• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1--------------------------------------------------------------------------------
2+ ABSTRACT
3--------------------------------------------------------------------------------
4
5This file documents the mmap() facility available with the PACKET
6socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for
7i) capture network traffic with utilities like tcpdump, ii) transmit network
8traffic, or any other that needs raw access to network interface.
9
10You can find the latest version of this document at:
11    http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap
12
13Howto can be found at:
14    http://wiki.gnu-log.net (packet_mmap)
15
16Please send your comments to
17    Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es>
18    Johann Baudy <johann.baudy@gnu-log.net>
19
20-------------------------------------------------------------------------------
21+ Why use PACKET_MMAP
22--------------------------------------------------------------------------------
23
24In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very
25inefficient. It uses very limited buffers and requires one system call to
26capture each packet, it requires two if you want to get packet's timestamp
27(like libpcap always does).
28
29In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size
30configurable circular buffer mapped in user space that can be used to either
31send or receive packets. This way reading packets just needs to wait for them,
32most of the time there is no need to issue a single system call. Concerning
33transmission, multiple packets can be sent through one system call to get the
34highest bandwidth. By using a shared buffer between the kernel and the user
35also has the benefit of minimizing packet copies.
36
37It's fine to use PACKET_MMAP to improve the performance of the capture and
38transmission process, but it isn't everything. At least, if you are capturing
39at high speeds (this is relative to the cpu speed), you should check if the
40device driver of your network interface card supports some sort of interrupt
41load mitigation or (even better) if it supports NAPI, also make sure it is
42enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
43supported by devices of your network. CPU IRQ pinning of your network interface
44card can also be an advantage.
45
46--------------------------------------------------------------------------------
47+ How to use mmap() to improve capture process
48--------------------------------------------------------------------------------
49
50From the user standpoint, you should use the higher level libpcap library, which
51is a de facto standard, portable across nearly all operating systems
52including Win32.
53
54Said that, at time of this writing, official libpcap 0.8.1 is out and doesn't include
55support for PACKET_MMAP, and also probably the libpcap included in your distribution.
56
57I'm aware of two implementations of PACKET_MMAP in libpcap:
58
59    http://wiki.ipxwarzone.com/		     (by Simon Patarin, based on libpcap 0.6.2)
60    http://public.lanl.gov/cpw/              (by Phil Wood, based on lastest libpcap)
61
62The rest of this document is intended for people who want to understand
63the low level details or want to improve libpcap by including PACKET_MMAP
64support.
65
66--------------------------------------------------------------------------------
67+ How to use mmap() directly to improve capture process
68--------------------------------------------------------------------------------
69
70From the system calls stand point, the use of PACKET_MMAP involves
71the following process:
72
73
74[setup]     socket() -------> creation of the capture socket
75            setsockopt() ---> allocation of the circular buffer (ring)
76                              option: PACKET_RX_RING
77            mmap() ---------> mapping of the allocated buffer to the
78                              user process
79
80[capture]   poll() ---------> to wait for incoming packets
81
82[shutdown]  close() --------> destruction of the capture socket and
83                              deallocation of all associated
84                              resources.
85
86
87socket creation and destruction is straight forward, and is done
88the same way with or without PACKET_MMAP:
89
90 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
91
92where mode is SOCK_RAW for the raw interface were link level
93information can be captured or SOCK_DGRAM for the cooked
94interface where link level information capture is not
95supported and a link level pseudo-header is provided
96by the kernel.
97
98The destruction of the socket and all associated resources
99is done by a simple call to close(fd).
100
101Next I will describe PACKET_MMAP settings and its constraints,
102also the mapping of the circular buffer in the user process and
103the use of this buffer.
104
105--------------------------------------------------------------------------------
106+ How to use mmap() directly to improve transmission process
107--------------------------------------------------------------------------------
108Transmission process is similar to capture as shown below.
109
110[setup]          socket() -------> creation of the transmission socket
111                 setsockopt() ---> allocation of the circular buffer (ring)
112                                   option: PACKET_TX_RING
113                 bind() ---------> bind transmission socket with a network interface
114                 mmap() ---------> mapping of the allocated buffer to the
115                                   user process
116
117[transmission]   poll() ---------> wait for free packets (optional)
118                 send() ---------> send all packets that are set as ready in
119                                   the ring
120                                   The flag MSG_DONTWAIT can be used to return
121                                   before end of transfer.
122
123[shutdown]  close() --------> destruction of the transmission socket and
124                              deallocation of all associated resources.
125
126Binding the socket to your network interface is mandatory (with zero copy) to
127know the header size of frames used in the circular buffer.
