• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32 	unsigned long	*vaddr;
33 	pgprot_t	mask_set;
34 	pgprot_t	mask_clr;
35 	int		numpages;
36 	int		flags;
37 	unsigned long	pfn;
38 	unsigned	force_split : 1;
39 	int		curpage;
40 	struct page	**pages;
41 };
42 
43 /*
44  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46  * entries change the page attribute in parallel to some other cpu
47  * splitting a large page entry along with changing the attribute.
48  */
49 static DEFINE_SPINLOCK(cpa_lock);
50 
51 #define CPA_FLUSHTLB 1
52 #define CPA_ARRAY 2
53 #define CPA_PAGES_ARRAY 4
54 
55 #ifdef CONFIG_PROC_FS
56 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57 
update_page_count(int level,unsigned long pages)58 void update_page_count(int level, unsigned long pages)
59 {
60 	/* Protect against CPA */
61 	spin_lock(&pgd_lock);
62 	direct_pages_count[level] += pages;
63 	spin_unlock(&pgd_lock);
64 }
65 
split_page_count(int level)66 static void split_page_count(int level)
67 {
68 	direct_pages_count[level]--;
69 	direct_pages_count[level - 1] += PTRS_PER_PTE;
70 }
71 
arch_report_meminfo(struct seq_file * m)72 void arch_report_meminfo(struct seq_file *m)
73 {
74 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
75 			direct_pages_count[PG_LEVEL_4K] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
78 			direct_pages_count[PG_LEVEL_2M] << 11);
79 #else
80 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
81 			direct_pages_count[PG_LEVEL_2M] << 12);
82 #endif
83 #ifdef CONFIG_X86_64
84 	if (direct_gbpages)
85 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
86 			direct_pages_count[PG_LEVEL_1G] << 20);
87 #endif
88 }
89 #else
split_page_count(int level)90 static inline void split_page_count(int level) { }
91 #endif
92 
93 #ifdef CONFIG_X86_64
94 
highmap_start_pfn(void)95 static inline unsigned long highmap_start_pfn(void)
96 {
97 	return __pa_symbol(_text) >> PAGE_SHIFT;
98 }
99 
highmap_end_pfn(void)100 static inline unsigned long highmap_end_pfn(void)
101 {
102 	return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104 
105 #endif
106 
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112 
113 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116 	return addr >= start && addr < end;
117 }
118 
119 /*
120  * Flushing functions
121  */
122 
123 /**
124  * clflush_cache_range - flush a cache range with clflush
125  * @vaddr:	virtual start address
126  * @size:	number of bytes to flush
127  *
128  * clflush is an unordered instruction which needs fencing with mfence
129  * to avoid ordering issues.
130  */
clflush_cache_range(void * vaddr,unsigned int size)131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133 	void *vend = vaddr + size - 1;
134 
135 	mb();
136 
137 	for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138 		clflush(vaddr);
139 	/*
140 	 * Flush any possible final partial cacheline:
141 	 */
142 	clflush(vend);
143 
144 	mb();
145 }
146 EXPORT_SYMBOL_GPL(clflush_cache_range);
147 
__cpa_flush_all(void * arg)148 static void __cpa_flush_all(void *arg)
149 {
150 	unsigned long cache = (unsigned long)arg;
151 
152 	/*
153 	 * Flush all to work around Errata in early athlons regarding
154 	 * large page flushing.
155 	 */
156 	__flush_tlb_all();
157 
158 	if (cache && boot_cpu_data.x86 >= 4)
159 		wbinvd();
160 }
161 
cpa_flush_all(unsigned long cache)162 static void cpa_flush_all(unsigned long cache)
163 {
164 	BUG_ON(irqs_disabled());
165 
166 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168 
__cpa_flush_range(void * arg)169 static void __cpa_flush_range(void *arg)
170 {
171 	/*
172 	 * We could optimize that further and do individual per page
173 	 * tlb invalidates for a low number of pages. Caveat: we must
174 	 * flush the high aliases on 64bit as well.
175 	 */
176 	__flush_tlb_all();
177 }
178 
cpa_flush_range(unsigned long start,int numpages,int cache)179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181 	unsigned int i, level;
182 	unsigned long addr;
183 
184 	BUG_ON(irqs_disabled());
185 	WARN_ON(PAGE_ALIGN(start) != start);
186 
187 	on_each_cpu(__cpa_flush_range, NULL, 1);
188 
189 	if (!cache)
190 		return;
191 
192 	/*
193 	 * We only need to flush on one CPU,
194 	 * clflush is a MESI-coherent instruction that
195 	 * will cause all other CPUs to flush the same
196 	 * cachelines:
197 	 */
198 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199 		pte_t *pte = lookup_address(addr, &level);
200 
201 		/*
202 		 * Only flush present addresses:
203 		 */
204 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205 			clflush_cache_range((void *) addr, PAGE_SIZE);
206 	}
207 }
208 
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210 			    int in_flags, struct page **pages)
211 {
212 	unsigned int i, level;
213 	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214 
215 	BUG_ON(irqs_disabled());
216 
217 	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218 
219 	if (!cache || do_wbinvd)
220 		return;
221 
222 	/*
223 	 * We only need to flush on one CPU,
224 	 * clflush is a MESI-coherent instruction that
225 	 * will cause all other CPUs to flush the same
226 	 * cachelines:
227 	 */
228 	for (i = 0; i < numpages; i++) {
229 		unsigned long addr;
230 		pte_t *pte;
231 
232 		if (in_flags & CPA_PAGES_ARRAY)
233 			addr = (unsigned long)page_address(pages[i]);
234 		else
235 			addr = start[i];
236 
237 		pte = lookup_address(addr, &level);
238 
239 		/*
240 		 * Only flush present addresses:
241 		 */
242 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243 			clflush_cache_range((void *)addr, PAGE_SIZE);
244 	}
245 }
246 
247 /*
248  * Certain areas of memory on x86 require very specific protection flags,
249  * for example the BIOS area or kernel text. Callers don't always get this
250  * right (again, ioremap() on BIOS memory is not uncommon) so this function
251  * checks and fixes these known static required protection bits.
