• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/crypto/tegra-aes.c
3  *
4  * Driver for NVIDIA Tegra AES hardware engine residing inside the
5  * Bit Stream Engine for Video (BSEV) hardware block.
6  *
7  * The programming sequence for this engine is with the help
8  * of commands which travel via a command queue residing between the
9  * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM)
10  * where the final input plaintext, keys and the IV have to be copied
11  * before starting the encrypt/decrypt operation.
12  *
13  * Copyright (c) 2010, NVIDIA Corporation.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful, but WITHOUT
21  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
22  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
23  * more details.
24  *
25  * You should have received a copy of the GNU General Public License along
26  * with this program; if not, write to the Free Software Foundation, Inc.,
27  * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
28  */
29 
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/clk.h>
35 #include <linux/platform_device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/io.h>
39 #include <linux/mutex.h>
40 #include <linux/interrupt.h>
41 #include <linux/completion.h>
42 #include <linux/workqueue.h>
43 
44 #include <crypto/scatterwalk.h>
45 #include <crypto/aes.h>
46 #include <crypto/internal/rng.h>
47 
48 #include "tegra-aes.h"
49 
50 #define FLAGS_MODE_MASK			0x00FF
51 #define FLAGS_ENCRYPT			BIT(0)
52 #define FLAGS_CBC			BIT(1)
53 #define FLAGS_GIV			BIT(2)
54 #define FLAGS_RNG			BIT(3)
55 #define FLAGS_OFB			BIT(4)
56 #define FLAGS_NEW_KEY			BIT(5)
57 #define FLAGS_NEW_IV			BIT(6)
58 #define FLAGS_INIT			BIT(7)
59 #define FLAGS_FAST			BIT(8)
60 #define FLAGS_BUSY			9
61 
62 /*
63  * Defines AES engine Max process bytes size in one go, which takes 1 msec.
64  * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte
65  * The duration CPU can use the BSE to 1 msec, then the number of available
66  * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB
67  * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB.
68  */
69 #define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000
70 
71 /*
72  * The key table length is 64 bytes
73  * (This includes first upto 32 bytes key + 16 bytes original initial vector
74  * and 16 bytes updated initial vector)
75  */
76 #define AES_HW_KEY_TABLE_LENGTH_BYTES 64
77 
78 /*
79  * The memory being used is divides as follows:
80  * 1. Key - 32 bytes
81  * 2. Original IV - 16 bytes
82  * 3. Updated IV - 16 bytes
83  * 4. Key schedule - 256 bytes
84  *
85  * 1+2+3 constitute the hw key table.
86  */
87 #define AES_HW_IV_SIZE 16
88 #define AES_HW_KEYSCHEDULE_LEN 256
89 #define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN)
90 
91 /* Define commands required for AES operation */
92 enum {
93 	CMD_BLKSTARTENGINE = 0x0E,
94 	CMD_DMASETUP = 0x10,
95 	CMD_DMACOMPLETE = 0x11,
96 	CMD_SETTABLE = 0x15,
97 	CMD_MEMDMAVD = 0x22,
98 };
99 
100 /* Define sub-commands */
101 enum {
102 	SUBCMD_VRAM_SEL = 0x1,
103 	SUBCMD_CRYPTO_TABLE_SEL = 0x3,
104 	SUBCMD_KEY_TABLE_SEL = 0x8,
105 };
106 
107 /* memdma_vd command */
108 #define MEMDMA_DIR_DTOVRAM		0 /* sdram -> vram */
109 #define MEMDMA_DIR_VTODRAM		1 /* vram -> sdram */
110 #define MEMDMA_DIR_SHIFT		25
111 #define MEMDMA_NUM_WORDS_SHIFT		12
112 
113 /* command queue bit shifts */
114 enum {
115 	CMDQ_KEYTABLEADDR_SHIFT = 0,
116 	CMDQ_KEYTABLEID_SHIFT = 17,
117 	CMDQ_VRAMSEL_SHIFT = 23,
118 	CMDQ_TABLESEL_SHIFT = 24,
119 	CMDQ_OPCODE_SHIFT = 26,
120 };
121 
122 /*
123  * The secure key slot contains a unique secure key generated
124  * and loaded by the bootloader. This slot is marked as non-accessible
125  * to the kernel.
