2057                      <term>DRM_MODE_FLAG_BCAST</term>
2058                      <listitem><para>
2059                        not used?
2060                      </para></listitem>
2061                    </varlistentry>
2062                    <varlistentry>
2063                      <term>DRM_MODE_FLAG_PIXMUX</term>
2064                      <listitem><para>
2065                        not used?
2066                      </para></listitem>
2067                    </varlistentry>
2068                    <varlistentry>
2069                      <term>DRM_MODE_FLAG_DBLCLK</term>
2070                      <listitem><para>
2071                        not used?
2072                      </para></listitem>
2073                    </varlistentry>
2074                    <varlistentry>
2075                      <term>DRM_MODE_FLAG_CLKDIV2</term>
2076                      <listitem><para>
2077                        ?
2078                      </para></listitem>
2079                    </varlistentry>
2080                  </variablelist>
2081                </para>
2082                <para>
2083                  Note that modes marked with the INTERLACE or DBLSCAN flags will be
2084                  filtered out by
2085                  <function>drm_helper_probe_single_connector_modes</function> if
2086                  the connector's <structfield>interlace_allowed</structfield> or
2087                  <structfield>doublescan_allowed</structfield> field is set to 0.
2088                </para>
2089              </listitem>
2090              <listitem>
2091                <synopsis>char name[DRM_DISPLAY_MODE_LEN];</synopsis>
2092                <para>
2093                  Mode name. The driver must call
2094                  <function>drm_mode_set_name</function> to fill the mode name from
2095                  <structfield>hdisplay</structfield>,
2096                  <structfield>vdisplay</structfield> and interlace flag after
2097                  filling the corresponding fields.
2098                </para>
2099              </listitem>
2100            </itemizedlist>
2101          </para>
2102          <para>
2103            The <structfield>vrefresh</structfield> value is computed by
2104            <function>drm_helper_probe_single_connector_modes</function>.
2105          </para>
2106          <para>
2107            When parsing EDID data, <function>drm_add_edid_modes</function> fill the
2108            connector <structfield>display_info</structfield>
2109            <structfield>width_mm</structfield> and
2110            <structfield>height_mm</structfield> fields. When creating modes
2111            manually the <methodname>get_modes</methodname> helper operation must
2112            set the <structfield>display_info</structfield>
2113            <structfield>width_mm</structfield> and
2114            <structfield>height_mm</structfield> fields if they haven't been set
2115            already (for instance at initilization time when a fixed-size panel is
2116            attached to the connector). The mode <structfield>width_mm</structfield>
2117            and <structfield>height_mm</structfield> fields are only used internally
2118            during EDID parsing and should not be set when creating modes manually.
2119          </para>
2120        </listitem>
2121        <listitem>
2122          <synopsis>int (*mode_valid)(struct drm_connector *connector,
2123		  struct drm_display_mode *mode);</synopsis>
2124          <para>
2125            Verify whether a mode is valid for the connector. Return MODE_OK for
2126            supported modes and one of the enum drm_mode_status values (MODE_*)
2127            for unsupported modes. This operation is mandatory.
2128          </para>
2129          <para>
2130            As the mode rejection reason is currently not used beside for
2131            immediately removing the unsupported mode, an implementation can
2132            return MODE_BAD regardless of the exact reason why the mode is not
2133            valid.
2134          </para>
2135          <note><para>
2136            Note that the <methodname>mode_valid</methodname> helper operation is
2137            only called for modes detected by the device, and
2138            <emphasis>not</emphasis> for modes set by the user through the CRTC
2139            <methodname>set_config</methodname> operation.
