• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994, 1995 Waldorf GmbH
7  * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
10  *	Author: Maciej W. Rozycki <macro@mips.com>
11  */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14 
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/irqflags.h>
19 
20 #include <asm/addrspace.h>
21 #include <asm/bug.h>
22 #include <asm/byteorder.h>
23 #include <asm/cpu.h>
24 #include <asm/cpu-features.h>
25 #include <asm-generic/iomap.h>
26 #include <asm/page.h>
27 #include <asm/pgtable-bits.h>
28 #include <asm/processor.h>
29 #include <asm/string.h>
30 
31 #include <ioremap.h>
32 #include <mangle-port.h>
33 
34 /*
35  * Slowdown I/O port space accesses for antique hardware.
36  */
37 #undef CONF_SLOWDOWN_IO
38 
39 /*
40  * Raw operations are never swapped in software.  OTOH values that raw
41  * operations are working on may or may not have been swapped by the bus
42  * hardware.  An example use would be for flash memory that's used for
43  * execute in place.
44  */
45 # define __raw_ioswabb(a, x)	(x)
46 # define __raw_ioswabw(a, x)	(x)
47 # define __raw_ioswabl(a, x)	(x)
48 # define __raw_ioswabq(a, x)	(x)
49 # define ____raw_ioswabq(a, x)	(x)
50 
51 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
52 
53 #define IO_SPACE_LIMIT 0xffff
54 
55 /*
56  * On MIPS I/O ports are memory mapped, so we access them using normal
57  * load/store instructions. mips_io_port_base is the virtual address to
58  * which all ports are being mapped.  For sake of efficiency some code
59  * assumes that this is an address that can be loaded with a single lui
60  * instruction, so the lower 16 bits must be zero.  Should be true on
61  * on any sane architecture; generic code does not use this assumption.
62  */
63 extern const unsigned long mips_io_port_base;
64 
65 /*
66  * Gcc will generate code to load the value of mips_io_port_base after each
67  * function call which may be fairly wasteful in some cases.  So we don't
68  * play quite by the book.  We tell gcc mips_io_port_base is a long variable
69  * which solves the code generation issue.  Now we need to violate the
70  * aliasing rules a little to make initialization possible and finally we
71  * will need the barrier() to fight side effects of the aliasing chat.
72  * This trickery will eventually collapse under gcc's optimizer.  Oh well.
73  */
set_io_port_base(unsigned long base)74 static inline void set_io_port_base(unsigned long base)
75 {
76 	* (unsigned long *) &mips_io_port_base = base;
77 	barrier();
78 }
79 
80 /*
81  * Thanks to James van Artsdalen for a better timing-fix than
82  * the two short jumps: using outb's to a nonexistent port seems
83  * to guarantee better timings even on fast machines.
84  *
85  * On the other hand, I'd like to be sure of a non-existent port:
86  * I feel a bit unsafe about using 0x80 (should be safe, though)
87  *
88  *		Linus
89  *
90  */
91 
92 #define __SLOW_DOWN_IO \
93 	__asm__ __volatile__( \
94 		"sb\t$0,0x80(%0)" \
95 		: : "r" (mips_io_port_base));
96 
97 #ifdef CONF_SLOWDOWN_IO
98 #ifdef REALLY_SLOW_IO
99 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
100 #else
101 #define SLOW_DOWN_IO __SLOW_DOWN_IO
102 #endif
103 #else
104 #define SLOW_DOWN_IO
105 #endif
106 
107 /*
108  *     virt_to_phys    -       map virtual addresses to physical
109  *     @address: address to remap
110  *
111  *     The returned physical address is the physical (CPU) mapping for
112  *     the memory address given. It is only valid to use this function on
113  *     addresses directly mapped or allocated via kmalloc.
