• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file handles the architecture dependent parts of process handling.
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6  *		 Hartmut Penner <hp@de.ibm.com>,
7  *		 Denis Joseph Barrow,
8  */
9 
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/elfcore.h>
16 #include <linux/smp.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/tick.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/compat.h>
23 #include <linux/kprobes.h>
24 #include <linux/random.h>
25 #include <linux/module.h>
26 #include <asm/io.h>
27 #include <asm/processor.h>
28 #include <asm/vtimer.h>
29 #include <asm/exec.h>
30 #include <asm/irq.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/switch_to.h>
34 #include <asm/runtime_instr.h>
35 #include "entry.h"
36 
37 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
38 
39 /*
40  * Return saved PC of a blocked thread. used in kernel/sched.
41  * resume in entry.S does not create a new stack frame, it
42  * just stores the registers %r6-%r15 to the frame given by
43  * schedule. We want to return the address of the caller of
44  * schedule, so we have to walk the backchain one time to
45  * find the frame schedule() store its return address.
46  */
thread_saved_pc(struct task_struct * tsk)47 unsigned long thread_saved_pc(struct task_struct *tsk)
48 {
49 	struct stack_frame *sf, *low, *high;
50 
51 	if (!tsk || !task_stack_page(tsk))
52 		return 0;
53 	low = task_stack_page(tsk);
54 	high = (struct stack_frame *) task_pt_regs(tsk);
55 	sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
56 	if (sf <= low || sf > high)
57 		return 0;
58 	sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
59 	if (sf <= low || sf > high)
60 		return 0;
61 	return sf->gprs[8];
62 }
63 
arch_cpu_idle(void)64 void arch_cpu_idle(void)
65 {
66 	local_mcck_disable();
67 	if (test_thread_flag(TIF_MCCK_PENDING)) {
68 		local_mcck_enable();
69 		local_irq_enable();
70 		return;
71 	}
72 	/* Halt the cpu and keep track of cpu time accounting. */
73 	vtime_stop_cpu();
74 }
75 
arch_cpu_idle_exit(void)76 void arch_cpu_idle_exit(void)
77 {
78 	if (test_thread_flag(TIF_MCCK_PENDING))
79 		s390_handle_mcck();
80 }
81 
arch_cpu_idle_dead(void)82 void arch_cpu_idle_dead(void)
83 {
84 	cpu_die();
85 }
86 
87 extern void __kprobes kernel_thread_starter(void);
88 
89 /*
90  * Free current thread data structures etc..
91  */
exit_thread(void)92 void exit_thread(void)
93 {
94 	exit_thread_runtime_instr();
95 }
96 
flush_thread(void)97 void flush_thread(void)
98 {
99 }
100 
release_thread(struct task_struct * dead_task)101 void release_thread(struct task_struct *dead_task)
102 {
103 }
104 
copy_thread(unsigned long clone_flags,unsigned long new_stackp,unsigned long arg,struct task_struct * p)105 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
106 		unsigned long arg, struct task_struct *p)
107 {
108 	struct thread_info *ti;
109 	struct fake_frame
110 	{
111 		struct stack_frame sf;
112 		struct pt_regs childregs;
113 	} *frame;
114 
115 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
116 	p->thread.ksp = (unsigned long) frame;
117 	/* Save access registers to new thread structure. */
118 	save_access_regs(&p->thread.acrs[0]);
119 	/* start new process with ar4 pointing to the correct address space */
120 	p->thread.mm_segment = get_fs();
121 	/* Don't copy debug registers */
122 	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
123 	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
124 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
125 	clear_tsk_thread_flag(p, TIF_PER_TRAP);
126 	/* Initialize per thread user and system timer values */
127 	ti = task_thread_info(p);
128 	ti->user_timer = 0;
129 	ti->system_timer = 0;
130 
131 	frame->sf.back_chain = 0;
132 	/* new return point is ret_from_fork */
133 	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
134 	/* fake return stack for resume(), don't go back to schedule */
135 	frame->sf.gprs[9] = (unsigned long) frame;
136 
137 	/* Store access registers to kernel stack of new process. */
138 	if (unlikely(p->flags & PF_KTHREAD)) {
139 		/* kernel thread */
140 		memset(&frame->childregs, 0, sizeof(struct pt_regs));
141 		frame->childregs.psw.mask = psw_kernel_bits | PSW_MASK_DAT |
142 				PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
143 		frame->childregs.psw.addr = PSW_ADDR_AMODE |
144 				(unsigned long) kernel_thread_starter;
145 		frame->childregs.gprs[9] = new_stackp; /* function */
146 		frame->childregs.gprs[10] = arg;
147 		frame->childregs.gprs[11] = (unsigned long) do_exit;
148 		frame->childregs.orig_gpr2 = -1;
149 
150 		return 0;
151 	}
152 	frame->childregs = *current_pt_regs();
153 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
154 	if (new_stackp)
155 		frame->childregs.gprs[15] = new_stackp;
156 
157 	/* Don't copy runtime instrumentation info */
158 	p->thread.ri_cb = NULL;
159 	p->thread.ri_signum = 0;
160 	frame->childregs.psw.mask &= ~PSW_MASK_RI;
161 
162 #ifndef CONFIG_64BIT
163 	/*
164 	 * save fprs to current->thread.fp_regs to merge them with
165 	 * the emulated registers and then copy the result to the child.