128
129As capture, each frame contains two parts:
130
131 --------------------
132| struct tpacket_hdr | Header. It contains the status of
133|                    | of this frame
134|--------------------|
135| data buffer        |
136.                    .  Data that will be sent over the network interface.
137.                    .
138 --------------------
139
140 bind() associates the socket to your network interface thanks to
141 sll_ifindex parameter of struct sockaddr_ll.
142
143 Initialization example:
144
145 struct sockaddr_ll my_addr;
146 struct ifreq s_ifr;
147 ...
148
149 strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
150
151 /* get interface index of eth0 */
152 ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
153
154 /* fill sockaddr_ll struct to prepare binding */
155 my_addr.sll_family = AF_PACKET;
156 my_addr.sll_protocol = htons(ETH_P_ALL);
157 my_addr.sll_ifindex =  s_ifr.ifr_ifindex;
158
159 /* bind socket to eth0 */
160 bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
161
162 A complete tutorial is available at: http://wiki.gnu-log.net/
163
164By default, the user should put data at :
165 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)
166
167So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
168the beginning of the user data will be at :
169 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
170
171If you wish to put user data at a custom offset from the beginning of
172the frame (for payload alignment with SOCK_RAW mode for instance) you
173can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
174to make this work it must be enabled previously with setsockopt()
175and the PACKET_TX_HAS_OFF option.
176
177--------------------------------------------------------------------------------
178+ PACKET_MMAP settings
179--------------------------------------------------------------------------------
180
181To setup PACKET_MMAP from user level code is done with a call like
182
183 - Capture process
184     setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
185 - Transmission process
186     setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
187
188The most significant argument in the previous call is the req parameter,
189this parameter must to have the following structure:
190
191    struct tpacket_req
192    {
193        unsigned int    tp_block_size;  /* Minimal size of contiguous block */
194        unsigned int    tp_block_nr;    /* Number of blocks */
195        unsigned int    tp_frame_size;  /* Size of frame */
196        unsigned int    tp_frame_nr;    /* Total number of frames */
197    };
198
199This structure is defined in /usr/include/linux/if_packet.h and establishes a
200circular buffer (ring) of unswappable memory.
201Being mapped in the capture process allows reading the captured frames and
202related meta-information like timestamps without requiring a system call.
203
204Frames are grouped in blocks. Each block is a physically contiguous
205region of memory and holds tp_block_size/tp_frame_size frames. The total number
206of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because
207
208    frames_per_block = tp_block_size/tp_frame_size
209
210indeed, packet_set_ring checks that the following condition is true
211
212    frames_per_block * tp_block_nr == tp_frame_nr
213
214Lets see an example, with the following values:
215
216     tp_block_size= 4096
217     tp_frame_size= 2048
218     tp_block_nr  = 4
219     tp_frame_nr  = 8
220
221we will get the following buffer structure:
222
223        block #1                 block #2
224+---------+---------+    +---------+---------+
225| frame 1 | frame 2 |    | frame 3 | frame 4 |
226+---------+---------+    +---------+---------+
227
228        block #3                 block #4
229+---------+---------+    +---------+---------+
230| frame 5 | frame 6 |    | frame 7 | frame 8 |
231+---------+---------+    +---------+---------+
232
233A frame can be of any size with the only condition it can fit in a block. A block
234can only hold an integer number of frames, or in other words, a frame cannot
235be spawned across two blocks, so there are some details you have to take into
236account when choosing the frame_size. See "Mapping and use of the circular
237buffer (ring)".
238
239--------------------------------------------------------------------------------
240+ PACKET_MMAP setting constraints
241--------------------------------------------------------------------------------
242
243In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
244the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
24516384 in a 64 bit architecture. For information on these kernel versions
246see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt
247
248 Block size limit
249------------------
250
251As stated earlier, each block is a contiguous physical region of memory. These
252memory regions are allocated with calls to the __get_free_pages() function. As
253the name indicates, this function allocates pages of memory, and the second
254argument is "order" or a power of two number of pages, that is
255(for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes,
256order=2 ==> 16384 bytes, etc. The maximum size of a
257region allocated by __get_free_pages is determined by the MAX_ORDER macro. More
258precisely the limit can be calculated as:
259
260   PAGE_SIZE << MAX_ORDER
261
262   In a i386 architecture PAGE_SIZE is 4096 bytes
263   In a 2.4/i386 kernel MAX_ORDER is 10
264   In a 2.6/i386 kernel MAX_ORDER is 11
265
266So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel
267respectively, with an i386 architecture.
268
269User space programs can include /usr/include/sys/user.h and
270/usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations.