114  *
115  *     This function does not give bus mappings for DMA transfers. In
116  *     almost all conceivable cases a device driver should not be using
117  *     this function
118  */
virt_to_phys(volatile const void * address)119 static inline unsigned long virt_to_phys(volatile const void *address)
120 {
121 	return __pa(address);
122 }
123 
124 /*
125  *     phys_to_virt    -       map physical address to virtual
126  *     @address: address to remap
127  *
128  *     The returned virtual address is a current CPU mapping for
129  *     the memory address given. It is only valid to use this function on
130  *     addresses that have a kernel mapping
131  *
132  *     This function does not handle bus mappings for DMA transfers. In
133  *     almost all conceivable cases a device driver should not be using
134  *     this function
135  */
phys_to_virt(unsigned long address)136 static inline void * phys_to_virt(unsigned long address)
137 {
138 	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
139 }
140 
141 /*
142  * ISA I/O bus memory addresses are 1:1 with the physical address.
143  */
isa_virt_to_bus(volatile void * address)144 static inline unsigned long isa_virt_to_bus(volatile void * address)
145 {
146 	return (unsigned long)address - PAGE_OFFSET;
147 }
148 
isa_bus_to_virt(unsigned long address)149 static inline void * isa_bus_to_virt(unsigned long address)
150 {
151 	return (void *)(address + PAGE_OFFSET);
152 }
153 
154 #define isa_page_to_bus page_to_phys
155 
156 /*
157  * However PCI ones are not necessarily 1:1 and therefore these interfaces
158  * are forbidden in portable PCI drivers.
159  *
160  * Allow them for x86 for legacy drivers, though.
161  */
162 #define virt_to_bus virt_to_phys
163 #define bus_to_virt phys_to_virt
164 
165 #define phys_to_bus(x)  ((dma_addr_t)(x))
166 #define bus_to_phys(x)  ((phys_t)(x))
167 
168 /*
169  * Change "struct page" to physical address.
170  */
171 #define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
172 
173 extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
174 extern void __iounmap(const volatile void __iomem *addr);
175 
176 #ifndef CONFIG_PCI
177 struct pci_dev;
pci_iounmap(struct pci_dev * dev,void __iomem * addr)178 static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
179 #endif
180 
__ioremap_mode(phys_t offset,unsigned long size,unsigned long flags)181 static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
182 	unsigned long flags)
183 {
184 	void __iomem *addr = plat_ioremap(offset, size, flags);
185 
186 	if (addr)
187 		return addr;
188 
189 #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
190 
191 	if (cpu_has_64bit_addresses) {
192 		u64 base = UNCAC_BASE;
193 
194 		/*
195 		 * R10000 supports a 2 bit uncached attribute therefore
196 		 * UNCAC_BASE may not equal IO_BASE.
197 		 */
198 		if (flags == _CACHE_UNCACHED)
199 			base = (u64) IO_BASE;
200 		return (void __iomem *) (unsigned long) (base + offset);
201 	} else if (__builtin_constant_p(offset) &&
202 		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
203 		phys_t phys_addr, last_addr;
204 
205 		phys_addr = fixup_bigphys_addr(offset, size);
206 
207 		/* Don't allow wraparound or zero size. */
208 		last_addr = phys_addr + size - 1;
209 		if (!size || last_addr < phys_addr)
210 			return NULL;
211 
212 		/*
213 		 * Map uncached objects in the low 512MB of address
214 		 * space using KSEG1.
215 		 */
216 		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
217 		    flags == _CACHE_UNCACHED)
218 			return (void __iomem *)
219 				(unsigned long)CKSEG1ADDR(phys_addr);
220 	}
221 
222 	return __ioremap(offset, size, flags);
223 
224 #undef __IS_LOW512
225 }
226 
227 /*
228  * ioremap     -   map bus memory into CPU space
229  * @offset:    bus address of the memory
230  * @size:      size of the resource to map
231  *
232  * ioremap performs a platform specific sequence of operations to
233  * make bus memory CPU accessible via the readb/readw/readl/writeb/
234  * writew/writel functions and the other mmio helpers. The returned
235  * address is not guaranteed to be usable directly as a virtual
236  * address.
237  */
238 #define ioremap(offset, size)						\
239 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
240 
241 /*
242  * ioremap_nocache     -   map bus memory into CPU space
243  * @offset:    bus address of the memory
244  * @size:      size of the resource to map
245  *
246  * ioremap_nocache performs a platform specific sequence of operations to
247  * make bus memory CPU accessible via the readb/readw/readl/writeb/
248  * writew/writel functions and the other mmio helpers. The returned
249  * address is not guaranteed to be usable directly as a virtual
250  * address.
