• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Functions to sequence FLUSH and FUA writes.
3  *
4  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
5  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11  * properties and hardware capability.
12  *
13  * If a request doesn't have data, only REQ_FLUSH makes sense, which
14  * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
15  * that the device cache should be flushed before the data is executed, and
16  * REQ_FUA means that the data must be on non-volatile media on request
17  * completion.
18  *
19  * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20  * difference.  The requests are either completed immediately if there's no
21  * data or executed as normal requests otherwise.
22  *
23  * If the device has writeback cache and supports FUA, REQ_FLUSH is
24  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25  *
26  * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
27  * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28  *
29  * The actual execution of flush is double buffered.  Whenever a request
30  * needs to execute PRE or POSTFLUSH, it queues at
31  * q->flush_queue[q->flush_pending_idx].  Once certain criteria are met, a
32  * flush is issued and the pending_idx is toggled.  When the flush
33  * completes, all the requests which were pending are proceeded to the next
34  * step.  This allows arbitrary merging of different types of FLUSH/FUA
35  * requests.
36  *
37  * Currently, the following conditions are used to determine when to issue
38  * flush.
39  *
40  * C1. At any given time, only one flush shall be in progress.  This makes
41  *     double buffering sufficient.
42  *
43  * C2. Flush is deferred if any request is executing DATA of its sequence.
44  *     This avoids issuing separate POSTFLUSHes for requests which shared
45  *     PREFLUSH.
46  *
47  * C3. The second condition is ignored if there is a request which has
48  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
49  *     starvation in the unlikely case where there are continuous stream of
50  *     FUA (without FLUSH) requests.
51  *
52  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53  * is beneficial.
54  *
55  * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56  * Once while executing DATA and again after the whole sequence is
57  * complete.  The first completion updates the contained bio but doesn't
58  * finish it so that the bio submitter is notified only after the whole
59  * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
60  * req_bio_endio().
61  *
62  * The above peculiarity requires that each FLUSH/FUA request has only one
63  * bio attached to it, which is guaranteed as they aren't allowed to be
64  * merged in the usual way.
65  */
66 
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 
73 #include "blk.h"
74 
75 /* FLUSH/FUA sequences */
76 enum {
77 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
78 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
79 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
80 	REQ_FSEQ_DONE		= (1 << 3),
81 
82 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
83 				  REQ_FSEQ_POSTFLUSH,
84 
85 	/*
86 	 * If flush has been pending longer than the following timeout,
87 	 * it's issued even if flush_data requests are still in flight.
88 	 */
89 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
90 };
91 
92 static bool blk_kick_flush(struct request_queue *q);
93 
blk_flush_policy(unsigned int fflags,struct request * rq)94 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
95 {
96 	unsigned int policy = 0;
97 
98 	if (blk_rq_sectors(rq))
99 		policy |= REQ_FSEQ_DATA;
100 
101 	if (fflags & REQ_FLUSH) {
102 		if (rq->cmd_flags & REQ_FLUSH)
103 			policy |= REQ_FSEQ_PREFLUSH;
104 		if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
105 			policy |= REQ_FSEQ_POSTFLUSH;
106 	}
107 	return policy;
108 }
109 
blk_flush_cur_seq(struct request * rq)110 static unsigned int blk_flush_cur_seq(struct request *rq)
111 {
112 	return 1 << ffz(rq->flush.seq);
113 }
114 
blk_flush_restore_request(struct request * rq)115 static void blk_flush_restore_request(struct request *rq)
116 {
117 	/*
118 	 * After flush data completion, @rq->bio is %NULL but we need to
119 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
120 	 * original @rq->bio.  Restore it.
121 	 */
122 	rq->bio = rq->biotail;
123 
124 	/* make @rq a normal request */
125 	rq->cmd_flags &= ~REQ_FLUSH_SEQ;
126 	rq->end_io = rq->flush.saved_end_io;
127 }
128 
129 /**
130  * blk_flush_complete_seq - complete flush sequence
131  * @rq: FLUSH/FUA request being sequenced
132  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
133  * @error: whether an error occurred
134  *
135  * @rq just completed @seq part of its flush sequence, record the
136  * completion and trigger the next step.
137  *
138  * CONTEXT:
139  * spin_lock_irq(q->queue_lock)
140  *
141  * RETURNS:
142  * %true if requests were added to the dispatch queue, %false otherwise.
143  */
blk_flush_complete_seq(struct request * rq,unsigned int seq,int error)144 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq,
145 				   int error)
146 {
147 	struct request_queue *q = rq->q;
148 	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
149 	bool queued = false;
150 
151 	BUG_ON(rq->flush.seq & seq);
152 	rq->flush.seq |= seq;
153 
154 	if (likely(!error))
155 		seq = blk_flush_cur_seq(rq);
156 	else
157 		seq = REQ_FSEQ_DONE;
158 
159 	switch (seq) {
160 	case REQ_FSEQ_PREFLUSH:
161 	case REQ_FSEQ_POSTFLUSH:
162 		/* queue for flush */
163 		if (list_empty(pending))
164 			q->flush_pending_since = jiffies;
165 		list_move_tail(&rq->flush.list, pending);
166 		break;
167 
168 	case REQ_FSEQ_DATA:
169 		list_move_tail(&rq->flush.list, &q->flush_data_in_flight);
170 		list_add(&rq->queuelist, &q->queue_head);
171 		queued = true;
172 		break;
173 
174 	case REQ_FSEQ_DONE:
175 		/*
176 		 * @rq was previously adjusted by blk_flush_issue() for
177 		 * flush sequencing and may already have gone through the
178 		 * flush data request completion path.  Restore @rq for
179 		 * normal completion and end it.
