1-------------------------------------------------------------------------------- 2+ ABSTRACT 3-------------------------------------------------------------------------------- 4 5This file documents the mmap() facility available with the PACKET 6socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for 7i) capture network traffic with utilities like tcpdump, ii) transmit network 8traffic, or any other that needs raw access to network interface. 9 10You can find the latest version of this document at: 11 http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap 12 13Howto can be found at: 14 http://wiki.gnu-log.net (packet_mmap) 15 16Please send your comments to 17 Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es> 18 Johann Baudy <johann.baudy@gnu-log.net> 19 20------------------------------------------------------------------------------- 21+ Why use PACKET_MMAP 22-------------------------------------------------------------------------------- 23 24In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very 25inefficient. It uses very limited buffers and requires one system call to 26capture each packet, it requires two if you want to get packet's timestamp 27(like libpcap always does). 28 29In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size 30configurable circular buffer mapped in user space that can be used to either 31send or receive packets. This way reading packets just needs to wait for them, 32most of the time there is no need to issue a single system call. Concerning 33transmission, multiple packets can be sent through one system call to get the 34highest bandwidth. By using a shared buffer between the kernel and the user 35also has the benefit of minimizing packet copies. 36 37It's fine to use PACKET_MMAP to improve the performance of the capture and 38transmission process, but it isn't everything. At least, if you are capturing 39at high speeds (this is relative to the cpu speed), you should check if the 40device driver of your network interface card supports some sort of interrupt 41load mitigation or (even better) if it supports NAPI, also make sure it is 42enabled. For transmission, check the MTU (Maximum Transmission Unit) used and 43supported by devices of your network. CPU IRQ pinning of your network interface 44card can also be an advantage. 45 46-------------------------------------------------------------------------------- 47+ How to use mmap() to improve capture process 48-------------------------------------------------------------------------------- 49 50From the user standpoint, you should use the higher level libpcap library, which 51is a de facto standard, portable across nearly all operating systems 52including Win32. 53 54Said that, at time of this writing, official libpcap 0.8.1 is out and doesn't include 55support for PACKET_MMAP, and also probably the libpcap included in your distribution. 56 57I'm aware of two implementations of PACKET_MMAP in libpcap: 58 59 http://wiki.ipxwarzone.com/ (by Simon Patarin, based on libpcap 0.6.2) 60 http://public.lanl.gov/cpw/ (by Phil Wood, based on lastest libpcap) 61 62The rest of this document is intended for people who want to understand 63the low level details or want to improve libpcap by including PACKET_MMAP 64support. 65 66-------------------------------------------------------------------------------- 67+ How to use mmap() directly to improve capture process 68-------------------------------------------------------------------------------- 69 70From the system calls stand point, the use of PACKET_MMAP involves 71the following process: 72 73 74[setup] socket() -------> creation of the capture socket 75 setsockopt() ---> allocation of the circular buffer (ring) 76 option: PACKET_RX_RING 77 mmap() ---------> mapping of the allocated buffer to the 78 user process 79 80[capture] poll() ---------> to wait for incoming packets 81 82[shutdown] close() --------> destruction of the capture socket and 83 deallocation of all associated 84 resources. 85 86 87socket creation and destruction is straight forward, and is done 88the same way with or without PACKET_MMAP: 89 90 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL)); 91 92where mode is SOCK_RAW for the raw interface were link level 93information can be captured or SOCK_DGRAM for the cooked 94interface where link level information capture is not 95supported and a link level pseudo-header is provided 96by the kernel. 97 98The destruction of the socket and all associated resources 99is done by a simple call to close(fd). 100 101Next I will describe PACKET_MMAP settings and its constraints, 102also the mapping of the circular buffer in the user process and 103the use of this buffer. 