251  *
252  * This version of ioremap ensures that the memory is marked uncachable
253  * on the CPU as well as honouring existing caching rules from things like
254  * the PCI bus. Note that there are other caches and buffers on many
255  * busses. In particular driver authors should read up on PCI writes
256  *
257  * It's useful if some control registers are in such an area and
258  * write combining or read caching is not desirable:
259  */
260 #define ioremap_nocache(offset, size)					\
261 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
262 
263 /*
264  * ioremap_cachable -	map bus memory into CPU space
265  * @offset:	    bus address of the memory
266  * @size:	    size of the resource to map
267  *
268  * ioremap_nocache performs a platform specific sequence of operations to
269  * make bus memory CPU accessible via the readb/readw/readl/writeb/
270  * writew/writel functions and the other mmio helpers. The returned
271  * address is not guaranteed to be usable directly as a virtual
272  * address.
273  *
274  * This version of ioremap ensures that the memory is marked cachable by
275  * the CPU.  Also enables full write-combining.	 Useful for some
276  * memory-like regions on I/O busses.
277  */
278 #define ioremap_cachable(offset, size)					\
279 	__ioremap_mode((offset), (size), _page_cachable_default)
280 
281 /*
282  * These two are MIPS specific ioremap variant.	 ioremap_cacheable_cow
283  * requests a cachable mapping, ioremap_uncached_accelerated requests a
284  * mapping using the uncached accelerated mode which isn't supported on
285  * all processors.
286  */
287 #define ioremap_cacheable_cow(offset, size)				\
288 	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
289 #define ioremap_uncached_accelerated(offset, size)			\
290 	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
291 
iounmap(const volatile void __iomem * addr)292 static inline void iounmap(const volatile void __iomem *addr)
293 {
294 	if (plat_iounmap(addr))
295 		return;
296 
297 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
298 
299 	if (cpu_has_64bit_addresses ||
300 	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
301 		return;
302 
303 	__iounmap(addr);
304 
305 #undef __IS_KSEG1
306 }
307 
308 #ifdef CONFIG_CPU_CAVIUM_OCTEON
309 #define war_octeon_io_reorder_wmb()		wmb()
310 #else
311 #define war_octeon_io_reorder_wmb()		do { } while (0)
312 #endif
313 
314 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
315 									\
316 static inline void pfx##write##bwlq(type val,				\
317 				    volatile void __iomem *mem)		\
318 {									\
319 	volatile type *__mem;						\
320 	type __val;							\
321 									\
322 	war_octeon_io_reorder_wmb();					\
323 									\
324 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
325 									\
326 	__val = pfx##ioswab##bwlq(__mem, val);				\
327 									\
328 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
329 		*__mem = __val;						\
330 	else if (cpu_has_64bits) {					\
331 		unsigned long __flags;					\
332 		type __tmp;						\
333 									\
334 		if (irq)						\
335 			local_irq_save(__flags);			\
336 		__asm__ __volatile__(					\
337 			".set	mips3"		"\t\t# __writeq""\n\t"	\
338 			"dsll32 %L0, %L0, 0"			"\n\t"	\
339 			"dsrl32 %L0, %L0, 0"			"\n\t"	\
340 			"dsll32 %M0, %M0, 0"			"\n\t"	\
341 			"or	%L0, %L0, %M0"			"\n\t"	\
342 			"sd	%L0, %2"			"\n\t"	\
343 			".set	mips0"				"\n"	\
344 			: "=r" (__tmp)					\
345 			: "0" (__val), "m" (*__mem));			\
346 		if (irq)						\
347 			local_irq_restore(__flags);			\
348 	} else								\
349 		BUG();							\
350 }									\
351 									\
352 static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
353 {									\
354 	volatile type *__mem;						\
355 	type __val;							\
356 									\
357 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
358 									\
359 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
360 		__val = *__mem;						\
361 	else if (cpu_has_64bits) {					\
362 		unsigned long __flags;					\
363 									\
364 		if (irq)						\
365 			local_irq_save(__flags);			\
366 		__asm__ __volatile__(					\
367 			".set	mips3"		"\t\t# __readq" "\n\t"	\
368 			"ld	%L0, %1"			"\n\t"	\
369 			"dsra32 %M0, %L0, 0"			"\n\t"	\
370 			"sll	%L0, %L0, 0"			"\n\t"	\