271
272The pagesize can also be determined dynamically with the getpagesize (2)
273system call.
274
275 Block number limit
276--------------------
277
278To understand the constraints of PACKET_MMAP, we have to see the structure
279used to hold the pointers to each block.
280
281Currently, this structure is a dynamically allocated vector with kmalloc
282called pg_vec, its size limits the number of blocks that can be allocated.
283
284    +---+---+---+---+
285    | x | x | x | x |
286    +---+---+---+---+
287      |   |   |   |
288      |   |   |   v
289      |   |   v  block #4
290      |   v  block #3
291      v  block #2
292     block #1
293
294kmalloc allocates any number of bytes of physically contiguous memory from
295a pool of pre-determined sizes. This pool of memory is maintained by the slab
296allocator which is at the end the responsible for doing the allocation and
297hence which imposes the maximum memory that kmalloc can allocate.
298
299In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The
300predetermined sizes that kmalloc uses can be checked in the "size-<bytes>"
301entries of /proc/slabinfo
302
303In a 32 bit architecture, pointers are 4 bytes long, so the total number of
304pointers to blocks is
305
306     131072/4 = 32768 blocks
307
308 PACKET_MMAP buffer size calculator
309------------------------------------
310
311Definitions:
312
313<size-max>    : is the maximum size of allocable with kmalloc (see /proc/slabinfo)
314<pointer size>: depends on the architecture -- sizeof(void *)
315<page size>   : depends on the architecture -- PAGE_SIZE or getpagesize (2)
316<max-order>   : is the value defined with MAX_ORDER
317<frame size>  : it's an upper bound of frame's capture size (more on this later)
318
319from these definitions we will derive
320
321	<block number> = <size-max>/<pointer size>
322	<block size> = <pagesize> << <max-order>
323
324so, the max buffer size is
325
326	<block number> * <block size>
327
328and, the number of frames be
329
330	<block number> * <block size> / <frame size>
331
332Suppose the following parameters, which apply for 2.6 kernel and an
333i386 architecture:
334
335	<size-max> = 131072 bytes
336	<pointer size> = 4 bytes
337	<pagesize> = 4096 bytes
338	<max-order> = 11
339
340and a value for <frame size> of 2048 bytes. These parameters will yield
341
342	<block number> = 131072/4 = 32768 blocks
343	<block size> = 4096 << 11 = 8 MiB.
344
345and hence the buffer will have a 262144 MiB size. So it can hold
346262144 MiB / 2048 bytes = 134217728 frames
347
348Actually, this buffer size is not possible with an i386 architecture.
349Remember that the memory is allocated in kernel space, in the case of
350an i386 kernel's memory size is limited to 1GiB.
351
352All memory allocations are not freed until the socket is closed. The memory
353allocations are done with GFP_KERNEL priority, this basically means that
354the allocation can wait and swap other process' memory in order to allocate
355the necessary memory, so normally limits can be reached.
356
357 Other constraints
358-------------------
359
360If you check the source code you will see that what I draw here as a frame
361is not only the link level frame. At the beginning of each frame there is a
362header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
363meta information like timestamp. So what we draw here a frame it's really
364the following (from include/linux/if_packet.h):
365
366/*
367   Frame structure:
368
369   - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
370   - struct tpacket_hdr
371   - pad to TPACKET_ALIGNMENT=16
372   - struct sockaddr_ll
373   - Gap, chosen so that packet data (Start+tp_net) aligns to
374     TPACKET_ALIGNMENT=16
375   - Start+tp_mac: [ Optional MAC header ]
376   - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
377   - Pad to align to TPACKET_ALIGNMENT=16
378 */
379
380 The following are conditions that are checked in packet_set_ring
381
382   tp_block_size must be a multiple of PAGE_SIZE (1)
383   tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
384   tp_frame_size must be a multiple of TPACKET_ALIGNMENT
385   tp_frame_nr   must be exactly frames_per_block*tp_block_nr
386
387Note that tp_block_size should be chosen to be a power of two or there will
388be a waste of memory.
389
390--------------------------------------------------------------------------------
391+ Mapping and use of the circular buffer (ring)
392--------------------------------------------------------------------------------
393
394The mapping of the buffer in the user process is done with the conventional
395mmap function. Even the circular buffer is compound of several physically
396discontiguous blocks of memory, they are contiguous to the user space, hence
397just one call to mmap is needed:
398
399    mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
400
401If tp_frame_size is a divisor of tp_block_size frames will be
402contiguously spaced by tp_frame_size bytes. If not, each
403tp_block_size/tp_frame_size frames there will be a gap between
404the frames. This is because a frame cannot be spawn across two
405blocks.
