1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="drmDevelopersGuide"> 6 <bookinfo> 7 <title>Linux DRM Developer's Guide</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Jesse</firstname> 12 <surname>Barnes</surname> 13 <contrib>Initial version</contrib> 14 <affiliation> 15 <orgname>Intel Corporation</orgname> 16 <address> 17 <email>jesse.barnes@intel.com</email> 18 </address> 19 </affiliation> 20 </author> 21 <author> 22 <firstname>Laurent</firstname> 23 <surname>Pinchart</surname> 24 <contrib>Driver internals</contrib> 25 <affiliation> 26 <orgname>Ideas on board SPRL</orgname> 27 <address> 28 <email>laurent.pinchart@ideasonboard.com</email> 29 </address> 30 </affiliation> 31 </author> 32 </authorgroup> 33 34 <copyright> 35 <year>2008-2009</year> 36 <year>2012</year> 37 <holder>Intel Corporation</holder> 38 <holder>Laurent Pinchart</holder> 39 </copyright> 40 41 <legalnotice> 42 <para> 43 The contents of this file may be used under the terms of the GNU 44 General Public License version 2 (the "GPL") as distributed in 45 the kernel source COPYING file. 46 </para> 47 </legalnotice> 48 49 <revhistory> 50 <!-- Put document revisions here, newest first. --> 51 <revision> 52 <revnumber>1.0</revnumber> 53 <date>2012-07-13</date> 54 <authorinitials>LP</authorinitials> 55 <revremark>Added extensive documentation about driver internals. 56 </revremark> 57 </revision> 58 </revhistory> 59 </bookinfo> 60 61<toc></toc> 62 63 <!-- Introduction --> 64 65 <chapter id="drmIntroduction"> 66 <title>Introduction</title> 67 <para> 68 The Linux DRM layer contains code intended to support the needs 69 of complex graphics devices, usually containing programmable 70 pipelines well suited to 3D graphics acceleration. Graphics 71 drivers in the kernel may make use of DRM functions to make 72 tasks like memory management, interrupt handling and DMA easier, 73 and provide a uniform interface to applications. 74 </para> 75 <para> 76 A note on versions: this guide covers features found in the DRM 77 tree, including the TTM memory manager, output configuration and 78 mode setting, and the new vblank internals, in addition to all 79 the regular features found in current kernels. 80 </para> 81 <para> 82 [Insert diagram of typical DRM stack here] 83 </para> 84 </chapter> 85 86 <!-- Internals --> 87 88 <chapter id="drmInternals"> 89 <title>DRM Internals</title> 90 <para> 91 This chapter documents DRM internals relevant to driver authors 92 and developers working to add support for the latest features to 93 existing drivers. 94 </para> 95 <para> 96 First, we go over some typical driver initialization 97 requirements, like setting up command buffers, creating an 98 initial output configuration, and initializing core services. 99 Subsequent sections cover core internals in more detail, 100 providing implementation notes and examples. 101 </para> 102 <para> 103 The DRM layer provides several services to graphics drivers, 104 many of them driven by the application interfaces it provides 105 through libdrm, the library that wraps most of the DRM ioctls. 106 These include vblank event handling, memory 107 management, output management, framebuffer management, command 108 submission & fencing, suspend/resume support, and DMA 109 services. 110 </para> 111 112 <!-- Internals: driver init --> 113 114 <sect1> 115 <title>Driver Initialization</title> 116 <para> 117 At the core of every DRM driver is a <structname>drm_driver</structname> 118 structure. Drivers typically statically initialize a drm_driver structure, 119 and then pass it to one of the <function>drm_*_init()</function> functions 120 to register it with the DRM subsystem. 121 </para> 122 <para> 123 The <structname>drm_driver</structname> structure contains static 124 information that describes the driver and features it supports, and 125 pointers to methods that the DRM core will call to implement the DRM API. 126 We will first go through the <structname>drm_driver</structname> static 127 information fields, and will then describe individual operations in 128 details as they get used in later sections. 129 </para> 130 <sect2> 131 <title>Driver Information</title> 132 <sect3> 133 <title>Driver Features</title> 134 <para> 135 Drivers inform the DRM core about their requirements and supported 136 features by setting appropriate flags in the 137 <structfield>driver_features</structfield> field. Since those flags 138 influence the DRM core behaviour since registration time, most of them 139 must be set to registering the <structname>drm_driver</structname> 140 instance. 141 </para> 142 <synopsis>u32 driver_features;</synopsis> 143 <variablelist> 144 <title>Driver Feature Flags</title> 145 <varlistentry> 146 <term>DRIVER_USE_AGP</term> 147 <listitem><para> 148 Driver uses AGP interface, the DRM core will manage AGP resources. 149 </para></listitem> 150 </varlistentry> 151 <varlistentry> 152 <term>DRIVER_REQUIRE_AGP</term> 153 <listitem><para> 154 Driver needs AGP interface to function. AGP initialization failure 155 will become a fatal error. 156 </para></listitem> 157 </varlistentry> 158 <varlistentry> 159 <term>DRIVER_USE_MTRR</term> 160 <listitem><para> 161 Driver uses MTRR interface for mapping memory, the DRM core will 162 manage MTRR resources. Deprecated. 163 </para></listitem> 164 </varlistentry> 165 <varlistentry> 166 <term>DRIVER_PCI_DMA</term> 167 <listitem><para> 168 Driver is capable of PCI DMA, mapping of PCI DMA buffers to 169 userspace will be enabled. Deprecated. 170 </para></listitem> 171 </varlistentry> 172 <varlistentry> 173 <term>DRIVER_SG</term> 174 <listitem><para> 175 Driver can perform scatter/gather DMA, allocation and mapping of 176 scatter/gather buffers will be enabled. Deprecated. 177 </para></listitem> 178 </varlistentry> 179 <varlistentry> 180 <term>DRIVER_HAVE_DMA</term> 181 <listitem><para> 182 Driver supports DMA, the userspace DMA API will be supported. 183 Deprecated. 184 </para></listitem> 185 </varlistentry> 186 <varlistentry> 187 <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term> 188 <listitem><para> 189 DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler. The 190 DRM core will automatically register an interrupt handler when the 191 flag is set. DRIVER_IRQ_SHARED indicates whether the device & 192 handler support shared IRQs (note that this is required of PCI 193 drivers). 194 </para></listitem> 195 </varlistentry> 196 <varlistentry> 197 <term>DRIVER_IRQ_VBL</term> 198 <listitem><para>Unused. Deprecated.</para></listitem> 199 </varlistentry> 200 <varlistentry> 201 <term>DRIVER_DMA_QUEUE</term> 202 <listitem><para> 203 Should be set if the driver queues DMA requests and completes them 204 asynchronously. Deprecated. 205 </para></listitem> 206 </varlistentry> 207 <varlistentry> 208 <term>DRIVER_FB_DMA</term> 209 <listitem><para> 210 Driver supports DMA to/from the framebuffer, mapping of frambuffer 211 DMA buffers to userspace will be supported. Deprecated. 212 </para></listitem> 213 </varlistentry> 214 <varlistentry> 215 <term>DRIVER_IRQ_VBL2</term> 216 <listitem><para>Unused. Deprecated.</para></listitem> 217 </varlistentry> 218 <varlistentry> 219 <term>DRIVER_GEM</term> 220 <listitem><para> 221 Driver use the GEM memory manager. 222 </para></listitem> 223 </varlistentry> 224 <varlistentry> 225 <term>DRIVER_MODESET</term> 226 <listitem><para> 227 Driver supports mode setting interfaces (KMS). 228 </para></listitem> 229 </varlistentry> 230 <varlistentry> 231 <term>DRIVER_PRIME</term> 232 <listitem><para> 233 Driver implements DRM PRIME buffer sharing. 234 </para></listitem> 235 </varlistentry> 236 </variablelist> 237 </sect3> 238 <sect3> 239 <title>Major, Minor and Patchlevel</title> 240 <synopsis>int major; 241int minor; 242int patchlevel;</synopsis> 243 <para> 244 The DRM core identifies driver versions by a major, minor and patch 245 level triplet. The information is printed to the kernel log at 246 initialization time and passed to userspace through the 247 DRM_IOCTL_VERSION ioctl. 248 </para> 249 <para> 250 The major and minor numbers are also used to verify the requested driver 251 API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes 252 between minor versions, applications can call DRM_IOCTL_SET_VERSION to 253 select a specific version of the API. If the requested major isn't equal 254 to the driver major, or the requested minor is larger than the driver 255 minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise 256 the driver's set_version() method will be called with the requested 257 version. 258 </para> 259 </sect3> 260 <sect3> 261 <title>Name, Description and Date</title> 262 <synopsis>char *name; 263char *desc; 264char *date;</synopsis> 265 <para> 266 The driver name is printed to the kernel log at initialization time, 267 used for IRQ registration and passed to userspace through 268 DRM_IOCTL_VERSION. 269 </para> 270 <para> 271 The driver description is a purely informative string passed to 272 userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by 273 the kernel. 274 </para> 275 <para> 276 The driver date, formatted as YYYYMMDD, is meant to identify the date of 277 the latest modification to the driver. However, as most drivers fail to 278 update it, its value is mostly useless. The DRM core prints it to the 279 kernel log at initialization time and passes it to userspace through the 280 DRM_IOCTL_VERSION ioctl. 281 </para> 282 </sect3> 283 </sect2> 284 <sect2> 285 <title>Driver Load</title> 286 <para> 287 The <methodname>load</methodname> method is the driver and device 288 initialization entry point. The method is responsible for allocating and 289 initializing driver private data, specifying supported performance 290 counters, performing resource allocation and mapping (e.g. acquiring 291 clocks, mapping registers or allocating command buffers), initializing 292 the memory manager (<xref linkend="drm-memory-management"/>), installing 293 the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up 294 vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode 295 setting (<xref linkend="drm-mode-setting"/>) and initial output 296 configuration (<xref linkend="drm-kms-init"/>). 297 </para> 298 <note><para> 299 If compatibility is a concern (e.g. with drivers converted over from 300 User Mode Setting to Kernel Mode Setting), care must be taken to prevent 301 device initialization and control that is incompatible with currently 302 active userspace drivers. For instance, if user level mode setting 303 drivers are in use, it would be problematic to perform output discovery 304 & configuration at load time. Likewise, if user-level drivers 305 unaware of memory management are in use, memory management and command 306 buffer setup may need to be omitted. These requirements are 307 driver-specific, and care needs to be taken to keep both old and new 308 applications and libraries working. 309 </para></note> 310 <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis> 311 <para> 312 The method takes two arguments, a pointer to the newly created 313 <structname>drm_device</structname> and flags. The flags are used to 314 pass the <structfield>driver_data</structfield> field of the device id 315 corresponding to the device passed to <function>drm_*_init()</function>. 316 Only PCI devices currently use this, USB and platform DRM drivers have 317 their <methodname>load</methodname> method called with flags to 0. 318 </para> 319 <sect3> 320 <title>Driver Private & Performance Counters</title> 321 <para> 322 The driver private hangs off the main 323 <structname>drm_device</structname> structure and can be used for 324 tracking various device-specific bits of information, like register 325 offsets, command buffer status, register state for suspend/resume, etc. 326 At load time, a driver may simply allocate one and set 327 <structname>drm_device</structname>.<structfield>dev_priv</structfield> 328 appropriately; it should be freed and 329 <structname>drm_device</structname>.<structfield>dev_priv</structfield> 330 set to NULL when the driver is unloaded. 331 </para> 332 <para> 333 DRM supports several counters which were used for rough performance 334 characterization. This stat counter system is deprecated and should not 335 be used. If performance monitoring is desired, the developer should 336 investigate and potentially enhance the kernel perf and tracing 337 infrastructure to export GPU related performance information for 338 consumption by performance monitoring tools and applications. 339 </para> 340 </sect3> 341 <sect3 id="drm-irq-registration"> 342 <title>IRQ Registration</title> 343 <para> 344 The DRM core tries to facilitate IRQ handler registration and 345 unregistration by providing <function>drm_irq_install</function> and 346 <function>drm_irq_uninstall</function> functions. Those functions only 347 support a single interrupt per device. 348 </para> 349 <!--!Fdrivers/char/drm/drm_irq.c drm_irq_install--> 350 <para> 351 Both functions get the device IRQ by calling 352 <function>drm_dev_to_irq</function>. This inline function will call a 353 bus-specific operation to retrieve the IRQ number. For platform devices, 354 <function>platform_get_irq</function>(..., 0) is used to retrieve the 355 IRQ number. 