104 105-------------------------------------------------------------------------------- 106+ How to use mmap() directly to improve transmission process 107-------------------------------------------------------------------------------- 108Transmission process is similar to capture as shown below. 109 110[setup] socket() -------> creation of the transmission socket 111 setsockopt() ---> allocation of the circular buffer (ring) 112 option: PACKET_TX_RING 113 bind() ---------> bind transmission socket with a network interface 114 mmap() ---------> mapping of the allocated buffer to the 115 user process 116 117[transmission] poll() ---------> wait for free packets (optional) 118 send() ---------> send all packets that are set as ready in 119 the ring 120 The flag MSG_DONTWAIT can be used to return 121 before end of transfer. 122 123[shutdown] close() --------> destruction of the transmission socket and 124 deallocation of all associated resources. 125 126Binding the socket to your network interface is mandatory (with zero copy) to 127know the header size of frames used in the circular buffer. 128 129As capture, each frame contains two parts: 130 131 -------------------- 132| struct tpacket_hdr | Header. It contains the status of 133| | of this frame 134|--------------------| 135| data buffer | 136. . Data that will be sent over the network interface. 137. . 138 -------------------- 139 140 bind() associates the socket to your network interface thanks to 141 sll_ifindex parameter of struct sockaddr_ll. 142 143 Initialization example: 144 145 struct sockaddr_ll my_addr; 146 struct ifreq s_ifr; 147 ... 148 149 strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name)); 150 151 /* get interface index of eth0 */ 152 ioctl(this->socket, SIOCGIFINDEX, &s_ifr); 153 154 /* fill sockaddr_ll struct to prepare binding */ 155 my_addr.sll_family = AF_PACKET; 156 my_addr.sll_protocol = htons(ETH_P_ALL); 157 my_addr.sll_ifindex = s_ifr.ifr_ifindex; 158 159 /* bind socket to eth0 */ 160 bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll)); 161 162 A complete tutorial is available at: http://wiki.gnu-log.net/ 163 164By default, the user should put data at : 165 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll) 166 167So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW), 168the beginning of the user data will be at : 169 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr)) 170 171If you wish to put user data at a custom offset from the beginning of 172the frame (for payload alignment with SOCK_RAW mode for instance) you 173can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order 174to make this work it must be enabled previously with setsockopt() 175and the PACKET_TX_HAS_OFF option. 176 177-------------------------------------------------------------------------------- 178+ PACKET_MMAP settings 179-------------------------------------------------------------------------------- 180 181To setup PACKET_MMAP from user level code is done with a call like 182 183 - Capture process 184 setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req)) 185 - Transmission process 186 setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req)) 187 188The most significant argument in the previous call is the req parameter, 189this parameter must to have the following structure: 190 191 struct tpacket_req 192 { 193 unsigned int tp_block_size; /* Minimal size of contiguous block */ 194 unsigned int tp_block_nr; /* Number of blocks */ 195 unsigned int tp_frame_size; /* Size of frame */ 196 unsigned int tp_frame_nr; /* Total number of frames */ 197 }; 198 199This structure is defined in /usr/include/linux/if_packet.h and establishes a 200circular buffer (ring) of unswappable memory. 201Being mapped in the capture process allows reading the captured frames and 202related meta-information like timestamps without requiring a system call. 203 204Frames are grouped in blocks. Each block is a physically contiguous 205region of memory and holds tp_block_size/tp_frame_size frames. The total number 206of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because 207 208 frames_per_block = tp_block_size/tp_frame_size 209 210indeed, packet_set_ring checks that the following condition is true 211 212 frames_per_block * tp_block_nr == tp_frame_nr 213 214Lets see an example, with the following values: 215 216 tp_block_size= 4096 217 tp_frame_size= 2048 218 tp_block_nr = 4 219 tp_frame_nr = 8 220 221we will get the following buffer structure: 222 223 block #1 block #2 224+---------+---------+ +---------+---------+ 225| frame 1 | frame 2 | | frame 3 | frame 4 | 226+---------+---------+ +---------+---------+ 227 228 block #3 block #4 229+---------+---------+ +---------+---------+ 230| frame 5 | frame 6 | | frame 7 | frame 8 | 231+---------+---------+ +---------+---------+ 232 233A frame can be of any size with the only condition it can fit in a block. A block 234can only hold an integer number of frames, or in other words, a frame cannot 235be spawned across two blocks, so there are some details you have to take into 236account when choosing the frame_size. See "Mapping and use of the circular 237buffer (ring)". 