180 		 */
181 		BUG_ON(!list_empty(&rq->queuelist));
182 		list_del_init(&rq->flush.list);
183 		blk_flush_restore_request(rq);
184 		__blk_end_request_all(rq, error);
185 		break;
186 
187 	default:
188 		BUG();
189 	}
190 
191 	return blk_kick_flush(q) | queued;
192 }
193 
flush_end_io(struct request * flush_rq,int error)194 static void flush_end_io(struct request *flush_rq, int error)
195 {
196 	struct request_queue *q = flush_rq->q;
197 	struct list_head *running = &q->flush_queue[q->flush_running_idx];
198 	bool queued = false;
199 	struct request *rq, *n;
200 
201 	BUG_ON(q->flush_pending_idx == q->flush_running_idx);
202 
203 	/* account completion of the flush request */
204 	q->flush_running_idx ^= 1;
205 	elv_completed_request(q, flush_rq);
206 
207 	/* and push the waiting requests to the next stage */
208 	list_for_each_entry_safe(rq, n, running, flush.list) {
209 		unsigned int seq = blk_flush_cur_seq(rq);
210 
211 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
212 		queued |= blk_flush_complete_seq(rq, seq, error);
213 	}
214 
215 	/*
216 	 * Kick the queue to avoid stall for two cases:
217 	 * 1. Moving a request silently to empty queue_head may stall the
218 	 * queue.
219 	 * 2. When flush request is running in non-queueable queue, the
220 	 * queue is hold. Restart the queue after flush request is finished
221 	 * to avoid stall.
222 	 * This function is called from request completion path and calling
223 	 * directly into request_fn may confuse the driver.  Always use
224 	 * kblockd.
225 	 */
226 	if (queued || q->flush_queue_delayed)
227 		blk_run_queue_async(q);
228 	q->flush_queue_delayed = 0;
229 }
230 
231 /**
232  * blk_kick_flush - consider issuing flush request
233  * @q: request_queue being kicked
234  *
235  * Flush related states of @q have changed, consider issuing flush request.
236  * Please read the comment at the top of this file for more info.
237  *
238  * CONTEXT:
239  * spin_lock_irq(q->queue_lock)
240  *
241  * RETURNS:
242  * %true if flush was issued, %false otherwise.
243  */
blk_kick_flush(struct request_queue * q)244 static bool blk_kick_flush(struct request_queue *q)
245 {
246 	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
247 	struct request *first_rq =
248 		list_first_entry(pending, struct request, flush.list);
249 
250 	/* C1 described at the top of this file */
251 	if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending))
252 		return false;
253 
254 	/* C2 and C3 */
255 	if (!list_empty(&q->flush_data_in_flight) &&
256 	    time_before(jiffies,
257 			q->flush_pending_since + FLUSH_PENDING_TIMEOUT))
258 		return false;
259 
260 	/*
261 	 * Issue flush and toggle pending_idx.  This makes pending_idx
262 	 * different from running_idx, which means flush is in flight.
263 	 */
264 	blk_rq_init(q, &q->flush_rq);
265 	q->flush_rq.cmd_type = REQ_TYPE_FS;
266 	q->flush_rq.cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
267 	q->flush_rq.rq_disk = first_rq->rq_disk;
268 	q->flush_rq.end_io = flush_end_io;
269 
270 	q->flush_pending_idx ^= 1;
271 	list_add_tail(&q->flush_rq.queuelist, &q->queue_head);
272 	return true;
273 }
274 
flush_data_end_io(struct request * rq,int error)275 static void flush_data_end_io(struct request *rq, int error)
276 {
277 	struct request_queue *q = rq->q;
278 
279 	/*
280 	 * After populating an empty queue, kick it to avoid stall.  Read
281 	 * the comment in flush_end_io().
282 	 */
283 	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
284 		blk_run_queue_async(q);
285 }
286 
287 /**
288  * blk_insert_flush - insert a new FLUSH/FUA request
289  * @rq: request to insert
290  *
291  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
292  * @rq is being submitted.  Analyze what needs to be done and put it on the
293  * right queue.
294  *
295  * CONTEXT:
296  * spin_lock_irq(q->queue_lock)
297  */
blk_insert_flush(struct request * rq)298 void blk_insert_flush(struct request *rq)
299 {
300 	struct request_queue *q = rq->q;
301 	unsigned int fflags = q->flush_flags;	/* may change, cache */
302 	unsigned int policy = blk_flush_policy(fflags, rq);
303 
304 	/*
305 	 * @policy now records what operations need to be done.  Adjust
306 	 * REQ_FLUSH and FUA for the driver.