126  */
127 #define SSK_SLOT_NUM		4
128 
129 #define AES_NR_KEYSLOTS		8
130 #define TEGRA_AES_QUEUE_LENGTH	50
131 #define DEFAULT_RNG_BLK_SZ	16
132 
133 /* The command queue depth */
134 #define AES_HW_MAX_ICQ_LENGTH	5
135 
136 struct tegra_aes_slot {
137 	struct list_head node;
138 	int slot_num;
139 };
140 
141 static struct tegra_aes_slot ssk = {
142 	.slot_num = SSK_SLOT_NUM,
143 };
144 
145 struct tegra_aes_reqctx {
146 	unsigned long mode;
147 };
148 
149 struct tegra_aes_dev {
150 	struct device *dev;
151 	void __iomem *io_base;
152 	dma_addr_t ivkey_phys_base;
153 	void __iomem *ivkey_base;
154 	struct clk *aes_clk;
155 	struct tegra_aes_ctx *ctx;
156 	int irq;
157 	unsigned long flags;
158 	struct completion op_complete;
159 	u32 *buf_in;
160 	dma_addr_t dma_buf_in;
161 	u32 *buf_out;
162 	dma_addr_t dma_buf_out;
163 	u8 *iv;
164 	u8 dt[DEFAULT_RNG_BLK_SZ];
165 	int ivlen;
166 	u64 ctr;
167 	spinlock_t lock;
168 	struct crypto_queue queue;
169 	struct tegra_aes_slot *slots;
170 	struct ablkcipher_request *req;
171 	size_t total;
172 	struct scatterlist *in_sg;
173 	size_t in_offset;
174 	struct scatterlist *out_sg;
175 	size_t out_offset;
176 };
177 
178 static struct tegra_aes_dev *aes_dev;
179 
180 struct tegra_aes_ctx {
181 	struct tegra_aes_dev *dd;
182 	unsigned long flags;
183 	struct tegra_aes_slot *slot;
184 	u8 key[AES_MAX_KEY_SIZE];
185 	size_t keylen;
186 };
187 
188 static struct tegra_aes_ctx rng_ctx = {
189 	.flags = FLAGS_NEW_KEY,
190 	.keylen = AES_KEYSIZE_128,
191 };
192 
193 /* keep registered devices data here */
194 static struct list_head dev_list;
195 static DEFINE_SPINLOCK(list_lock);
196 static DEFINE_MUTEX(aes_lock);
197 
198 static void aes_workqueue_handler(struct work_struct *work);
199 static DECLARE_WORK(aes_work, aes_workqueue_handler);
200 static struct workqueue_struct *aes_wq;
201 
202 extern unsigned long long tegra_chip_uid(void);
203 
aes_readl(struct tegra_aes_dev * dd,u32 offset)204 static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset)
205 {
206 	return readl(dd->io_base + offset);
207 }
208 
aes_writel(struct tegra_aes_dev * dd,u32 val,u32 offset)209 static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset)
210 {
211 	writel(val, dd->io_base + offset);
212 }
213 
aes_start_crypt(struct tegra_aes_dev * dd,u32 in_addr,u32 out_addr,int nblocks,int mode,bool upd_iv)214 static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr,
215 	int nblocks, int mode, bool upd_iv)
216 {
217 	u32 cmdq[AES_HW_MAX_ICQ_LENGTH];
218 	int i, eng_busy, icq_empty, ret;
219 	u32 value;
220 
221 	/* reset all the interrupt bits */
222 	aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS);
223 
224 	/* enable error, dma xfer complete interrupts */
225 	aes_writel(dd, 0x33, TEGRA_AES_INT_ENB);
226 
227 	cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT;
228 	cmdq[1] = in_addr;
229 	cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1);
230 	cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT;
231 
232 	value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL);
233 	/* access SDRAM through AHB */
234 	value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD;
235 	value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD;
236 	value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD |
237 		 TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD |
238 		 TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD;
239 	aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL);
240 	dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value);
241 
242 	value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) |
243 		((dd->ctx->keylen * 8) <<
244 			TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) |
245 		((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT);
246 
247 	if (mode & FLAGS_CBC) {
248 		value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3)
249 				<< TEGRA_AES_SECURE_XOR_POS_SHIFT) |
250 			(((mode & FLAGS_ENCRYPT) ? 2 : 3)
251 				<< TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) |
252 			((mode & FLAGS_ENCRYPT) ? 1 : 0)
253 				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT);
254 	} else if (mode & FLAGS_OFB) {
255 		value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) |