2140          </para></note>
2141        </listitem>
2142      </itemizedlist>
2143    </sect2>
2144    <sect2>
2145      <title>Modeset Helper Functions Reference</title>
2146!Edrivers/gpu/drm/drm_crtc_helper.c
2147    </sect2>
2148    <sect2>
2149      <title>fbdev Helper Functions Reference</title>
2150!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
2151!Edrivers/gpu/drm/drm_fb_helper.c
2152!Iinclude/drm/drm_fb_helper.h
2153    </sect2>
2154    <sect2>
2155      <title>Display Port Helper Functions Reference</title>
2156!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
2157!Iinclude/drm/drm_dp_helper.h
2158!Edrivers/gpu/drm/drm_dp_helper.c
2159    </sect2>
2160    <sect2>
2161      <title>EDID Helper Functions Reference</title>
2162!Edrivers/gpu/drm/drm_edid.c
2163    </sect2>
2164  </sect1>
2165
2166  <!-- Internals: vertical blanking -->
2167
2168  <sect1 id="drm-vertical-blank">
2169    <title>Vertical Blanking</title>
2170    <para>
2171      Vertical blanking plays a major role in graphics rendering. To achieve
2172      tear-free display, users must synchronize page flips and/or rendering to
2173      vertical blanking. The DRM API offers ioctls to perform page flips
2174      synchronized to vertical blanking and wait for vertical blanking.
2175    </para>
2176    <para>
2177      The DRM core handles most of the vertical blanking management logic, which
2178      involves filtering out spurious interrupts, keeping race-free blanking
2179      counters, coping with counter wrap-around and resets and keeping use
2180      counts. It relies on the driver to generate vertical blanking interrupts
2181      and optionally provide a hardware vertical blanking counter. Drivers must
2182      implement the following operations.
2183    </para>
2184    <itemizedlist>
2185      <listitem>
2186        <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
2187void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
2188        <para>
2189	  Enable or disable vertical blanking interrupts for the given CRTC.
2190	</para>
2191      </listitem>
2192      <listitem>
2193        <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
2194        <para>
2195	  Retrieve the value of the vertical blanking counter for the given
2196	  CRTC. If the hardware maintains a vertical blanking counter its value
2197	  should be returned. Otherwise drivers can use the
2198	  <function>drm_vblank_count</function> helper function to handle this
2199	  operation.
2200	</para>
2201      </listitem>
2202    </itemizedlist>
2203    <para>
2204      Drivers must initialize the vertical blanking handling core with a call to
2205      <function>drm_vblank_init</function> in their
2206      <methodname>load</methodname> operation. The function will set the struct
2207      <structname>drm_device</structname>
2208      <structfield>vblank_disable_allowed</structfield> field to 0. This will
2209      keep vertical blanking interrupts enabled permanently until the first mode
2210      set operation, where <structfield>vblank_disable_allowed</structfield> is
2211      set to 1. The reason behind this is not clear. Drivers can set the field
2212      to 1 after <function>calling drm_vblank_init</function> to make vertical
2213      blanking interrupts dynamically managed from the beginning.
2214    </para>
2215    <para>
2216      Vertical blanking interrupts can be enabled by the DRM core or by drivers
2217      themselves (for instance to handle page flipping operations). The DRM core
2218      maintains a vertical blanking use count to ensure that the interrupts are
2219      not disabled while a user still needs them. To increment the use count,
2220      drivers call <function>drm_vblank_get</function>. Upon return vertical
2221      blanking interrupts are guaranteed to be enabled.
2222    </para>
2223    <para>
2224      To decrement the use count drivers call
2225      <function>drm_vblank_put</function>. Only when the use count drops to zero
2226      will the DRM core disable the vertical blanking interrupts after a delay
2227      by scheduling a timer. The delay is accessible through the vblankoffdelay
2228      module parameter or the <varname>drm_vblank_offdelay</varname> global
2229      variable and expressed in milliseconds. Its default value is 5000 ms.
2230    </para>
2231    <para>
2232      When a vertical blanking interrupt occurs drivers only need to call the
2233      <function>drm_handle_vblank</function> function to account for the
2234      interrupt.
