• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * parse_vdso.c: Linux reference vDSO parser
3  * Written by Andrew Lutomirski, 2011.
4  *
5  * This code is meant to be linked in to various programs that run on Linux.
6  * As such, it is available with as few restrictions as possible.  This file
7  * is licensed under the Creative Commons Zero License, version 1.0,
8  * available at http://creativecommons.org/publicdomain/zero/1.0/legalcode
9  *
10  * The vDSO is a regular ELF DSO that the kernel maps into user space when
11  * it starts a program.  It works equally well in statically and dynamically
12  * linked binaries.
13  *
14  * This code is tested on x86_64.  In principle it should work on any 64-bit
15  * architecture that has a vDSO.
16  */
17 
18 #include <stdbool.h>
19 #include <stdint.h>
20 #include <string.h>
21 #include <elf.h>
22 
23 /*
24  * To use this vDSO parser, first call one of the vdso_init_* functions.
25  * If you've already parsed auxv, then pass the value of AT_SYSINFO_EHDR
26  * to vdso_init_from_sysinfo_ehdr.  Otherwise pass auxv to vdso_init_from_auxv.
27  * Then call vdso_sym for each symbol you want.  For example, to look up
28  * gettimeofday on x86_64, use:
29  *
30  *     <some pointer> = vdso_sym("LINUX_2.6", "gettimeofday");
31  * or
32  *     <some pointer> = vdso_sym("LINUX_2.6", "__vdso_gettimeofday");
33  *
34  * vdso_sym will return 0 if the symbol doesn't exist or if the init function
35  * failed or was not called.  vdso_sym is a little slow, so its return value
36  * should be cached.
37  *
38  * vdso_sym is threadsafe; the init functions are not.
39  *
40  * These are the prototypes:
41  */
42 extern void vdso_init_from_auxv(void *auxv);
43 extern void vdso_init_from_sysinfo_ehdr(uintptr_t base);
44 extern void *vdso_sym(const char *version, const char *name);
45 
46 
47 /* And here's the code. */
48 
49 #ifndef __x86_64__
50 # error Not yet ported to non-x86_64 architectures
51 #endif
52 
53 static struct vdso_info
54 {
55 	bool valid;
56 
57 	/* Load information */
58 	uintptr_t load_addr;
59 	uintptr_t load_offset;  /* load_addr - recorded vaddr */
60 
61 	/* Symbol table */
62 	Elf64_Sym *symtab;
63 	const char *symstrings;
64 	Elf64_Word *bucket, *chain;
65 	Elf64_Word nbucket, nchain;
66 
67 	/* Version table */
68 	Elf64_Versym *versym;
69 	Elf64_Verdef *verdef;
70 } vdso_info;
71 
72 /* Straight from the ELF specification. */
elf_hash(const unsigned char * name)73 static unsigned long elf_hash(const unsigned char *name)
74 {
75 	unsigned long h = 0, g;
76 	while (*name)
77 	{
78 		h = (h << 4) + *name++;
79 		if (g = h & 0xf0000000)
80 			h ^= g >> 24;
81 		h &= ~g;
82 	}
83 	return h;
84 }
85 
vdso_init_from_sysinfo_ehdr(uintptr_t base)86 void vdso_init_from_sysinfo_ehdr(uintptr_t base)
87 {
88 	size_t i;
89 	bool found_vaddr = false;
90 
91 	vdso_info.valid = false;
92 
93 	vdso_info.load_addr = base;
94 
95 	Elf64_Ehdr *hdr = (Elf64_Ehdr*)base;
96 	Elf64_Phdr *pt = (Elf64_Phdr*)(vdso_info.load_addr + hdr->e_phoff);
97 	Elf64_Dyn *dyn = 0;
98 
99 	/*
100 	 * We need two things from the segment table: the load offset
101 	 * and the dynamic table.
102 	 */
103 	for (i = 0; i < hdr->e_phnum; i++)
104 	{
105 		if (pt[i].p_type == PT_LOAD && !found_vaddr) {
106 			found_vaddr = true;
107 			vdso_info.load_offset =	base
108 				+ (uintptr_t)pt[i].p_offset
109 				- (uintptr_t)pt[i].p_vaddr;
110 		} else if (pt[i].p_type == PT_DYNAMIC) {
111 			dyn = (Elf64_Dyn*)(base + pt[i].p_offset);
112 		}
113 	}
114 
115 	if (!found_vaddr || !dyn)
116 		return;  /* Failed */
117 
118 	/*
119 	 * Fish out the useful bits of the dynamic table.