166 	 */
167 	save_fp_regs(&current->thread.fp_regs);
168 	memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
169 	       sizeof(s390_fp_regs));
170 	/* Set a new TLS ?  */
171 	if (clone_flags & CLONE_SETTLS)
172 		p->thread.acrs[0] = frame->childregs.gprs[6];
173 #else /* CONFIG_64BIT */
174 	/* Save the fpu registers to new thread structure. */
175 	save_fp_regs(&p->thread.fp_regs);
176 	/* Set a new TLS ?  */
177 	if (clone_flags & CLONE_SETTLS) {
178 		unsigned long tls = frame->childregs.gprs[6];
179 		if (is_compat_task()) {
180 			p->thread.acrs[0] = (unsigned int)tls;
181 		} else {
182 			p->thread.acrs[0] = (unsigned int)(tls >> 32);
183 			p->thread.acrs[1] = (unsigned int)tls;
184 		}
185 	}
186 #endif /* CONFIG_64BIT */
187 	return 0;
188 }
189 
execve_tail(void)190 asmlinkage void execve_tail(void)
191 {
192 	current->thread.fp_regs.fpc = 0;
193 	if (MACHINE_HAS_IEEE)
194 		asm volatile("sfpc %0,%0" : : "d" (0));
195 }
196 
197 /*
198  * fill in the FPU structure for a core dump.
199  */
dump_fpu(struct pt_regs * regs,s390_fp_regs * fpregs)200 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
201 {
202 #ifndef CONFIG_64BIT
203 	/*
204 	 * save fprs to current->thread.fp_regs to merge them with
205 	 * the emulated registers and then copy the result to the dump.
206 	 */
207 	save_fp_regs(&current->thread.fp_regs);
208 	memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
209 #else /* CONFIG_64BIT */
210 	save_fp_regs(fpregs);
211 #endif /* CONFIG_64BIT */
212 	return 1;
213 }
214 EXPORT_SYMBOL(dump_fpu);
215 
get_wchan(struct task_struct * p)216 unsigned long get_wchan(struct task_struct *p)
217 {
218 	struct stack_frame *sf, *low, *high;
219 	unsigned long return_address;
220 	int count;
221 
222 	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
223 		return 0;
224 	low = task_stack_page(p);
225 	high = (struct stack_frame *) task_pt_regs(p);
226 	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
227 	if (sf <= low || sf > high)
228 		return 0;
229 	for (count = 0; count < 16; count++) {
230 		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
231 		if (sf <= low || sf > high)
232 			return 0;
233 		return_address = sf->gprs[8] & PSW_ADDR_INSN;
234 		if (!in_sched_functions(return_address))
235 			return return_address;
236 	}
237 	return 0;
238 }
239 
arch_align_stack(unsigned long sp)240 unsigned long arch_align_stack(unsigned long sp)
241 {
242 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
243 		sp -= get_random_int() & ~PAGE_MASK;
244 	return sp & ~0xf;
245 }
246 
brk_rnd(void)247 static inline unsigned long brk_rnd(void)
248 {
249 	/* 8MB for 32bit, 1GB for 64bit */
250 	if (is_32bit_task())
251 		return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
252 	else
253 		return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
254 }
255 
arch_randomize_brk(struct mm_struct * mm)256 unsigned long arch_randomize_brk(struct mm_struct *mm)
257 {
258 	unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
259 
260 	if (ret < mm->brk)
261 		return mm->brk;
262 	return ret;
263 }
264 
randomize_et_dyn(unsigned long base)265 unsigned long randomize_et_dyn(unsigned long base)
266 {
267 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
268 
269 	if (!(current->flags & PF_RANDOMIZE))
270 		return base;
271 	if (ret < base)
272 		return base;
273 	return ret;
274 }
275