356 </para> 357 <para> 358 <function>drm_irq_install</function> starts by calling the 359 <methodname>irq_preinstall</methodname> driver operation. The operation 360 is optional and must make sure that the interrupt will not get fired by 361 clearing all pending interrupt flags or disabling the interrupt. 362 </para> 363 <para> 364 The IRQ will then be requested by a call to 365 <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver 366 feature flag is set, a shared (IRQF_SHARED) IRQ handler will be 367 requested. 368 </para> 369 <para> 370 The IRQ handler function must be provided as the mandatory irq_handler 371 driver operation. It will get passed directly to 372 <function>request_irq</function> and thus has the same prototype as all 373 IRQ handlers. It will get called with a pointer to the DRM device as the 374 second argument. 375 </para> 376 <para> 377 Finally the function calls the optional 378 <methodname>irq_postinstall</methodname> driver operation. The operation 379 usually enables interrupts (excluding the vblank interrupt, which is 380 enabled separately), but drivers may choose to enable/disable interrupts 381 at a different time. 382 </para> 383 <para> 384 <function>drm_irq_uninstall</function> is similarly used to uninstall an 385 IRQ handler. It starts by waking up all processes waiting on a vblank 386 interrupt to make sure they don't hang, and then calls the optional 387 <methodname>irq_uninstall</methodname> driver operation. The operation 388 must disable all hardware interrupts. Finally the function frees the IRQ 389 by calling <function>free_irq</function>. 390 </para> 391 </sect3> 392 <sect3> 393 <title>Memory Manager Initialization</title> 394 <para> 395 Every DRM driver requires a memory manager which must be initialized at 396 load time. DRM currently contains two memory managers, the Translation 397 Table Manager (TTM) and the Graphics Execution Manager (GEM). 398 This document describes the use of the GEM memory manager only. See 399 <xref linkend="drm-memory-management"/> for details. 400 </para> 401 </sect3> 402 <sect3> 403 <title>Miscellaneous Device Configuration</title> 404 <para> 405 Another task that may be necessary for PCI devices during configuration 406 is mapping the video BIOS. On many devices, the VBIOS describes device 407 configuration, LCD panel timings (if any), and contains flags indicating 408 device state. Mapping the BIOS can be done using the pci_map_rom() call, 409 a convenience function that takes care of mapping the actual ROM, 410 whether it has been shadowed into memory (typically at address 0xc0000) 411 or exists on the PCI device in the ROM BAR. Note that after the ROM has 412 been mapped and any necessary information has been extracted, it should 413 be unmapped; on many devices, the ROM address decoder is shared with 414 other BARs, so leaving it mapped could cause undesired behaviour like 415 hangs or memory corruption. 416 <!--!Fdrivers/pci/rom.c pci_map_rom--> 417 </para> 418 </sect3> 419 </sect2> 420 </sect1> 421 422 <!-- Internals: memory management --> 423 424 <sect1 id="drm-memory-management"> 425 <title>Memory management</title> 426 <para> 427 Modern Linux systems require large amount of graphics memory to store 428 frame buffers, textures, vertices and other graphics-related data. Given 429 the very dynamic nature of many of that data, managing graphics memory 430 efficiently is thus crucial for the graphics stack and plays a central 431 role in the DRM infrastructure. 432 </para> 433 <para> 434 The DRM core includes two memory managers, namely Translation Table Maps 435 (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory 436 manager to be developed and tried to be a one-size-fits-them all 437 solution. It provides a single userspace API to accomodate the need of 438 all hardware, supporting both Unified Memory Architecture (UMA) devices 439 and devices with dedicated video RAM (i.e. most discrete video cards). 440 This resulted in a large, complex piece of code that turned out to be 441 hard to use for driver development. 442 </para> 443 <para> 444 GEM started as an Intel-sponsored project in reaction to TTM's 445 complexity. Its design philosophy is completely different: instead of 446 providing a solution to every graphics memory-related problems, GEM 447 identified common code between drivers and created a support library to 448 share it. GEM has simpler initialization and execution requirements than 449 TTM, but has no video RAM management capabitilies and is thus limited to 450 UMA devices. 451 </para> 452 <sect2> 453 <title>The Translation Table Manager (TTM)</title> 454 <para> 455 TTM design background and information belongs here. 456 </para> 457 <sect3> 458 <title>TTM initialization</title> 459 <warning><para>This section is outdated.</para></warning> 460 <para> 461 Drivers wishing to support TTM must fill out a drm_bo_driver 462 structure. The structure contains several fields with function 463 pointers for initializing the TTM, allocating and freeing memory, 464 waiting for command completion and fence synchronization, and memory 465 migration. See the radeon_ttm.c file for an example of usage. 466 </para> 467 <para> 468 The ttm_global_reference structure is made up of several fields: 469 </para> 470 <programlisting> 471 struct ttm_global_reference { 472 enum ttm_global_types global_type; 473 size_t size; 474 void *object; 475 int (*init) (struct ttm_global_reference *); 476 void (*release) (struct ttm_global_reference *); 477 }; 478 </programlisting> 479 <para> 480 There should be one global reference structure for your memory 481 manager as a whole, and there will be others for each object 482 created by the memory manager at runtime. Your global TTM should 483 have a type of TTM_GLOBAL_TTM_MEM. The size field for the global 484 object should be sizeof(struct ttm_mem_global), and the init and 485 release hooks should point at your driver-specific init and 486 release routines, which probably eventually call 487 ttm_mem_global_init and ttm_mem_global_release, respectively. 488 </para> 489 <para> 490 Once your global TTM accounting structure is set up and initialized 491 by calling ttm_global_item_ref() on it, 492 you need to create a buffer object TTM to 493 provide a pool for buffer object allocation by clients and the 494 kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO, 495 and its size should be sizeof(struct ttm_bo_global). Again, 496 driver-specific init and release functions may be provided, 497 likely eventually calling ttm_bo_global_init() and 498 ttm_bo_global_release(), respectively. Also, like the previous 499 object, ttm_global_item_ref() is used to create an initial reference 500 count for the TTM, which will call your initialization function. 501 </para> 502 </sect3> 503 </sect2> 504 <sect2 id="drm-gem"> 505 <title>The Graphics Execution Manager (GEM)</title> 506 <para> 507 The GEM design approach has resulted in a memory manager that doesn't 508 provide full coverage of all (or even all common) use cases in its 509 userspace or kernel API. GEM exposes a set of standard memory-related 510 operations to userspace and a set of helper functions to drivers, and let 511 drivers implement hardware-specific operations with their own private API. 512 </para> 513 <para> 514 The GEM userspace API is described in the 515 <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics 516 Execution Manager</citetitle></ulink> article on LWN. While slightly 517 outdated, the document provides a good overview of the GEM API principles. 518 Buffer allocation and read and write operations, described as part of the 519 common GEM API, are currently implemented using driver-specific ioctls. 520 </para> 521 <para> 522 GEM is data-agnostic. It manages abstract buffer objects without knowing 523 what individual buffers contain. APIs that require knowledge of buffer 524 contents or purpose, such as buffer allocation or synchronization 525 primitives, are thus outside of the scope of GEM and must be implemented 526 using driver-specific ioctls. 527 </para> 528 <para> 529 On a fundamental level, GEM involves several operations: 530 <itemizedlist> 531 <listitem>Memory allocation and freeing</listitem> 532 <listitem>Command execution</listitem> 533 <listitem>Aperture management at command execution time</listitem> 534 </itemizedlist> 535 Buffer object allocation is relatively straightforward and largely 536 provided by Linux's shmem layer, which provides memory to back each 537 object. 538 </para> 539 <para> 540 Device-specific operations, such as command execution, pinning, buffer 541 read & write, mapping, and domain ownership transfers are left to 542 driver-specific ioctls. 543 </para> 544 <sect3> 545 <title>GEM Initialization</title> 546 <para> 547 Drivers that use GEM must set the DRIVER_GEM bit in the struct 548 <structname>drm_driver</structname> 549 <structfield>driver_features</structfield> field. The DRM core will 550 then automatically initialize the GEM core before calling the 551 <methodname>load</methodname> operation. Behind the scene, this will 552 create a DRM Memory Manager object which provides an address space 553 pool for object allocation. 554 </para> 555 <para> 556 In a KMS configuration, drivers need to allocate and initialize a 557 command ring buffer following core GEM initialization if required by 558 the hardware. UMA devices usually have what is called a "stolen" 559 memory region, which provides space for the initial framebuffer and 560 large, contiguous memory regions required by the device. This space is 561 typically not managed by GEM, and must be initialized separately into 562 its own DRM MM object. 563 </para> 564 </sect3> 565 <sect3> 566 <title>GEM Objects Creation</title> 567 <para> 568 GEM splits creation of GEM objects and allocation of the memory that 569 backs them in two distinct operations. 570 </para> 571 <para> 572 GEM objects are represented by an instance of struct 573 <structname>drm_gem_object</structname>. Drivers usually need to extend 574 GEM objects with private information and thus create a driver-specific 575 GEM object structure type that embeds an instance of struct 576 <structname>drm_gem_object</structname>. 577 </para> 578 <para> 579 To create a GEM object, a driver allocates memory for an instance of its 580 specific GEM object type and initializes the embedded struct 581 <structname>drm_gem_object</structname> with a call to 582 <function>drm_gem_object_init</function>. The function takes a pointer to 583 the DRM device, a pointer to the GEM object and the buffer object size 584 in bytes. 585 </para> 586 <para> 587 GEM uses shmem to allocate anonymous pageable memory. 588 <function>drm_gem_object_init</function> will create an shmfs file of 589 the requested size and store it into the struct 590 <structname>drm_gem_object</structname> <structfield>filp</structfield> 591 field. The memory is used as either main storage for the object when the 592 graphics hardware uses system memory directly or as a backing store 593 otherwise. 594 </para> 595 <para> 596 Drivers are responsible for the actual physical pages allocation by 597 calling <function>shmem_read_mapping_page_gfp</function> for each page. 598 Note that they can decide to allocate pages when initializing the GEM 599 object, or to delay allocation until the memory is needed (for instance 600 when a page fault occurs as a result of a userspace memory access or 601 when the driver needs to start a DMA transfer involving the memory). 602 </para> 603 <para> 604 Anonymous pageable memory allocation is not always desired, for instance 605 when the hardware requires physically contiguous system memory as is 606 often the case in embedded devices. Drivers can create GEM objects with 607 no shmfs backing (called private GEM objects) by initializing them with 608 a call to <function>drm_gem_private_object_init</function> instead of 609 <function>drm_gem_object_init</function>. Storage for private GEM 610 objects must be managed by drivers. 611 </para> 612 <para> 613 Drivers that do not need to extend GEM objects with private information 614 can call the <function>drm_gem_object_alloc</function> function to 615 allocate and initialize a struct <structname>drm_gem_object</structname> 616 instance. The GEM core will call the optional driver 617 <methodname>gem_init_object</methodname> operation after initializing 618 the GEM object with <function>drm_gem_object_init</function>. 619 <synopsis>int (*gem_init_object) (struct drm_gem_object *obj);</synopsis> 620 </para> 621 <para> 622 No alloc-and-init function exists for private GEM objects. 623 </para> 624 </sect3> 625 <sect3> 626 <title>GEM Objects Lifetime</title> 627 <para> 628 All GEM objects are reference-counted by the GEM core. References can be 629 acquired and release by <function>calling drm_gem_object_reference</function> 630 and <function>drm_gem_object_unreference</function> respectively. The 631 caller must hold the <structname>drm_device</structname> 632 <structfield>struct_mutex</structfield> lock. As a convenience, GEM 633 provides the <function>drm_gem_object_reference_unlocked</function> and 634 <function>drm_gem_object_unreference_unlocked</function> functions that 635 can be called without holding the lock. 636 </para> 637 <para> 638 When the last reference to a GEM object is released the GEM core calls 639 the <structname>drm_driver</structname> 640 <methodname>gem_free_object</methodname> operation. That operation is 641 mandatory for GEM-enabled drivers and must free the GEM object and all 642 associated resources. 