1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53
54 #include <asm/byteorder.h>
55
56 #include <scsi/scsi.h>
57 #include <scsi/scsi_cmnd.h>
58 #include <scsi/scsi_device.h>
59 #include <scsi/scsi_host.h>
60
61 /*
62 * So far only bridges from Oxford Semiconductor are known to support
63 * concurrent logins. Depending on firmware, four or two concurrent logins
64 * are possible on OXFW911 and newer Oxsemi bridges.
65 *
66 * Concurrent logins are useful together with cluster filesystems.
67 */
68 static bool sbp2_param_exclusive_login = 1;
69 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
70 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
71 "(default = Y, use N for concurrent initiators)");
72
73 /*
74 * Flags for firmware oddities
75 *
76 * - 128kB max transfer
77 * Limit transfer size. Necessary for some old bridges.
78 *
79 * - 36 byte inquiry
80 * When scsi_mod probes the device, let the inquiry command look like that
81 * from MS Windows.
82 *
83 * - skip mode page 8
84 * Suppress sending of mode_sense for mode page 8 if the device pretends to
85 * support the SCSI Primary Block commands instead of Reduced Block Commands.
86 *
87 * - fix capacity
88 * Tell sd_mod to correct the last sector number reported by read_capacity.
89 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
90 * Don't use this with devices which don't have this bug.
91 *
92 * - delay inquiry
93 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
94 *
95 * - power condition
96 * Set the power condition field in the START STOP UNIT commands sent by
97 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
98 * Some disks need this to spin down or to resume properly.
99 *
100 * - override internal blacklist
101 * Instead of adding to the built-in blacklist, use only the workarounds
102 * specified in the module load parameter.
103 * Useful if a blacklist entry interfered with a non-broken device.
104 */
105 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
106 #define SBP2_WORKAROUND_INQUIRY_36 0x2
107 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
108 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
109 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
110 #define SBP2_INQUIRY_DELAY 12
111 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
112 #define SBP2_WORKAROUND_OVERRIDE 0x100
113
114 static int sbp2_param_workarounds;
115 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
116 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
117 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
118 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
119 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
120 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
121 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
122 ", set power condition in start stop unit = "
123 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
124 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
125 ", or a combination)");
126
127 /*
128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129 * and one struct scsi_device per sbp2_logical_unit.
130 */
131 struct sbp2_logical_unit {
132 struct sbp2_target *tgt;
133 struct list_head link;
134 struct fw_address_handler address_handler;
135 struct list_head orb_list;
136
137 u64 command_block_agent_address;
138 u16 lun;
139 int login_id;
140
141 /*
142 * The generation is updated once we've logged in or reconnected
143 * to the logical unit. Thus, I/O to the device will automatically
144 * fail and get retried if it happens in a window where the device
145 * is not ready, e.g. after a bus reset but before we reconnect.
146 */
147 int generation;
148 int retries;
149 struct delayed_work work;
150 bool has_sdev;
151 bool blocked;
152 };
153
sbp2_queue_work(struct sbp2_logical_unit * lu,unsigned long delay)154 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
155 {
156 queue_delayed_work(fw_workqueue, &lu->work, delay);
157 }
158
159 /*
160 * We create one struct sbp2_target per IEEE 1212 Unit Directory
161 * and one struct Scsi_Host per sbp2_target.