252  */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254 				   unsigned long pfn)
255 {
256 	pgprot_t forbidden = __pgprot(0);
257 
258 	/*
259 	 * The BIOS area between 640k and 1Mb needs to be executable for
260 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261 	 */
262 #ifdef CONFIG_PCI_BIOS
263 	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264 		pgprot_val(forbidden) |= _PAGE_NX;
265 #endif
266 
267 	/*
268 	 * The kernel text needs to be executable for obvious reasons
269 	 * Does not cover __inittext since that is gone later on. On
270 	 * 64bit we do not enforce !NX on the low mapping
271 	 */
272 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
273 		pgprot_val(forbidden) |= _PAGE_NX;
274 
275 	/*
276 	 * The .rodata section needs to be read-only. Using the pfn
277 	 * catches all aliases.
278 	 */
279 	if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
280 		   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
281 		pgprot_val(forbidden) |= _PAGE_RW;
282 
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
284 	/*
285 	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286 	 * kernel text mappings for the large page aligned text, rodata sections
287 	 * will be always read-only. For the kernel identity mappings covering
288 	 * the holes caused by this alignment can be anything that user asks.
289 	 *
290 	 * This will preserve the large page mappings for kernel text/data
291 	 * at no extra cost.
292 	 */
293 	if (kernel_set_to_readonly &&
294 	    within(address, (unsigned long)_text,
295 		   (unsigned long)__end_rodata_hpage_align)) {
296 		unsigned int level;
297 
298 		/*
299 		 * Don't enforce the !RW mapping for the kernel text mapping,
300 		 * if the current mapping is already using small page mapping.
301 		 * No need to work hard to preserve large page mappings in this
302 		 * case.
303 		 *
304 		 * This also fixes the Linux Xen paravirt guest boot failure
305 		 * (because of unexpected read-only mappings for kernel identity
306 		 * mappings). In this paravirt guest case, the kernel text
307 		 * mapping and the kernel identity mapping share the same
308 		 * page-table pages. Thus we can't really use different
309 		 * protections for the kernel text and identity mappings. Also,
310 		 * these shared mappings are made of small page mappings.
311 		 * Thus this don't enforce !RW mapping for small page kernel
312 		 * text mapping logic will help Linux Xen parvirt guest boot
313 		 * as well.
314 		 */
315 		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316 			pgprot_val(forbidden) |= _PAGE_RW;
317 	}
318 #endif
319 
320 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321 
322 	return prot;
323 }
324 
325 /*
326  * Lookup the page table entry for a virtual address. Return a pointer
327  * to the entry and the level of the mapping.
328  *
329  * Note: We return pud and pmd either when the entry is marked large
330  * or when the present bit is not set. Otherwise we would return a
331  * pointer to a nonexisting mapping.
332  */
lookup_address(unsigned long address,unsigned int * level)333 pte_t *lookup_address(unsigned long address, unsigned int *level)
334 {
335 	pgd_t *pgd = pgd_offset_k(address);
336 	pud_t *pud;
337 	pmd_t *pmd;
338 
339 	*level = PG_LEVEL_NONE;
340 
341 	if (pgd_none(*pgd))
342 		return NULL;
343 
344 	pud = pud_offset(pgd, address);
345 	if (pud_none(*pud))
346 		return NULL;
347 
348 	*level = PG_LEVEL_1G;
349 	if (pud_large(*pud) || !pud_present(*pud))
350 		return (pte_t *)pud;
351 
352 	pmd = pmd_offset(pud, address);
353 	if (pmd_none(*pmd))
354 		return NULL;
355 
356 	*level = PG_LEVEL_2M;
357 	if (pmd_large(*pmd) || !pmd_present(*pmd))
358 		return (pte_t *)pmd;
359 
360 	*level = PG_LEVEL_4K;
361 
362 	return pte_offset_kernel(pmd, address);
363 }
364 EXPORT_SYMBOL_GPL(lookup_address);
365 
366 /*
367  * This is necessary because __pa() does not work on some
368  * kinds of memory, like vmalloc() or the alloc_remap()
369  * areas on 32-bit NUMA systems.  The percpu areas can
370  * end up in this kind of memory, for instance.
371  *
372  * This could be optimized, but it is only intended to be
373  * used at inititalization time, and keeping it
374  * unoptimized should increase the testing coverage for
375  * the more obscure platforms.
