• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Memory subsystem initialization for Hexagon
3  *
4  * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20 
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/bootmem.h>
24 #include <asm/atomic.h>
25 #include <linux/highmem.h>
26 #include <asm/tlb.h>
27 #include <asm/sections.h>
28 #include <asm/vm_mmu.h>
29 
30 /*
31  * Define a startpg just past the end of the kernel image and a lastpg
32  * that corresponds to the end of real or simulated platform memory.
33  */
34 #define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET))
35 
36 unsigned long bootmem_lastpg;	/*  Should be set by platform code  */
37 unsigned long __phys_offset;	/*  physical kernel offset >> 12  */
38 
39 /*  Set as variable to limit PMD copies  */
40 int max_kernel_seg = 0x303;
41 
42 /*  think this should be (page_size-1) the way it's used...*/
43 unsigned long zero_page_mask;
44 
45 /*  indicate pfn's of high memory  */
46 unsigned long highstart_pfn, highend_pfn;
47 
48 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
49 
50 /* Default cache attribute for newly created page tables */
51 unsigned long _dflt_cache_att = CACHEDEF;
52 
53 /*
54  * The current "generation" of kernel map, which should not roll
55  * over until Hell freezes over.  Actual bound in years needs to be
56  * calculated to confirm.
57  */
58 DEFINE_SPINLOCK(kmap_gen_lock);
59 
60 /*  checkpatch says don't init this to 0.  */
61 unsigned long long kmap_generation;
62 
63 /*
64  * mem_init - initializes memory
65  *
66  * Frees up bootmem
67  * Fixes up more stuff for HIGHMEM
68  * Calculates and displays memory available/used
69  */
mem_init(void)70 void __init mem_init(void)
71 {
72 	/*  No idea where this is actually declared.  Seems to evade LXR.  */
73 	totalram_pages += free_all_bootmem();
74 	num_physpages = bootmem_lastpg-ARCH_PFN_OFFSET;
75 
76 	printk(KERN_INFO "totalram_pages = %ld\n", totalram_pages);
77 
78 	/*
79 	 *  To-Do:  someone somewhere should wipe out the bootmem map
80 	 *  after we're done?
81 	 */
82 
83 	/*
84 	 * This can be moved to some more virtual-memory-specific
85 	 * initialization hook at some point.  Set the init_mm
86 	 * descriptors "context" value to point to the initial
87 	 * kernel segment table's physical address.
88 	 */
89 	init_mm.context.ptbase = __pa(init_mm.pgd);
90 }
91 
92 /*
93  * free_initmem - frees memory used by stuff declared with __init
94  *
95  * Todo:  free pages between __init_begin and __init_end; possibly
96  * some devtree related stuff as well.
97  */
free_initmem(void)98 void __init_refok free_initmem(void)
99 {
100 }
101 
102 /*
103  * free_initrd_mem - frees...  initrd memory.
104  * @start - start of init memory
105  * @end - end of init memory
106  *
107  * Apparently has to be passed the address of the initrd memory.
108  *
109  * Wrapped by #ifdef CONFIG_BLKDEV_INITRD
110  */
free_initrd_mem(unsigned long start,unsigned long end)111 void free_initrd_mem(unsigned long start, unsigned long end)
112 {
113 }
114 
sync_icache_dcache(pte_t pte)115 void sync_icache_dcache(pte_t pte)
116 {
117 	unsigned long addr;
118 	struct page *page;
119 
120 	page = pte_page(pte);
121 	addr = (unsigned long) page_address(page);
122 
123 	__vmcache_idsync(addr, PAGE_SIZE);
124 }
125 
126 /*
127  * In order to set up page allocator "nodes",
128  * somebody has to call free_area_init() for UMA.
129  *
130  * In this mode, we only have one pg_data_t
131  * structure: contig_mem_data.
132  */
paging_init(void)133 void __init paging_init(void)
134 {
135 	unsigned long zones_sizes[MAX_NR_ZONES] = {0, };
136 
137 	/*
138 	 *  This is not particularly well documented anywhere, but
139 	 *  give ZONE_NORMAL all the memory, including the big holes
140 	 *  left by the kernel+bootmem_map which are already left as reserved
141 	 *  in the bootmem_map; free_area_init should see those bits and
142 	 *  adjust accordingly.
143 	 */
144 
145 	zones_sizes[ZONE_NORMAL] = max_low_pfn;
146 
147 	free_area_init(zones_sizes);  /*  sets up the zonelists and mem_map  */
148 
149 	/*
150 	 * Start of high memory area.  Will probably need something more
151 	 * fancy if we...  get more fancy.