238 239-------------------------------------------------------------------------------- 240+ PACKET_MMAP setting constraints 241-------------------------------------------------------------------------------- 242 243In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch), 244the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or 24516384 in a 64 bit architecture. For information on these kernel versions 246see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt 247 248 Block size limit 249------------------ 250 251As stated earlier, each block is a contiguous physical region of memory. These 252memory regions are allocated with calls to the __get_free_pages() function. As 253the name indicates, this function allocates pages of memory, and the second 254argument is "order" or a power of two number of pages, that is 255(for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes, 256order=2 ==> 16384 bytes, etc. The maximum size of a 257region allocated by __get_free_pages is determined by the MAX_ORDER macro. More 258precisely the limit can be calculated as: 259 260 PAGE_SIZE << MAX_ORDER 261 262 In a i386 architecture PAGE_SIZE is 4096 bytes 263 In a 2.4/i386 kernel MAX_ORDER is 10 264 In a 2.6/i386 kernel MAX_ORDER is 11 265 266So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel 267respectively, with an i386 architecture. 268 269User space programs can include /usr/include/sys/user.h and 270/usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations. 271 272The pagesize can also be determined dynamically with the getpagesize (2) 273system call. 274 275 Block number limit 276-------------------- 277 278To understand the constraints of PACKET_MMAP, we have to see the structure 279used to hold the pointers to each block. 280 281Currently, this structure is a dynamically allocated vector with kmalloc 282called pg_vec, its size limits the number of blocks that can be allocated. 283 284 +---+---+---+---+ 285 | x | x | x | x | 286 +---+---+---+---+ 287 | | | | 288 | | | v 289 | | v block #4 290 | v block #3 291 v block #2 292 block #1 293 294kmalloc allocates any number of bytes of physically contiguous memory from 295a pool of pre-determined sizes. This pool of memory is maintained by the slab 296allocator which is at the end the responsible for doing the allocation and 297hence which imposes the maximum memory that kmalloc can allocate. 298 299In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The 300predetermined sizes that kmalloc uses can be checked in the "size-<bytes>" 301entries of /proc/slabinfo 302 303In a 32 bit architecture, pointers are 4 bytes long, so the total number of 304pointers to blocks is 305 306 131072/4 = 32768 blocks 307 308 PACKET_MMAP buffer size calculator 309------------------------------------ 310 311Definitions: 312 313<size-max> : is the maximum size of allocable with kmalloc (see /proc/slabinfo) 314<pointer size>: depends on the architecture -- sizeof(void *) 315<page size> : depends on the architecture -- PAGE_SIZE or getpagesize (2) 316<max-order> : is the value defined with MAX_ORDER 317<frame size> : it's an upper bound of frame's capture size (more on this later) 318 319from these definitions we will derive 320 321 <block number> = <size-max>/<pointer size> 322 <block size> = <pagesize> << <max-order> 323 324so, the max buffer size is 325 326 <block number> * <block size> 327 328and, the number of frames be 329 330 <block number> * <block size> / <frame size> 331 332Suppose the following parameters, which apply for 2.6 kernel and an 333i386 architecture: 334 335 <size-max> = 131072 bytes 336 <pointer size> = 4 bytes 337 <pagesize> = 4096 bytes 338 <max-order> = 11 339 340and a value for <frame size> of 2048 bytes. These parameters will yield 341 342 <block number> = 131072/4 = 32768 blocks 343 <block size> = 4096 << 11 = 8 MiB. 344 345and hence the buffer will have a 262144 MiB size. So it can hold 346262144 MiB / 2048 bytes = 134217728 frames 347 348Actually, this buffer size is not possible with an i386 architecture. 