256 			(2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) |
257 			(TEGRA_AES_SECURE_CORE_SEL_FIELD));
258 	} else if (mode & FLAGS_RNG) {
259 		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
260 				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT |
261 			  TEGRA_AES_SECURE_RNG_ENB_FIELD);
262 	} else {
263 		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
264 				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT);
265 	}
266 
267 	dev_dbg(dd->dev, "secure_in_sel=0x%x", value);
268 	aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT);
269 
270 	aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR);
271 	INIT_COMPLETION(dd->op_complete);
272 
273 	for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) {
274 		do {
275 			value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
276 			eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
277 			icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
278 		} while (eng_busy & (!icq_empty));
279 		aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR);
280 	}
281 
282 	ret = wait_for_completion_timeout(&dd->op_complete,
283 					  msecs_to_jiffies(150));
284 	if (ret == 0) {
285 		dev_err(dd->dev, "timed out (0x%x)\n",
286 			aes_readl(dd, TEGRA_AES_INTR_STATUS));
287 		return -ETIMEDOUT;
288 	}
289 
290 	aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR);
291 	return 0;
292 }
293 
aes_release_key_slot(struct tegra_aes_slot * slot)294 static void aes_release_key_slot(struct tegra_aes_slot *slot)
295 {
296 	if (slot->slot_num == SSK_SLOT_NUM)
297 		return;
298 
299 	spin_lock(&list_lock);
300 	list_add_tail(&slot->node, &dev_list);
301 	slot = NULL;
302 	spin_unlock(&list_lock);
303 }
304 
aes_find_key_slot(void)305 static struct tegra_aes_slot *aes_find_key_slot(void)
306 {
307 	struct tegra_aes_slot *slot = NULL;
308 	struct list_head *new_head;
309 	int empty;
310 
311 	spin_lock(&list_lock);
312 	empty = list_empty(&dev_list);
313 	if (!empty) {
314 		slot = list_entry(&dev_list, struct tegra_aes_slot, node);
315 		new_head = dev_list.next;
316 		list_del(&dev_list);
317 		dev_list.next = new_head->next;
318 		dev_list.prev = NULL;
319 	}
320 	spin_unlock(&list_lock);
321 
322 	return slot;
323 }
324 
aes_set_key(struct tegra_aes_dev * dd)325 static int aes_set_key(struct tegra_aes_dev *dd)
326 {
327 	u32 value, cmdq[2];
328 	struct tegra_aes_ctx *ctx = dd->ctx;
329 	int eng_busy, icq_empty, dma_busy;
330 	bool use_ssk = false;
331 
332 	/* use ssk? */
333 	if (!dd->ctx->slot) {
334 		dev_dbg(dd->dev, "using ssk");
335 		dd->ctx->slot = &ssk;
336 		use_ssk = true;
337 	}
338 
339 	/* enable key schedule generation in hardware */
340 	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT);
341 	value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD;
342 	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT);
343 
344 	/* select the key slot */
345 	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG);
346 	value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD;
347 	value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT);
348 	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG);
349 
350 	if (use_ssk)
351 		return 0;
352 
353 	/* copy the key table from sdram to vram */
354 	cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT |
355 		MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT |
356 		AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) <<
357 			MEMDMA_NUM_WORDS_SHIFT;
358 	cmdq[1] = (u32)dd->ivkey_phys_base;
359 
360 	aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR);
361 	aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR);
362 
363 	do {
364 		value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
365 		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
366 		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
367 		dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD;
368 	} while (eng_busy & (!icq_empty) & dma_busy);
369 
370 	/* settable command to get key into internal registers */
371 	value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT |
372 		SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT |
373 		SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT |
374 		(SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) <<