2235    </para>
2236    <para>
2237      Resources allocated by <function>drm_vblank_init</function> must be freed
2238      with a call to <function>drm_vblank_cleanup</function> in the driver
2239      <methodname>unload</methodname> operation handler.
2240    </para>
2241  </sect1>
2242
2243  <!-- Internals: open/close, file operations and ioctls -->
2244
2245  <sect1>
2246    <title>Open/Close, File Operations and IOCTLs</title>
2247    <sect2>
2248      <title>Open and Close</title>
2249      <synopsis>int (*firstopen) (struct drm_device *);
2250void (*lastclose) (struct drm_device *);
2251int (*open) (struct drm_device *, struct drm_file *);
2252void (*preclose) (struct drm_device *, struct drm_file *);
2253void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
2254      <abstract>Open and close handlers. None of those methods are mandatory.
2255      </abstract>
2256      <para>
2257        The <methodname>firstopen</methodname> method is called by the DRM core
2258	when an application opens a device that has no other opened file handle.
2259	Similarly the <methodname>lastclose</methodname> method is called when
2260	the last application holding a file handle opened on the device closes
2261	it. Both methods are mostly used for UMS (User Mode Setting) drivers to
2262	acquire and release device resources which should be done in the
2263	<methodname>load</methodname> and <methodname>unload</methodname>
2264	methods for KMS drivers.
2265      </para>
2266      <para>
2267        Note that the <methodname>lastclose</methodname> method is also called
2268	at module unload time or, for hot-pluggable devices, when the device is
2269	unplugged. The <methodname>firstopen</methodname> and
2270	<methodname>lastclose</methodname> calls can thus be unbalanced.
2271      </para>
2272      <para>
2273        The <methodname>open</methodname> method is called every time the device
2274	is opened by an application. Drivers can allocate per-file private data
2275	in this method and store them in the struct
2276	<structname>drm_file</structname> <structfield>driver_priv</structfield>
2277	field. Note that the <methodname>open</methodname> method is called
2278	before <methodname>firstopen</methodname>.
2279      </para>
2280      <para>
2281        The close operation is split into <methodname>preclose</methodname> and
2282	<methodname>postclose</methodname> methods. Drivers must stop and
2283	cleanup all per-file operations in the <methodname>preclose</methodname>
2284	method. For instance pending vertical blanking and page flip events must
2285	be cancelled. No per-file operation is allowed on the file handle after
2286	returning from the <methodname>preclose</methodname> method.
2287      </para>
2288      <para>
2289        Finally the <methodname>postclose</methodname> method is called as the
2290	last step of the close operation, right before calling the
2291	<methodname>lastclose</methodname> method if no other open file handle
2292	exists for the device. Drivers that have allocated per-file private data
2293	in the <methodname>open</methodname> method should free it here.
2294      </para>
2295      <para>
2296        The <methodname>lastclose</methodname> method should restore CRTC and
2297	plane properties to default value, so that a subsequent open of the
2298	device will not inherit state from the previous user.
2299      </para>
2300    </sect2>
2301    <sect2>
2302      <title>File Operations</title>
2303      <synopsis>const struct file_operations *fops</synopsis>
2304      <abstract>File operations for the DRM device node.</abstract>
2305      <para>
2306        Drivers must define the file operations structure that forms the DRM
2307	userspace API entry point, even though most of those operations are
2308	implemented in the DRM core. The <methodname>open</methodname>,
2309	<methodname>release</methodname> and <methodname>ioctl</methodname>
2310	operations are handled by
2311	<programlisting>
2312	.owner = THIS_MODULE,
2313	.open = drm_open,
2314	.release = drm_release,
2315	.unlocked_ioctl = drm_ioctl,
2316  #ifdef CONFIG_COMPAT
2317	.compat_ioctl = drm_compat_ioctl,
2318  #endif
2319        </programlisting>
2320      </para>
2321      <para>
2322        Drivers that implement private ioctls that requires 32/64bit
2323	compatibility support must provide their own
2324	<methodname>compat_ioctl</methodname> handler that processes private
2325	ioctls and calls <function>drm_compat_ioctl</function> for core ioctls.