371 			".set	mips0"				"\n"	\
372 			: "=r" (__val)					\
373 			: "m" (*__mem));				\
374 		if (irq)						\
375 			local_irq_restore(__flags);			\
376 	} else {							\
377 		__val = 0;						\
378 		BUG();							\
379 	}								\
380 									\
381 	return pfx##ioswab##bwlq(__mem, __val);				\
382 }
383 
384 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
385 									\
386 static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
387 {									\
388 	volatile type *__addr;						\
389 	type __val;							\
390 									\
391 	war_octeon_io_reorder_wmb();					\
392 									\
393 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
394 									\
395 	__val = pfx##ioswab##bwlq(__addr, val);				\
396 									\
397 	/* Really, we want this to be atomic */				\
398 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
399 									\
400 	*__addr = __val;						\
401 	slow;								\
402 }									\
403 									\
404 static inline type pfx##in##bwlq##p(unsigned long port)			\
405 {									\
406 	volatile type *__addr;						\
407 	type __val;							\
408 									\
409 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
410 									\
411 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
412 									\
413 	__val = *__addr;						\
414 	slow;								\
415 									\
416 	return pfx##ioswab##bwlq(__addr, __val);			\
417 }
418 
419 #define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
420 									\
421 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
422 
423 #define BUILDIO_MEM(bwlq, type)						\
424 									\
425 __BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
426 __BUILD_MEMORY_PFX(, bwlq, type)					\
427 __BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
428 
BUILDIO_MEM(b,u8)429 BUILDIO_MEM(b, u8)
430 BUILDIO_MEM(w, u16)
431 BUILDIO_MEM(l, u32)
432 BUILDIO_MEM(q, u64)
433 
434 #define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
435 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
436 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
437 
438 #define BUILDIO_IOPORT(bwlq, type)					\
439 	__BUILD_IOPORT_PFX(, bwlq, type)				\
440 	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
441 
442 BUILDIO_IOPORT(b, u8)
443 BUILDIO_IOPORT(w, u16)
444 BUILDIO_IOPORT(l, u32)
445 #ifdef CONFIG_64BIT
446 BUILDIO_IOPORT(q, u64)
447 #endif
448 
449 #define __BUILDIO(bwlq, type)						\
450 									\
451 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
452 
453 __BUILDIO(q, u64)
454 
455 #define readb_relaxed			readb
456 #define readw_relaxed			readw
457 #define readl_relaxed			readl
458 #define readq_relaxed			readq
459 
460 #define readb_be(addr)							\
461 	__raw_readb((__force unsigned *)(addr))
462 #define readw_be(addr)							\
463 	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
464 #define readl_be(addr)							\
465 	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
466 #define readq_be(addr)							\
467 	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
468 
469 #define writeb_be(val, addr)						\
470 	__raw_writeb((val), (__force unsigned *)(addr))
471 #define writew_be(val, addr)						\
472 	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
473 #define writel_be(val, addr)						\
474 	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
475 #define writeq_be(val, addr)						\
476 	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
477 
478 /*
479  * Some code tests for these symbols
480  */
481 #define readq				readq
482 #define writeq				writeq
483 
484 #define __BUILD_MEMORY_STRING(bwlq, type)				\
485 									\
486 static inline void writes##bwlq(volatile void __iomem *mem,		\
487 				const void *addr, unsigned int count)	\
488 {									\
489 	const volatile type *__addr = addr;				\
490 									\
491 	while (count--) {						\
492 		__mem_write##bwlq(*__addr, mem);			\
493 		__addr++;						\
494 	}								\
495 }									\
496 									\
497 static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
498 			       unsigned int count)			\
499 {									\
500 	volatile type *__addr = addr;					\
501 									\
502 	while (count--) {						\
503 		*__addr = __mem_read##bwlq(mem);			\
504 		__addr++;						\
505 	}								\
506 }
507 
508 #define __BUILD_IOPORT_STRING(bwlq, type)				\