375 			CMDQ_KEYTABLEID_SHIFT;
376 	aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR);
377 
378 	do {
379 		value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
380 		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
381 		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
382 	} while (eng_busy & (!icq_empty));
383 
384 	return 0;
385 }
386 
tegra_aes_handle_req(struct tegra_aes_dev * dd)387 static int tegra_aes_handle_req(struct tegra_aes_dev *dd)
388 {
389 	struct crypto_async_request *async_req, *backlog;
390 	struct crypto_ablkcipher *tfm;
391 	struct tegra_aes_ctx *ctx;
392 	struct tegra_aes_reqctx *rctx;
393 	struct ablkcipher_request *req;
394 	unsigned long flags;
395 	int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES;
396 	int ret = 0, nblocks, total;
397 	int count = 0;
398 	dma_addr_t addr_in, addr_out;
399 	struct scatterlist *in_sg, *out_sg;
400 
401 	if (!dd)
402 		return -EINVAL;
403 
404 	spin_lock_irqsave(&dd->lock, flags);
405 	backlog = crypto_get_backlog(&dd->queue);
406 	async_req = crypto_dequeue_request(&dd->queue);
407 	if (!async_req)
408 		clear_bit(FLAGS_BUSY, &dd->flags);
409 	spin_unlock_irqrestore(&dd->lock, flags);
410 
411 	if (!async_req)
412 		return -ENODATA;
413 
414 	if (backlog)
415 		backlog->complete(backlog, -EINPROGRESS);
416 
417 	req = ablkcipher_request_cast(async_req);
418 
419 	dev_dbg(dd->dev, "%s: get new req\n", __func__);
420 
421 	if (!req->src || !req->dst)
422 		return -EINVAL;
423 
424 	/* take mutex to access the aes hw */
425 	mutex_lock(&aes_lock);
426 
427 	/* assign new request to device */
428 	dd->req = req;
429 	dd->total = req->nbytes;
430 	dd->in_offset = 0;
431 	dd->in_sg = req->src;
432 	dd->out_offset = 0;
433 	dd->out_sg = req->dst;
434 
435 	in_sg = dd->in_sg;
436 	out_sg = dd->out_sg;
437 
438 	total = dd->total;
439 
440 	tfm = crypto_ablkcipher_reqtfm(req);
441 	rctx = ablkcipher_request_ctx(req);
442 	ctx = crypto_ablkcipher_ctx(tfm);
443 	rctx->mode &= FLAGS_MODE_MASK;
444 	dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
445 
446 	dd->iv = (u8 *)req->info;
447 	dd->ivlen = crypto_ablkcipher_ivsize(tfm);
448 
449 	/* assign new context to device */
450 	ctx->dd = dd;
451 	dd->ctx = ctx;
452 
453 	if (ctx->flags & FLAGS_NEW_KEY) {
454 		/* copy the key */
455 		memcpy(dd->ivkey_base, ctx->key, ctx->keylen);
456 		memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen);
457 		aes_set_key(dd);
458 		ctx->flags &= ~FLAGS_NEW_KEY;
459 	}
460 
461 	if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) {
462 		/* set iv to the aes hw slot
463 		 * Hw generates updated iv only after iv is set in slot.
464 		 * So key and iv is passed asynchronously.
465 		 */
466 		memcpy(dd->buf_in, dd->iv, dd->ivlen);
467 
468 		ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
469 				      dd->dma_buf_out, 1, FLAGS_CBC, false);
470 		if (ret < 0) {
471 			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
472 			goto out;
473 		}
474 	}
475 
476 	while (total) {
477 		dev_dbg(dd->dev, "remain: %d\n", total);
478 		ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
479 		if (!ret) {
480 			dev_err(dd->dev, "dma_map_sg() error\n");
481 			goto out;
482 		}
483 
484 		ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
485 		if (!ret) {
486 			dev_err(dd->dev, "dma_map_sg() error\n");
487 			dma_unmap_sg(dd->dev, dd->in_sg,
488 				1, DMA_TO_DEVICE);
489 			goto out;
490 		}
491 
492 		addr_in = sg_dma_address(in_sg);
493 		addr_out = sg_dma_address(out_sg);
494 		dd->flags |= FLAGS_FAST;
495 		count = min_t(int, sg_dma_len(in_sg), dma_max);
496 		WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg));
497 		nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE);
498 
499 		ret = aes_start_crypt(dd, addr_in, addr_out, nblocks,
500 			dd->flags, true);
501 
502 		dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
503 		dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
504 
505 		if (ret < 0) {
506 			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
507 			goto out;
508 		}
509 		dd->flags &= ~FLAGS_FAST;
510 
511 		dev_dbg(dd->dev, "out: copied %d\n", count);
512 		total -= count;
513 		in_sg = sg_next(in_sg);
514 		out_sg = sg_next(out_sg);
515 		WARN_ON(((total != 0) && (!in_sg || !out_sg)));