162 */
163 struct sbp2_target {
164 struct fw_unit *unit;
165 struct list_head lu_list;
166
167 u64 management_agent_address;
168 u64 guid;
169 int directory_id;
170 int node_id;
171 int address_high;
172 unsigned int workarounds;
173 unsigned int mgt_orb_timeout;
174 unsigned int max_payload;
175
176 int dont_block; /* counter for each logical unit */
177 int blocked; /* ditto */
178 };
179
target_parent_device(struct sbp2_target * tgt)180 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
181 {
182 return fw_parent_device(tgt->unit);
183 }
184
tgt_dev(const struct sbp2_target * tgt)185 static const struct device *tgt_dev(const struct sbp2_target *tgt)
186 {
187 return &tgt->unit->device;
188 }
189
lu_dev(const struct sbp2_logical_unit * lu)190 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
191 {
192 return &lu->tgt->unit->device;
193 }
194
195 /* Impossible login_id, to detect logout attempt before successful login */
196 #define INVALID_LOGIN_ID 0x10000
197
198 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
199 #define SBP2_ORB_NULL 0x80000000
200 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
201 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
202
203 /*
204 * There is no transport protocol limit to the CDB length, but we implement
205 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
206 */
207 #define SBP2_MAX_CDB_SIZE 16
208
209 /*
210 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
211 * for compatibility with earlier versions of this driver.
212 */
213 #define SBP2_MAX_SEG_SIZE 0xfffc
214
215 /* Unit directory keys */
216 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
217 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
218 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
219 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
220 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
221
222 /* Management orb opcodes */
223 #define SBP2_LOGIN_REQUEST 0x0
224 #define SBP2_QUERY_LOGINS_REQUEST 0x1
225 #define SBP2_RECONNECT_REQUEST 0x3
226 #define SBP2_SET_PASSWORD_REQUEST 0x4
227 #define SBP2_LOGOUT_REQUEST 0x7
228 #define SBP2_ABORT_TASK_REQUEST 0xb
229 #define SBP2_ABORT_TASK_SET 0xc
230 #define SBP2_LOGICAL_UNIT_RESET 0xe
231 #define SBP2_TARGET_RESET_REQUEST 0xf
232
233 /* Offsets for command block agent registers */
234 #define SBP2_AGENT_STATE 0x00
235 #define SBP2_AGENT_RESET 0x04
236 #define SBP2_ORB_POINTER 0x08
237 #define SBP2_DOORBELL 0x10
238 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
239
240 /* Status write response codes */
241 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
242 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
243 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
244 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
245
246 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
247 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
248 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
249 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
250 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
251 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
252 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
253 #define STATUS_GET_DATA(v) ((v).data)
254
255 struct sbp2_status {
256 u32 status;
257 u32 orb_low;
258 u8 data[24];
259 };
260
261 struct sbp2_pointer {
262 __be32 high;
263 __be32 low;
264 };
265
266 struct sbp2_orb {
267 struct fw_transaction t;
268 struct kref kref;
269 dma_addr_t request_bus;
270 int rcode;
271 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
272 struct list_head link;
273 };
274
275 #define MANAGEMENT_ORB_LUN(v) ((v))
276 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
277 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
278 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
279 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
280 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
281
282 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
283 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
284
285 struct sbp2_management_orb {
286 struct sbp2_orb base;
287 struct {
288 struct sbp2_pointer password;
289 struct sbp2_pointer response;
290 __be32 misc;
291 __be32 length;
292 struct sbp2_pointer status_fifo;
293 } request;
294 __be32 response[4];
295 dma_addr_t response_bus;
296 struct completion done;
297 struct sbp2_status status;
298 };
299
300 struct sbp2_login_response {
301 __be32 misc;
302 struct sbp2_pointer command_block_agent;
303 __be32 reconnect_hold;
304 };
305 #define COMMAND_ORB_DATA_SIZE(v) ((v))
306 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
307 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
308 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
309 #define COMMAND_ORB_SPEED(v) ((v) << 24)
310 #define COMMAND_ORB_DIRECTION ((1) << 27)
311 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
312 #define COMMAND_ORB_NOTIFY ((1) << 31)
313
314 struct sbp2_command_orb {
315 struct sbp2_orb base;
316 struct {
317 struct sbp2_pointer next;
318 struct sbp2_pointer data_descriptor;
319 __be32 misc;
320 u8 command_block[SBP2_MAX_CDB_SIZE];
321 } request;
322 struct scsi_cmnd *cmd;
323 struct sbp2_logical_unit *lu;
324
325 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
326 dma_addr_t page_table_bus;
327 };
328
329 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
330 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
331
332 /*
333 * List of devices with known bugs.