349Remember that the memory is allocated in kernel space, in the case of 350an i386 kernel's memory size is limited to 1GiB. 351 352All memory allocations are not freed until the socket is closed. The memory 353allocations are done with GFP_KERNEL priority, this basically means that 354the allocation can wait and swap other process' memory in order to allocate 355the necessary memory, so normally limits can be reached. 356 357 Other constraints 358------------------- 359 360If you check the source code you will see that what I draw here as a frame 361is not only the link level frame. At the beginning of each frame there is a 362header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame 363meta information like timestamp. So what we draw here a frame it's really 364the following (from include/linux/if_packet.h): 365 366/* 367 Frame structure: 368 369 - Start. Frame must be aligned to TPACKET_ALIGNMENT=16 370 - struct tpacket_hdr 371 - pad to TPACKET_ALIGNMENT=16 372 - struct sockaddr_ll 373 - Gap, chosen so that packet data (Start+tp_net) aligns to 374 TPACKET_ALIGNMENT=16 375 - Start+tp_mac: [ Optional MAC header ] 376 - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16. 377 - Pad to align to TPACKET_ALIGNMENT=16 378 */ 379 380 The following are conditions that are checked in packet_set_ring 381 382 tp_block_size must be a multiple of PAGE_SIZE (1) 383 tp_frame_size must be greater than TPACKET_HDRLEN (obvious) 384 tp_frame_size must be a multiple of TPACKET_ALIGNMENT 385 tp_frame_nr must be exactly frames_per_block*tp_block_nr 386 387Note that tp_block_size should be chosen to be a power of two or there will 388be a waste of memory. 389 390-------------------------------------------------------------------------------- 391+ Mapping and use of the circular buffer (ring) 392-------------------------------------------------------------------------------- 393 394The mapping of the buffer in the user process is done with the conventional 395mmap function. Even the circular buffer is compound of several physically 396discontiguous blocks of memory, they are contiguous to the user space, hence 397just one call to mmap is needed: 398 399 mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); 400 401If tp_frame_size is a divisor of tp_block_size frames will be 402contiguously spaced by tp_frame_size bytes. If not, each 403tp_block_size/tp_frame_size frames there will be a gap between 404the frames. This is because a frame cannot be spawn across two 405blocks. 406 407At the beginning of each frame there is an status field (see 408struct tpacket_hdr). If this field is 0 means that the frame is ready 409to be used for the kernel, If not, there is a frame the user can read 410and the following flags apply: 411 412+++ Capture process: 413 from include/linux/if_packet.h 414 415 #define TP_STATUS_COPY 2 416 #define TP_STATUS_LOSING 4 417 #define TP_STATUS_CSUMNOTREADY 8 418 419TP_STATUS_COPY : This flag indicates that the frame (and associated 420 meta information) has been truncated because it's 421 larger than tp_frame_size. This packet can be 422 read entirely with recvfrom(). 423 424 In order to make this work it must to be 425 enabled previously with setsockopt() and 426 the PACKET_COPY_THRESH option. 427 428 The number of frames than can be buffered to 429 be read with recvfrom is limited like a normal socket. 430 See the SO_RCVBUF option in the socket (7) man page. 431 432TP_STATUS_LOSING : indicates there were packet drops from last time 433 statistics where checked with getsockopt() and 434 the PACKET_STATISTICS option. 435 436TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which 437 its checksum will be done in hardware. So while 438 reading the packet we should not try to check the 439 checksum. 440 441for convenience there are also the following defines: 442 443 #define TP_STATUS_KERNEL 0 444 #define TP_STATUS_USER 1 445 446The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel 447receives a packet it puts in the buffer and updates the status with 448at least the TP_STATUS_USER flag. Then the user can read the packet, 449once the packet is read the user must zero the status field, so the kernel 450can use again that frame buffer. 451 452The user can use poll (any other variant should apply too) to check if new 453packets are in the ring: 454 455 struct pollfd pfd; 456 457 pfd.fd = fd; 458 pfd.revents = 0; 459 pfd.events = POLLIN|POLLRDNORM|POLLERR; 460 461 if (status == TP_STATUS_KERNEL) 462 retval = poll(&pfd, 1, timeout); 463 464It doesn't incur in a race condition to first check the status value and 465then poll for frames. 