643 </para> 644 <para> 645 <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis> 646 Drivers are responsible for freeing all GEM object resources, including 647 the resources created by the GEM core. If an mmap offset has been 648 created for the object (in which case 649 <structname>drm_gem_object</structname>::<structfield>map_list</structfield>::<structfield>map</structfield> 650 is not NULL) it must be freed by a call to 651 <function>drm_gem_free_mmap_offset</function>. The shmfs backing store 652 must be released by calling <function>drm_gem_object_release</function> 653 (that function can safely be called if no shmfs backing store has been 654 created). 655 </para> 656 </sect3> 657 <sect3> 658 <title>GEM Objects Naming</title> 659 <para> 660 Communication between userspace and the kernel refers to GEM objects 661 using local handles, global names or, more recently, file descriptors. 662 All of those are 32-bit integer values; the usual Linux kernel limits 663 apply to the file descriptors. 664 </para> 665 <para> 666 GEM handles are local to a DRM file. Applications get a handle to a GEM 667 object through a driver-specific ioctl, and can use that handle to refer 668 to the GEM object in other standard or driver-specific ioctls. Closing a 669 DRM file handle frees all its GEM handles and dereferences the 670 associated GEM objects. 671 </para> 672 <para> 673 To create a handle for a GEM object drivers call 674 <function>drm_gem_handle_create</function>. The function takes a pointer 675 to the DRM file and the GEM object and returns a locally unique handle. 676 When the handle is no longer needed drivers delete it with a call to 677 <function>drm_gem_handle_delete</function>. Finally the GEM object 678 associated with a handle can be retrieved by a call to 679 <function>drm_gem_object_lookup</function>. 680 </para> 681 <para> 682 Handles don't take ownership of GEM objects, they only take a reference 683 to the object that will be dropped when the handle is destroyed. To 684 avoid leaking GEM objects, drivers must make sure they drop the 685 reference(s) they own (such as the initial reference taken at object 686 creation time) as appropriate, without any special consideration for the 687 handle. For example, in the particular case of combined GEM object and 688 handle creation in the implementation of the 689 <methodname>dumb_create</methodname> operation, drivers must drop the 690 initial reference to the GEM object before returning the handle. 691 </para> 692 <para> 693 GEM names are similar in purpose to handles but are not local to DRM 694 files. They can be passed between processes to reference a GEM object 695 globally. Names can't be used directly to refer to objects in the DRM 696 API, applications must convert handles to names and names to handles 697 using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls 698 respectively. The conversion is handled by the DRM core without any 699 driver-specific support. 700 </para> 701 <para> 702 Similar to global names, GEM file descriptors are also used to share GEM 703 objects across processes. They offer additional security: as file 704 descriptors must be explictly sent over UNIX domain sockets to be shared 705 between applications, they can't be guessed like the globally unique GEM 706 names. 707 </para> 708 <para> 709 Drivers that support GEM file descriptors, also known as the DRM PRIME 710 API, must set the DRIVER_PRIME bit in the struct 711 <structname>drm_driver</structname> 712 <structfield>driver_features</structfield> field, and implement the 713 <methodname>prime_handle_to_fd</methodname> and 714 <methodname>prime_fd_to_handle</methodname> operations. 715 </para> 716 <para> 717 <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev, 718 struct drm_file *file_priv, uint32_t handle, 719 uint32_t flags, int *prime_fd); 720 int (*prime_fd_to_handle)(struct drm_device *dev, 721 struct drm_file *file_priv, int prime_fd, 722 uint32_t *handle);</synopsis> 723 Those two operations convert a handle to a PRIME file descriptor and 724 vice versa. Drivers must use the kernel dma-buf buffer sharing framework 725 to manage the PRIME file descriptors. 726 </para> 727 <para> 728 While non-GEM drivers must implement the operations themselves, GEM 729 drivers must use the <function>drm_gem_prime_handle_to_fd</function> 730 and <function>drm_gem_prime_fd_to_handle</function> helper functions. 731 Those helpers rely on the driver 732 <methodname>gem_prime_export</methodname> and 733 <methodname>gem_prime_import</methodname> operations to create a dma-buf 734 instance from a GEM object (dma-buf exporter role) and to create a GEM 735 object from a dma-buf instance (dma-buf importer role). 736 </para> 737 <para> 738 <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev, 739 struct drm_gem_object *obj, 740 int flags); 741 struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev, 742 struct dma_buf *dma_buf);</synopsis> 743 These two operations are mandatory for GEM drivers that support DRM 744 PRIME. 745 </para> 746 <sect4> 747 <title>DRM PRIME Helper Functions Reference</title> 748!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers 749 </sect4> 750 </sect3> 751 <sect3 id="drm-gem-objects-mapping"> 752 <title>GEM Objects Mapping</title> 753 <para> 754 Because mapping operations are fairly heavyweight GEM favours 755 read/write-like access to buffers, implemented through driver-specific 756 ioctls, over mapping buffers to userspace. However, when random access 757 to the buffer is needed (to perform software rendering for instance), 758 direct access to the object can be more efficient. 759 </para> 760 <para> 761 The mmap system call can't be used directly to map GEM objects, as they 762 don't have their own file handle. Two alternative methods currently 763 co-exist to map GEM objects to userspace. The first method uses a 764 driver-specific ioctl to perform the mapping operation, calling 765 <function>do_mmap</function> under the hood. This is often considered 766 dubious, seems to be discouraged for new GEM-enabled drivers, and will 767 thus not be described here. 768 </para> 769 <para> 770 The second method uses the mmap system call on the DRM file handle. 771 <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd, 772 off_t offset);</synopsis> 773 DRM identifies the GEM object to be mapped by a fake offset passed 774 through the mmap offset argument. Prior to being mapped, a GEM object 775 must thus be associated with a fake offset. To do so, drivers must call 776 <function>drm_gem_create_mmap_offset</function> on the object. The 777 function allocates a fake offset range from a pool and stores the 778 offset divided by PAGE_SIZE in 779 <literal>obj->map_list.hash.key</literal>. Care must be taken not to 780 call <function>drm_gem_create_mmap_offset</function> if a fake offset 781 has already been allocated for the object. This can be tested by 782 <literal>obj->map_list.map</literal> being non-NULL. 783 </para> 784 <para> 785 Once allocated, the fake offset value 786 (<literal>obj->map_list.hash.key << PAGE_SHIFT</literal>) 787 must be passed to the application in a driver-specific way and can then 788 be used as the mmap offset argument. 789 </para> 790 <para> 791 The GEM core provides a helper method <function>drm_gem_mmap</function> 792 to handle object mapping. The method can be set directly as the mmap 793 file operation handler. It will look up the GEM object based on the 794 offset value and set the VMA operations to the 795 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield> 796 field. Note that <function>drm_gem_mmap</function> doesn't map memory to 797 userspace, but relies on the driver-provided fault handler to map pages 798 individually. 799 </para> 800 <para> 801 To use <function>drm_gem_mmap</function>, drivers must fill the struct 802 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield> 803 field with a pointer to VM operations. 804 </para> 805 <para> 806 <synopsis>struct vm_operations_struct *gem_vm_ops 807 808 struct vm_operations_struct { 809 void (*open)(struct vm_area_struct * area); 810 void (*close)(struct vm_area_struct * area); 811 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 812 };</synopsis> 813 </para> 814 <para> 815 The <methodname>open</methodname> and <methodname>close</methodname> 816 operations must update the GEM object reference count. Drivers can use 817 the <function>drm_gem_vm_open</function> and 818 <function>drm_gem_vm_close</function> helper functions directly as open 819 and close handlers. 820 </para> 821 <para> 822 The fault operation handler is responsible for mapping individual pages 823 to userspace when a page fault occurs. Depending on the memory 824 allocation scheme, drivers can allocate pages at fault time, or can 825 decide to allocate memory for the GEM object at the time the object is 826 created. 827 </para> 828 <para> 829 Drivers that want to map the GEM object upfront instead of handling page 830 faults can implement their own mmap file operation handler. 831 </para> 832 </sect3> 833 <sect3> 834 <title>Dumb GEM Objects</title> 835 <para> 836 The GEM API doesn't standardize GEM objects creation and leaves it to 837 driver-specific ioctls. While not an issue for full-fledged graphics 838 stacks that include device-specific userspace components (in libdrm for 839 instance), this limit makes DRM-based early boot graphics unnecessarily 840 complex. 841 </para> 842 <para> 843 Dumb GEM objects partly alleviate the problem by providing a standard 844 API to create dumb buffers suitable for scanout, which can then be used 845 to create KMS frame buffers. 846 </para> 847 <para> 848 To support dumb GEM objects drivers must implement the 849 <methodname>dumb_create</methodname>, 850 <methodname>dumb_destroy</methodname> and 851 <methodname>dumb_map_offset</methodname> operations. 852 </para> 853 <itemizedlist> 854 <listitem> 855 <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev, 856 struct drm_mode_create_dumb *args);</synopsis> 857 <para> 858 The <methodname>dumb_create</methodname> operation creates a GEM 859 object suitable for scanout based on the width, height and depth 860 from the struct <structname>drm_mode_create_dumb</structname> 861 argument. It fills the argument's <structfield>handle</structfield>, 862 <structfield>pitch</structfield> and <structfield>size</structfield> 863 fields with a handle for the newly created GEM object and its line 864 pitch and size in bytes. 865 </para> 866 </listitem> 867 <listitem> 868 <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev, 869 uint32_t handle);</synopsis> 870 <para> 871 The <methodname>dumb_destroy</methodname> operation destroys a dumb 872 GEM object created by <methodname>dumb_create</methodname>. 873 </para> 874 </listitem> 875 <listitem> 876 <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev, 877 uint32_t handle, uint64_t *offset);</synopsis> 878 <para> 879 The <methodname>dumb_map_offset</methodname> operation associates an 880 mmap fake offset with the GEM object given by the handle and returns 881 it. Drivers must use the 882 <function>drm_gem_create_mmap_offset</function> function to 883 associate the fake offset as described in 884 <xref linkend="drm-gem-objects-mapping"/>. 885 </para> 886 </listitem> 887 </itemizedlist> 888 </sect3> 889 <sect3> 890 <title>Memory Coherency</title> 891 <para> 892 When mapped to the device or used in a command buffer, backing pages 893 for an object are flushed to memory and marked write combined so as to 894 be coherent with the GPU. Likewise, if the CPU accesses an object 895 after the GPU has finished rendering to the object, then the object 896 must be made coherent with the CPU's view of memory, usually involving 897 GPU cache flushing of various kinds. This core CPU<->GPU 898 coherency management is provided by a device-specific ioctl, which 899 evaluates an object's current domain and performs any necessary 900 flushing or synchronization to put the object into the desired 901 coherency domain (note that the object may be busy, i.e. an active 902 render target; in that case, setting the domain blocks the client and 903 waits for rendering to complete before performing any necessary 904 flushing operations). 905 </para> 906 </sect3> 907 <sect3> 908 <title>Command Execution</title> 909 <para> 910 Perhaps the most important GEM function for GPU devices is providing a 911 command execution interface to clients. Client programs construct 912 command buffers containing references to previously allocated memory 913 objects, and then submit them to GEM. At that point, GEM takes care to 914 bind all the objects into the GTT, execute the buffer, and provide 915 necessary synchronization between clients accessing the same buffers. 