334 *
335 * The firmware_revision field, masked with 0xffff00, is the best
336 * indicator for the type of bridge chip of a device. It yields a few
337 * false positives but this did not break correctly behaving devices
338 * so far.
339 */
340 static const struct {
341 u32 firmware_revision;
342 u32 model;
343 unsigned int workarounds;
344 } sbp2_workarounds_table[] = {
345 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
346 .firmware_revision = 0x002800,
347 .model = 0x001010,
348 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
349 SBP2_WORKAROUND_MODE_SENSE_8 |
350 SBP2_WORKAROUND_POWER_CONDITION,
351 },
352 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
353 .firmware_revision = 0x002800,
354 .model = 0x000000,
355 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
356 },
357 /* Initio bridges, actually only needed for some older ones */ {
358 .firmware_revision = 0x000200,
359 .model = SBP2_ROM_VALUE_WILDCARD,
360 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
361 },
362 /* PL-3507 bridge with Prolific firmware */ {
363 .firmware_revision = 0x012800,
364 .model = SBP2_ROM_VALUE_WILDCARD,
365 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
366 },
367 /* Symbios bridge */ {
368 .firmware_revision = 0xa0b800,
369 .model = SBP2_ROM_VALUE_WILDCARD,
370 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
371 },
372 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
373 .firmware_revision = 0x002600,
374 .model = SBP2_ROM_VALUE_WILDCARD,
375 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
376 },
377 /*
378 * iPod 2nd generation: needs 128k max transfer size workaround
379 * iPod 3rd generation: needs fix capacity workaround
380 */
381 {
382 .firmware_revision = 0x0a2700,
383 .model = 0x000000,
384 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
385 SBP2_WORKAROUND_FIX_CAPACITY,
386 },
387 /* iPod 4th generation */ {
388 .firmware_revision = 0x0a2700,
389 .model = 0x000021,
390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
391 },
392 /* iPod mini */ {
393 .firmware_revision = 0x0a2700,
394 .model = 0x000022,
395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
396 },
397 /* iPod mini */ {
398 .firmware_revision = 0x0a2700,
399 .model = 0x000023,
400 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
401 },
402 /* iPod Photo */ {
403 .firmware_revision = 0x0a2700,
404 .model = 0x00007e,
405 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
406 }
407 };
408
free_orb(struct kref * kref)409 static void free_orb(struct kref *kref)
410 {
411 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
412
413 kfree(orb);
414 }
415
sbp2_status_write(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)416 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
417 int tcode, int destination, int source,
418 int generation, unsigned long long offset,
419 void *payload, size_t length, void *callback_data)
420 {
421 struct sbp2_logical_unit *lu = callback_data;
422 struct sbp2_orb *orb;
423 struct sbp2_status status;
424 unsigned long flags;
425
426 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
427 length < 8 || length > sizeof(status)) {
428 fw_send_response(card, request, RCODE_TYPE_ERROR);
429 return;
430 }
431
432 status.status = be32_to_cpup(payload);
433 status.orb_low = be32_to_cpup(payload + 4);
434 memset(status.data, 0, sizeof(status.data));
435 if (length > 8)
436 memcpy(status.data, payload + 8, length - 8);
437
438 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
439 dev_notice(lu_dev(lu),
440 "non-ORB related status write, not handled\n");
441 fw_send_response(card, request, RCODE_COMPLETE);
442 return;
443 }
444
445 /* Lookup the orb corresponding to this status write. */
446 spin_lock_irqsave(&card->lock, flags);
447 list_for_each_entry(orb, &lu->orb_list, link) {
448 if (STATUS_GET_ORB_HIGH(status) == 0 &&
449 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
450 orb->rcode = RCODE_COMPLETE;
451 list_del(&orb->link);
452 break;
453 }
454 }
455 spin_unlock_irqrestore(&card->lock, flags);
456
457 if (&orb->link != &lu->orb_list) {
458 orb->callback(orb, &status);
459 kref_put(&orb->kref, free_orb); /* orb callback reference */
460 } else {
461 dev_err(lu_dev(lu), "status write for unknown ORB\n");
462 }
463
464 fw_send_response(card, request, RCODE_COMPLETE);
465 }
466
complete_transaction(struct fw_card * card,int rcode,void * payload,size_t length,void * data)467 static void complete_transaction(struct fw_card *card, int rcode,
468 void *payload, size_t length, void *data)
469 {
470 struct sbp2_orb *orb = data;
471 unsigned long flags;
472
473 /*
474 * This is a little tricky. We can get the status write for
475 * the orb before we get this callback. The status write
476 * handler above will assume the orb pointer transaction was
477 * successful and set the rcode to RCODE_COMPLETE for the orb.