406
407At the beginning of each frame there is an status field (see
408struct tpacket_hdr). If this field is 0 means that the frame is ready
409to be used for the kernel, If not, there is a frame the user can read
410and the following flags apply:
411
412+++ Capture process:
413     from include/linux/if_packet.h
414
415     #define TP_STATUS_COPY          2
416     #define TP_STATUS_LOSING        4
417     #define TP_STATUS_CSUMNOTREADY  8
418
419TP_STATUS_COPY        : This flag indicates that the frame (and associated
420                        meta information) has been truncated because it's
421                        larger than tp_frame_size. This packet can be
422                        read entirely with recvfrom().
423
424                        In order to make this work it must to be
425                        enabled previously with setsockopt() and
426                        the PACKET_COPY_THRESH option.
427
428                        The number of frames than can be buffered to
429                        be read with recvfrom is limited like a normal socket.
430                        See the SO_RCVBUF option in the socket (7) man page.
431
432TP_STATUS_LOSING      : indicates there were packet drops from last time
433                        statistics where checked with getsockopt() and
434                        the PACKET_STATISTICS option.
435
436TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which
437                        its checksum will be done in hardware. So while
438                        reading the packet we should not try to check the
439                        checksum.
440
441for convenience there are also the following defines:
442
443     #define TP_STATUS_KERNEL        0
444     #define TP_STATUS_USER          1
445
446The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
447receives a packet it puts in the buffer and updates the status with
448at least the TP_STATUS_USER flag. Then the user can read the packet,
449once the packet is read the user must zero the status field, so the kernel
450can use again that frame buffer.
451
452The user can use poll (any other variant should apply too) to check if new
453packets are in the ring:
454
455    struct pollfd pfd;
456
457    pfd.fd = fd;
458    pfd.revents = 0;
459    pfd.events = POLLIN|POLLRDNORM|POLLERR;
460
461    if (status == TP_STATUS_KERNEL)
462        retval = poll(&pfd, 1, timeout);
463
464It doesn't incur in a race condition to first check the status value and
465then poll for frames.
466
467++ Transmission process
468Those defines are also used for transmission:
469
470     #define TP_STATUS_AVAILABLE        0 // Frame is available
471     #define TP_STATUS_SEND_REQUEST     1 // Frame will be sent on next send()
472     #define TP_STATUS_SENDING          2 // Frame is currently in transmission
473     #define TP_STATUS_WRONG_FORMAT     4 // Frame format is not correct
474
475First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
476packet, the user fills a data buffer of an available frame, sets tp_len to
477current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
478This can be done on multiple frames. Once the user is ready to transmit, it
479calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
480forwarded to the network device. The kernel updates each status of sent
481frames with TP_STATUS_SENDING until the end of transfer.
482At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
483
484    header->tp_len = in_i_size;
485    header->tp_status = TP_STATUS_SEND_REQUEST;
486    retval = send(this->socket, NULL, 0, 0);
487
488The user can also use poll() to check if a buffer is available:
489(status == TP_STATUS_SENDING)
490
491    struct pollfd pfd;
492    pfd.fd = fd;
493    pfd.revents = 0;
494    pfd.events = POLLOUT;
495    retval = poll(&pfd, 1, timeout);
496
497-------------------------------------------------------------------------------
498+ What TPACKET versions are available and when to use them?
499-------------------------------------------------------------------------------
500
501 int val = tpacket_version;
502 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
503 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
504
505where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
506
507TPACKET_V1:
508	- Default if not otherwise specified by setsockopt(2)
509	- RX_RING, TX_RING available
510	- VLAN metadata information available for packets
511	  (TP_STATUS_VLAN_VALID)
512
513TPACKET_V1 --> TPACKET_V2:
514	- Made 64 bit clean due to unsigned long usage in TPACKET_V1
515	  structures, thus this also works on 64 bit kernel with 32 bit
516	  userspace and the like
517	- Timestamp resolution in nanoseconds instead of microseconds
518	- RX_RING, TX_RING available
519	- How to switch to TPACKET_V2:
520		1. Replace struct tpacket_hdr by struct tpacket2_hdr
521		2. Query header len and save
522		3. Set protocol version to 2, set up ring as usual
523		4. For getting the sockaddr_ll,
524		   use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of
525		   (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
526
527TPACKET_V2 --> TPACKET_V3:
528	- Flexible buffer implementation:
529		1. Blocks can be configured with non-static frame-size
530		2. Read/poll is at a block-level (as opposed to packet-level)
531		3. Added poll timeout to avoid indefinite user-space wait
532		   on idle links
533		4. Added user-configurable knobs:
534			4.1 block::timeout
535			4.2 tpkt_hdr::sk_rxhash
536	- RX Hash data available in user space
537	- Currently only RX_RING available
538
539-------------------------------------------------------------------------------
540+ AF_PACKET fanout mode
541-------------------------------------------------------------------------------
542
543In the AF_PACKET fanout mode, packet reception can be load balanced among
544processes. This also works in combination with mmap(2) on packet sockets.