916 This often involves evicting some objects from the GTT and re-binding 917 others (a fairly expensive operation), and providing relocation 918 support which hides fixed GTT offsets from clients. Clients must take 919 care not to submit command buffers that reference more objects than 920 can fit in the GTT; otherwise, GEM will reject them and no rendering 921 will occur. Similarly, if several objects in the buffer require fence 922 registers to be allocated for correct rendering (e.g. 2D blits on 923 pre-965 chips), care must be taken not to require more fence registers 924 than are available to the client. Such resource management should be 925 abstracted from the client in libdrm. 926 </para> 927 </sect3> 928 </sect2> 929 </sect1> 930 931 <!-- Internals: mode setting --> 932 933 <sect1 id="drm-mode-setting"> 934 <title>Mode Setting</title> 935 <para> 936 Drivers must initialize the mode setting core by calling 937 <function>drm_mode_config_init</function> on the DRM device. The function 938 initializes the <structname>drm_device</structname> 939 <structfield>mode_config</structfield> field and never fails. Once done, 940 mode configuration must be setup by initializing the following fields. 941 </para> 942 <itemizedlist> 943 <listitem> 944 <synopsis>int min_width, min_height; 945int max_width, max_height;</synopsis> 946 <para> 947 Minimum and maximum width and height of the frame buffers in pixel 948 units. 949 </para> 950 </listitem> 951 <listitem> 952 <synopsis>struct drm_mode_config_funcs *funcs;</synopsis> 953 <para>Mode setting functions.</para> 954 </listitem> 955 </itemizedlist> 956 <sect2> 957 <title>Frame Buffer Creation</title> 958 <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev, 959 struct drm_file *file_priv, 960 struct drm_mode_fb_cmd2 *mode_cmd);</synopsis> 961 <para> 962 Frame buffers are abstract memory objects that provide a source of 963 pixels to scanout to a CRTC. Applications explicitly request the 964 creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and 965 receive an opaque handle that can be passed to the KMS CRTC control, 966 plane configuration and page flip functions. 967 </para> 968 <para> 969 Frame buffers rely on the underneath memory manager for low-level memory 970 operations. When creating a frame buffer applications pass a memory 971 handle (or a list of memory handles for multi-planar formats) through 972 the <parameter>drm_mode_fb_cmd2</parameter> argument. This document 973 assumes that the driver uses GEM, those handles thus reference GEM 974 objects. 975 </para> 976 <para> 977 Drivers must first validate the requested frame buffer parameters passed 978 through the mode_cmd argument. In particular this is where invalid 979 sizes, pixel formats or pitches can be caught. 980 </para> 981 <para> 982 If the parameters are deemed valid, drivers then create, initialize and 983 return an instance of struct <structname>drm_framebuffer</structname>. 984 If desired the instance can be embedded in a larger driver-specific 985 structure. Drivers must fill its <structfield>width</structfield>, 986 <structfield>height</structfield>, <structfield>pitches</structfield>, 987 <structfield>offsets</structfield>, <structfield>depth</structfield>, 988 <structfield>bits_per_pixel</structfield> and 989 <structfield>pixel_format</structfield> fields from the values passed 990 through the <parameter>drm_mode_fb_cmd2</parameter> argument. They 991 should call the <function>drm_helper_mode_fill_fb_struct</function> 992 helper function to do so. 993 </para> 994 995 <para> 996 The initailization of the new framebuffer instance is finalized with a 997 call to <function>drm_framebuffer_init</function> which takes a pointer 998 to DRM frame buffer operations (struct 999 <structname>drm_framebuffer_funcs</structname>). Note that this function 1000 publishes the framebuffer and so from this point on it can be accessed 1001 concurrently from other threads. Hence it must be the last step in the 1002 driver's framebuffer initialization sequence. Frame buffer operations 1003 are 1004 <itemizedlist> 1005 <listitem> 1006 <synopsis>int (*create_handle)(struct drm_framebuffer *fb, 1007 struct drm_file *file_priv, unsigned int *handle);</synopsis> 1008 <para> 1009 Create a handle to the frame buffer underlying memory object. If 1010 the frame buffer uses a multi-plane format, the handle will 1011 reference the memory object associated with the first plane. 1012 </para> 1013 <para> 1014 Drivers call <function>drm_gem_handle_create</function> to create 1015 the handle. 1016 </para> 1017 </listitem> 1018 <listitem> 1019 <synopsis>void (*destroy)(struct drm_framebuffer *framebuffer);</synopsis> 1020 <para> 1021 Destroy the frame buffer object and frees all associated 1022 resources. Drivers must call 1023 <function>drm_framebuffer_cleanup</function> to free resources 1024 allocated by the DRM core for the frame buffer object, and must 1025 make sure to unreference all memory objects associated with the 1026 frame buffer. Handles created by the 1027 <methodname>create_handle</methodname> operation are released by 1028 the DRM core. 1029 </para> 1030 </listitem> 1031 <listitem> 1032 <synopsis>int (*dirty)(struct drm_framebuffer *framebuffer, 1033 struct drm_file *file_priv, unsigned flags, unsigned color, 1034 struct drm_clip_rect *clips, unsigned num_clips);</synopsis> 1035 <para> 1036 This optional operation notifies the driver that a region of the 1037 frame buffer has changed in response to a DRM_IOCTL_MODE_DIRTYFB 1038 ioctl call. 1039 </para> 1040 </listitem> 1041 </itemizedlist> 1042 </para> 1043 <para> 1044 The lifetime of a drm framebuffer is controlled with a reference count, 1045 drivers can grab additional references with 1046 <function>drm_framebuffer_reference</function> </para> and drop them 1047 again with <function>drm_framebuffer_unreference</function>. For 1048 driver-private framebuffers for which the last reference is never 1049 dropped (e.g. for the fbdev framebuffer when the struct 1050 <structname>drm_framebuffer</structname> is embedded into the fbdev 1051 helper struct) drivers can manually clean up a framebuffer at module 1052 unload time with 1053 <function>drm_framebuffer_unregister_private</function>. 1054 </sect2> 1055 <sect2> 1056 <title>Output Polling</title> 1057 <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis> 1058 <para> 1059 This operation notifies the driver that the status of one or more 1060 connectors has changed. Drivers that use the fb helper can just call the 1061 <function>drm_fb_helper_hotplug_event</function> function to handle this 1062 operation. 1063 </para> 1064 </sect2> 1065 <sect2> 1066 <title>Locking</title> 1067 <para> 1068 Beside some lookup structures with their own locking (which is hidden 1069 behind the interface functions) most of the modeset state is protected 1070 by the <code>dev-<mode_config.lock</code> mutex and additionally 1071 per-crtc locks to allow cursor updates, pageflips and similar operations 1072 to occur concurrently with background tasks like output detection. 1073 Operations which cross domains like a full modeset always grab all 1074 locks. Drivers there need to protect resources shared between crtcs with 1075 additional locking. They also need to be careful to always grab the 1076 relevant crtc locks if a modset functions touches crtc state, e.g. for 1077 load detection (which does only grab the <code>mode_config.lock</code> 1078 to allow concurrent screen updates on live crtcs). 1079 </para> 1080 </sect2> 1081 </sect1> 1082 1083 <!-- Internals: kms initialization and cleanup --> 1084 1085 <sect1 id="drm-kms-init"> 1086 <title>KMS Initialization and Cleanup</title> 1087 <para> 1088 A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders 1089 and connectors. KMS drivers must thus create and initialize all those 1090 objects at load time after initializing mode setting. 1091 </para> 1092 <sect2> 1093 <title>CRTCs (struct <structname>drm_crtc</structname>)</title> 1094 <para> 1095 A CRTC is an abstraction representing a part of the chip that contains a 1096 pointer to a scanout buffer. Therefore, the number of CRTCs available 1097 determines how many independent scanout buffers can be active at any 1098 given time. The CRTC structure contains several fields to support this: 1099 a pointer to some video memory (abstracted as a frame buffer object), a 1100 display mode, and an (x, y) offset into the video memory to support 1101 panning or configurations where one piece of video memory spans multiple 1102 CRTCs. 1103 </para> 1104 <sect3> 1105 <title>CRTC Initialization</title> 1106 <para> 1107 A KMS device must create and register at least one struct 1108 <structname>drm_crtc</structname> instance. The instance is allocated 1109 and zeroed by the driver, possibly as part of a larger structure, and 1110 registered with a call to <function>drm_crtc_init</function> with a 1111 pointer to CRTC functions. 1112 </para> 1113 </sect3> 1114 <sect3> 1115 <title>CRTC Operations</title> 1116 <sect4> 1117 <title>Set Configuration</title> 1118 <synopsis>int (*set_config)(struct drm_mode_set *set);</synopsis> 1119 <para> 1120 Apply a new CRTC configuration to the device. The configuration 1121 specifies a CRTC, a frame buffer to scan out from, a (x,y) position in 1122 the frame buffer, a display mode and an array of connectors to drive 1123 with the CRTC if possible. 1124 </para> 1125 <para> 1126 If the frame buffer specified in the configuration is NULL, the driver 1127 must detach all encoders connected to the CRTC and all connectors 1128 attached to those encoders and disable them. 1129 </para> 1130 <para> 1131 This operation is called with the mode config lock held. 1132 </para> 1133 <note><para> 1134 FIXME: How should set_config interact with DPMS? If the CRTC is 1135 suspended, should it be resumed? 1136 </para></note> 1137 </sect4> 1138 <sect4> 1139 <title>Page Flipping</title> 1140 <synopsis>int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb, 1141 struct drm_pending_vblank_event *event);</synopsis> 1142 <para> 1143 Schedule a page flip to the given frame buffer for the CRTC. This 1144 operation is called with the mode config mutex held. 1145 </para> 1146 <para> 1147 Page flipping is a synchronization mechanism that replaces the frame 1148 buffer being scanned out by the CRTC with a new frame buffer during 1149 vertical blanking, avoiding tearing. When an application requests a page 1150 flip the DRM core verifies that the new frame buffer is large enough to 1151 be scanned out by the CRTC in the currently configured mode and then 1152 calls the CRTC <methodname>page_flip</methodname> operation with a 1153 pointer to the new frame buffer. 1154 </para> 1155 <para> 1156 The <methodname>page_flip</methodname> operation schedules a page flip. 1157 Once any pending rendering targetting the new frame buffer has 1158 completed, the CRTC will be reprogrammed to display that frame buffer 1159 after the next vertical refresh. The operation must return immediately 1160 without waiting for rendering or page flip to complete and must block 1161 any new rendering to the frame buffer until the page flip completes. 1162 </para> 1163 <para> 1164 If a page flip can be successfully scheduled the driver must set the 1165 <code>drm_crtc-<fb</code> field to the new framebuffer pointed to 1166 by <code>fb</code>. This is important so that the reference counting 1167 on framebuffers stays balanced. 1168 </para> 1169 <para> 1170 If a page flip is already pending, the 1171 <methodname>page_flip</methodname> operation must return 1172 -<errorname>EBUSY</errorname>. 1173 </para> 1174 <para> 1175 To synchronize page flip to vertical blanking the driver will likely 1176 need to enable vertical blanking interrupts. It should call 1177 <function>drm_vblank_get</function> for that purpose, and call 1178 <function>drm_vblank_put</function> after the page flip completes. 1179 </para> 1180 <para> 1181 If the application has requested to be notified when page flip completes 1182 the <methodname>page_flip</methodname> operation will be called with a 1183 non-NULL <parameter>event</parameter> argument pointing to a 1184 <structname>drm_pending_vblank_event</structname> instance. Upon page 1185 flip completion the driver must call <methodname>drm_send_vblank_event</methodname> 1186 to fill in the event and send to wake up any waiting processes. 1187 This can be performed with 1188 <programlisting><![CDATA[ 1189 spin_lock_irqsave(&dev->event_lock, flags); 1190 ... 1191 drm_send_vblank_event(dev, pipe, event); 1192 spin_unlock_irqrestore(&dev->event_lock, flags); 1193 ]]></programlisting> 1194 </para> 1195 <note><para> 1196 FIXME: Could drivers that don't need to wait for rendering to complete 1197 just add the event to <literal>dev->vblank_event_list</literal> and 1198 let the DRM core handle everything, as for "normal" vertical blanking 1199 events? 1200 </para></note> 1201 <para> 1202 While waiting for the page flip to complete, the 1203 <literal>event->base.link</literal> list head can be used freely by 1204 the driver to store the pending event in a driver-specific list. 1205 </para> 1206 <para> 1207 If the file handle is closed before the event is signaled, drivers must 1208 take care to destroy the event in their 1209 <methodname>preclose</methodname> operation (and, if needed, call 1210 <function>drm_vblank_put</function>). 