478 * So this callback only sets the rcode if it hasn't already
479 * been set and only does the cleanup if the transaction
480 * failed and we didn't already get a status write.
481 */
482 spin_lock_irqsave(&card->lock, flags);
483
484 if (orb->rcode == -1)
485 orb->rcode = rcode;
486 if (orb->rcode != RCODE_COMPLETE) {
487 list_del(&orb->link);
488 spin_unlock_irqrestore(&card->lock, flags);
489
490 orb->callback(orb, NULL);
491 kref_put(&orb->kref, free_orb); /* orb callback reference */
492 } else {
493 spin_unlock_irqrestore(&card->lock, flags);
494 }
495
496 kref_put(&orb->kref, free_orb); /* transaction callback reference */
497 }
498
sbp2_send_orb(struct sbp2_orb * orb,struct sbp2_logical_unit * lu,int node_id,int generation,u64 offset)499 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
500 int node_id, int generation, u64 offset)
501 {
502 struct fw_device *device = target_parent_device(lu->tgt);
503 struct sbp2_pointer orb_pointer;
504 unsigned long flags;
505
506 orb_pointer.high = 0;
507 orb_pointer.low = cpu_to_be32(orb->request_bus);
508
509 spin_lock_irqsave(&device->card->lock, flags);
510 list_add_tail(&orb->link, &lu->orb_list);
511 spin_unlock_irqrestore(&device->card->lock, flags);
512
513 kref_get(&orb->kref); /* transaction callback reference */
514 kref_get(&orb->kref); /* orb callback reference */
515
516 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
517 node_id, generation, device->max_speed, offset,
518 &orb_pointer, 8, complete_transaction, orb);
519 }
520
sbp2_cancel_orbs(struct sbp2_logical_unit * lu)521 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
522 {
523 struct fw_device *device = target_parent_device(lu->tgt);
524 struct sbp2_orb *orb, *next;
525 struct list_head list;
526 unsigned long flags;
527 int retval = -ENOENT;
528
529 INIT_LIST_HEAD(&list);
530 spin_lock_irqsave(&device->card->lock, flags);
531 list_splice_init(&lu->orb_list, &list);
532 spin_unlock_irqrestore(&device->card->lock, flags);
533
534 list_for_each_entry_safe(orb, next, &list, link) {
535 retval = 0;
536 if (fw_cancel_transaction(device->card, &orb->t) == 0)
537 continue;
538
539 orb->rcode = RCODE_CANCELLED;
540 orb->callback(orb, NULL);
541 kref_put(&orb->kref, free_orb); /* orb callback reference */
542 }
543
544 return retval;
545 }
546
complete_management_orb(struct sbp2_orb * base_orb,struct sbp2_status * status)547 static void complete_management_orb(struct sbp2_orb *base_orb,
548 struct sbp2_status *status)
549 {
550 struct sbp2_management_orb *orb =
551 container_of(base_orb, struct sbp2_management_orb, base);
552
553 if (status)
554 memcpy(&orb->status, status, sizeof(*status));
555 complete(&orb->done);
556 }
557
sbp2_send_management_orb(struct sbp2_logical_unit * lu,int node_id,int generation,int function,int lun_or_login_id,void * response)558 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
559 int generation, int function,
560 int lun_or_login_id, void *response)
561 {
562 struct fw_device *device = target_parent_device(lu->tgt);
563 struct sbp2_management_orb *orb;
564 unsigned int timeout;
565 int retval = -ENOMEM;
566
567 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
568 return 0;
569
570 orb = kzalloc(sizeof(*orb), GFP_NOIO);
571 if (orb == NULL)
572 return -ENOMEM;
573
574 kref_init(&orb->base.kref);
575 orb->response_bus =
576 dma_map_single(device->card->device, &orb->response,
577 sizeof(orb->response), DMA_FROM_DEVICE);
578 if (dma_mapping_error(device->card->device, orb->response_bus))
579 goto fail_mapping_response;
580
581 orb->request.response.high = 0;
582 orb->request.response.low = cpu_to_be32(orb->response_bus);
583
584 orb->request.misc = cpu_to_be32(