516 	}
517 
518 out:
519 	mutex_unlock(&aes_lock);
520 
521 	dd->total = total;
522 
523 	if (dd->req->base.complete)
524 		dd->req->base.complete(&dd->req->base, ret);
525 
526 	dev_dbg(dd->dev, "%s: exit\n", __func__);
527 	return ret;
528 }
529 
tegra_aes_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)530 static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
531 			    unsigned int keylen)
532 {
533 	struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
534 	struct tegra_aes_dev *dd = aes_dev;
535 	struct tegra_aes_slot *key_slot;
536 
537 	if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) &&
538 		(keylen != AES_KEYSIZE_256)) {
539 		dev_err(dd->dev, "unsupported key size\n");
540 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
541 		return -EINVAL;
542 	}
543 
544 	dev_dbg(dd->dev, "keylen: %d\n", keylen);
545 
546 	ctx->dd = dd;
547 
548 	if (key) {
549 		if (!ctx->slot) {
550 			key_slot = aes_find_key_slot();
551 			if (!key_slot) {
552 				dev_err(dd->dev, "no empty slot\n");
553 				return -ENOMEM;
554 			}
555 
556 			ctx->slot = key_slot;
557 		}
558 
559 		memcpy(ctx->key, key, keylen);
560 		ctx->keylen = keylen;
561 	}
562 
563 	ctx->flags |= FLAGS_NEW_KEY;
564 	dev_dbg(dd->dev, "done\n");
565 	return 0;
566 }
567 
aes_workqueue_handler(struct work_struct * work)568 static void aes_workqueue_handler(struct work_struct *work)
569 {
570 	struct tegra_aes_dev *dd = aes_dev;
571 	int ret;
572 
573 	ret = clk_prepare_enable(dd->aes_clk);
574 	if (ret)
575 		BUG_ON("clock enable failed");
576 
577 	/* empty the crypto queue and then return */
578 	do {
579 		ret = tegra_aes_handle_req(dd);
580 	} while (!ret);
581 
582 	clk_disable_unprepare(dd->aes_clk);
583 }
584 
aes_irq(int irq,void * dev_id)585 static irqreturn_t aes_irq(int irq, void *dev_id)
586 {
587 	struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id;
588 	u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
589 	int busy = test_bit(FLAGS_BUSY, &dd->flags);
590 
591 	if (!busy) {
592 		dev_dbg(dd->dev, "spurious interrupt\n");
593 		return IRQ_NONE;
594 	}
595 
596 	dev_dbg(dd->dev, "irq_stat: 0x%x\n", value);
597 	if (value & TEGRA_AES_INT_ERROR_MASK)
598 		aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS);
599 
600 	if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD))
601 		complete(&dd->op_complete);
602 	else
603 		return IRQ_NONE;
604 
605 	return IRQ_HANDLED;
606 }
607 
tegra_aes_crypt(struct ablkcipher_request * req,unsigned long mode)608 static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
609 {
610 	struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req);
611 	struct tegra_aes_dev *dd = aes_dev;
612 	unsigned long flags;
613 	int err = 0;
614 	int busy;
615 
616 	dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n",
617 		req->nbytes, !!(mode & FLAGS_ENCRYPT),
618 		!!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB));
619 
620 	rctx->mode = mode;
621 
622 	spin_lock_irqsave(&dd->lock, flags);
623 	err = ablkcipher_enqueue_request(&dd->queue, req);
624 	busy = test_and_set_bit(FLAGS_BUSY, &dd->flags);
625 	spin_unlock_irqrestore(&dd->lock, flags);
626 
627 	if (!busy)
628 		queue_work(aes_wq, &aes_work);
629 
630 	return err;
631 }
632 
tegra_aes_ecb_encrypt(struct ablkcipher_request * req)633 static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req)
634 {
635 	return tegra_aes_crypt(req, FLAGS_ENCRYPT);
636 }
637 
tegra_aes_ecb_decrypt(struct ablkcipher_request * req)638 static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req)
639 {
640 	return tegra_aes_crypt(req, 0);
641 }
642 
tegra_aes_cbc_encrypt(struct ablkcipher_request * req)643 static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req)
644 {
645 	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
646 }
647 
tegra_aes_cbc_decrypt(struct ablkcipher_request * req)648 static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req)
649 {
650 	return tegra_aes_crypt(req, FLAGS_CBC);
651 }
652 
tegra_aes_ofb_encrypt(struct ablkcipher_request * req)653 static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req)
654 {
655 	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB);
656 }
657 
tegra_aes_ofb_decrypt(struct ablkcipher_request * req)658 static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req)