1211 </para> 1212 </sect4> 1213 <sect4> 1214 <title>Miscellaneous</title> 1215 <itemizedlist> 1216 <listitem> 1217 <synopsis>void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 1218 uint32_t start, uint32_t size);</synopsis> 1219 <para> 1220 Apply a gamma table to the device. The operation is optional. 1221 </para> 1222 </listitem> 1223 <listitem> 1224 <synopsis>void (*destroy)(struct drm_crtc *crtc);</synopsis> 1225 <para> 1226 Destroy the CRTC when not needed anymore. See 1227 <xref linkend="drm-kms-init"/>. 1228 </para> 1229 </listitem> 1230 </itemizedlist> 1231 </sect4> 1232 </sect3> 1233 </sect2> 1234 <sect2> 1235 <title>Planes (struct <structname>drm_plane</structname>)</title> 1236 <para> 1237 A plane represents an image source that can be blended with or overlayed 1238 on top of a CRTC during the scanout process. Planes are associated with 1239 a frame buffer to crop a portion of the image memory (source) and 1240 optionally scale it to a destination size. The result is then blended 1241 with or overlayed on top of a CRTC. 1242 </para> 1243 <sect3> 1244 <title>Plane Initialization</title> 1245 <para> 1246 Planes are optional. To create a plane, a KMS drivers allocates and 1247 zeroes an instances of struct <structname>drm_plane</structname> 1248 (possibly as part of a larger structure) and registers it with a call 1249 to <function>drm_plane_init</function>. The function takes a bitmask 1250 of the CRTCs that can be associated with the plane, a pointer to the 1251 plane functions and a list of format supported formats. 1252 </para> 1253 </sect3> 1254 <sect3> 1255 <title>Plane Operations</title> 1256 <itemizedlist> 1257 <listitem> 1258 <synopsis>int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc, 1259 struct drm_framebuffer *fb, int crtc_x, int crtc_y, 1260 unsigned int crtc_w, unsigned int crtc_h, 1261 uint32_t src_x, uint32_t src_y, 1262 uint32_t src_w, uint32_t src_h);</synopsis> 1263 <para> 1264 Enable and configure the plane to use the given CRTC and frame buffer. 1265 </para> 1266 <para> 1267 The source rectangle in frame buffer memory coordinates is given by 1268 the <parameter>src_x</parameter>, <parameter>src_y</parameter>, 1269 <parameter>src_w</parameter> and <parameter>src_h</parameter> 1270 parameters (as 16.16 fixed point values). Devices that don't support 1271 subpixel plane coordinates can ignore the fractional part. 1272 </para> 1273 <para> 1274 The destination rectangle in CRTC coordinates is given by the 1275 <parameter>crtc_x</parameter>, <parameter>crtc_y</parameter>, 1276 <parameter>crtc_w</parameter> and <parameter>crtc_h</parameter> 1277 parameters (as integer values). Devices scale the source rectangle to 1278 the destination rectangle. If scaling is not supported, and the source 1279 rectangle size doesn't match the destination rectangle size, the 1280 driver must return a -<errorname>EINVAL</errorname> error. 1281 </para> 1282 </listitem> 1283 <listitem> 1284 <synopsis>int (*disable_plane)(struct drm_plane *plane);</synopsis> 1285 <para> 1286 Disable the plane. The DRM core calls this method in response to a 1287 DRM_IOCTL_MODE_SETPLANE ioctl call with the frame buffer ID set to 0. 1288 Disabled planes must not be processed by the CRTC. 1289 </para> 1290 </listitem> 1291 <listitem> 1292 <synopsis>void (*destroy)(struct drm_plane *plane);</synopsis> 1293 <para> 1294 Destroy the plane when not needed anymore. See 1295 <xref linkend="drm-kms-init"/>. 1296 </para> 1297 </listitem> 1298 </itemizedlist> 1299 </sect3> 1300 </sect2> 1301 <sect2> 1302 <title>Encoders (struct <structname>drm_encoder</structname>)</title> 1303 <para> 1304 An encoder takes pixel data from a CRTC and converts it to a format 1305 suitable for any attached connectors. On some devices, it may be 1306 possible to have a CRTC send data to more than one encoder. In that 1307 case, both encoders would receive data from the same scanout buffer, 1308 resulting in a "cloned" display configuration across the connectors 1309 attached to each encoder. 1310 </para> 1311 <sect3> 1312 <title>Encoder Initialization</title> 1313 <para> 1314 As for CRTCs, a KMS driver must create, initialize and register at 1315 least one struct <structname>drm_encoder</structname> instance. The 1316 instance is allocated and zeroed by the driver, possibly as part of a 1317 larger structure. 1318 </para> 1319 <para> 1320 Drivers must initialize the struct <structname>drm_encoder</structname> 1321 <structfield>possible_crtcs</structfield> and 1322 <structfield>possible_clones</structfield> fields before registering the 1323 encoder. Both fields are bitmasks of respectively the CRTCs that the 1324 encoder can be connected to, and sibling encoders candidate for cloning. 1325 </para> 1326 <para> 1327 After being initialized, the encoder must be registered with a call to 1328 <function>drm_encoder_init</function>. The function takes a pointer to 1329 the encoder functions and an encoder type. Supported types are 1330 <itemizedlist> 1331 <listitem> 1332 DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A 1333 </listitem> 1334 <listitem> 1335 DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort 1336 </listitem> 1337 <listitem> 1338 DRM_MODE_ENCODER_LVDS for display panels 1339 </listitem> 1340 <listitem> 1341 DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component, 1342 SCART) 1343 </listitem> 1344 <listitem> 1345 DRM_MODE_ENCODER_VIRTUAL for virtual machine displays 1346 </listitem> 1347 </itemizedlist> 1348 </para> 1349 <para> 1350 Encoders must be attached to a CRTC to be used. DRM drivers leave 1351 encoders unattached at initialization time. Applications (or the fbdev 1352 compatibility layer when implemented) are responsible for attaching the 1353 encoders they want to use to a CRTC. 1354 </para> 1355 </sect3> 1356 <sect3> 1357 <title>Encoder Operations</title> 1358 <itemizedlist> 1359 <listitem> 1360 <synopsis>void (*destroy)(struct drm_encoder *encoder);</synopsis> 1361 <para> 1362 Called to destroy the encoder when not needed anymore. See 1363 <xref linkend="drm-kms-init"/>. 1364 </para> 1365 </listitem> 1366 </itemizedlist> 1367 </sect3> 1368 </sect2> 1369 <sect2> 1370 <title>Connectors (struct <structname>drm_connector</structname>)</title> 1371 <para> 1372 A connector is the final destination for pixel data on a device, and 1373 usually connects directly to an external display device like a monitor 1374 or laptop panel. A connector can only be attached to one encoder at a 1375 time. The connector is also the structure where information about the 1376 attached display is kept, so it contains fields for display data, EDID 1377 data, DPMS & connection status, and information about modes 1378 supported on the attached displays. 1379 </para> 1380 <sect3> 1381 <title>Connector Initialization</title> 1382 <para> 1383 Finally a KMS driver must create, initialize, register and attach at 1384 least one struct <structname>drm_connector</structname> instance. The 1385 instance is created as other KMS objects and initialized by setting the 1386 following fields. 1387 </para> 1388 <variablelist> 1389 <varlistentry> 1390 <term><structfield>interlace_allowed</structfield></term> 1391 <listitem><para> 1392 Whether the connector can handle interlaced modes. 1393 </para></listitem> 1394 </varlistentry> 1395 <varlistentry> 1396 <term><structfield>doublescan_allowed</structfield></term> 1397 <listitem><para> 1398 Whether the connector can handle doublescan. 1399 </para></listitem> 1400 </varlistentry> 1401 <varlistentry> 1402 <term><structfield>display_info 1403 </structfield></term> 1404 <listitem><para> 1405 Display information is filled from EDID information when a display 1406 is detected. For non hot-pluggable displays such as flat panels in 1407 embedded systems, the driver should initialize the 1408 <structfield>display_info</structfield>.<structfield>width_mm</structfield> 1409 and 1410 <structfield>display_info</structfield>.<structfield>height_mm</structfield> 1411 fields with the physical size of the display. 1412 </para></listitem> 1413 </varlistentry> 1414 <varlistentry> 1415 <term id="drm-kms-connector-polled"><structfield>polled</structfield></term> 1416 <listitem><para> 1417 Connector polling mode, a combination of 1418 <variablelist> 1419 <varlistentry> 1420 <term>DRM_CONNECTOR_POLL_HPD</term> 1421 <listitem><para> 1422 The connector generates hotplug events and doesn't need to be 1423 periodically polled. The CONNECT and DISCONNECT flags must not 1424 be set together with the HPD flag. 1425 </para></listitem> 1426 </varlistentry> 1427 <varlistentry> 1428 <term>DRM_CONNECTOR_POLL_CONNECT</term> 1429 <listitem><para> 1430 Periodically poll the connector for connection. 1431 </para></listitem> 1432 </varlistentry> 1433 <varlistentry> 1434 <term>DRM_CONNECTOR_POLL_DISCONNECT</term> 1435 <listitem><para> 1436 Periodically poll the connector for disconnection. 1437 </para></listitem> 1438 </varlistentry> 1439 </variablelist> 1440 Set to 0 for connectors that don't support connection status 1441 discovery. 1442 </para></listitem> 1443 </varlistentry> 1444 </variablelist> 1445 <para> 1446 The connector is then registered with a call to 1447 <function>drm_connector_init</function> with a pointer to the connector 1448 functions and a connector type, and exposed through sysfs with a call to 1449 <function>drm_sysfs_connector_add</function>. 1450 </para> 1451 <para> 1452 Supported connector types are 1453 <itemizedlist> 1454 <listitem>DRM_MODE_CONNECTOR_VGA</listitem> 1455 <listitem>DRM_MODE_CONNECTOR_DVII</listitem> 1456 <listitem>DRM_MODE_CONNECTOR_DVID</listitem> 1457 <listitem>DRM_MODE_CONNECTOR_DVIA</listitem> 1458 <listitem>DRM_MODE_CONNECTOR_Composite</listitem> 1459 <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem> 1460 <listitem>DRM_MODE_CONNECTOR_LVDS</listitem> 1461 <listitem>DRM_MODE_CONNECTOR_Component</listitem> 1462 <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem> 1463 <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem> 1464 <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem> 1465 <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem> 1466 <listitem>DRM_MODE_CONNECTOR_TV</listitem> 1467 <listitem>DRM_MODE_CONNECTOR_eDP</listitem> 1468 <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem> 1469 </itemizedlist> 1470 </para> 1471 <para> 1472 Connectors must be attached to an encoder to be used. For devices that 1473 map connectors to encoders 1:1, the connector should be attached at 1474 initialization time with a call to 1475 <function>drm_mode_connector_attach_encoder</function>. The driver must 1476 also set the <structname>drm_connector</structname> 1477 <structfield>encoder</structfield> field to point to the attached 1478 encoder. 1479 </para> 1480 <para> 1481 Finally, drivers must initialize the connectors state change detection 1482 with a call to <function>drm_kms_helper_poll_init</function>. If at 1483 least one connector is pollable but can't generate hotplug interrupts 1484 (indicated by the DRM_CONNECTOR_POLL_CONNECT and 1485 DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will 1486 automatically be queued to periodically poll for changes. Connectors 1487 that can generate hotplug interrupts must be marked with the 1488 DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must 1489 call <function>drm_helper_hpd_irq_event</function>. The function will 1490 queue a delayed work to check the state of all connectors, but no 1491 periodic polling will be done. 1492 </para> 1493 </sect3> 1494 <sect3> 1495 <title>Connector Operations</title> 1496 <note><para> 1497 Unless otherwise state, all operations are mandatory. 1498 </para></note> 1499 <sect4> 1500 <title>DPMS</title> 1501 <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis> 1502 <para> 1503 The DPMS operation sets the power state of a connector. The mode 1504 argument is one of 1505 <itemizedlist> 1506 <listitem><para>DRM_MODE_DPMS_ON</para></listitem> 1507 <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem> 1508 <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem> 1509 <listitem><para>DRM_MODE_DPMS_OFF</para></listitem> 1510 </itemizedlist> 1511 </para> 1512 <para> 1513 In all but DPMS_ON mode the encoder to which the connector is attached 1514 should put the display in low-power mode by driving its signals 1515 appropriately. If more than one connector is attached to the encoder 1516 care should be taken not to change the power state of other displays as 1517 a side effect. Low-power mode should be propagated to the encoders and 1518 CRTCs when all related connectors are put in low-power mode. 1519 </para> 1520 </sect4> 1521 <sect4> 1522 <title>Modes</title> 1523 <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width, 1524 uint32_t max_height);</synopsis> 1525 <para> 1526 Fill the mode list with all supported modes for the connector. If the 1527 <parameter>max_width</parameter> and <parameter>max_height</parameter> 1528 arguments are non-zero, the implementation must ignore all modes wider 1529 than <parameter>max_width</parameter> or higher than 1530 <parameter>max_height</parameter>. 