585 MANAGEMENT_ORB_NOTIFY |
586 MANAGEMENT_ORB_FUNCTION(function) |
587 MANAGEMENT_ORB_LUN(lun_or_login_id));
588 orb->request.length = cpu_to_be32(
589 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
590
591 orb->request.status_fifo.high =
592 cpu_to_be32(lu->address_handler.offset >> 32);
593 orb->request.status_fifo.low =
594 cpu_to_be32(lu->address_handler.offset);
595
596 if (function == SBP2_LOGIN_REQUEST) {
597 /* Ask for 2^2 == 4 seconds reconnect grace period */
598 orb->request.misc |= cpu_to_be32(
599 MANAGEMENT_ORB_RECONNECT(2) |
600 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
601 timeout = lu->tgt->mgt_orb_timeout;
602 } else {
603 timeout = SBP2_ORB_TIMEOUT;
604 }
605
606 init_completion(&orb->done);
607 orb->base.callback = complete_management_orb;
608
609 orb->base.request_bus =
610 dma_map_single(device->card->device, &orb->request,
611 sizeof(orb->request), DMA_TO_DEVICE);
612 if (dma_mapping_error(device->card->device, orb->base.request_bus))
613 goto fail_mapping_request;
614
615 sbp2_send_orb(&orb->base, lu, node_id, generation,
616 lu->tgt->management_agent_address);
617
618 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
619
620 retval = -EIO;
621 if (sbp2_cancel_orbs(lu) == 0) {
622 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
623 orb->base.rcode);
624 goto out;
625 }
626
627 if (orb->base.rcode != RCODE_COMPLETE) {
628 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
629 orb->base.rcode);
630 goto out;
631 }
632
633 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
634 STATUS_GET_SBP_STATUS(orb->status) != 0) {
635 dev_err(lu_dev(lu), "error status: %d:%d\n",
636 STATUS_GET_RESPONSE(orb->status),
637 STATUS_GET_SBP_STATUS(orb->status));
638 goto out;
639 }
640
641 retval = 0;
642 out:
643 dma_unmap_single(device->card->device, orb->base.request_bus,
644 sizeof(orb->request), DMA_TO_DEVICE);
645 fail_mapping_request:
646 dma_unmap_single(device->card->device, orb->response_bus,
647 sizeof(orb->response), DMA_FROM_DEVICE);
648 fail_mapping_response:
649 if (response)
650 memcpy(response, orb->response, sizeof(orb->response));
651 kref_put(&orb->base.kref, free_orb);
652
653 return retval;
654 }
655
sbp2_agent_reset(struct sbp2_logical_unit * lu)656 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
657 {
658 struct fw_device *device = target_parent_device(lu->tgt);
659 __be32 d = 0;
660
661 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
662 lu->tgt->node_id, lu->generation, device->max_speed,
663 lu->command_block_agent_address + SBP2_AGENT_RESET,
664 &d, 4);
665 }
666
complete_agent_reset_write_no_wait(struct fw_card * card,int rcode,void * payload,size_t length,void * data)667 static void complete_agent_reset_write_no_wait(struct fw_card *card,
668 int rcode, void *payload, size_t length, void *data)
669 {
670 kfree(data);
671 }
672
sbp2_agent_reset_no_wait(struct sbp2_logical_unit * lu)673 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
674 {
675 struct fw_device *device = target_parent_device(lu->tgt);
676 struct fw_transaction *t;
677 static __be32 d;
678
679 t = kmalloc(sizeof(*t), GFP_ATOMIC);
680 if (t == NULL)
681 return;
682
683 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
684 lu->tgt->node_id, lu->generation, device->max_speed,
685 lu->command_block_agent_address + SBP2_AGENT_RESET,
686 &d, 4, complete_agent_reset_write_no_wait, t);
687 }
688
sbp2_allow_block(struct sbp2_logical_unit * lu)689 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
690 {
691 /*
692 * We may access dont_block without taking card->lock here:
693 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
694 * are currently serialized against each other.