659 {
660 	return tegra_aes_crypt(req, FLAGS_OFB);
661 }
662 
tegra_aes_get_random(struct crypto_rng * tfm,u8 * rdata,unsigned int dlen)663 static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata,
664 				unsigned int dlen)
665 {
666 	struct tegra_aes_dev *dd = aes_dev;
667 	struct tegra_aes_ctx *ctx = &rng_ctx;
668 	int ret, i;
669 	u8 *dest = rdata, *dt = dd->dt;
670 
671 	/* take mutex to access the aes hw */
672 	mutex_lock(&aes_lock);
673 
674 	ret = clk_prepare_enable(dd->aes_clk);
675 	if (ret) {
676 		mutex_unlock(&aes_lock);
677 		return ret;
678 	}
679 
680 	ctx->dd = dd;
681 	dd->ctx = ctx;
682 	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
683 
684 	memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ);
685 
686 	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
687 			      (u32)dd->dma_buf_out, 1, dd->flags, true);
688 	if (ret < 0) {
689 		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
690 		dlen = ret;
691 		goto out;
692 	}
693 	memcpy(dest, dd->buf_out, dlen);
694 
695 	/* update the DT */
696 	for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) {
697 		dt[i] += 1;
698 		if (dt[i] != 0)
699 			break;
700 	}
701 
702 out:
703 	clk_disable_unprepare(dd->aes_clk);
704 	mutex_unlock(&aes_lock);
705 
706 	dev_dbg(dd->dev, "%s: done\n", __func__);
707 	return dlen;
708 }
709 
tegra_aes_rng_reset(struct crypto_rng * tfm,u8 * seed,unsigned int slen)710 static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed,
711 			       unsigned int slen)
712 {
713 	struct tegra_aes_dev *dd = aes_dev;
714 	struct tegra_aes_ctx *ctx = &rng_ctx;
715 	struct tegra_aes_slot *key_slot;
716 	struct timespec ts;
717 	int ret = 0;
718 	u64 nsec, tmp[2];
719 	u8 *dt;
720 
721 	if (!ctx || !dd) {
722 		dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n",
723 			(unsigned int)ctx, (unsigned int)dd);
724 		return -EINVAL;
725 	}
726 
727 	if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
728 		dev_err(dd->dev, "seed size invalid");
729 		return -ENOMEM;
730 	}
731 
732 	/* take mutex to access the aes hw */
733 	mutex_lock(&aes_lock);
734 
735 	if (!ctx->slot) {
736 		key_slot = aes_find_key_slot();
737 		if (!key_slot) {
738 			dev_err(dd->dev, "no empty slot\n");
739 			mutex_unlock(&aes_lock);
740 			return -ENOMEM;
741 		}
742 		ctx->slot = key_slot;
743 	}
744 
745 	ctx->dd = dd;
746 	dd->ctx = ctx;
747 	dd->ctr = 0;
748 
749 	ctx->keylen = AES_KEYSIZE_128;
750 	ctx->flags |= FLAGS_NEW_KEY;
751 
752 	/* copy the key to the key slot */
753 	memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128);
754 	memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128);
755 
756 	dd->iv = seed;
757 	dd->ivlen = slen;
758 
759 	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
760 
761 	ret = clk_prepare_enable(dd->aes_clk);
762 	if (ret) {
763 		mutex_unlock(&aes_lock);
764 		return ret;
765 	}
766 
767 	aes_set_key(dd);
768 
769 	/* set seed to the aes hw slot */
770 	memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ);
771 	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
772 			      dd->dma_buf_out, 1, FLAGS_CBC, false);
773 	if (ret < 0) {
774 		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
775 		goto out;
776 	}
777 
778 	if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
779 		dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128;
780 	} else {
781 		getnstimeofday(&ts);
782 		nsec = timespec_to_ns(&ts);
783 		do_div(nsec, 1000);
784 		nsec ^= dd->ctr << 56;
785 		dd->ctr++;
786 		tmp[0] = nsec;
787 		tmp[1] = tegra_chip_uid();
788 		dt = (u8 *)tmp;
789 	}
790 	memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ);
791 
792 out:
793 	clk_disable_unprepare(dd->aes_clk);
794 	mutex_unlock(&aes_lock);
795 
796 	dev_dbg(dd->dev, "%s: done\n", __func__);
797 	return ret;
798 }
799 
tegra_aes_cra_init(struct crypto_tfm * tfm)800 static int tegra_aes_cra_init(struct crypto_tfm *tfm)
801 {
802 	tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx);
803 
804 	return 0;
805 }
806 
tegra_aes_cra_exit(struct crypto_tfm * tfm)807 void tegra_aes_cra_exit(struct crypto_tfm *tfm)
808 {
809 	struct tegra_aes_ctx *ctx =
810 		crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm);
811 