307 	 */
308 	rq->cmd_flags &= ~REQ_FLUSH;
309 	if (!(fflags & REQ_FUA))
310 		rq->cmd_flags &= ~REQ_FUA;
311 
312 	/*
313 	 * An empty flush handed down from a stacking driver may
314 	 * translate into nothing if the underlying device does not
315 	 * advertise a write-back cache.  In this case, simply
316 	 * complete the request.
317 	 */
318 	if (!policy) {
319 		__blk_end_bidi_request(rq, 0, 0, 0);
320 		return;
321 	}
322 
323 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
324 
325 	/*
326 	 * If there's data but flush is not necessary, the request can be
327 	 * processed directly without going through flush machinery.  Queue
328 	 * for normal execution.
329 	 */
330 	if ((policy & REQ_FSEQ_DATA) &&
331 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
332 		list_add_tail(&rq->queuelist, &q->queue_head);
333 		return;
334 	}
335 
336 	/*
337 	 * @rq should go through flush machinery.  Mark it part of flush
338 	 * sequence and submit for further processing.
339 	 */
340 	memset(&rq->flush, 0, sizeof(rq->flush));
341 	INIT_LIST_HEAD(&rq->flush.list);
342 	rq->cmd_flags |= REQ_FLUSH_SEQ;
343 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
344 	rq->end_io = flush_data_end_io;
345 
346 	blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
347 }
348 
349 /**
350  * blk_abort_flushes - @q is being aborted, abort flush requests
351  * @q: request_queue being aborted
352  *
353  * To be called from elv_abort_queue().  @q is being aborted.  Prepare all
354  * FLUSH/FUA requests for abortion.
355  *
356  * CONTEXT:
357  * spin_lock_irq(q->queue_lock)
358  */
blk_abort_flushes(struct request_queue * q)359 void blk_abort_flushes(struct request_queue *q)
360 {
361 	struct request *rq, *n;
362 	int i;
363 
364 	/*
365 	 * Requests in flight for data are already owned by the dispatch
366 	 * queue or the device driver.  Just restore for normal completion.
367 	 */
368 	list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) {
369 		list_del_init(&rq->flush.list);
370 		blk_flush_restore_request(rq);
371 	}
372 
373 	/*
374 	 * We need to give away requests on flush queues.  Restore for
375 	 * normal completion and put them on the dispatch queue.
376 	 */
377 	for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) {
378 		list_for_each_entry_safe(rq, n, &q->flush_queue[i],
379 					 flush.list) {
380 			list_del_init(&rq->flush.list);
381 			blk_flush_restore_request(rq);
382 			list_add_tail(&rq->queuelist, &q->queue_head);
383 		}
384 	}
385 }
386 
bio_end_flush(struct bio * bio,int err)387 static void bio_end_flush(struct bio *bio, int err)
388 {
389 	if (err)
390 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
391 	if (bio->bi_private)
392 		complete(bio->bi_private);
393 	bio_put(bio);
394 }
395 
396 /**
397  * blkdev_issue_flush - queue a flush
398  * @bdev:	blockdev to issue flush for
399  * @gfp_mask:	memory allocation flags (for bio_alloc)
400  * @error_sector:	error sector
401  *
402  * Description:
403  *    Issue a flush for the block device in question. Caller can supply
404  *    room for storing the error offset in case of a flush error, if they
405  *    wish to. If WAIT flag is not passed then caller may check only what
406  *    request was pushed in some internal queue for later handling.
407  */
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask,sector_t * error_sector)408 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
409 		sector_t *error_sector)
410 {
411 	DECLARE_COMPLETION_ONSTACK(wait);
412 	struct request_queue *q;
413 	struct bio *bio;
414 	int ret = 0;
415 
416 	if (bdev->bd_disk == NULL)
417 		return -ENXIO;
418 
419 	q = bdev_get_queue(bdev);
420 	if (!q)
421 		return -ENXIO;
422 
423 	/*
424 	 * some block devices may not have their queue correctly set up here
425 	 * (e.g. loop device without a backing file) and so issuing a flush
426 	 * here will panic. Ensure there is a request function before issuing
427 	 * the flush.
428 	 */
429 	if (!q->make_request_fn)
430 		return -ENXIO;
431 
432 	bio = bio_alloc(gfp_mask, 0);
433 	bio->bi_end_io = bio_end_flush;
434 	bio->bi_bdev = bdev;
435 	bio->bi_private = &wait;
436 
437 	bio_get(bio);
438 	submit_bio(WRITE_FLUSH, bio);
439 	wait_for_completion_io(&wait);
440 
441 	/*
442 	 * The driver must store the error location in ->bi_sector, if
443 	 * it supports it. For non-stacked drivers, this should be
444 	 * copied from blk_rq_pos(rq).
445 	 */
446 	if (error_sector)
447 		*error_sector = bio->bi_sector;
448 
449 	if (!bio_flagged(bio, BIO_UPTODATE))
450 		ret = -EIO;
451 
452 	bio_put(bio);
453 	return ret;
454 }
455 EXPORT_SYMBOL(blkdev_issue_flush);
456