2326      </para>
2327      <para>
2328        The <methodname>read</methodname> and <methodname>poll</methodname>
2329	operations provide support for reading DRM events and polling them. They
2330	are implemented by
2331	<programlisting>
2332	.poll = drm_poll,
2333	.read = drm_read,
2334	.fasync = drm_fasync,
2335	.llseek = no_llseek,
2336	</programlisting>
2337      </para>
2338      <para>
2339        The memory mapping implementation varies depending on how the driver
2340	manages memory. Pre-GEM drivers will use <function>drm_mmap</function>,
2341	while GEM-aware drivers will use <function>drm_gem_mmap</function>. See
2342	<xref linkend="drm-gem"/>.
2343	<programlisting>
2344	.mmap = drm_gem_mmap,
2345	</programlisting>
2346      </para>
2347      <para>
2348        No other file operation is supported by the DRM API.
2349      </para>
2350    </sect2>
2351    <sect2>
2352      <title>IOCTLs</title>
2353      <synopsis>struct drm_ioctl_desc *ioctls;
2354int num_ioctls;</synopsis>
2355      <abstract>Driver-specific ioctls descriptors table.</abstract>
2356      <para>
2357        Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
2358	descriptors table is indexed by the ioctl number offset from the base
2359	value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
2360	table entries.
2361      </para>
2362      <para>
2363        <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
2364	<para>
2365	  <parameter>ioctl</parameter> is the ioctl name. Drivers must define
2366	  the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
2367	  offset from DRM_COMMAND_BASE and the ioctl number respectively. The
2368	  first macro is private to the device while the second must be exposed
2369	  to userspace in a public header.
2370	</para>
2371	<para>
2372	  <parameter>func</parameter> is a pointer to the ioctl handler function
2373	  compatible with the <type>drm_ioctl_t</type> type.
2374	  <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
2375		struct drm_file *file_priv);</programlisting>
2376	</para>
2377	<para>
2378	  <parameter>flags</parameter> is a bitmask combination of the following
2379	  values. It restricts how the ioctl is allowed to be called.
2380	  <itemizedlist>
2381	    <listitem><para>
2382	      DRM_AUTH - Only authenticated callers allowed
2383	    </para></listitem>
2384	    <listitem><para>
2385	      DRM_MASTER - The ioctl can only be called on the master file
2386	      handle
2387	    </para></listitem>
2388            <listitem><para>
2389	      DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
2390	    </para></listitem>
2391            <listitem><para>
2392	      DRM_CONTROL_ALLOW - The ioctl can only be called on a control
2393	      device
2394	    </para></listitem>
2395            <listitem><para>
2396	      DRM_UNLOCKED - The ioctl handler will be called without locking
2397	      the DRM global mutex
2398	    </para></listitem>
2399	  </itemizedlist>
2400	</para>
2401      </para>
2402    </sect2>
2403  </sect1>
2404
2405  <sect1>
2406    <title>Command submission &amp; fencing</title>
2407    <para>
2408      This should cover a few device-specific command submission
2409      implementations.
2410    </para>
2411  </sect1>
2412
2413  <!-- Internals: suspend/resume -->
2414
2415  <sect1>
2416    <title>Suspend/Resume</title>
2417    <para>
2418      The DRM core provides some suspend/resume code, but drivers wanting full
2419      suspend/resume support should provide save() and restore() functions.
2420      These are called at suspend, hibernate, or resume time, and should perform
2421      any state save or restore required by your device across suspend or
2422      hibernate states.
2423    </para>
2424    <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
2425int (*resume) (struct drm_device *);</synopsis>
2426    <para>
2427      Those are legacy suspend and resume methods. New driver should use the
2428      power management interface provided by their bus type (usually through
2429      the struct <structname>device_driver</structname> dev_pm_ops) and set
2430      these methods to NULL.