376  */
slow_virt_to_phys(void * __virt_addr)377 phys_addr_t slow_virt_to_phys(void *__virt_addr)
378 {
379 	unsigned long virt_addr = (unsigned long)__virt_addr;
380 	phys_addr_t phys_addr;
381 	unsigned long offset;
382 	enum pg_level level;
383 	unsigned long psize;
384 	unsigned long pmask;
385 	pte_t *pte;
386 
387 	pte = lookup_address(virt_addr, &level);
388 	BUG_ON(!pte);
389 	psize = page_level_size(level);
390 	pmask = page_level_mask(level);
391 	offset = virt_addr & ~pmask;
392 	phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
393 	return (phys_addr | offset);
394 }
395 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
396 
397 /*
398  * Set the new pmd in all the pgds we know about:
399  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)400 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
401 {
402 	/* change init_mm */
403 	set_pte_atomic(kpte, pte);
404 #ifdef CONFIG_X86_32
405 	if (!SHARED_KERNEL_PMD) {
406 		struct page *page;
407 
408 		list_for_each_entry(page, &pgd_list, lru) {
409 			pgd_t *pgd;
410 			pud_t *pud;
411 			pmd_t *pmd;
412 
413 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
414 			pud = pud_offset(pgd, address);
415 			pmd = pmd_offset(pud, address);
416 			set_pte_atomic((pte_t *)pmd, pte);
417 		}
418 	}
419 #endif
420 }
421 
422 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)423 try_preserve_large_page(pte_t *kpte, unsigned long address,
424 			struct cpa_data *cpa)
425 {
426 	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
427 	pte_t new_pte, old_pte, *tmp;
428 	pgprot_t old_prot, new_prot, req_prot;
429 	int i, do_split = 1;
430 	enum pg_level level;
431 
432 	if (cpa->force_split)
433 		return 1;
434 
435 	spin_lock(&pgd_lock);
436 	/*
437 	 * Check for races, another CPU might have split this page
438 	 * up already:
439 	 */
440 	tmp = lookup_address(address, &level);
441 	if (tmp != kpte)
442 		goto out_unlock;
443 
444 	switch (level) {
445 	case PG_LEVEL_2M:
446 #ifdef CONFIG_X86_64
447 	case PG_LEVEL_1G:
448 #endif
449 		psize = page_level_size(level);
450 		pmask = page_level_mask(level);
451 		break;
452 	default:
453 		do_split = -EINVAL;
454 		goto out_unlock;
455 	}
456 
457 	/*
458 	 * Calculate the number of pages, which fit into this large
459 	 * page starting at address:
460 	 */
461 	nextpage_addr = (address + psize) & pmask;
462 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
463 	if (numpages < cpa->numpages)
464 		cpa->numpages = numpages;
465 
466 	/*
467 	 * We are safe now. Check whether the new pgprot is the same:
468 	 */
469 	old_pte = *kpte;
470 	old_prot = req_prot = pte_pgprot(old_pte);
471 
472 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
473 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
474 
475 	/*
476 	 * Set the PSE and GLOBAL flags only if the PRESENT flag is
477 	 * set otherwise pmd_present/pmd_huge will return true even on
478 	 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
479 	 * for the ancient hardware that doesn't support it.
480 	 */
481 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
482 		pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
483 	else
484 		pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
485 
486 	req_prot = canon_pgprot(req_prot);
487 
488 	/*
489 	 * old_pte points to the large page base address. So we need
490 	 * to add the offset of the virtual address:
491 	 */
492 	pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
493 	cpa->pfn = pfn;
494 
495 	new_prot = static_protections(req_prot, address, pfn);
496 
497 	/*
498 	 * We need to check the full range, whether
499 	 * static_protection() requires a different pgprot for one of
500 	 * the pages in the range we try to preserve:
501 	 */
502 	addr = address & pmask;
503 	pfn = pte_pfn(old_pte);
504 	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
505 		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
506 
507 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
508 			goto out_unlock;
509 	}
510 
511 	/*
512 	 * If there are no changes, return. maxpages has been updated
513 	 * above:
514 	 */
515 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
516 		do_split = 0;
517 		goto out_unlock;
518 	}
519 
520 	/*
521 	 * We need to change the attributes. Check, whether we can
522 	 * change the large page in one go. We request a split, when
523 	 * the address is not aligned and the number of pages is
524 	 * smaller than the number of pages in the large page. Note
525 	 * that we limited the number of possible pages already to
526 	 * the number of pages in the large page.
527 	 */
528 	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
529 		/*
530 		 * The address is aligned and the number of pages
531 		 * covers the full page.
532 		 */
533 		new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
534 		__set_pmd_pte(kpte, address, new_pte);
535 		cpa->flags |= CPA_FLUSHTLB;
536 		do_split = 0;
537 	}
538 
539 out_unlock:
540 	spin_unlock(&pgd_lock);
541 
542 	return do_split;
543 }
544 
545 static int
__split_large_page(pte_t * kpte,unsigned long address,struct page * base)546 __split_large_page(pte_t *kpte, unsigned long address, struct page *base)
547 {
548 	pte_t *pbase = (pte_t *)page_address(base);
549 	unsigned long pfn, pfninc = 1;
550 	unsigned int i, level;
551 	pte_t *tmp;
552 	pgprot_t ref_prot;
553 
554 	spin_lock(&pgd_lock);
555 	/*
556 	 * Check for races, another CPU might have split this page
557 	 * up for us already:
558 	 */
559 	tmp = lookup_address(address, &level);
560 	if (tmp != kpte) {
561 		spin_unlock(&pgd_lock);
562 		return 1;
563 	}
564 
565 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
566 	ref_prot = pte_pgprot(pte_clrhuge(*kpte));
567 	/*
568 	 * If we ever want to utilize the PAT bit, we need to
569 	 * update this function to make sure it's converted from
570 	 * bit 12 to bit 7 when we cross from the 2MB level to
571 	 * the 4K level:
572 	 */
573 	WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
574 
575 #ifdef CONFIG_X86_64
576 	if (level == PG_LEVEL_1G) {
577 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
578 		/*
579 		 * Set the PSE flags only if the PRESENT flag is set
580 		 * otherwise pmd_present/pmd_huge will return true
581 		 * even on a non present pmd.
582 		 */
583 		if (pgprot_val(ref_prot) & _PAGE_PRESENT)
584 			pgprot_val(ref_prot) |= _PAGE_PSE;
585 		else
586 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
587 	}
588 #endif
589 
590 	/*
591 	 * Set the GLOBAL flags only if the PRESENT flag is set
592 	 * otherwise pmd/pte_present will return true even on a non
593 	 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
594 	 * for the ancient hardware that doesn't support it.