1531 </para> 1532 <para> 1533 The connector must also fill in this operation its 1534 <structfield>display_info</structfield> 1535 <structfield>width_mm</structfield> and 1536 <structfield>height_mm</structfield> fields with the connected display 1537 physical size in millimeters. The fields should be set to 0 if the value 1538 isn't known or is not applicable (for instance for projector devices). 1539 </para> 1540 </sect4> 1541 <sect4> 1542 <title>Connection Status</title> 1543 <para> 1544 The connection status is updated through polling or hotplug events when 1545 supported (see <xref linkend="drm-kms-connector-polled"/>). The status 1546 value is reported to userspace through ioctls and must not be used 1547 inside the driver, as it only gets initialized by a call to 1548 <function>drm_mode_getconnector</function> from userspace. 1549 </para> 1550 <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector, 1551 bool force);</synopsis> 1552 <para> 1553 Check to see if anything is attached to the connector. The 1554 <parameter>force</parameter> parameter is set to false whilst polling or 1555 to true when checking the connector due to user request. 1556 <parameter>force</parameter> can be used by the driver to avoid 1557 expensive, destructive operations during automated probing. 1558 </para> 1559 <para> 1560 Return connector_status_connected if something is connected to the 1561 connector, connector_status_disconnected if nothing is connected and 1562 connector_status_unknown if the connection state isn't known. 1563 </para> 1564 <para> 1565 Drivers should only return connector_status_connected if the connection 1566 status has really been probed as connected. Connectors that can't detect 1567 the connection status, or failed connection status probes, should return 1568 connector_status_unknown. 1569 </para> 1570 </sect4> 1571 <sect4> 1572 <title>Miscellaneous</title> 1573 <itemizedlist> 1574 <listitem> 1575 <synopsis>void (*destroy)(struct drm_connector *connector);</synopsis> 1576 <para> 1577 Destroy the connector when not needed anymore. See 1578 <xref linkend="drm-kms-init"/>. 1579 </para> 1580 </listitem> 1581 </itemizedlist> 1582 </sect4> 1583 </sect3> 1584 </sect2> 1585 <sect2> 1586 <title>Cleanup</title> 1587 <para> 1588 The DRM core manages its objects' lifetime. When an object is not needed 1589 anymore the core calls its destroy function, which must clean up and 1590 free every resource allocated for the object. Every 1591 <function>drm_*_init</function> call must be matched with a 1592 corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs 1593 (<function>drm_crtc_cleanup</function>), planes 1594 (<function>drm_plane_cleanup</function>), encoders 1595 (<function>drm_encoder_cleanup</function>) and connectors 1596 (<function>drm_connector_cleanup</function>). Furthermore, connectors 1597 that have been added to sysfs must be removed by a call to 1598 <function>drm_sysfs_connector_remove</function> before calling 1599 <function>drm_connector_cleanup</function>. 1600 </para> 1601 <para> 1602 Connectors state change detection must be cleanup up with a call to 1603 <function>drm_kms_helper_poll_fini</function>. 1604 </para> 1605 </sect2> 1606 <sect2> 1607 <title>Output discovery and initialization example</title> 1608 <programlisting><![CDATA[ 1609void intel_crt_init(struct drm_device *dev) 1610{ 1611 struct drm_connector *connector; 1612 struct intel_output *intel_output; 1613 1614 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL); 1615 if (!intel_output) 1616 return; 1617 1618 connector = &intel_output->base; 1619 drm_connector_init(dev, &intel_output->base, 1620 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA); 1621 1622 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs, 1623 DRM_MODE_ENCODER_DAC); 1624 1625 drm_mode_connector_attach_encoder(&intel_output->base, 1626 &intel_output->enc); 1627 1628 /* Set up the DDC bus. */ 1629 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A"); 1630 if (!intel_output->ddc_bus) { 1631 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration " 1632 "failed.\n"); 1633 return; 1634 } 1635 1636 intel_output->type = INTEL_OUTPUT_ANALOG; 1637 connector->interlace_allowed = 0; 1638 connector->doublescan_allowed = 0; 1639 1640 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs); 1641 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs); 1642 1643 drm_sysfs_connector_add(connector); 1644}]]></programlisting> 1645 <para> 1646 In the example above (taken from the i915 driver), a CRTC, connector and 1647 encoder combination is created. A device-specific i2c bus is also 1648 created for fetching EDID data and performing monitor detection. Once 1649 the process is complete, the new connector is registered with sysfs to 1650 make its properties available to applications. 1651 </para> 1652 </sect2> 1653 <sect2> 1654 <title>KMS API Functions</title> 1655!Edrivers/gpu/drm/drm_crtc.c 1656 </sect2> 1657 </sect1> 1658 1659 <!-- Internals: kms helper functions --> 1660 1661 <sect1> 1662 <title>Mode Setting Helper Functions</title> 1663 <para> 1664 The CRTC, encoder and connector functions provided by the drivers 1665 implement the DRM API. They're called by the DRM core and ioctl handlers 1666 to handle device state changes and configuration request. As implementing 1667 those functions often requires logic not specific to drivers, mid-layer 1668 helper functions are available to avoid duplicating boilerplate code. 1669 </para> 1670 <para> 1671 The DRM core contains one mid-layer implementation. The mid-layer provides 1672 implementations of several CRTC, encoder and connector functions (called 1673 from the top of the mid-layer) that pre-process requests and call 1674 lower-level functions provided by the driver (at the bottom of the 1675 mid-layer). For instance, the 1676 <function>drm_crtc_helper_set_config</function> function can be used to 1677 fill the struct <structname>drm_crtc_funcs</structname> 1678 <structfield>set_config</structfield> field. When called, it will split 1679 the <methodname>set_config</methodname> operation in smaller, simpler 1680 operations and call the driver to handle them. 1681 </para> 1682 <para> 1683 To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>, 1684 <function>drm_encoder_helper_add</function> and 1685 <function>drm_connector_helper_add</function> functions to install their 1686 mid-layer bottom operations handlers, and fill the 1687 <structname>drm_crtc_funcs</structname>, 1688 <structname>drm_encoder_funcs</structname> and 1689 <structname>drm_connector_funcs</structname> structures with pointers to 1690 the mid-layer top API functions. Installing the mid-layer bottom operation 1691 handlers is best done right after registering the corresponding KMS object. 1692 </para> 1693 <para> 1694 The mid-layer is not split between CRTC, encoder and connector operations. 1695 To use it, a driver must provide bottom functions for all of the three KMS 1696 entities. 1697 </para> 1698 <sect2> 1699 <title>Helper Functions</title> 1700 <itemizedlist> 1701 <listitem> 1702 <synopsis>int drm_crtc_helper_set_config(struct drm_mode_set *set);</synopsis> 1703 <para> 1704 The <function>drm_crtc_helper_set_config</function> helper function 1705 is a CRTC <methodname>set_config</methodname> implementation. It 1706 first tries to locate the best encoder for each connector by calling 1707 the connector <methodname>best_encoder</methodname> helper 1708 operation. 1709 </para> 1710 <para> 1711 After locating the appropriate encoders, the helper function will 1712 call the <methodname>mode_fixup</methodname> encoder and CRTC helper 1713 operations to adjust the requested mode, or reject it completely in 1714 which case an error will be returned to the application. If the new 1715 configuration after mode adjustment is identical to the current 1716 configuration the helper function will return without performing any 1717 other operation. 1718 </para> 1719 <para> 1720 If the adjusted mode is identical to the current mode but changes to 1721 the frame buffer need to be applied, the 1722 <function>drm_crtc_helper_set_config</function> function will call 1723 the CRTC <methodname>mode_set_base</methodname> helper operation. If 1724 the adjusted mode differs from the current mode, or if the 1725 <methodname>mode_set_base</methodname> helper operation is not 1726 provided, the helper function performs a full mode set sequence by 1727 calling the <methodname>prepare</methodname>, 1728 <methodname>mode_set</methodname> and 1729 <methodname>commit</methodname> CRTC and encoder helper operations, 1730 in that order. 1731 </para> 1732 </listitem> 1733 <listitem> 1734 <synopsis>void drm_helper_connector_dpms(struct drm_connector *connector, int mode);</synopsis> 1735 <para> 1736 The <function>drm_helper_connector_dpms</function> helper function 1737 is a connector <methodname>dpms</methodname> implementation that 1738 tracks power state of connectors. To use the function, drivers must 1739 provide <methodname>dpms</methodname> helper operations for CRTCs 1740 and encoders to apply the DPMS state to the device. 1741 </para> 1742 <para> 1743 The mid-layer doesn't track the power state of CRTCs and encoders. 1744 The <methodname>dpms</methodname> helper operations can thus be 1745 called with a mode identical to the currently active mode. 1746 </para> 1747 </listitem> 1748 <listitem> 1749 <synopsis>int drm_helper_probe_single_connector_modes(struct drm_connector *connector, 1750 uint32_t maxX, uint32_t maxY);</synopsis> 1751 <para> 1752 The <function>drm_helper_probe_single_connector_modes</function> helper 1753 function is a connector <methodname>fill_modes</methodname> 1754 implementation that updates the connection status for the connector 1755 and then retrieves a list of modes by calling the connector 1756 <methodname>get_modes</methodname> helper operation. 1757 </para> 1758 <para> 1759 The function filters out modes larger than 1760 <parameter>max_width</parameter> and <parameter>max_height</parameter> 1761 if specified. It then calls the connector 1762 <methodname>mode_valid</methodname> helper operation for each mode in 1763 the probed list to check whether the mode is valid for the connector. 1764 </para> 1765 </listitem> 1766 </itemizedlist> 1767 </sect2> 1768 <sect2> 1769 <title>CRTC Helper Operations</title> 1770 <itemizedlist> 1771 <listitem id="drm-helper-crtc-mode-fixup"> 1772 <synopsis>bool (*mode_fixup)(struct drm_crtc *crtc, 1773 const struct drm_display_mode *mode, 1774 struct drm_display_mode *adjusted_mode);</synopsis> 1775 <para> 1776 Let CRTCs adjust the requested mode or reject it completely. This 1777 operation returns true if the mode is accepted (possibly after being 1778 adjusted) or false if it is rejected. 1779 </para> 1780 <para> 1781 The <methodname>mode_fixup</methodname> operation should reject the 1782 mode if it can't reasonably use it. The definition of "reasonable" 1783 is currently fuzzy in this context. One possible behaviour would be 1784 to set the adjusted mode to the panel timings when a fixed-mode 1785 panel is used with hardware capable of scaling. Another behaviour 1786 would be to accept any input mode and adjust it to the closest mode 1787 supported by the hardware (FIXME: This needs to be clarified). 1788 </para> 1789 </listitem> 1790 <listitem> 1791 <synopsis>int (*mode_set_base)(struct drm_crtc *crtc, int x, int y, 1792 struct drm_framebuffer *old_fb)</synopsis> 1793 <para> 1794 Move the CRTC on the current frame buffer (stored in 1795 <literal>crtc->fb</literal>) to position (x,y). Any of the frame 1796 buffer, x position or y position may have been modified. 1797 </para> 1798 <para> 1799 This helper operation is optional. If not provided, the 1800 <function>drm_crtc_helper_set_config</function> function will fall 1801 back to the <methodname>mode_set</methodname> helper operation. 1802 </para> 1803 <note><para> 1804 FIXME: Why are x and y passed as arguments, as they can be accessed 1805 through <literal>crtc->x</literal> and 1806 <literal>crtc->y</literal>? 1807 </para></note> 1808 </listitem> 1809 <listitem> 1810 <synopsis>void (*prepare)(struct drm_crtc *crtc);</synopsis> 1811 <para> 1812 Prepare the CRTC for mode setting. This operation is called after 1813 validating the requested mode. Drivers use it to perform 1814 device-specific operations required before setting the new mode. 1815 </para> 1816 </listitem> 1817 <listitem> 1818 <synopsis>int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode, 1819 struct drm_display_mode *adjusted_mode, int x, int y, 1820 struct drm_framebuffer *old_fb);</synopsis> 1821 <para> 1822 Set a new mode, position and frame buffer. Depending on the device 1823 requirements, the mode can be stored internally by the driver and 1824 applied in the <methodname>commit</methodname> operation, or 1825 programmed to the hardware immediately. 1826 </para> 1827 <para> 1828 The <methodname>mode_set</methodname> operation returns 0 on success 1829 or a negative error code if an error occurs. 1830 </para> 1831 </listitem> 1832 <listitem> 1833 <synopsis>void (*commit)(struct drm_crtc *crtc);</synopsis> 1834 <para> 1835 Commit a mode. This operation is called after setting the new mode. 1836 Upon return the device must use the new mode and be fully 1837 operational. 