2431    </para>
2432  </sect1>
2433
2434  <sect1>
2435    <title>DMA services</title>
2436    <para>
2437      This should cover how DMA mapping etc. is supported by the core.
2438      These functions are deprecated and should not be used.
2439    </para>
2440  </sect1>
2441  </chapter>
2442
2443<!-- TODO
2444
2445- Add a glossary
2446- Document the struct_mutex catch-all lock
2447- Document connector properties
2448
2449- Why is the load method optional?
2450- What are drivers supposed to set the initial display state to, and how?
2451  Connector's DPMS states are not initialized and are thus equal to
2452  DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
2453  drm_helper_disable_unused_functions(), which disables unused encoders and
2454  CRTCs, but doesn't touch the connectors' DPMS state, and
2455  drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
2456  that don't implement (or just don't use) fbcon compatibility need to call
2457  those functions themselves?
2458- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
2459  around mode setting. Should this be done in the DRM core?
2460- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
2461  call and never set back to 0. It seems to be safe to permanently set it to 1
2462  in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
2463  well. This should be investigated.
2464- crtc and connector .save and .restore operations are only used internally in
2465  drivers, should they be removed from the core?
2466- encoder mid-layer .save and .restore operations are only used internally in
2467  drivers, should they be removed from the core?
2468- encoder mid-layer .detect operation is only used internally in drivers,
2469  should it be removed from the core?
2470-->
2471
2472  <!-- External interfaces -->
2473
2474  <chapter id="drmExternals">
2475    <title>Userland interfaces</title>
2476    <para>
2477      The DRM core exports several interfaces to applications,
2478      generally intended to be used through corresponding libdrm
2479      wrapper functions.  In addition, drivers export device-specific
2480      interfaces for use by userspace drivers &amp; device-aware
2481      applications through ioctls and sysfs files.
2482    </para>
2483    <para>
2484      External interfaces include: memory mapping, context management,
2485      DMA operations, AGP management, vblank control, fence
2486      management, memory management, and output management.
2487    </para>
2488    <para>
2489      Cover generic ioctls and sysfs layout here.  We only need high-level
2490      info, since man pages should cover the rest.
2491    </para>
2492
2493  <!-- External: vblank handling -->
2494
2495    <sect1>
2496      <title>VBlank event handling</title>
2497      <para>
2498        The DRM core exposes two vertical blank related ioctls:
2499        <variablelist>
2500          <varlistentry>
2501            <term>DRM_IOCTL_WAIT_VBLANK</term>
2502            <listitem>
2503              <para>
2504                This takes a struct drm_wait_vblank structure as its argument,
2505                and it is used to block or request a signal when a specified
2506                vblank event occurs.
2507              </para>
2508            </listitem>
2509          </varlistentry>
2510          <varlistentry>
2511            <term>DRM_IOCTL_MODESET_CTL</term>
2512            <listitem>
2513              <para>
2514                This should be called by application level drivers before and
2515                after mode setting, since on many devices the vertical blank
2516                counter is reset at that time.  Internally, the DRM snapshots
2517                the last vblank count when the ioctl is called with the
2518                _DRM_PRE_MODESET command, so that the counter won't go backwards
2519                (which is dealt with when _DRM_POST_MODESET is used).
2520              </para>
2521            </listitem>
2522          </varlistentry>
2523        </variablelist>
2524<!--!Edrivers/char/drm/drm_irq.c-->
2525      </para>
2526    </sect1>
2527
2528  </chapter>
2529
2530  <!-- API reference -->
2531
2532  <appendix id="drmDriverApi">
2533    <title>DRM Driver API</title>
2534    <para>
2535      Include auto-generated API reference here (need to reference it
2536      from paragraphs above too).
2537    </para>
2538  </appendix>
2539
2540</book>
2541