595 	 */
596 	if (pgprot_val(ref_prot) & _PAGE_PRESENT)
597 		pgprot_val(ref_prot) |= _PAGE_GLOBAL;
598 	else
599 		pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
600 
601 	/*
602 	 * Get the target pfn from the original entry:
603 	 */
604 	pfn = pte_pfn(*kpte);
605 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
606 		set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
607 
608 	if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
609 				PFN_DOWN(__pa(address)) + 1))
610 		split_page_count(level);
611 
612 	/*
613 	 * Install the new, split up pagetable.
614 	 *
615 	 * We use the standard kernel pagetable protections for the new
616 	 * pagetable protections, the actual ptes set above control the
617 	 * primary protection behavior:
618 	 */
619 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
620 
621 	/*
622 	 * Intel Atom errata AAH41 workaround.
623 	 *
624 	 * The real fix should be in hw or in a microcode update, but
625 	 * we also probabilistically try to reduce the window of having
626 	 * a large TLB mixed with 4K TLBs while instruction fetches are
627 	 * going on.
628 	 */
629 	__flush_tlb_all();
630 	spin_unlock(&pgd_lock);
631 
632 	return 0;
633 }
634 
split_large_page(pte_t * kpte,unsigned long address)635 static int split_large_page(pte_t *kpte, unsigned long address)
636 {
637 	struct page *base;
638 
639 	if (!debug_pagealloc)
640 		spin_unlock(&cpa_lock);
641 	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
642 	if (!debug_pagealloc)
643 		spin_lock(&cpa_lock);
644 	if (!base)
645 		return -ENOMEM;
646 
647 	if (__split_large_page(kpte, address, base))
648 		__free_page(base);
649 
650 	return 0;
651 }
652 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)653 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
654 			       int primary)
655 {
656 	/*
657 	 * Ignore all non primary paths.
658 	 */
659 	if (!primary)
660 		return 0;
661 
662 	/*
663 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
664 	 * to have holes.
665 	 * Also set numpages to '1' indicating that we processed cpa req for
666 	 * one virtual address page and its pfn. TBD: numpages can be set based
667 	 * on the initial value and the level returned by lookup_address().
668 	 */
669 	if (within(vaddr, PAGE_OFFSET,
670 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
671 		cpa->numpages = 1;
672 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
673 		return 0;
674 	} else {
675 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
676 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
677 			*cpa->vaddr);
678 
679 		return -EFAULT;
680 	}
681 }
682 
__change_page_attr(struct cpa_data * cpa,int primary)683 static int __change_page_attr(struct cpa_data *cpa, int primary)
684 {
685 	unsigned long address;
686 	int do_split, err;
687 	unsigned int level;
688 	pte_t *kpte, old_pte;
689 
690 	if (cpa->flags & CPA_PAGES_ARRAY) {
691 		struct page *page = cpa->pages[cpa->curpage];
692 		if (unlikely(PageHighMem(page)))
693 			return 0;
694 		address = (unsigned long)page_address(page);
695 	} else if (cpa->flags & CPA_ARRAY)
696 		address = cpa->vaddr[cpa->curpage];
697 	else
698 		address = *cpa->vaddr;
699 repeat:
700 	kpte = lookup_address(address, &level);
701 	if (!kpte)
702 		return __cpa_process_fault(cpa, address, primary);
703 
704 	old_pte = *kpte;
705 	if (!pte_val(old_pte))
706 		return __cpa_process_fault(cpa, address, primary);
707 
708 	if (level == PG_LEVEL_4K) {
709 		pte_t new_pte;
710 		pgprot_t new_prot = pte_pgprot(old_pte);
711 		unsigned long pfn = pte_pfn(old_pte);
712 
713 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
714 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
715 
716 		new_prot = static_protections(new_prot, address, pfn);
717 
718 		/*
719 		 * Set the GLOBAL flags only if the PRESENT flag is
720 		 * set otherwise pte_present will return true even on
721 		 * a non present pte. The canon_pgprot will clear
722 		 * _PAGE_GLOBAL for the ancient hardware that doesn't
723 		 * support it.
724 		 */
725 		if (pgprot_val(new_prot) & _PAGE_PRESENT)
726 			pgprot_val(new_prot) |= _PAGE_GLOBAL;
727 		else
728 			pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
729 
730 		/*
731 		 * We need to keep the pfn from the existing PTE,
732 		 * after all we're only going to change it's attributes
733 		 * not the memory it points to
734 		 */
735 		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
736 		cpa->pfn = pfn;
737 		/*
738 		 * Do we really change anything ?
739 		 */
740 		if (pte_val(old_pte) != pte_val(new_pte)) {
741 			set_pte_atomic(kpte, new_pte);
742 			cpa->flags |= CPA_FLUSHTLB;
743 		}
744 		cpa->numpages = 1;
745 		return 0;
746 	}
747 
748 	/*
749 	 * Check, whether we can keep the large page intact
750 	 * and just change the pte:
751 	 */
752 	do_split = try_preserve_large_page(kpte, address, cpa);
753 	/*
754 	 * When the range fits into the existing large page,
755 	 * return. cp->numpages and cpa->tlbflush have been updated in
756 	 * try_large_page:
757 	 */
758 	if (do_split <= 0)
759 		return do_split;
760 
761 	/*
762 	 * We have to split the large page:
763 	 */
764 	err = split_large_page(kpte, address);
765 	if (!err) {
766 		/*
767 	 	 * Do a global flush tlb after splitting the large page
768 	 	 * and before we do the actual change page attribute in the PTE.