1838 </para> 1839 </listitem> 1840 </itemizedlist> 1841 </sect2> 1842 <sect2> 1843 <title>Encoder Helper Operations</title> 1844 <itemizedlist> 1845 <listitem> 1846 <synopsis>bool (*mode_fixup)(struct drm_encoder *encoder, 1847 const struct drm_display_mode *mode, 1848 struct drm_display_mode *adjusted_mode);</synopsis> 1849 <note><para> 1850 FIXME: The mode argument be const, but the i915 driver modifies 1851 mode->clock in <function>intel_dp_mode_fixup</function>. 1852 </para></note> 1853 <para> 1854 Let encoders adjust the requested mode or reject it completely. This 1855 operation returns true if the mode is accepted (possibly after being 1856 adjusted) or false if it is rejected. See the 1857 <link linkend="drm-helper-crtc-mode-fixup">mode_fixup CRTC helper 1858 operation</link> for an explanation of the allowed adjustments. 1859 </para> 1860 </listitem> 1861 <listitem> 1862 <synopsis>void (*prepare)(struct drm_encoder *encoder);</synopsis> 1863 <para> 1864 Prepare the encoder for mode setting. This operation is called after 1865 validating the requested mode. Drivers use it to perform 1866 device-specific operations required before setting the new mode. 1867 </para> 1868 </listitem> 1869 <listitem> 1870 <synopsis>void (*mode_set)(struct drm_encoder *encoder, 1871 struct drm_display_mode *mode, 1872 struct drm_display_mode *adjusted_mode);</synopsis> 1873 <para> 1874 Set a new mode. Depending on the device requirements, the mode can 1875 be stored internally by the driver and applied in the 1876 <methodname>commit</methodname> operation, or programmed to the 1877 hardware immediately. 1878 </para> 1879 </listitem> 1880 <listitem> 1881 <synopsis>void (*commit)(struct drm_encoder *encoder);</synopsis> 1882 <para> 1883 Commit a mode. This operation is called after setting the new mode. 1884 Upon return the device must use the new mode and be fully 1885 operational. 1886 </para> 1887 </listitem> 1888 </itemizedlist> 1889 </sect2> 1890 <sect2> 1891 <title>Connector Helper Operations</title> 1892 <itemizedlist> 1893 <listitem> 1894 <synopsis>struct drm_encoder *(*best_encoder)(struct drm_connector *connector);</synopsis> 1895 <para> 1896 Return a pointer to the best encoder for the connecter. Device that 1897 map connectors to encoders 1:1 simply return the pointer to the 1898 associated encoder. This operation is mandatory. 1899 </para> 1900 </listitem> 1901 <listitem> 1902 <synopsis>int (*get_modes)(struct drm_connector *connector);</synopsis> 1903 <para> 1904 Fill the connector's <structfield>probed_modes</structfield> list 1905 by parsing EDID data with <function>drm_add_edid_modes</function> or 1906 calling <function>drm_mode_probed_add</function> directly for every 1907 supported mode and return the number of modes it has detected. This 1908 operation is mandatory. 1909 </para> 1910 <para> 1911 When adding modes manually the driver creates each mode with a call to 1912 <function>drm_mode_create</function> and must fill the following fields. 1913 <itemizedlist> 1914 <listitem> 1915 <synopsis>__u32 type;</synopsis> 1916 <para> 1917 Mode type bitmask, a combination of 1918 <variablelist> 1919 <varlistentry> 1920 <term>DRM_MODE_TYPE_BUILTIN</term> 1921 <listitem><para>not used?</para></listitem> 1922 </varlistentry> 1923 <varlistentry> 1924 <term>DRM_MODE_TYPE_CLOCK_C</term> 1925 <listitem><para>not used?</para></listitem> 1926 </varlistentry> 1927 <varlistentry> 1928 <term>DRM_MODE_TYPE_CRTC_C</term> 1929 <listitem><para>not used?</para></listitem> 1930 </varlistentry> 1931 <varlistentry> 1932 <term> 1933 DRM_MODE_TYPE_PREFERRED - The preferred mode for the connector 1934 </term> 1935 <listitem> 1936 <para>not used?</para> 1937 </listitem> 1938 </varlistentry> 1939 <varlistentry> 1940 <term>DRM_MODE_TYPE_DEFAULT</term> 1941 <listitem><para>not used?</para></listitem> 1942 </varlistentry> 1943 <varlistentry> 1944 <term>DRM_MODE_TYPE_USERDEF</term> 1945 <listitem><para>not used?</para></listitem> 1946 </varlistentry> 1947 <varlistentry> 1948 <term>DRM_MODE_TYPE_DRIVER</term> 1949 <listitem> 1950 <para> 1951 The mode has been created by the driver (as opposed to 1952 to user-created modes). 1953 </para> 1954 </listitem> 1955 </varlistentry> 1956 </variablelist> 1957 Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they 1958 create, and set the DRM_MODE_TYPE_PREFERRED bit for the preferred 1959 mode. 1960 </para> 1961 </listitem> 1962 <listitem> 1963 <synopsis>__u32 clock;</synopsis> 1964 <para>Pixel clock frequency in kHz unit</para> 1965 </listitem> 1966 <listitem> 1967 <synopsis>__u16 hdisplay, hsync_start, hsync_end, htotal; 1968 __u16 vdisplay, vsync_start, vsync_end, vtotal;</synopsis> 1969 <para>Horizontal and vertical timing information</para> 1970 <screen><![CDATA[ 1971 Active Front Sync Back 1972 Region Porch Porch 1973 <-----------------------><----------------><-------------><--------------> 1974 1975 //////////////////////| 1976 ////////////////////// | 1977 ////////////////////// |.................. ................ 1978 _______________ 1979 1980 <----- [hv]display -----> 1981 <------------- [hv]sync_start ------------> 1982 <--------------------- [hv]sync_end ---------------------> 1983 <-------------------------------- [hv]total -----------------------------> 1984]]></screen> 1985 </listitem> 1986 <listitem> 1987 <synopsis>__u16 hskew; 1988 __u16 vscan;</synopsis> 1989 <para>Unknown</para> 1990 </listitem> 1991 <listitem> 1992 <synopsis>__u32 flags;</synopsis> 1993 <para> 1994 Mode flags, a combination of 1995 <variablelist> 1996 <varlistentry> 1997 <term>DRM_MODE_FLAG_PHSYNC</term> 1998 <listitem><para> 1999 Horizontal sync is active high 2000 </para></listitem> 2001 </varlistentry> 2002 <varlistentry> 2003 <term>DRM_MODE_FLAG_NHSYNC</term> 2004 <listitem><para> 2005 Horizontal sync is active low 2006 </para></listitem> 2007 </varlistentry> 2008 <varlistentry> 2009 <term>DRM_MODE_FLAG_PVSYNC</term> 2010 <listitem><para> 2011 Vertical sync is active high 2012 </para></listitem> 2013 </varlistentry> 2014 <varlistentry> 2015 <term>DRM_MODE_FLAG_NVSYNC</term> 2016 <listitem><para> 2017 Vertical sync is active low 2018 </para></listitem> 2019 </varlistentry> 2020 <varlistentry> 2021 <term>DRM_MODE_FLAG_INTERLACE</term> 2022 <listitem><para> 2023 Mode is interlaced 2024 </para></listitem> 2025 </varlistentry> 2026 <varlistentry> 2027 <term>DRM_MODE_FLAG_DBLSCAN</term> 2028 <listitem><para> 2029 Mode uses doublescan 2030 </para></listitem> 2031 </varlistentry> 2032 <varlistentry> 2033 <term>DRM_MODE_FLAG_CSYNC</term> 2034 <listitem><para> 2035 Mode uses composite sync 2036 </para></listitem> 2037 </varlistentry> 2038 <varlistentry> 2039 <term>DRM_MODE_FLAG_PCSYNC</term> 2040 <listitem><para> 2041 Composite sync is active high 2042 </para></listitem> 2043 </varlistentry> 2044 <varlistentry> 2045 <term>DRM_MODE_FLAG_NCSYNC</term> 2046 <listitem><para> 2047 Composite sync is active low 2048 </para></listitem> 2049 </varlistentry> 2050 <varlistentry> 2051 <term>DRM_MODE_FLAG_HSKEW</term> 2052 <listitem><para> 2053 hskew provided (not used?) 2054 </para></listitem> 2055 </varlistentry> 2056 <varlistentry> 2057 <term>DRM_MODE_FLAG_BCAST</term> 2058 <listitem><para> 2059 not used? 2060 </para></listitem> 2061 </varlistentry> 2062 <varlistentry> 2063 <term>DRM_MODE_FLAG_PIXMUX</term> 2064 <listitem><para> 2065 not used? 2066 </para></listitem> 2067 </varlistentry> 2068 <varlistentry> 2069 <term>DRM_MODE_FLAG_DBLCLK</term> 2070 <listitem><para> 2071 not used? 2072 </para></listitem> 2073 </varlistentry> 2074 <varlistentry> 2075 <term>DRM_MODE_FLAG_CLKDIV2</term> 2076 <listitem><para> 2077 ? 2078 </para></listitem> 2079 </varlistentry> 2080 </variablelist> 2081 </para> 2082 <para> 2083 Note that modes marked with the INTERLACE or DBLSCAN flags will be 2084 filtered out by 2085 <function>drm_helper_probe_single_connector_modes</function> if 2086 the connector's <structfield>interlace_allowed</structfield> or 2087 <structfield>doublescan_allowed</structfield> field is set to 0. 2088 </para> 2089 </listitem> 2090 <listitem> 2091 <synopsis>char name[DRM_DISPLAY_MODE_LEN];</synopsis> 2092 <para> 2093 Mode name. The driver must call 2094 <function>drm_mode_set_name</function> to fill the mode name from 2095 <structfield>hdisplay</structfield>, 2096 <structfield>vdisplay</structfield> and interlace flag after 2097 filling the corresponding fields. 2098 </para> 2099 </listitem> 2100 </itemizedlist> 2101 </para> 2102 <para> 2103 The <structfield>vrefresh</structfield> value is computed by 2104 <function>drm_helper_probe_single_connector_modes</function>. 2105 </para> 2106 <para> 2107 When parsing EDID data, <function>drm_add_edid_modes</function> fill the 2108 connector <structfield>display_info</structfield> 2109 <structfield>width_mm</structfield> and 2110 <structfield>height_mm</structfield> fields. When creating modes 2111 manually the <methodname>get_modes</methodname> helper operation must 2112 set the <structfield>display_info</structfield> 2113 <structfield>width_mm</structfield> and 2114 <structfield>height_mm</structfield> fields if they haven't been set 2115 already (for instance at initilization time when a fixed-size panel is 2116 attached to the connector). The mode <structfield>width_mm</structfield> 2117 and <structfield>height_mm</structfield> fields are only used internally 2118 during EDID parsing and should not be set when creating modes manually. 2119 </para> 2120 </listitem> 2121 <listitem> 2122 <synopsis>int (*mode_valid)(struct drm_connector *connector, 2123 struct drm_display_mode *mode);</synopsis> 2124 <para> 2125 Verify whether a mode is valid for the connector. Return MODE_OK for 2126 supported modes and one of the enum drm_mode_status values (MODE_*) 2127 for unsupported modes. This operation is mandatory. 2128 </para> 2129 <para> 2130 As the mode rejection reason is currently not used beside for 2131 immediately removing the unsupported mode, an implementation can 2132 return MODE_BAD regardless of the exact reason why the mode is not 2133 valid. 2134 </para> 2135 <note><para> 2136 Note that the <methodname>mode_valid</methodname> helper operation is 2137 only called for modes detected by the device, and 2138 <emphasis>not</emphasis> for modes set by the user through the CRTC 2139 <methodname>set_config</methodname> operation. 2140 </para></note> 2141 </listitem> 2142 </itemizedlist> 2143 </sect2> 2144 <sect2> 2145 <title>Modeset Helper Functions Reference</title> 2146!Edrivers/gpu/drm/drm_crtc_helper.c 2147 </sect2> 2148 <sect2> 2149 <title>fbdev Helper Functions Reference</title> 2150!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers 2151!Edrivers/gpu/drm/drm_fb_helper.c 2152!Iinclude/drm/drm_fb_helper.h 2153 </sect2> 2154 <sect2> 2155 <title>Display Port Helper Functions Reference</title> 2156!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers 2157!Iinclude/drm/drm_dp_helper.h 2158!Edrivers/gpu/drm/drm_dp_helper.c 2159 </sect2> 2160 <sect2> 2161 <title>EDID Helper Functions Reference</title> 2162!Edrivers/gpu/drm/drm_edid.c 2163 </sect2> 2164 </sect1> 2165 2166 <!-- Internals: vertical blanking --> 2167 2168 <sect1 id="drm-vertical-blank"> 2169 <title>Vertical Blanking</title> 2170 <para> 2171 Vertical blanking plays a major role in graphics rendering. To achieve 2172 tear-free display, users must synchronize page flips and/or rendering to 2173 vertical blanking. The DRM API offers ioctls to perform page flips 2174 synchronized to vertical blanking and wait for vertical blanking. 2175 </para> 2176 <para> 2177 The DRM core handles most of the vertical blanking management logic, which 2178 involves filtering out spurious interrupts, keeping race-free blanking 2179 counters, coping with counter wrap-around and resets and keeping use 2180 counts. It relies on the driver to generate vertical blanking interrupts 2181 and optionally provide a hardware vertical blanking counter. Drivers must 2182 implement the following operations. 2183 </para> 2184 <itemizedlist> 2185 <listitem> 2186 <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc); 2187void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis> 2188 <para> 2189 Enable or disable vertical blanking interrupts for the given CRTC. 2190 </para> 2191 </listitem> 2192 <listitem> 2193 <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis> 2194 <para> 2195 Retrieve the value of the vertical blanking counter for the given 2196 CRTC. If the hardware maintains a vertical blanking counter its value 2197 should be returned. Otherwise drivers can use the 2198 <function>drm_vblank_count</function> helper function to handle this 2199 operation. 2200 </para> 2201 </listitem> 2202 </itemizedlist> 2203 <para> 2204 Drivers must initialize the vertical blanking handling core with a call to 2205 <function>drm_vblank_init</function> in their 2206 <methodname>load</methodname> operation. The function will set the struct 2207 <structname>drm_device</structname> 2208 <structfield>vblank_disable_allowed</structfield> field to 0. This will 2209 keep vertical blanking interrupts enabled permanently until the first mode 2210 set operation, where <structfield>vblank_disable_allowed</structfield> is 2211 set to 1. The reason behind this is not clear. Drivers can set the field 2212 to 1 after <function>calling drm_vblank_init</function> to make vertical 2213 blanking interrupts dynamically managed from the beginning. 