509 									\
510 static inline void outs##bwlq(unsigned long port, const void *addr,	\
511 			      unsigned int count)			\
512 {									\
513 	const volatile type *__addr = addr;				\
514 									\
515 	while (count--) {						\
516 		__mem_out##bwlq(*__addr, port);				\
517 		__addr++;						\
518 	}								\
519 }									\
520 									\
521 static inline void ins##bwlq(unsigned long port, void *addr,		\
522 			     unsigned int count)			\
523 {									\
524 	volatile type *__addr = addr;					\
525 									\
526 	while (count--) {						\
527 		*__addr = __mem_in##bwlq(port);				\
528 		__addr++;						\
529 	}								\
530 }
531 
532 #define BUILDSTRING(bwlq, type)						\
533 									\
534 __BUILD_MEMORY_STRING(bwlq, type)					\
535 __BUILD_IOPORT_STRING(bwlq, type)
536 
537 BUILDSTRING(b, u8)
538 BUILDSTRING(w, u16)
539 BUILDSTRING(l, u32)
540 #ifdef CONFIG_64BIT
541 BUILDSTRING(q, u64)
542 #endif
543 
544 
545 #ifdef CONFIG_CPU_CAVIUM_OCTEON
546 #define mmiowb() wmb()
547 #else
548 /* Depends on MIPS II instruction set */
549 #define mmiowb() asm volatile ("sync" ::: "memory")
550 #endif
551 
552 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
553 {
554 	memset((void __force *) addr, val, count);
555 }
memcpy_fromio(void * dst,const volatile void __iomem * src,int count)556 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
557 {
558 	memcpy(dst, (void __force *) src, count);
559 }
memcpy_toio(volatile void __iomem * dst,const void * src,int count)560 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
561 {
562 	memcpy((void __force *) dst, src, count);
563 }
564 
565 /*
566  * The caches on some architectures aren't dma-coherent and have need to
567  * handle this in software.  There are three types of operations that
568  * can be applied to dma buffers.
569  *
570  *  - dma_cache_wback_inv(start, size) makes caches and coherent by
571  *    writing the content of the caches back to memory, if necessary.
572  *    The function also invalidates the affected part of the caches as
573  *    necessary before DMA transfers from outside to memory.
574  *  - dma_cache_wback(start, size) makes caches and coherent by
575  *    writing the content of the caches back to memory, if necessary.
576  *    The function also invalidates the affected part of the caches as
577  *    necessary before DMA transfers from outside to memory.
578  *  - dma_cache_inv(start, size) invalidates the affected parts of the
579  *    caches.  Dirty lines of the caches may be written back or simply
580  *    be discarded.  This operation is necessary before dma operations
581  *    to the memory.
582  *
583  * This API used to be exported; it now is for arch code internal use only.
584  */
585 #ifdef CONFIG_DMA_NONCOHERENT
586 
587 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
588 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
589 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
590 
591 #define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
592 #define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
593 #define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
594 
595 #else /* Sane hardware */
596 
597 #define dma_cache_wback_inv(start,size) \
598 	do { (void) (start); (void) (size); } while (0)
599 #define dma_cache_wback(start,size)	\
600 	do { (void) (start); (void) (size); } while (0)
601 #define dma_cache_inv(start,size)	\
602 	do { (void) (start); (void) (size); } while (0)
603 
604 #endif /* CONFIG_DMA_NONCOHERENT */
605 
606 /*
607  * Read a 32-bit register that requires a 64-bit read cycle on the bus.
608  * Avoid interrupt mucking, just adjust the address for 4-byte access.
609  * Assume the addresses are 8-byte aligned.
610  */
611 #ifdef __MIPSEB__
612 #define __CSR_32_ADJUST 4
613 #else
614 #define __CSR_32_ADJUST 0
615 #endif
616 
617 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
618 #define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
619 
620 /*
621  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
622  * access
623  */
624 #define xlate_dev_mem_ptr(p)	__va(p)
625 
626 /*
627  * Convert a virtual cached pointer to an uncached pointer
628  */
629 #define xlate_dev_kmem_ptr(p)	p
630 
631 #endif /* _ASM_IO_H */
632