769 	 	 *
770 	 	 * With out this, we violate the TLB application note, that says
771 	 	 * "The TLBs may contain both ordinary and large-page
772 		 *  translations for a 4-KByte range of linear addresses. This
773 		 *  may occur if software modifies the paging structures so that
774 		 *  the page size used for the address range changes. If the two
775 		 *  translations differ with respect to page frame or attributes
776 		 *  (e.g., permissions), processor behavior is undefined and may
777 		 *  be implementation-specific."
778 	 	 *
779 	 	 * We do this global tlb flush inside the cpa_lock, so that we
780 		 * don't allow any other cpu, with stale tlb entries change the
781 		 * page attribute in parallel, that also falls into the
782 		 * just split large page entry.
783 	 	 */
784 		flush_tlb_all();
785 		goto repeat;
786 	}
787 
788 	return err;
789 }
790 
791 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
792 
cpa_process_alias(struct cpa_data * cpa)793 static int cpa_process_alias(struct cpa_data *cpa)
794 {
795 	struct cpa_data alias_cpa;
796 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
797 	unsigned long vaddr;
798 	int ret;
799 
800 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
801 		return 0;
802 
803 	/*
804 	 * No need to redo, when the primary call touched the direct
805 	 * mapping already:
806 	 */
807 	if (cpa->flags & CPA_PAGES_ARRAY) {
808 		struct page *page = cpa->pages[cpa->curpage];
809 		if (unlikely(PageHighMem(page)))
810 			return 0;
811 		vaddr = (unsigned long)page_address(page);
812 	} else if (cpa->flags & CPA_ARRAY)
813 		vaddr = cpa->vaddr[cpa->curpage];
814 	else
815 		vaddr = *cpa->vaddr;
816 
817 	if (!(within(vaddr, PAGE_OFFSET,
818 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
819 
820 		alias_cpa = *cpa;
821 		alias_cpa.vaddr = &laddr;
822 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
823 
824 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
825 		if (ret)
826 			return ret;
827 	}
828 
829 #ifdef CONFIG_X86_64
830 	/*
831 	 * If the primary call didn't touch the high mapping already
832 	 * and the physical address is inside the kernel map, we need
833 	 * to touch the high mapped kernel as well:
834 	 */
835 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
836 	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
837 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
838 					       __START_KERNEL_map - phys_base;
839 		alias_cpa = *cpa;
840 		alias_cpa.vaddr = &temp_cpa_vaddr;
841 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
842 
843 		/*
844 		 * The high mapping range is imprecise, so ignore the
845 		 * return value.
846 		 */
847 		__change_page_attr_set_clr(&alias_cpa, 0);
848 	}
849 #endif
850 
851 	return 0;
852 }
853 
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)854 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
855 {
856 	int ret, numpages = cpa->numpages;
857 
858 	while (numpages) {
859 		/*
860 		 * Store the remaining nr of pages for the large page
861 		 * preservation check.
862 		 */
863 		cpa->numpages = numpages;
864 		/* for array changes, we can't use large page */
865 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
866 			cpa->numpages = 1;
867 
868 		if (!debug_pagealloc)
869 			spin_lock(&cpa_lock);
870 		ret = __change_page_attr(cpa, checkalias);
871 		if (!debug_pagealloc)
872 			spin_unlock(&cpa_lock);
873 		if (ret)
874 			return ret;
875 
876 		if (checkalias) {
877 			ret = cpa_process_alias(cpa);
878 			if (ret)
879 				return ret;
880 		}
881 
882 		/*
883 		 * Adjust the number of pages with the result of the
884 		 * CPA operation. Either a large page has been
885 		 * preserved or a single page update happened.
886 		 */
887 		BUG_ON(cpa->numpages > numpages);
888 		numpages -= cpa->numpages;
889 		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
890 			cpa->curpage++;
891 		else
892 			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
893 
894 	}
895 	return 0;
896 }
897 
cache_attr(pgprot_t attr)898 static inline int cache_attr(pgprot_t attr)
899 {
900 	return pgprot_val(attr) &
901 		(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
902 }
903 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)904 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
905 				    pgprot_t mask_set, pgprot_t mask_clr,
906 				    int force_split, int in_flag,
907 				    struct page **pages)
908 {
909 	struct cpa_data cpa;
910 	int ret, cache, checkalias;
911 	unsigned long baddr = 0;
912 
913 	/*
914 	 * Check, if we are requested to change a not supported
915 	 * feature:
916 	 */
917 	mask_set = canon_pgprot(mask_set);
918 	mask_clr = canon_pgprot(mask_clr);
919 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
920 		return 0;
921 
922 	/* Ensure we are PAGE_SIZE aligned */
923 	if (in_flag & CPA_ARRAY) {
924 		int i;
925 		for (i = 0; i < numpages; i++) {
926 			if (addr[i] & ~PAGE_MASK) {
927 				addr[i] &= PAGE_MASK;
928 				WARN_ON_ONCE(1);
929 			}
930 		}
931 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
932 		/*
933 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
934 		 * No need to cehck in that case
935 		 */
936 		if (*addr & ~PAGE_MASK) {
937 			*addr &= PAGE_MASK;
938 			/*
939 			 * People should not be passing in unaligned addresses:
940 			 */
941 			WARN_ON_ONCE(1);
942 		}
943 		/*
944 		 * Save address for cache flush. *addr is modified in the call
945 		 * to __change_page_attr_set_clr() below.