545
546Minimal example code by David S. Miller (try things like "./test eth0 hash",
547"./test eth0 lb", etc.):
548
549#include <stddef.h>
550#include <stdlib.h>
551#include <stdio.h>
552#include <string.h>
553
554#include <sys/types.h>
555#include <sys/wait.h>
556#include <sys/socket.h>
557#include <sys/ioctl.h>
558
559#include <unistd.h>
560
561#include <linux/if_ether.h>
562#include <linux/if_packet.h>
563
564#include <net/if.h>
565
566static const char *device_name;
567static int fanout_type;
568static int fanout_id;
569
570#ifndef PACKET_FANOUT
571# define PACKET_FANOUT			18
572# define PACKET_FANOUT_HASH		0
573# define PACKET_FANOUT_LB		1
574#endif
575
576static int setup_socket(void)
577{
578	int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
579	struct sockaddr_ll ll;
580	struct ifreq ifr;
581	int fanout_arg;
582
583	if (fd < 0) {
584		perror("socket");
585		return EXIT_FAILURE;
586	}
587
588	memset(&ifr, 0, sizeof(ifr));
589	strcpy(ifr.ifr_name, device_name);
590	err = ioctl(fd, SIOCGIFINDEX, &ifr);
591	if (err < 0) {
592		perror("SIOCGIFINDEX");
593		return EXIT_FAILURE;
594	}
595
596	memset(&ll, 0, sizeof(ll));
597	ll.sll_family = AF_PACKET;
598	ll.sll_ifindex = ifr.ifr_ifindex;
599	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
600	if (err < 0) {
601		perror("bind");
602		return EXIT_FAILURE;
603	}
604
605	fanout_arg = (fanout_id | (fanout_type << 16));
606	err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
607			 &fanout_arg, sizeof(fanout_arg));
608	if (err) {
609		perror("setsockopt");
610		return EXIT_FAILURE;
611	}
612
613	return fd;
614}
615
616static void fanout_thread(void)
617{
618	int fd = setup_socket();
619	int limit = 10000;
620
621	if (fd < 0)
622		exit(fd);
623
624	while (limit-- > 0) {
625		char buf[1600];
626		int err;
627
628		err = read(fd, buf, sizeof(buf));
629		if (err < 0) {
630			perror("read");
631			exit(EXIT_FAILURE);
632		}
633		if ((limit % 10) == 0)
634			fprintf(stdout, "(%d) \n", getpid());
635	}
636
637	fprintf(stdout, "%d: Received 10000 packets\n", getpid());
638
639	close(fd);
640	exit(0);
641}
642
643int main(int argc, char **argp)
644{
645	int fd, err;
646	int i;
647
648	if (argc != 3) {
649		fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
650		return EXIT_FAILURE;
651	}
652
653	if (!strcmp(argp[2], "hash"))
654		fanout_type = PACKET_FANOUT_HASH;
655	else if (!strcmp(argp[2], "lb"))
656		fanout_type = PACKET_FANOUT_LB;
657	else {
658		fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
659		exit(EXIT_FAILURE);
660	}
661
662	device_name = argp[1];
663	fanout_id = getpid() & 0xffff;
664
665	for (i = 0; i < 4; i++) {
666		pid_t pid = fork();
667
668		switch (pid) {
669		case 0:
670			fanout_thread();
671
672		case -1:
673			perror("fork");
674			exit(EXIT_FAILURE);
675		}
676	}
677
678	for (i = 0; i < 4; i++) {
679		int status;
680
681		wait(&status);
682	}
683
684	return 0;
685}
686
687-------------------------------------------------------------------------------
688+ AF_PACKET TPACKET_V3 example
689-------------------------------------------------------------------------------
690
691AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame
692sizes by doing it's own memory management. It is based on blocks where polling
693works on a per block basis instead of per ring as in TPACKET_V2 and predecessor.
694
695It is said that TPACKET_V3 brings the following benefits:
696 *) ~15 - 20% reduction in CPU-usage
697 *) ~20% increase in packet capture rate
698 *) ~2x increase in packet density
699 *) Port aggregation analysis
700 *) Non static frame size to capture entire packet payload
701
702So it seems to be a good candidate to be used with packet fanout.