466 467++ Transmission process 468Those defines are also used for transmission: 469 470 #define TP_STATUS_AVAILABLE 0 // Frame is available 471 #define TP_STATUS_SEND_REQUEST 1 // Frame will be sent on next send() 472 #define TP_STATUS_SENDING 2 // Frame is currently in transmission 473 #define TP_STATUS_WRONG_FORMAT 4 // Frame format is not correct 474 475First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a 476packet, the user fills a data buffer of an available frame, sets tp_len to 477current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST. 478This can be done on multiple frames. Once the user is ready to transmit, it 479calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are 480forwarded to the network device. The kernel updates each status of sent 481frames with TP_STATUS_SENDING until the end of transfer. 482At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE. 483 484 header->tp_len = in_i_size; 485 header->tp_status = TP_STATUS_SEND_REQUEST; 486 retval = send(this->socket, NULL, 0, 0); 487 488The user can also use poll() to check if a buffer is available: 489(status == TP_STATUS_SENDING) 490 491 struct pollfd pfd; 492 pfd.fd = fd; 493 pfd.revents = 0; 494 pfd.events = POLLOUT; 495 retval = poll(&pfd, 1, timeout); 496 497------------------------------------------------------------------------------- 498+ What TPACKET versions are available and when to use them? 499------------------------------------------------------------------------------- 500 501 int val = tpacket_version; 502 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val)); 503 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val)); 504 505where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3. 506 507TPACKET_V1: 508 - Default if not otherwise specified by setsockopt(2) 509 - RX_RING, TX_RING available 510 - VLAN metadata information available for packets 511 (TP_STATUS_VLAN_VALID) 512 513TPACKET_V1 --> TPACKET_V2: 514 - Made 64 bit clean due to unsigned long usage in TPACKET_V1 515 structures, thus this also works on 64 bit kernel with 32 bit 516 userspace and the like 517 - Timestamp resolution in nanoseconds instead of microseconds 518 - RX_RING, TX_RING available 519 - How to switch to TPACKET_V2: 520 1. Replace struct tpacket_hdr by struct tpacket2_hdr 521 2. Query header len and save 522 3. Set protocol version to 2, set up ring as usual 523 4. For getting the sockaddr_ll, 524 use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of 525 (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr)) 526 527TPACKET_V2 --> TPACKET_V3: 528 - Flexible buffer implementation: 529 1. Blocks can be configured with non-static frame-size 530 2. Read/poll is at a block-level (as opposed to packet-level) 531 3. Added poll timeout to avoid indefinite user-space wait 532 on idle links 533 4. Added user-configurable knobs: 534 4.1 block::timeout 535 4.2 tpkt_hdr::sk_rxhash 536 - RX Hash data available in user space 537 - Currently only RX_RING available 538 539------------------------------------------------------------------------------- 540+ AF_PACKET fanout mode 541------------------------------------------------------------------------------- 542 543In the AF_PACKET fanout mode, packet reception can be load balanced among 544processes. This also works in combination with mmap(2) on packet sockets. 545 546Minimal example code by David S. Miller (try things like "./test eth0 hash", 547"./test eth0 lb", etc.): 548 549#include <stddef.h> 550#include <stdlib.h> 551#include <stdio.h> 552#include <string.h> 553 554#include <sys/types.h> 555#include <sys/wait.h> 556#include <sys/socket.h> 557#include <sys/ioctl.h> 558 559#include <unistd.h> 560 561#include <linux/if_ether.h> 562#include <linux/if_packet.h> 563 564#include <net/if.h> 565 566static const char *device_name; 567static int fanout_type; 568static int fanout_id; 569 570#ifndef PACKET_FANOUT 571# define PACKET_FANOUT 18 572# define PACKET_FANOUT_HASH 0 573# define PACKET_FANOUT_LB 1 574#endif 575 576static int setup_socket(void) 577{ 578 int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP)); 579 struct sockaddr_ll ll; 580 struct ifreq ifr; 581 int fanout_arg; 582 583 if (fd < 0) { 584 perror("socket"); 585 return EXIT_FAILURE; 586 } 587 588 memset(&ifr, 0, sizeof(ifr)); 589 strcpy(ifr.ifr_name, device_name); 590 err = ioctl(fd, SIOCGIFINDEX, &ifr); 591 if (err < 0) { 592 perror("SIOCGIFINDEX"); 593 return EXIT_FAILURE; 594 } 595 596 memset(&ll, 0, sizeof(ll)); 597 ll.sll_family = AF_PACKET; 598 ll.sll_ifindex = ifr.ifr_ifindex; 599 err = bind(fd, (struct sockaddr *) &ll, sizeof(ll)); 600 if (err < 0) { 601 perror("bind"); 602 return EXIT_FAILURE; 603 } 604 605 fanout_arg = (fanout_id | (fanout_type << 16)); 606 err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT, 607 &fanout_arg, sizeof(fanout_arg)); 608 if (err) { 609 perror("setsockopt"); 610 return EXIT_FAILURE; 611 } 