946 		 */
947 		baddr = *addr;
948 	}
949 
950 	/* Must avoid aliasing mappings in the highmem code */
951 	kmap_flush_unused();
952 
953 	vm_unmap_aliases();
954 
955 	cpa.vaddr = addr;
956 	cpa.pages = pages;
957 	cpa.numpages = numpages;
958 	cpa.mask_set = mask_set;
959 	cpa.mask_clr = mask_clr;
960 	cpa.flags = 0;
961 	cpa.curpage = 0;
962 	cpa.force_split = force_split;
963 
964 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
965 		cpa.flags |= in_flag;
966 
967 	/* No alias checking for _NX bit modifications */
968 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
969 
970 	ret = __change_page_attr_set_clr(&cpa, checkalias);
971 
972 	/*
973 	 * Check whether we really changed something:
974 	 */
975 	if (!(cpa.flags & CPA_FLUSHTLB))
976 		goto out;
977 
978 	/*
979 	 * No need to flush, when we did not set any of the caching
980 	 * attributes:
981 	 */
982 	cache = cache_attr(mask_set);
983 
984 	/*
985 	 * On success we use clflush, when the CPU supports it to
986 	 * avoid the wbindv. If the CPU does not support it and in the
987 	 * error case we fall back to cpa_flush_all (which uses
988 	 * wbindv):
989 	 */
990 	if (!ret && cpu_has_clflush) {
991 		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
992 			cpa_flush_array(addr, numpages, cache,
993 					cpa.flags, pages);
994 		} else
995 			cpa_flush_range(baddr, numpages, cache);
996 	} else
997 		cpa_flush_all(cache);
998 
999 out:
1000 	return ret;
1001 }
1002 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1003 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1004 				       pgprot_t mask, int array)
1005 {
1006 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1007 		(array ? CPA_ARRAY : 0), NULL);
1008 }
1009 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1010 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1011 					 pgprot_t mask, int array)
1012 {
1013 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1014 		(array ? CPA_ARRAY : 0), NULL);
1015 }
1016 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1017 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1018 				       pgprot_t mask)
1019 {
1020 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1021 		CPA_PAGES_ARRAY, pages);
1022 }
1023 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1024 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1025 					 pgprot_t mask)
1026 {
1027 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1028 		CPA_PAGES_ARRAY, pages);
1029 }
1030 
_set_memory_uc(unsigned long addr,int numpages)1031 int _set_memory_uc(unsigned long addr, int numpages)
1032 {
1033 	/*
1034 	 * for now UC MINUS. see comments in ioremap_nocache()
1035 	 */
1036 	return change_page_attr_set(&addr, numpages,
1037 				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1038 }
1039 
set_memory_uc(unsigned long addr,int numpages)1040 int set_memory_uc(unsigned long addr, int numpages)
1041 {
1042 	int ret;
1043 
1044 	/*
1045 	 * for now UC MINUS. see comments in ioremap_nocache()
1046 	 */
1047 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1048 			    _PAGE_CACHE_UC_MINUS, NULL);
1049 	if (ret)
1050 		goto out_err;
1051 
1052 	ret = _set_memory_uc(addr, numpages);
1053 	if (ret)
1054 		goto out_free;
1055 
1056 	return 0;
1057 
1058 out_free:
1059 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1060 out_err:
1061 	return ret;
1062 }
1063 EXPORT_SYMBOL(set_memory_uc);
1064 
_set_memory_array(unsigned long * addr,int addrinarray,unsigned long new_type)1065 static int _set_memory_array(unsigned long *addr, int addrinarray,
1066 		unsigned long new_type)
1067 {
1068 	int i, j;
1069 	int ret;
1070 
1071 	/*
1072 	 * for now UC MINUS. see comments in ioremap_nocache()
1073 	 */
1074 	for (i = 0; i < addrinarray; i++) {
1075 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1076 					new_type, NULL);
1077 		if (ret)
1078 			goto out_free;
1079 	}
1080 
1081 	ret = change_page_attr_set(addr, addrinarray,
1082 				    __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1083 
1084 	if (!ret && new_type == _PAGE_CACHE_WC)
1085 		ret = change_page_attr_set_clr(addr, addrinarray,
1086 					       __pgprot(_PAGE_CACHE_WC),
1087 					       __pgprot(_PAGE_CACHE_MASK),
1088 					       0, CPA_ARRAY, NULL);
1089 	if (ret)
1090 		goto out_free;
1091 
1092 	return 0;
1093 
1094 out_free:
1095 	for (j = 0; j < i; j++)
1096 		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1097 
1098 	return ret;
1099 }
1100 
set_memory_array_uc(unsigned long * addr,int addrinarray)1101 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1102 {
1103 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1104 }
1105 EXPORT_SYMBOL(set_memory_array_uc);
1106 
set_memory_array_wc(unsigned long * addr,int addrinarray)1107 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1108 {
1109 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1110 }
1111 EXPORT_SYMBOL(set_memory_array_wc);
1112 
_set_memory_wc(unsigned long addr,int numpages)1113 int _set_memory_wc(unsigned long addr, int numpages)
1114 {
1115 	int ret;
1116 	unsigned long addr_copy = addr;
1117 
1118 	ret = change_page_attr_set(&addr, numpages,