812 	if (ctx && ctx->slot)
813 		aes_release_key_slot(ctx->slot);
814 }
815 
816 static struct crypto_alg algs[] = {
817 	{
818 		.cra_name = "ecb(aes)",
819 		.cra_driver_name = "ecb-aes-tegra",
820 		.cra_priority = 300,
821 		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
822 		.cra_blocksize = AES_BLOCK_SIZE,
823 		.cra_alignmask = 3,
824 		.cra_type = &crypto_ablkcipher_type,
825 		.cra_u.ablkcipher = {
826 			.min_keysize = AES_MIN_KEY_SIZE,
827 			.max_keysize = AES_MAX_KEY_SIZE,
828 			.setkey = tegra_aes_setkey,
829 			.encrypt = tegra_aes_ecb_encrypt,
830 			.decrypt = tegra_aes_ecb_decrypt,
831 		},
832 	}, {
833 		.cra_name = "cbc(aes)",
834 		.cra_driver_name = "cbc-aes-tegra",
835 		.cra_priority = 300,
836 		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
837 		.cra_blocksize = AES_BLOCK_SIZE,
838 		.cra_alignmask = 3,
839 		.cra_type = &crypto_ablkcipher_type,
840 		.cra_u.ablkcipher = {
841 			.min_keysize = AES_MIN_KEY_SIZE,
842 			.max_keysize = AES_MAX_KEY_SIZE,
843 			.ivsize = AES_MIN_KEY_SIZE,
844 			.setkey = tegra_aes_setkey,
845 			.encrypt = tegra_aes_cbc_encrypt,
846 			.decrypt = tegra_aes_cbc_decrypt,
847 		}
848 	}, {
849 		.cra_name = "ofb(aes)",
850 		.cra_driver_name = "ofb-aes-tegra",
851 		.cra_priority = 300,
852 		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
853 		.cra_blocksize = AES_BLOCK_SIZE,
854 		.cra_alignmask = 3,
855 		.cra_type = &crypto_ablkcipher_type,
856 		.cra_u.ablkcipher = {
857 			.min_keysize = AES_MIN_KEY_SIZE,
858 			.max_keysize = AES_MAX_KEY_SIZE,
859 			.ivsize = AES_MIN_KEY_SIZE,
860 			.setkey = tegra_aes_setkey,
861 			.encrypt = tegra_aes_ofb_encrypt,
862 			.decrypt = tegra_aes_ofb_decrypt,
863 		}
864 	}, {
865 		.cra_name = "ansi_cprng",
866 		.cra_driver_name = "rng-aes-tegra",
867 		.cra_flags = CRYPTO_ALG_TYPE_RNG,
868 		.cra_ctxsize = sizeof(struct tegra_aes_ctx),
869 		.cra_type = &crypto_rng_type,
870 		.cra_u.rng = {
871 			.rng_make_random = tegra_aes_get_random,
872 			.rng_reset = tegra_aes_rng_reset,
873 			.seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ),
874 		}
875 	}
876 };
877 
tegra_aes_probe(struct platform_device * pdev)878 static int tegra_aes_probe(struct platform_device *pdev)
879 {
880 	struct device *dev = &pdev->dev;
881 	struct tegra_aes_dev *dd;
882 	struct resource *res;
883 	int err = -ENOMEM, i = 0, j;
884 
885 	dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL);
886 	if (dd == NULL) {
887 		dev_err(dev, "unable to alloc data struct.\n");
888 		return err;
889 	}
890 
891 	dd->dev = dev;
892 	platform_set_drvdata(pdev, dd);
893 
894 	dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) *
895 				 AES_NR_KEYSLOTS, GFP_KERNEL);
896 	if (dd->slots == NULL) {
897 		dev_err(dev, "unable to alloc slot struct.\n");
898 		goto out;
899 	}
900 
901 	spin_lock_init(&dd->lock);
902 	crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH);
903 
904 	/* Get the module base address */
905 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
906 	if (!res) {
907 		dev_err(dev, "invalid resource type: base\n");
908 		err = -ENODEV;
909 		goto out;
910 	}
911 
912 	if (!devm_request_mem_region(&pdev->dev, res->start,
913 				     resource_size(res),
914 				     dev_name(&pdev->dev))) {
915 		dev_err(&pdev->dev, "Couldn't request MEM resource\n");
916 		return -ENODEV;
917 	}
918 
919 	dd->io_base = devm_ioremap(dev, res->start, resource_size(res));
920 	if (!dd->io_base) {
921 		dev_err(dev, "can't ioremap register space\n");
922 		err = -ENOMEM;
923 		goto out;
924 	}
925 
926 	/* Initialize the vde clock */
927 	dd->aes_clk = clk_get(dev, "vde");
928 	if (IS_ERR(dd->aes_clk)) {
929 		dev_err(dev, "iclock intialization failed.\n");
930 		err = -ENODEV;
931 		goto out;
932 	}
933 
934 	err = clk_set_rate(dd->aes_clk, ULONG_MAX);
935 	if (err) {
936 		dev_err(dd->dev, "iclk set_rate fail(%d)\n", err);
937 		goto out;
938 	}
939 
940 	/*
941 	 * the foll contiguous memory is allocated as follows -
942 	 * - hardware key table
943 	 * - key schedule
944 	 */
945 	dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
946 					    &dd->ivkey_phys_base,
947 		GFP_KERNEL);
948 	if (!dd->ivkey_base) {
949 		dev_err(dev, "can not allocate iv/key buffer\n");
950 		err = -ENOMEM;
951 		goto out;