703
704Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile
705it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.):
706
707#include <stdio.h>
708#include <stdlib.h>
709#include <stdint.h>
710#include <string.h>
711#include <assert.h>
712#include <net/if.h>
713#include <arpa/inet.h>
714#include <netdb.h>
715#include <poll.h>
716#include <unistd.h>
717#include <signal.h>
718#include <inttypes.h>
719#include <sys/socket.h>
720#include <sys/mman.h>
721#include <linux/if_packet.h>
722#include <linux/if_ether.h>
723#include <linux/ip.h>
724
725#define BLOCK_SIZE		(1 << 22)
726#define FRAME_SIZE		2048
727
728#define NUM_BLOCKS		64
729#define NUM_FRAMES		((BLOCK_SIZE * NUM_BLOCKS) / FRAME_SIZE)
730
731#define BLOCK_RETIRE_TOV_IN_MS	64
732#define BLOCK_PRIV_AREA_SZ	13
733
734#define ALIGN_8(x)		(((x) + 8 - 1) & ~(8 - 1))
735
736#define BLOCK_STATUS(x)		((x)->h1.block_status)
737#define BLOCK_NUM_PKTS(x)	((x)->h1.num_pkts)
738#define BLOCK_O2FP(x)		((x)->h1.offset_to_first_pkt)
739#define BLOCK_LEN(x)		((x)->h1.blk_len)
740#define BLOCK_SNUM(x)		((x)->h1.seq_num)
741#define BLOCK_O2PRIV(x)		((x)->offset_to_priv)
742#define BLOCK_PRIV(x)		((void *) ((uint8_t *) (x) + BLOCK_O2PRIV(x)))
743#define BLOCK_HDR_LEN		(ALIGN_8(sizeof(struct block_desc)))
744#define BLOCK_PLUS_PRIV(sz_pri)	(BLOCK_HDR_LEN + ALIGN_8((sz_pri)))
745
746#ifndef likely
747# define likely(x)		__builtin_expect(!!(x), 1)
748#endif
749#ifndef unlikely
750# define unlikely(x)		__builtin_expect(!!(x), 0)
751#endif
752
753struct block_desc {
754	uint32_t version;
755	uint32_t offset_to_priv;
756	struct tpacket_hdr_v1 h1;
757};
758
759struct ring {
760	struct iovec *rd;
761	uint8_t *map;
762	struct tpacket_req3 req;
763};
764
765static unsigned long packets_total = 0, bytes_total = 0;
766static sig_atomic_t sigint = 0;
767
768void sighandler(int num)
769{
770	sigint = 1;
771}
772
773static int setup_socket(struct ring *ring, char *netdev)
774{
775	int err, i, fd, v = TPACKET_V3;
776	struct sockaddr_ll ll;
777
778	fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
779	if (fd < 0) {
780		perror("socket");
781		exit(1);
782	}
783
784	err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
785	if (err < 0) {
786		perror("setsockopt");
787		exit(1);
788	}
789
790	memset(&ring->req, 0, sizeof(ring->req));
791	ring->req.tp_block_size = BLOCK_SIZE;
792	ring->req.tp_frame_size = FRAME_SIZE;
793	ring->req.tp_block_nr = NUM_BLOCKS;
794	ring->req.tp_frame_nr = NUM_FRAMES;
795	ring->req.tp_retire_blk_tov = BLOCK_RETIRE_TOV_IN_MS;
796	ring->req.tp_sizeof_priv = BLOCK_PRIV_AREA_SZ;
797	ring->req.tp_feature_req_word |= TP_FT_REQ_FILL_RXHASH;
798
799	err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req,
800			 sizeof(ring->req));
801	if (err < 0) {
802		perror("setsockopt");
803		exit(1);
804	}
805
806	ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr,
807			 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED,
808			 fd, 0);
809	if (ring->map == MAP_FAILED) {
810		perror("mmap");
811		exit(1);
812	}
813
814	ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd));
815	assert(ring->rd);
816	for (i = 0; i < ring->req.tp_block_nr; ++i) {
817		ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size);
818		ring->rd[i].iov_len = ring->req.tp_block_size;
819	}
820
821	memset(&ll, 0, sizeof(ll));
822	ll.sll_family = PF_PACKET;
823	ll.sll_protocol = htons(ETH_P_ALL);
824	ll.sll_ifindex = if_nametoindex(netdev);
825	ll.sll_hatype = 0;
826	ll.sll_pkttype = 0;
827	ll.sll_halen = 0;
828
829	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
830	if (err < 0) {
831		perror("bind");
832		exit(1);
833	}
834
835	return fd;
836}
837
838#ifdef __checked
839static uint64_t prev_block_seq_num = 0;
840
841void assert_block_seq_num(struct block_desc *pbd)
842{
843	if (unlikely(prev_block_seq_num + 1 != BLOCK_SNUM(pbd))) {
844		printf("prev_block_seq_num:%"PRIu64", expected seq:%"PRIu64" != "
845		       "actual seq:%"PRIu64"\n", prev_block_seq_num,
846		       prev_block_seq_num + 1, (uint64_t) BLOCK_SNUM(pbd));
847		exit(1);