1119 				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1120 	if (!ret) {
1121 		ret = change_page_attr_set_clr(&addr_copy, numpages,
1122 					       __pgprot(_PAGE_CACHE_WC),
1123 					       __pgprot(_PAGE_CACHE_MASK),
1124 					       0, 0, NULL);
1125 	}
1126 	return ret;
1127 }
1128 
set_memory_wc(unsigned long addr,int numpages)1129 int set_memory_wc(unsigned long addr, int numpages)
1130 {
1131 	int ret;
1132 
1133 	if (!pat_enabled)
1134 		return set_memory_uc(addr, numpages);
1135 
1136 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1137 		_PAGE_CACHE_WC, NULL);
1138 	if (ret)
1139 		goto out_err;
1140 
1141 	ret = _set_memory_wc(addr, numpages);
1142 	if (ret)
1143 		goto out_free;
1144 
1145 	return 0;
1146 
1147 out_free:
1148 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1149 out_err:
1150 	return ret;
1151 }
1152 EXPORT_SYMBOL(set_memory_wc);
1153 
_set_memory_wb(unsigned long addr,int numpages)1154 int _set_memory_wb(unsigned long addr, int numpages)
1155 {
1156 	return change_page_attr_clear(&addr, numpages,
1157 				      __pgprot(_PAGE_CACHE_MASK), 0);
1158 }
1159 
set_memory_wb(unsigned long addr,int numpages)1160 int set_memory_wb(unsigned long addr, int numpages)
1161 {
1162 	int ret;
1163 
1164 	ret = _set_memory_wb(addr, numpages);
1165 	if (ret)
1166 		return ret;
1167 
1168 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL(set_memory_wb);
1172 
set_memory_array_wb(unsigned long * addr,int addrinarray)1173 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1174 {
1175 	int i;
1176 	int ret;
1177 
1178 	ret = change_page_attr_clear(addr, addrinarray,
1179 				      __pgprot(_PAGE_CACHE_MASK), 1);
1180 	if (ret)
1181 		return ret;
1182 
1183 	for (i = 0; i < addrinarray; i++)
1184 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1185 
1186 	return 0;
1187 }
1188 EXPORT_SYMBOL(set_memory_array_wb);
1189 
set_memory_x(unsigned long addr,int numpages)1190 int set_memory_x(unsigned long addr, int numpages)
1191 {
1192 	if (!(__supported_pte_mask & _PAGE_NX))
1193 		return 0;
1194 
1195 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1196 }
1197 EXPORT_SYMBOL(set_memory_x);
1198 
set_memory_nx(unsigned long addr,int numpages)1199 int set_memory_nx(unsigned long addr, int numpages)
1200 {
1201 	if (!(__supported_pte_mask & _PAGE_NX))
1202 		return 0;
1203 
1204 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1205 }
1206 EXPORT_SYMBOL(set_memory_nx);
1207 
set_memory_ro(unsigned long addr,int numpages)1208 int set_memory_ro(unsigned long addr, int numpages)
1209 {
1210 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1211 }
1212 EXPORT_SYMBOL_GPL(set_memory_ro);
1213 
set_memory_rw(unsigned long addr,int numpages)1214 int set_memory_rw(unsigned long addr, int numpages)
1215 {
1216 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1217 }
1218 EXPORT_SYMBOL_GPL(set_memory_rw);
1219 
set_memory_np(unsigned long addr,int numpages)1220 int set_memory_np(unsigned long addr, int numpages)
1221 {
1222 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1223 }
1224 
set_memory_4k(unsigned long addr,int numpages)1225 int set_memory_4k(unsigned long addr, int numpages)
1226 {
1227 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1228 					__pgprot(0), 1, 0, NULL);
1229 }
1230 
set_pages_uc(struct page * page,int numpages)1231 int set_pages_uc(struct page *page, int numpages)
1232 {
1233 	unsigned long addr = (unsigned long)page_address(page);
1234 
1235 	return set_memory_uc(addr, numpages);
1236 }
1237 EXPORT_SYMBOL(set_pages_uc);
1238 
_set_pages_array(struct page ** pages,int addrinarray,unsigned long new_type)1239 static int _set_pages_array(struct page **pages, int addrinarray,
1240 		unsigned long new_type)
1241 {
1242 	unsigned long start;
1243 	unsigned long end;
1244 	int i;
1245 	int free_idx;
1246 	int ret;
1247 
1248 	for (i = 0; i < addrinarray; i++) {
1249 		if (PageHighMem(pages[i]))
1250 			continue;
1251 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1252 		end = start + PAGE_SIZE;
1253 		if (reserve_memtype(start, end, new_type, NULL))
1254 			goto err_out;
1255 	}
1256 
1257 	ret = cpa_set_pages_array(pages, addrinarray,
1258 			__pgprot(_PAGE_CACHE_UC_MINUS));
1259 	if (!ret && new_type == _PAGE_CACHE_WC)
1260 		ret = change_page_attr_set_clr(NULL, addrinarray,
1261 					       __pgprot(_PAGE_CACHE_WC),
1262 					       __pgprot(_PAGE_CACHE_MASK),
1263 					       0, CPA_PAGES_ARRAY, pages);
1264 	if (ret)
1265 		goto err_out;
1266 	return 0; /* Success */
1267 err_out:
1268 	free_idx = i;
1269 	for (i = 0; i < free_idx; i++) {
1270 		if (PageHighMem(pages[i]))
1271 			continue;
1272 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1273 		end = start + PAGE_SIZE;
1274 		free_memtype(start, end);
1275 	}
1276 	return -EINVAL;
1277 }
1278 
set_pages_array_uc(struct page ** pages,int addrinarray)1279 int set_pages_array_uc(struct page **pages, int addrinarray)
1280 {
1281 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1282 }
1283 EXPORT_SYMBOL(set_pages_array_uc);
1284 
set_pages_array_wc(struct page ** pages,int addrinarray)1285 int set_pages_array_wc(struct page **pages, int addrinarray)