952 	}
953 
954 	dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
955 					&dd->dma_buf_in, GFP_KERNEL);
956 	if (!dd->buf_in) {
957 		dev_err(dev, "can not allocate dma-in buffer\n");
958 		err = -ENOMEM;
959 		goto out;
960 	}
961 
962 	dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
963 					 &dd->dma_buf_out, GFP_KERNEL);
964 	if (!dd->buf_out) {
965 		dev_err(dev, "can not allocate dma-out buffer\n");
966 		err = -ENOMEM;
967 		goto out;
968 	}
969 
970 	init_completion(&dd->op_complete);
971 	aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1);
972 	if (!aes_wq) {
973 		dev_err(dev, "alloc_workqueue failed\n");
974 		err = -ENOMEM;
975 		goto out;
976 	}
977 
978 	/* get the irq */
979 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
980 	if (!res) {
981 		dev_err(dev, "invalid resource type: base\n");
982 		err = -ENODEV;
983 		goto out;
984 	}
985 	dd->irq = res->start;
986 
987 	err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH |
988 				IRQF_SHARED, "tegra-aes", dd);
989 	if (err) {
990 		dev_err(dev, "request_irq failed\n");
991 		goto out;
992 	}
993 
994 	mutex_init(&aes_lock);
995 	INIT_LIST_HEAD(&dev_list);
996 
997 	spin_lock_init(&list_lock);
998 	spin_lock(&list_lock);
999 	for (i = 0; i < AES_NR_KEYSLOTS; i++) {
1000 		if (i == SSK_SLOT_NUM)
1001 			continue;
1002 		dd->slots[i].slot_num = i;
1003 		INIT_LIST_HEAD(&dd->slots[i].node);
1004 		list_add_tail(&dd->slots[i].node, &dev_list);
1005 	}
1006 	spin_unlock(&list_lock);
1007 
1008 	aes_dev = dd;
1009 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
1010 		algs[i].cra_priority = 300;
1011 		algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx);
1012 		algs[i].cra_module = THIS_MODULE;
1013 		algs[i].cra_init = tegra_aes_cra_init;
1014 		algs[i].cra_exit = tegra_aes_cra_exit;
1015 
1016 		err = crypto_register_alg(&algs[i]);
1017 		if (err)
1018 			goto out;
1019 	}
1020 
1021 	dev_info(dev, "registered");
1022 	return 0;
1023 
1024 out:
1025 	for (j = 0; j < i; j++)
1026 		crypto_unregister_alg(&algs[j]);
1027 	if (dd->ivkey_base)
1028 		dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
1029 			dd->ivkey_base, dd->ivkey_phys_base);
1030 	if (dd->buf_in)
1031 		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1032 			dd->buf_in, dd->dma_buf_in);
1033 	if (dd->buf_out)
1034 		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1035 			dd->buf_out, dd->dma_buf_out);
1036 	if (!IS_ERR(dd->aes_clk))
1037 		clk_put(dd->aes_clk);
1038 	if (aes_wq)
1039 		destroy_workqueue(aes_wq);
1040 	spin_lock(&list_lock);
1041 	list_del(&dev_list);
1042 	spin_unlock(&list_lock);
1043 
1044 	aes_dev = NULL;
1045 
1046 	dev_err(dev, "%s: initialization failed.\n", __func__);
1047 	return err;
1048 }
1049 
tegra_aes_remove(struct platform_device * pdev)1050 static int tegra_aes_remove(struct platform_device *pdev)
1051 {
1052 	struct device *dev = &pdev->dev;
1053 	struct tegra_aes_dev *dd = platform_get_drvdata(pdev);
1054 	int i;
1055 
1056 	for (i = 0; i < ARRAY_SIZE(algs); i++)
1057 		crypto_unregister_alg(&algs[i]);
1058 
1059 	cancel_work_sync(&aes_work);
1060 	destroy_workqueue(aes_wq);
1061 	spin_lock(&list_lock);
1062 	list_del(&dev_list);
1063 	spin_unlock(&list_lock);
1064 
1065 	dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
1066 			  dd->ivkey_base, dd->ivkey_phys_base);
1067 	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1068 			  dd->buf_in, dd->dma_buf_in);
1069 	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1070 			  dd->buf_out, dd->dma_buf_out);
1071 	clk_put(dd->aes_clk);
1072 	aes_dev = NULL;
1073 
1074 	return 0;
1075 }
1076 
1077 static struct of_device_id tegra_aes_of_match[] = {
1078 	{ .compatible = "nvidia,tegra20-aes", },
1079 	{ .compatible = "nvidia,tegra30-aes", },
1080 	{ },
1081 };
1082 
1083 static struct platform_driver tegra_aes_driver = {
1084 	.probe  = tegra_aes_probe,
1085 	.remove = tegra_aes_remove,
1086 	.driver = {
1087 		.name   = "tegra-aes",
1088 		.owner  = THIS_MODULE,
1089 		.of_match_table = tegra_aes_of_match,
1090 	},
1091 };
1092 
1093 module_platform_driver(tegra_aes_driver);
1094 
1095 MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support.");
1096 MODULE_AUTHOR("NVIDIA Corporation");
1097 MODULE_LICENSE("GPL v2");
1098