612 613 return fd; 614} 615 616static void fanout_thread(void) 617{ 618 int fd = setup_socket(); 619 int limit = 10000; 620 621 if (fd < 0) 622 exit(fd); 623 624 while (limit-- > 0) { 625 char buf[1600]; 626 int err; 627 628 err = read(fd, buf, sizeof(buf)); 629 if (err < 0) { 630 perror("read"); 631 exit(EXIT_FAILURE); 632 } 633 if ((limit % 10) == 0) 634 fprintf(stdout, "(%d) \n", getpid()); 635 } 636 637 fprintf(stdout, "%d: Received 10000 packets\n", getpid()); 638 639 close(fd); 640 exit(0); 641} 642 643int main(int argc, char **argp) 644{ 645 int fd, err; 646 int i; 647 648 if (argc != 3) { 649 fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]); 650 return EXIT_FAILURE; 651 } 652 653 if (!strcmp(argp[2], "hash")) 654 fanout_type = PACKET_FANOUT_HASH; 655 else if (!strcmp(argp[2], "lb")) 656 fanout_type = PACKET_FANOUT_LB; 657 else { 658 fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]); 659 exit(EXIT_FAILURE); 660 } 661 662 device_name = argp[1]; 663 fanout_id = getpid() & 0xffff; 664 665 for (i = 0; i < 4; i++) { 666 pid_t pid = fork(); 667 668 switch (pid) { 669 case 0: 670 fanout_thread(); 671 672 case -1: 673 perror("fork"); 674 exit(EXIT_FAILURE); 675 } 676 } 677 678 for (i = 0; i < 4; i++) { 679 int status; 680 681 wait(&status); 682 } 683 684 return 0; 685} 686 687------------------------------------------------------------------------------- 688+ AF_PACKET TPACKET_V3 example 689------------------------------------------------------------------------------- 690 691AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame 692sizes by doing it's own memory management. It is based on blocks where polling 693works on a per block basis instead of per ring as in TPACKET_V2 and predecessor. 694 695It is said that TPACKET_V3 brings the following benefits: 696 *) ~15 - 20% reduction in CPU-usage 697 *) ~20% increase in packet capture rate 698 *) ~2x increase in packet density 699 *) Port aggregation analysis 700 *) Non static frame size to capture entire packet payload 701 702So it seems to be a good candidate to be used with packet fanout. 703 704Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile 705it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.): 706 707#include <stdio.h> 708#include <stdlib.h> 709#include <stdint.h> 710#include <string.h> 711#include <assert.h> 712#include <net/if.h> 713#include <arpa/inet.h> 714#include <netdb.h> 715#include <poll.h> 716#include <unistd.h> 717#include <signal.h> 718#include <inttypes.h> 719#include <sys/socket.h> 720#include <sys/mman.h> 721#include <linux/if_packet.h> 722#include <linux/if_ether.h> 723#include <linux/ip.h> 724 725#define BLOCK_SIZE (1 << 22) 726#define FRAME_SIZE 2048 727 728#define NUM_BLOCKS 64 729#define NUM_FRAMES ((BLOCK_SIZE * NUM_BLOCKS) / FRAME_SIZE) 730 731#define BLOCK_RETIRE_TOV_IN_MS 64 732#define BLOCK_PRIV_AREA_SZ 13 733 734#define ALIGN_8(x) (((x) + 8 - 1) & ~(8 - 1)) 735 736#define BLOCK_STATUS(x) ((x)->h1.block_status) 737#define BLOCK_NUM_PKTS(x) ((x)->h1.num_pkts) 738#define BLOCK_O2FP(x) ((x)->h1.offset_to_first_pkt) 739#define BLOCK_LEN(x) ((x)->h1.blk_len) 740#define BLOCK_SNUM(x) ((x)->h1.seq_num) 741#define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 742#define BLOCK_PRIV(x) ((void *) ((uint8_t *) (x) + BLOCK_O2PRIV(x))) 743#define BLOCK_HDR_LEN (ALIGN_8(sizeof(struct block_desc))) 744#define BLOCK_PLUS_PRIV(sz_pri) (BLOCK_HDR_LEN + ALIGN_8((sz_pri))) 745 746#ifndef likely 747# define likely(x) __builtin_expect(!!(x), 1) 748#endif 749#ifndef unlikely 750# define unlikely(x) __builtin_expect(!!(x), 0) 751#endif 752 753struct block_desc { 754 uint32_t version; 755 uint32_t offset_to_priv; 756 struct tpacket_hdr_v1 h1; 757}; 758 759struct ring { 760 struct iovec *rd; 761 uint8_t *map; 762 struct tpacket_req3 req; 763}; 764 765static unsigned long packets_total = 0, bytes_total = 0; 766static sig_atomic_t sigint = 0; 767 768void sighandler(int num) 769{ 770 sigint = 1; 771} 772 773static int setup_socket(struct ring *ring, char *netdev) 774{ 775 int err, i, fd, v = TPACKET_V3; 776 struct sockaddr_ll ll; 777 778 fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); 779 if (fd < 0) { 780 perror("socket"); 781 exit(1); 782 } 783 784 err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v)); 785 if (err < 0) { 786 perror("setsockopt"); 787 exit(1); 788 } 789 790 memset(&ring->req, 0, sizeof(ring->req)); 791 ring->req.tp_block_size = BLOCK_SIZE; 792 ring->req.tp_frame_size = FRAME_SIZE; 793 ring->req.tp_block_nr = NUM_BLOCKS; 794 ring->req.tp_frame_nr = NUM_FRAMES; 795 ring->req.tp_retire_blk_tov = BLOCK_RETIRE_TOV_IN_MS; 796 ring->req.tp_sizeof_priv = BLOCK_PRIV_AREA_SZ; 797 ring->req.tp_feature_req_word |= TP_FT_REQ_FILL_RXHASH; 798 799 err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req, 800 sizeof(ring->req)); 801 if (err < 0) { 802 perror("setsockopt"); 803 exit(1); 804 } 805 806 ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr, 807 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED, 808 fd, 0); 809 if (ring->map == MAP_FAILED) { 810 perror("mmap"); 811 exit(1); 812 } 813 814 ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd)); 815 assert(ring->rd); 816 for (i = 0; i < ring->req.tp_block_nr; ++i) { 817 ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size); 818 ring->rd[i].iov_len = ring->req.tp_block_size; 819 } 820 821 memset(&ll, 0, sizeof(ll)); 822 ll.sll_family = PF_PACKET; 823 ll.sll_protocol = htons(ETH_P_ALL); 824 ll.sll_ifindex = if_nametoindex(netdev); 825 ll.sll_hatype = 0; 826 ll.sll_pkttype = 0; 827 ll.sll_halen = 0; 828 829 err = bind(fd, (struct sockaddr *) &ll, sizeof(ll)); 830 if (err < 0) { 831 perror("bind"); 832 exit(1); 833 } 834 835 return fd; 836} 837 838#ifdef __checked 839static uint64_t prev_block_seq_num = 0; 840 841void assert_block_seq_num(struct block_desc *pbd) 842{ 843 if (unlikely(prev_block_seq_num + 1 != BLOCK_SNUM(pbd))) { 844 printf("prev_block_seq_num:%"PRIu64", expected seq:%"PRIu64" != " 845 "actual seq:%"PRIu64"\n", prev_block_seq_num, 846 prev_block_seq_num + 1, (uint64_t) BLOCK_SNUM(pbd)); 847 exit(1); 848 } 849 850 prev_block_seq_num = BLOCK_SNUM(pbd); 851} 852 853static void assert_block_len(struct block_desc *pbd, uint32_t bytes, int block_num) 854{ 855 if (BLOCK_NUM_PKTS(pbd)) { 856 if (unlikely(bytes != BLOCK_LEN(pbd))) { 857 printf("block:%u with %upackets, expected len:%u != actual len:%u\n", 858 block_num, BLOCK_NUM_PKTS(pbd), bytes, BLOCK_LEN(pbd)); 859 exit(1); 860 } 861 } else { 862 if (unlikely(BLOCK_LEN(pbd) != BLOCK_PLUS_PRIV(BLOCK_PRIV_AREA_SZ))) { 863 printf("block:%u, expected len:%lu != actual len:%u\n", 864 block_num, BLOCK_HDR_LEN, BLOCK_LEN(pbd)); 865 exit(1); 866 } 867 } 868} 869 870static void assert_block_header(struct block_desc *pbd, const int block_num) 871{ 872 uint32_t block_status = BLOCK_STATUS(pbd); 873 874 if (unlikely((block_status & TP_STATUS_USER) == 0)) { 875 printf("block:%u, not in TP_STATUS_USER\n", block_num); 876 exit(1); 877 } 878 879 assert_block_seq_num(pbd); 880} 881#else 882static inline void assert_block_header(struct block_desc *pbd, const int block_num) 883{ 884} 885static void assert_block_len(struct block_desc *pbd, uint32_t bytes, int block_num) 886{ 887} 888#endif 889 890static void display(struct tpacket3_hdr *ppd) 891{ 892 struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac); 893 struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN); 894 895 if (eth->h_proto == htons(ETH_P_IP)) { 896 struct sockaddr_in ss, sd; 897 char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST]; 898 899 memset(&ss, 0, sizeof(ss)); 900 ss.sin_family = PF_INET; 901 ss.sin_addr.s_addr = ip->saddr; 902 getnameinfo((struct sockaddr *) &ss, sizeof(ss), 903 sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST); 904 905 memset(&sd, 0, sizeof(sd)); 906 sd.sin_family = PF_INET; 907 sd.sin_addr.s_addr = ip->daddr; 908 getnameinfo((struct sockaddr *) &sd, sizeof(sd), 909 dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST); 910 911 printf("%s -> %s, ", sbuff, dbuff); 912 } 913 914 printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash); 915} 916 917static void walk_block(struct block_desc *pbd, const int block_num) 918{ 919 int num_pkts = BLOCK_NUM_PKTS(pbd), i; 920 unsigned long bytes = 0; 921 unsigned long bytes_with_padding = BLOCK_PLUS_PRIV(BLOCK_PRIV_AREA_SZ); 922 struct tpacket3_hdr *ppd; 923 924 assert_block_header(pbd, block_num); 925 926 ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd + BLOCK_O2FP(pbd)); 927 for (i = 0; i < num_pkts; ++i) { 928 bytes += ppd->tp_snaplen; 929 if (ppd->tp_next_offset) 930 bytes_with_padding += ppd->tp_next_offset; 931 else 932 bytes_with_padding += ALIGN_8(ppd->tp_snaplen + ppd->tp_mac); 933 934 display(ppd); 935 936 ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd + ppd->tp_next_offset); 937 __sync_synchronize(); 938 } 939 940 assert_block_len(pbd, bytes_with_padding, block_num); 941 942 packets_total += num_pkts; 943 bytes_total += bytes; 944} 945 946void flush_block(struct block_desc *pbd) 947{ 948 BLOCK_STATUS(pbd) = TP_STATUS_KERNEL; 949 __sync_synchronize(); 950} 951 952static void teardown_socket(struct ring *ring, int fd) 953{ 954 munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr); 955 free(ring->rd); 956 close(fd); 957} 958 959int main(int argc, char **argp) 960{ 961 int fd, err; 962 socklen_t len; 963 