120 	 */
121 	Elf64_Word *hash = 0;
122 	vdso_info.symstrings = 0;
123 	vdso_info.symtab = 0;
124 	vdso_info.versym = 0;
125 	vdso_info.verdef = 0;
126 	for (i = 0; dyn[i].d_tag != DT_NULL; i++) {
127 		switch (dyn[i].d_tag) {
128 		case DT_STRTAB:
129 			vdso_info.symstrings = (const char *)
130 				((uintptr_t)dyn[i].d_un.d_ptr
131 				 + vdso_info.load_offset);
132 			break;
133 		case DT_SYMTAB:
134 			vdso_info.symtab = (Elf64_Sym *)
135 				((uintptr_t)dyn[i].d_un.d_ptr
136 				 + vdso_info.load_offset);
137 			break;
138 		case DT_HASH:
139 			hash = (Elf64_Word *)
140 				((uintptr_t)dyn[i].d_un.d_ptr
141 				 + vdso_info.load_offset);
142 			break;
143 		case DT_VERSYM:
144 			vdso_info.versym = (Elf64_Versym *)
145 				((uintptr_t)dyn[i].d_un.d_ptr
146 				 + vdso_info.load_offset);
147 			break;
148 		case DT_VERDEF:
149 			vdso_info.verdef = (Elf64_Verdef *)
150 				((uintptr_t)dyn[i].d_un.d_ptr
151 				 + vdso_info.load_offset);
152 			break;
153 		}
154 	}
155 	if (!vdso_info.symstrings || !vdso_info.symtab || !hash)
156 		return;  /* Failed */
157 
158 	if (!vdso_info.verdef)
159 		vdso_info.versym = 0;
160 
161 	/* Parse the hash table header. */
162 	vdso_info.nbucket = hash[0];
163 	vdso_info.nchain = hash[1];
164 	vdso_info.bucket = &hash[2];
165 	vdso_info.chain = &hash[vdso_info.nbucket + 2];
166 
167 	/* That's all we need. */
168 	vdso_info.valid = true;
169 }
170 
vdso_match_version(Elf64_Versym ver,const char * name,Elf64_Word hash)171 static bool vdso_match_version(Elf64_Versym ver,
172 			       const char *name, Elf64_Word hash)
173 {
174 	/*
175 	 * This is a helper function to check if the version indexed by
176 	 * ver matches name (which hashes to hash).
177 	 *
178 	 * The version definition table is a mess, and I don't know how
179 	 * to do this in better than linear time without allocating memory
180 	 * to build an index.  I also don't know why the table has
181 	 * variable size entries in the first place.
182 	 *
183 	 * For added fun, I can't find a comprehensible specification of how
184 	 * to parse all the weird flags in the table.
185 	 *
186 	 * So I just parse the whole table every time.
187 	 */
188 
189 	/* First step: find the version definition */
190 	ver &= 0x7fff;  /* Apparently bit 15 means "hidden" */
191 	Elf64_Verdef *def = vdso_info.verdef;
192 	while(true) {
193 		if ((def->vd_flags & VER_FLG_BASE) == 0
194 		    && (def->vd_ndx & 0x7fff) == ver)
195 			break;
196 
197 		if (def->vd_next == 0)
198 			return false;  /* No definition. */
199 
200 		def = (Elf64_Verdef *)((char *)def + def->vd_next);
201 	}
202 
203 	/* Now figure out whether it matches. */
204 	Elf64_Verdaux *aux = (Elf64_Verdaux*)((char *)def + def->vd_aux);
205 	return def->vd_hash == hash
206 		&& !strcmp(name, vdso_info.symstrings + aux->vda_name);
207 }
208 
vdso_sym(const char * version,const char * name)209 void *vdso_sym(const char *version, const char *name)
210 {
211 	unsigned long ver_hash;
212 	if (!vdso_info.valid)
213 		return 0;
214 
215 	ver_hash = elf_hash(version);
216 	Elf64_Word chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
217 
218 	for (; chain != STN_UNDEF; chain = vdso_info.chain[chain]) {
219 		Elf64_Sym *sym = &vdso_info.symtab[chain];
220 
221 		/* Check for a defined global or weak function w/ right name. */
222 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
223 			continue;
224 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
225 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
226 			continue;
227 		if (sym->st_shndx == SHN_UNDEF)
228 			continue;
229 		if (strcmp(name, vdso_info.symstrings + sym->st_name))
230 			continue;
231 
232 		/* Check symbol version. */
233 		if (vdso_info.versym
234 		    && !vdso_match_version(vdso_info.versym[chain],
235 					   version, ver_hash))
236 			continue;
237 
238 		return (void *)(vdso_info.load_offset + sym->st_value);
239 	}
240 
241 	return 0;
242 }
243 
vdso_init_from_auxv(void * auxv)244 void vdso_init_from_auxv(void *auxv)
245 {
246 	Elf64_auxv_t *elf_auxv = auxv;
247 	for (int i = 0; elf_auxv[i].a_type != AT_NULL; i++)
248 	{
249 		if (elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
250 			vdso_init_from_sysinfo_ehdr(elf_auxv[i].a_un.a_val);
251 			return;
252 		}
253 	}
254 
255 	vdso_info.valid = false;
256 }
257