848	}
849
850	prev_block_seq_num = BLOCK_SNUM(pbd);
851}
852
853static void assert_block_len(struct block_desc *pbd, uint32_t bytes, int block_num)
854{
855	if (BLOCK_NUM_PKTS(pbd)) {
856		if (unlikely(bytes != BLOCK_LEN(pbd))) {
857			printf("block:%u with %upackets, expected len:%u != actual len:%u\n",
858			       block_num, BLOCK_NUM_PKTS(pbd), bytes, BLOCK_LEN(pbd));
859			exit(1);
860		}
861	} else {
862		if (unlikely(BLOCK_LEN(pbd) != BLOCK_PLUS_PRIV(BLOCK_PRIV_AREA_SZ))) {
863			printf("block:%u, expected len:%lu != actual len:%u\n",
864			       block_num, BLOCK_HDR_LEN, BLOCK_LEN(pbd));
865			exit(1);
866		}
867	}
868}
869
870static void assert_block_header(struct block_desc *pbd, const int block_num)
871{
872	uint32_t block_status = BLOCK_STATUS(pbd);
873
874	if (unlikely((block_status & TP_STATUS_USER) == 0)) {
875		printf("block:%u, not in TP_STATUS_USER\n", block_num);
876		exit(1);
877	}
878
879	assert_block_seq_num(pbd);
880}
881#else
882static inline void assert_block_header(struct block_desc *pbd, const int block_num)
883{
884}
885static void assert_block_len(struct block_desc *pbd, uint32_t bytes, int block_num)
886{
887}
888#endif
889
890static void display(struct tpacket3_hdr *ppd)
891{
892	struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac);
893	struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN);
894
895	if (eth->h_proto == htons(ETH_P_IP)) {
896		struct sockaddr_in ss, sd;
897		char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST];
898
899		memset(&ss, 0, sizeof(ss));
900		ss.sin_family = PF_INET;
901		ss.sin_addr.s_addr = ip->saddr;
902		getnameinfo((struct sockaddr *) &ss, sizeof(ss),
903			    sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST);
904
905		memset(&sd, 0, sizeof(sd));
906		sd.sin_family = PF_INET;
907		sd.sin_addr.s_addr = ip->daddr;
908		getnameinfo((struct sockaddr *) &sd, sizeof(sd),
909			    dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST);
910
911		printf("%s -> %s, ", sbuff, dbuff);
912	}
913
914	printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash);
915}
916
917static void walk_block(struct block_desc *pbd, const int block_num)
918{
919	int num_pkts = BLOCK_NUM_PKTS(pbd), i;
920	unsigned long bytes = 0;
921	unsigned long bytes_with_padding = BLOCK_PLUS_PRIV(BLOCK_PRIV_AREA_SZ);
922	struct tpacket3_hdr *ppd;
923
924	assert_block_header(pbd, block_num);
925
926	ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd + BLOCK_O2FP(pbd));
927	for (i = 0; i < num_pkts; ++i) {
928		bytes += ppd->tp_snaplen;
929		if (ppd->tp_next_offset)
930			bytes_with_padding += ppd->tp_next_offset;
931		else
932			bytes_with_padding += ALIGN_8(ppd->tp_snaplen + ppd->tp_mac);
933
934		display(ppd);
935
936		ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd + ppd->tp_next_offset);
937		__sync_synchronize();
938	}
939
940	assert_block_len(pbd, bytes_with_padding, block_num);
941
942	packets_total += num_pkts;
943	bytes_total += bytes;
944}
945
946void flush_block(struct block_desc *pbd)
947{
948	BLOCK_STATUS(pbd) = TP_STATUS_KERNEL;
949	__sync_synchronize();
950}
951
952static void teardown_socket(struct ring *ring, int fd)
953{
954	munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr);
955	free(ring->rd);
956	close(fd);
957}
958
959int main(int argc, char **argp)
960{
961	int fd, err;
962	socklen_t len;
963	struct ring ring;
964	struct pollfd pfd;
965	unsigned int block_num = 0;
966	struct block_desc *pbd;
967	struct tpacket_stats_v3 stats;
968
969	if (argc != 2) {
970		fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]);
971		return EXIT_FAILURE;
972	}
973
974	signal(SIGINT, sighandler);
975
976	memset(&ring, 0, sizeof(ring));
977	fd = setup_socket(&ring, argp[argc - 1]);
978	assert(fd > 0);
979
980	memset(&pfd, 0, sizeof(pfd));
981	pfd.fd = fd;
982	pfd.events = POLLIN | POLLERR;
983	pfd.revents = 0;
984
985	while (likely(!sigint)) {
986		pbd = (struct block_desc *) ring.rd[block_num].iov_base;
987retry_block:
988		if ((BLOCK_STATUS(pbd) & TP_STATUS_USER) == 0) {
989			poll(&pfd, 1, -1);