152 	 */
153 	high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT);
154 }
155 
156 #ifndef DMA_RESERVE
157 #define DMA_RESERVE		(4)
158 #endif
159 
160 #define DMA_CHUNKSIZE		(1<<22)
161 #define DMA_RESERVED_BYTES	(DMA_RESERVE * DMA_CHUNKSIZE)
162 
163 /*
164  * Pick out the memory size.  We look for mem=size,
165  * where size is "size[KkMm]"
166  */
early_mem(char * p)167 static int __init early_mem(char *p)
168 {
169 	unsigned long size;
170 	char *endp;
171 
172 	size = memparse(p, &endp);
173 
174 	bootmem_lastpg = PFN_DOWN(size);
175 
176 	return 0;
177 }
178 early_param("mem", early_mem);
179 
180 size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22);
181 
setup_arch_memory(void)182 void __init setup_arch_memory(void)
183 {
184 	int bootmap_size;
185 	/*  XXX Todo: this probably should be cleaned up  */
186 	u32 *segtable = (u32 *) &swapper_pg_dir[0];
187 	u32 *segtable_end;
188 
189 	/*
190 	 * Set up boot memory allocator
191 	 *
192 	 * The Gorman book also talks about these functions.
193 	 * This needs to change for highmem setups.
194 	 */
195 
196 	/*  Prior to this, bootmem_lastpg is actually mem size  */
197 	bootmem_lastpg += ARCH_PFN_OFFSET;
198 
199 	/* Memory size needs to be a multiple of 16M */
200 	bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) &
201 		~((BIG_KERNEL_PAGE_SIZE) - 1));
202 
203 	/*
204 	 * Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached)
205 	 * memory allocation
206 	 */
207 
208 	max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES);
209 	min_low_pfn = ARCH_PFN_OFFSET;
210 	bootmap_size =  init_bootmem_node(NODE_DATA(0), bootmem_startpg, min_low_pfn, max_low_pfn);
211 
212 	printk(KERN_INFO "bootmem_startpg:  0x%08lx\n", bootmem_startpg);
213 	printk(KERN_INFO "bootmem_lastpg:  0x%08lx\n", bootmem_lastpg);
214 	printk(KERN_INFO "bootmap_size:  %d\n", bootmap_size);
215 	printk(KERN_INFO "min_low_pfn:  0x%08lx\n", min_low_pfn);
216 	printk(KERN_INFO "max_low_pfn:  0x%08lx\n", max_low_pfn);
217 
218 	/*
219 	 * The default VM page tables (will be) populated with
220 	 * VA=PA+PAGE_OFFSET mapping.  We go in and invalidate entries
221 	 * higher than what we have memory for.
222 	 */
223 
224 	/*  this is pointer arithmetic; each entry covers 4MB  */
225 	segtable = segtable + (PAGE_OFFSET >> 22);
226 
227 	/*  this actually only goes to the end of the first gig  */
228 	segtable_end = segtable + (1<<(30-22));
229 
230 	/*
231 	 * Move forward to the start of empty pages; take into account
232 	 * phys_offset shift.
233 	 */
234 
235 	segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT);
236 	{
237 		int i;
238 
239 		for (i = 1 ; i <= DMA_RESERVE ; i++)
240 			segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB)
241 				| __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X
242 				| __HEXAGON_C_UNC << 6
243 				| __HVM_PDE_S_4MB);
244 	}
245 
246 	printk(KERN_INFO "clearing segtable from %p to %p\n", segtable,
247 		segtable_end);
248 	while (segtable < (segtable_end-8))
249 		*(segtable++) = __HVM_PDE_S_INVALID;
250 	/* stop the pointer at the device I/O 4MB page  */
251 
252 	printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n",
253 		segtable);
254 
255 #if 0
256 	/*  Other half of the early device table from vm_init_segtable. */
257 	printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n",
258 		(unsigned long) _K_init_devicetable-PAGE_OFFSET);
259 	*segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) |
260 		__HVM_PDE_S_4KB;
261 	printk(KERN_INFO "*segtable = 0x%08x\n", *segtable);
262 #endif
263 
264 	/*
265 	 * Free all the memory that wasn't taken up by the bootmap, the DMA
266 	 * reserve, or kernel itself.
267 	 */
268 	free_bootmem(PFN_PHYS(bootmem_startpg) + bootmap_size,
269 		     PFN_PHYS(bootmem_lastpg - bootmem_startpg) - bootmap_size -
270 		     DMA_RESERVED_BYTES);
271 
272 	/*
273 	 *  The bootmem allocator seemingly just lives to feed memory
274 	 *  to the paging system
275 	 */
276 	printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE);
277 	paging_init();  /*  See Gorman Book, 2.3  */
278 
279 	/*
280 	 *  At this point, the page allocator is kind of initialized, but
281 	 *  apparently no pages are available (just like with the bootmem
282 	 *  allocator), and need to be freed themselves via mem_init(),
283 	 *  which is called by start_kernel() later on in the process
284 	 */
285 }
286