2214 </para> 2215 <para> 2216 Vertical blanking interrupts can be enabled by the DRM core or by drivers 2217 themselves (for instance to handle page flipping operations). The DRM core 2218 maintains a vertical blanking use count to ensure that the interrupts are 2219 not disabled while a user still needs them. To increment the use count, 2220 drivers call <function>drm_vblank_get</function>. Upon return vertical 2221 blanking interrupts are guaranteed to be enabled. 2222 </para> 2223 <para> 2224 To decrement the use count drivers call 2225 <function>drm_vblank_put</function>. Only when the use count drops to zero 2226 will the DRM core disable the vertical blanking interrupts after a delay 2227 by scheduling a timer. The delay is accessible through the vblankoffdelay 2228 module parameter or the <varname>drm_vblank_offdelay</varname> global 2229 variable and expressed in milliseconds. Its default value is 5000 ms. 2230 </para> 2231 <para> 2232 When a vertical blanking interrupt occurs drivers only need to call the 2233 <function>drm_handle_vblank</function> function to account for the 2234 interrupt. 2235 </para> 2236 <para> 2237 Resources allocated by <function>drm_vblank_init</function> must be freed 2238 with a call to <function>drm_vblank_cleanup</function> in the driver 2239 <methodname>unload</methodname> operation handler. 2240 </para> 2241 </sect1> 2242 2243 <!-- Internals: open/close, file operations and ioctls --> 2244 2245 <sect1> 2246 <title>Open/Close, File Operations and IOCTLs</title> 2247 <sect2> 2248 <title>Open and Close</title> 2249 <synopsis>int (*firstopen) (struct drm_device *); 2250void (*lastclose) (struct drm_device *); 2251int (*open) (struct drm_device *, struct drm_file *); 2252void (*preclose) (struct drm_device *, struct drm_file *); 2253void (*postclose) (struct drm_device *, struct drm_file *);</synopsis> 2254 <abstract>Open and close handlers. None of those methods are mandatory. 2255 </abstract> 2256 <para> 2257 The <methodname>firstopen</methodname> method is called by the DRM core 2258 when an application opens a device that has no other opened file handle. 2259 Similarly the <methodname>lastclose</methodname> method is called when 2260 the last application holding a file handle opened on the device closes 2261 it. Both methods are mostly used for UMS (User Mode Setting) drivers to 2262 acquire and release device resources which should be done in the 2263 <methodname>load</methodname> and <methodname>unload</methodname> 2264 methods for KMS drivers. 2265 </para> 2266 <para> 2267 Note that the <methodname>lastclose</methodname> method is also called 2268 at module unload time or, for hot-pluggable devices, when the device is 2269 unplugged. The <methodname>firstopen</methodname> and 2270 <methodname>lastclose</methodname> calls can thus be unbalanced. 2271 </para> 2272 <para> 2273 The <methodname>open</methodname> method is called every time the device 2274 is opened by an application. Drivers can allocate per-file private data 2275 in this method and store them in the struct 2276 <structname>drm_file</structname> <structfield>driver_priv</structfield> 2277 field. Note that the <methodname>open</methodname> method is called 2278 before <methodname>firstopen</methodname>. 2279 </para> 2280 <para> 2281 The close operation is split into <methodname>preclose</methodname> and 2282 <methodname>postclose</methodname> methods. Drivers must stop and 2283 cleanup all per-file operations in the <methodname>preclose</methodname> 2284 method. For instance pending vertical blanking and page flip events must 2285 be cancelled. No per-file operation is allowed on the file handle after 2286 returning from the <methodname>preclose</methodname> method. 2287 </para> 2288 <para> 2289 Finally the <methodname>postclose</methodname> method is called as the 2290 last step of the close operation, right before calling the 2291 <methodname>lastclose</methodname> method if no other open file handle 2292 exists for the device. Drivers that have allocated per-file private data 2293 in the <methodname>open</methodname> method should free it here. 2294 </para> 2295 <para> 2296 The <methodname>lastclose</methodname> method should restore CRTC and 2297 plane properties to default value, so that a subsequent open of the 2298 device will not inherit state from the previous user. 2299 </para> 2300 </sect2> 2301 <sect2> 2302 <title>File Operations</title> 2303 <synopsis>const struct file_operations *fops</synopsis> 2304 <abstract>File operations for the DRM device node.</abstract> 2305 <para> 2306 Drivers must define the file operations structure that forms the DRM 2307 userspace API entry point, even though most of those operations are 2308 implemented in the DRM core. The <methodname>open</methodname>, 2309 <methodname>release</methodname> and <methodname>ioctl</methodname> 2310 operations are handled by 2311 <programlisting> 2312 .owner = THIS_MODULE, 2313 .open = drm_open, 2314 .release = drm_release, 2315 .unlocked_ioctl = drm_ioctl, 2316 #ifdef CONFIG_COMPAT 2317 .compat_ioctl = drm_compat_ioctl, 2318 #endif 2319 </programlisting> 2320 </para> 2321 <para> 2322 Drivers that implement private ioctls that requires 32/64bit 2323 compatibility support must provide their own 2324 <methodname>compat_ioctl</methodname> handler that processes private 2325 ioctls and calls <function>drm_compat_ioctl</function> for core ioctls. 2326 </para> 2327 <para> 2328 The <methodname>read</methodname> and <methodname>poll</methodname> 2329 operations provide support for reading DRM events and polling them. They 2330 are implemented by 2331 <programlisting> 2332 .poll = drm_poll, 2333 .read = drm_read, 2334 .fasync = drm_fasync, 2335 .llseek = no_llseek, 2336 </programlisting> 2337 </para> 2338 <para> 2339 The memory mapping implementation varies depending on how the driver 2340 manages memory. Pre-GEM drivers will use <function>drm_mmap</function>, 2341 while GEM-aware drivers will use <function>drm_gem_mmap</function>. See 2342 <xref linkend="drm-gem"/>. 2343 <programlisting> 2344 .mmap = drm_gem_mmap, 2345 </programlisting> 2346 </para> 2347 <para> 2348 No other file operation is supported by the DRM API. 2349 </para> 2350 </sect2> 2351 <sect2> 2352 <title>IOCTLs</title> 2353 <synopsis>struct drm_ioctl_desc *ioctls; 2354int num_ioctls;</synopsis> 2355 <abstract>Driver-specific ioctls descriptors table.</abstract> 2356 <para> 2357 Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls 2358 descriptors table is indexed by the ioctl number offset from the base 2359 value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the 2360 table entries. 2361 </para> 2362 <para> 2363 <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting> 2364 <para> 2365 <parameter>ioctl</parameter> is the ioctl name. Drivers must define 2366 the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number 2367 offset from DRM_COMMAND_BASE and the ioctl number respectively. The 2368 first macro is private to the device while the second must be exposed 2369 to userspace in a public header. 2370 </para> 2371 <para> 2372 <parameter>func</parameter> is a pointer to the ioctl handler function 2373 compatible with the <type>drm_ioctl_t</type> type. 2374 <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data, 2375 struct drm_file *file_priv);</programlisting> 2376 </para> 2377 <para> 2378 <parameter>flags</parameter> is a bitmask combination of the following 2379 values. It restricts how the ioctl is allowed to be called. 2380 <itemizedlist> 2381 <listitem><para> 2382 DRM_AUTH - Only authenticated callers allowed 2383 </para></listitem> 2384 <listitem><para> 2385 DRM_MASTER - The ioctl can only be called on the master file 2386 handle 2387 </para></listitem> 2388 <listitem><para> 2389 DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed 2390 </para></listitem> 2391 <listitem><para> 2392 DRM_CONTROL_ALLOW - The ioctl can only be called on a control 2393 device 2394 </para></listitem> 2395 <listitem><para> 2396 DRM_UNLOCKED - The ioctl handler will be called without locking 2397 the DRM global mutex 2398 </para></listitem> 2399 </itemizedlist> 2400 </para> 2401 </para> 2402 </sect2> 2403 </sect1> 2404 2405 <sect1> 2406 <title>Command submission & fencing</title> 2407 <para> 2408 This should cover a few device-specific command submission 2409 implementations. 2410 </para> 2411 </sect1> 2412 2413 <!-- Internals: suspend/resume --> 2414 2415 <sect1> 2416 <title>Suspend/Resume</title> 2417 <para> 2418 The DRM core provides some suspend/resume code, but drivers wanting full 2419 suspend/resume support should provide save() and restore() functions. 2420 These are called at suspend, hibernate, or resume time, and should perform 2421 any state save or restore required by your device across suspend or 2422 hibernate states. 2423 </para> 2424 <synopsis>int (*suspend) (struct drm_device *, pm_message_t state); 2425int (*resume) (struct drm_device *);</synopsis> 2426 <para> 2427 Those are legacy suspend and resume methods. New driver should use the 2428 power management interface provided by their bus type (usually through 2429 the struct <structname>device_driver</structname> dev_pm_ops) and set 2430 these methods to NULL. 2431 </para> 2432 </sect1> 2433 2434 <sect1> 2435 <title>DMA services</title> 2436 <para> 2437 This should cover how DMA mapping etc. is supported by the core. 2438 These functions are deprecated and should not be used. 2439 </para> 2440 </sect1> 2441 </chapter> 2442 2443<!-- TODO 2444 2445- Add a glossary 2446- Document the struct_mutex catch-all lock 2447- Document connector properties 2448 2449- Why is the load method optional? 2450- What are drivers supposed to set the initial display state to, and how? 2451 Connector's DPMS states are not initialized and are thus equal to 2452 DRM_MODE_DPMS_ON. The fbcon compatibility layer calls 2453 drm_helper_disable_unused_functions(), which disables unused encoders and 2454 CRTCs, but doesn't touch the connectors' DPMS state, and 2455 drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers 2456 that don't implement (or just don't use) fbcon compatibility need to call 2457 those functions themselves? 2458- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset() 2459 around mode setting. Should this be done in the DRM core? 2460- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset() 2461 call and never set back to 0. It seems to be safe to permanently set it to 1 2462 in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as 2463 well. This should be investigated. 2464- crtc and connector .save and .restore operations are only used internally in 2465 drivers, should they be removed from the core? 2466- encoder mid-layer .save and .restore operations are only used internally in 2467 drivers, should they be removed from the core? 2468- encoder mid-layer .detect operation is only used internally in drivers, 2469 should it be removed from the core? 2470--> 2471 2472 <!-- External interfaces --> 2473 2474 <chapter id="drmExternals"> 2475 <title>Userland interfaces</title> 2476 <para> 2477 The DRM core exports several interfaces to applications, 2478 generally intended to be used through corresponding libdrm 2479 wrapper functions. In addition, drivers export device-specific 2480 interfaces for use by userspace drivers & device-aware 2481 applications through ioctls and sysfs files. 2482 </para> 2483 <para> 2484 External interfaces include: memory mapping, context management, 2485 DMA operations, AGP management, vblank control, fence 2486 management, memory management, and output management. 2487 </para> 2488 <para> 2489 Cover generic ioctls and sysfs layout here. We only need high-level 2490 info, since man pages should cover the rest. 2491 </para> 2492 2493 <!-- External: vblank handling --> 2494 2495 <sect1> 2496 <title>VBlank event handling</title> 2497 <para> 2498 The DRM core exposes two vertical blank related ioctls: 2499 <variablelist> 2500 <varlistentry> 2501 <term>DRM_IOCTL_WAIT_VBLANK</term> 2502 <listitem> 2503 <para> 2504 This takes a struct drm_wait_vblank structure as its argument, 2505 and it is used to block or request a signal when a specified 2506 vblank event occurs. 2507 </para> 2508 </listitem> 2509 </varlistentry> 2510 <varlistentry> 2511 <term>DRM_IOCTL_MODESET_CTL</term> 2512 <listitem> 2513 <para> 2514 This should be called by application level drivers before and 2515 after mode setting, since on many devices the vertical blank 2516 counter is reset at that time. Internally, the DRM snapshots 2517 the last vblank count when the ioctl is called with the 2518 _DRM_PRE_MODESET command, so that the counter won't go backwards 2519 (which is dealt with when _DRM_POST_MODESET is used). 2520 </para> 2521 </listitem> 2522 </varlistentry> 2523 </variablelist> 2524<!--!Edrivers/char/drm/drm_irq.c--> 2525 </para> 2526 </sect1> 2527 2528 </chapter> 2529 2530 <!-- API reference --> 2531 2532 <appendix id="drmDriverApi"> 2533 <title>DRM Driver API</title> 2534 <para> 2535 Include auto-generated API reference here (need to reference it 2536 from paragraphs above too). 2537 </para> 2538 </appendix> 2539 2540</book> 2541