990			goto retry_block;
991		}
992
993		walk_block(pbd, block_num);
994		flush_block(pbd);
995		block_num = (block_num + 1) % NUM_BLOCKS;
996	}
997
998	len = sizeof(stats);
999	err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len);
1000	if (err < 0) {
1001		perror("getsockopt");
1002		exit(1);
1003	}
1004
1005	fflush(stdout);
1006	printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n",
1007	       stats.tp_packets, bytes_total, stats.tp_drops,
1008	       stats.tp_freeze_q_cnt);
1009
1010	teardown_socket(&ring, fd);
1011	return 0;
1012}
1013
1014-------------------------------------------------------------------------------
1015+ PACKET_TIMESTAMP
1016-------------------------------------------------------------------------------
1017
1018The PACKET_TIMESTAMP setting determines the source of the timestamp in
1019the packet meta information for mmap(2)ed RX_RING and TX_RINGs.  If your
1020NIC is capable of timestamping packets in hardware, you can request those
1021hardware timestamps to be used. Note: you may need to enable the generation
1022of hardware timestamps with SIOCSHWTSTAMP (see related information from
1023Documentation/networking/timestamping.txt).
1024
1025PACKET_TIMESTAMP accepts the same integer bit field as
1026SO_TIMESTAMPING.  However, only the SOF_TIMESTAMPING_SYS_HARDWARE
1027and SOF_TIMESTAMPING_RAW_HARDWARE values are recognized by
1028PACKET_TIMESTAMP.  SOF_TIMESTAMPING_SYS_HARDWARE takes precedence over
1029SOF_TIMESTAMPING_RAW_HARDWARE if both bits are set.
1030
1031    int req = 0;
1032    req |= SOF_TIMESTAMPING_SYS_HARDWARE;
1033    setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))
1034
1035For the mmap(2)ed ring buffers, such timestamps are stored in the
1036tpacket{,2,3}_hdr structure's tp_sec and tp_{n,u}sec members. To determine
1037what kind of timestamp has been reported, the tp_status field is binary |'ed
1038with the following possible bits ...
1039
1040    TP_STATUS_TS_SYS_HARDWARE
1041    TP_STATUS_TS_RAW_HARDWARE
1042    TP_STATUS_TS_SOFTWARE
1043
1044... that are equivalent to its SOF_TIMESTAMPING_* counterparts. For the
1045RX_RING, if none of those 3 are set (i.e. PACKET_TIMESTAMP is not set),
1046then this means that a software fallback was invoked *within* PF_PACKET's
1047processing code (less precise).
1048
1049Getting timestamps for the TX_RING works as follows: i) fill the ring frames,
1050ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant
1051frames to be updated resp. the frame handed over to the application, iv) walk
1052through the frames to pick up the individual hw/sw timestamps.
1053
1054Only (!) if transmit timestamping is enabled, then these bits are combined
1055with binary | with TP_STATUS_AVAILABLE, so you must check for that in your
1056application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING))
1057in a first step to see if the frame belongs to the application, and then
1058one can extract the type of timestamp in a second step from tp_status)!
1059
1060If you don't care about them, thus having it disabled, checking for
1061TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the
1062TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec
1063members do not contain a valid value. For TX_RINGs, by default no timestamp
1064is generated!
1065
1066See include/linux/net_tstamp.h and Documentation/networking/timestamping
1067for more information on hardware timestamps.
1068
1069-------------------------------------------------------------------------------
1070+ Miscellaneous bits
1071-------------------------------------------------------------------------------
1072
1073- Packet sockets work well together with Linux socket filters, thus you also
1074  might want to have a look at Documentation/networking/filter.txt
1075
1076--------------------------------------------------------------------------------
1077+ THANKS
1078--------------------------------------------------------------------------------
1079
1080   Jesse Brandeburg, for fixing my grammathical/spelling errors
1081
1082