1286 {
1287 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1288 }
1289 EXPORT_SYMBOL(set_pages_array_wc);
1290 
set_pages_wb(struct page * page,int numpages)1291 int set_pages_wb(struct page *page, int numpages)
1292 {
1293 	unsigned long addr = (unsigned long)page_address(page);
1294 
1295 	return set_memory_wb(addr, numpages);
1296 }
1297 EXPORT_SYMBOL(set_pages_wb);
1298 
set_pages_array_wb(struct page ** pages,int addrinarray)1299 int set_pages_array_wb(struct page **pages, int addrinarray)
1300 {
1301 	int retval;
1302 	unsigned long start;
1303 	unsigned long end;
1304 	int i;
1305 
1306 	retval = cpa_clear_pages_array(pages, addrinarray,
1307 			__pgprot(_PAGE_CACHE_MASK));
1308 	if (retval)
1309 		return retval;
1310 
1311 	for (i = 0; i < addrinarray; i++) {
1312 		if (PageHighMem(pages[i]))
1313 			continue;
1314 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1315 		end = start + PAGE_SIZE;
1316 		free_memtype(start, end);
1317 	}
1318 
1319 	return 0;
1320 }
1321 EXPORT_SYMBOL(set_pages_array_wb);
1322 
set_pages_x(struct page * page,int numpages)1323 int set_pages_x(struct page *page, int numpages)
1324 {
1325 	unsigned long addr = (unsigned long)page_address(page);
1326 
1327 	return set_memory_x(addr, numpages);
1328 }
1329 EXPORT_SYMBOL(set_pages_x);
1330 
set_pages_nx(struct page * page,int numpages)1331 int set_pages_nx(struct page *page, int numpages)
1332 {
1333 	unsigned long addr = (unsigned long)page_address(page);
1334 
1335 	return set_memory_nx(addr, numpages);
1336 }
1337 EXPORT_SYMBOL(set_pages_nx);
1338 
set_pages_ro(struct page * page,int numpages)1339 int set_pages_ro(struct page *page, int numpages)
1340 {
1341 	unsigned long addr = (unsigned long)page_address(page);
1342 
1343 	return set_memory_ro(addr, numpages);
1344 }
1345 
set_pages_rw(struct page * page,int numpages)1346 int set_pages_rw(struct page *page, int numpages)
1347 {
1348 	unsigned long addr = (unsigned long)page_address(page);
1349 
1350 	return set_memory_rw(addr, numpages);
1351 }
1352 
1353 #ifdef CONFIG_DEBUG_PAGEALLOC
1354 
__set_pages_p(struct page * page,int numpages)1355 static int __set_pages_p(struct page *page, int numpages)
1356 {
1357 	unsigned long tempaddr = (unsigned long) page_address(page);
1358 	struct cpa_data cpa = { .vaddr = &tempaddr,
1359 				.numpages = numpages,
1360 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1361 				.mask_clr = __pgprot(0),
1362 				.flags = 0};
1363 
1364 	/*
1365 	 * No alias checking needed for setting present flag. otherwise,
1366 	 * we may need to break large pages for 64-bit kernel text
1367 	 * mappings (this adds to complexity if we want to do this from
1368 	 * atomic context especially). Let's keep it simple!
1369 	 */
1370 	return __change_page_attr_set_clr(&cpa, 0);
1371 }
1372 
__set_pages_np(struct page * page,int numpages)1373 static int __set_pages_np(struct page *page, int numpages)
1374 {
1375 	unsigned long tempaddr = (unsigned long) page_address(page);
1376 	struct cpa_data cpa = { .vaddr = &tempaddr,
1377 				.numpages = numpages,
1378 				.mask_set = __pgprot(0),
1379 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1380 				.flags = 0};
1381 
1382 	/*
1383 	 * No alias checking needed for setting not present flag. otherwise,
1384 	 * we may need to break large pages for 64-bit kernel text
1385 	 * mappings (this adds to complexity if we want to do this from
1386 	 * atomic context especially). Let's keep it simple!
1387 	 */
1388 	return __change_page_attr_set_clr(&cpa, 0);
1389 }
1390 
kernel_map_pages(struct page * page,int numpages,int enable)1391 void kernel_map_pages(struct page *page, int numpages, int enable)
1392 {
1393 	if (PageHighMem(page))
1394 		return;
1395 	if (!enable) {
1396 		debug_check_no_locks_freed(page_address(page),
1397 					   numpages * PAGE_SIZE);
1398 	}
1399 
1400 	/*
1401 	 * The return value is ignored as the calls cannot fail.
1402 	 * Large pages for identity mappings are not used at boot time
1403 	 * and hence no memory allocations during large page split.
1404 	 */
1405 	if (enable)
1406 		__set_pages_p(page, numpages);
1407 	else
1408 		__set_pages_np(page, numpages);
1409 
1410 	/*
1411 	 * We should perform an IPI and flush all tlbs,
1412 	 * but that can deadlock->flush only current cpu:
1413 	 */
1414 	__flush_tlb_all();
1415 
1416 	arch_flush_lazy_mmu_mode();
1417 }
1418 
1419 #ifdef CONFIG_HIBERNATION
1420 
kernel_page_present(struct page * page)1421 bool kernel_page_present(struct page *page)
1422 {
1423 	unsigned int level;
1424 	pte_t *pte;
1425 
1426 	if (PageHighMem(page))
1427 		return false;
1428 
1429 	pte = lookup_address((unsigned long)page_address(page), &level);
1430 	return (pte_val(*pte) & _PAGE_PRESENT);
1431 }
1432 
1433 #endif /* CONFIG_HIBERNATION */
1434 
1435 #endif /* CONFIG_DEBUG_PAGEALLOC */
1436 
1437 /*
1438  * The testcases use internal knowledge of the implementation that shouldn't
1439  * be exposed to the rest of the kernel. Include these directly here.
1440  */
1441 #ifdef CONFIG_CPA_DEBUG
1442 #include "pageattr-test.c"
1443 #endif
1444