struct ring ring; 964 struct pollfd pfd; 965 unsigned int block_num = 0; 966 struct block_desc *pbd; 967 struct tpacket_stats_v3 stats; 968 969 if (argc != 2) { 970 fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]); 971 return EXIT_FAILURE; 972 } 973 974 signal(SIGINT, sighandler); 975 976 memset(&ring, 0, sizeof(ring)); 977 fd = setup_socket(&ring, argp[argc - 1]); 978 assert(fd > 0); 979 980 memset(&pfd, 0, sizeof(pfd)); 981 pfd.fd = fd; 982 pfd.events = POLLIN | POLLERR; 983 pfd.revents = 0; 984 985 while (likely(!sigint)) { 986 pbd = (struct block_desc *) ring.rd[block_num].iov_base; 987retry_block: 988 if ((BLOCK_STATUS(pbd) & TP_STATUS_USER) == 0) { 989 poll(&pfd, 1, -1); 990 goto retry_block; 991 } 992 993 walk_block(pbd, block_num); 994 flush_block(pbd); 995 block_num = (block_num + 1) % NUM_BLOCKS; 996 } 997 998 len = sizeof(stats); 999 err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len); 1000 if (err < 0) { 1001 perror("getsockopt"); 1002 exit(1); 1003 } 1004 1005 fflush(stdout); 1006 printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n", 1007 stats.tp_packets, bytes_total, stats.tp_drops, 1008 stats.tp_freeze_q_cnt); 1009 1010 teardown_socket(&ring, fd); 1011 return 0; 1012} 1013 1014------------------------------------------------------------------------------- 1015+ PACKET_TIMESTAMP 1016------------------------------------------------------------------------------- 1017 1018The PACKET_TIMESTAMP setting determines the source of the timestamp in 1019the packet meta information for mmap(2)ed RX_RING and TX_RINGs. If your 1020NIC is capable of timestamping packets in hardware, you can request those 1021hardware timestamps to be used. Note: you may need to enable the generation 1022of hardware timestamps with SIOCSHWTSTAMP (see related information from 1023Documentation/networking/timestamping.txt). 1024 1025PACKET_TIMESTAMP accepts the same integer bit field as 1026SO_TIMESTAMPING. However, only the SOF_TIMESTAMPING_SYS_HARDWARE 1027and SOF_TIMESTAMPING_RAW_HARDWARE values are recognized by 1028PACKET_TIMESTAMP. SOF_TIMESTAMPING_SYS_HARDWARE takes precedence over 1029SOF_TIMESTAMPING_RAW_HARDWARE if both bits are set. 1030 1031 int req = 0; 1032 req |= SOF_TIMESTAMPING_SYS_HARDWARE; 1033 setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req)) 1034 1035For the mmap(2)ed ring buffers, such timestamps are stored in the 1036tpacket{,2,3}_hdr structure's tp_sec and tp_{n,u}sec members. To determine 1037what kind of timestamp has been reported, the tp_status field is binary |'ed 1038with the following possible bits ... 1039 1040 TP_STATUS_TS_SYS_HARDWARE 1041 TP_STATUS_TS_RAW_HARDWARE 1042 TP_STATUS_TS_SOFTWARE 1043 1044... that are equivalent to its SOF_TIMESTAMPING_* counterparts. For the 1045RX_RING, if none of those 3 are set (i.e. PACKET_TIMESTAMP is not set), 1046then this means that a software fallback was invoked *within* PF_PACKET's 1047processing code (less precise). 1048 1049Getting timestamps for the TX_RING works as follows: i) fill the ring frames, 1050ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant 1051frames to be updated resp. the frame handed over to the application, iv) walk 1052through the frames to pick up the individual hw/sw timestamps. 1053 1054Only (!) if transmit timestamping is enabled, then these bits are combined 1055with binary | with TP_STATUS_AVAILABLE, so you must check for that in your 1056application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING)) 1057in a first step to see if the frame belongs to the application, and then 1058one can extract the type of timestamp in a second step from tp_status)! 1059 1060If you don't care about them, thus having it disabled, checking for 1061TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the 1062TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec 1063members do not contain a valid value. For TX_RINGs, by default no timestamp 1064is generated! 1065 1066See include/linux/net_tstamp.h and Documentation/networking/timestamping 1067for more information on hardware timestamps. 1068 1069------------------------------------------------------------------------------- 1070+ Miscellaneous bits 1071------------------------------------------------------------------------------- 1072 1073- Packet sockets work well together with Linux socket filters, thus you also 1074 might want to have a look at Documentation/networking/filter.txt 1075 1076-------------------------------------------------------------------------------- 1077+ THANKS 1078-------------------------------------------------------------------------------- 1079 1080 Jesse Brandeburg, for fixing my grammathical/spelling errors 1081 1082