695 * And a wrong result in sbp2_conditionally_block()'s access of
696 * dont_block is rather harmless, it simply misses its first chance.
697 */
698 --lu->tgt->dont_block;
699 }
700
701 /*
702 * Blocks lu->tgt if all of the following conditions are met:
703 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
704 * logical units have been finished (indicated by dont_block == 0).
705 * - lu->generation is stale.
706 *
707 * Note, scsi_block_requests() must be called while holding card->lock,
708 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
709 * unblock the target.
710 */
sbp2_conditionally_block(struct sbp2_logical_unit * lu)711 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
712 {
713 struct sbp2_target *tgt = lu->tgt;
714 struct fw_card *card = target_parent_device(tgt)->card;
715 struct Scsi_Host *shost =
716 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
717 unsigned long flags;
718
719 spin_lock_irqsave(&card->lock, flags);
720 if (!tgt->dont_block && !lu->blocked &&
721 lu->generation != card->generation) {
722 lu->blocked = true;
723 if (++tgt->blocked == 1)
724 scsi_block_requests(shost);
725 }
726 spin_unlock_irqrestore(&card->lock, flags);
727 }
728
729 /*
730 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
731 * Note, it is harmless to run scsi_unblock_requests() outside the
732 * card->lock protected section. On the other hand, running it inside
733 * the section might clash with shost->host_lock.
734 */
sbp2_conditionally_unblock(struct sbp2_logical_unit * lu)735 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
736 {
737 struct sbp2_target *tgt = lu->tgt;
738 struct fw_card *card = target_parent_device(tgt)->card;
739 struct Scsi_Host *shost =
740 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
741 unsigned long flags;
742 bool unblock = false;
743
744 spin_lock_irqsave(&card->lock, flags);
745 if (lu->blocked && lu->generation == card->generation) {
746 lu->blocked = false;
747 unblock = --tgt->blocked == 0;
748 }
749 spin_unlock_irqrestore(&card->lock, flags);
750
751 if (unblock)
752 scsi_unblock_requests(shost);
753 }
754
755 /*
756 * Prevents future blocking of tgt and unblocks it.
757 * Note, it is harmless to run scsi_unblock_requests() outside the
758 * card->lock protected section. On the other hand, running it inside
759 * the section might clash with shost->host_lock.
760 */
sbp2_unblock(struct sbp2_target * tgt)761 static void sbp2_unblock(struct sbp2_target *tgt)
762 {
763 struct fw_card *card = target_parent_device(tgt)->card;
764 struct Scsi_Host *shost =
765 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
766 unsigned long flags;
767
768 spin_lock_irqsave(&card->lock, flags);
769 ++tgt->dont_block;
770 spin_unlock_irqrestore(&card->lock, flags);
771
772 scsi_unblock_requests(shost);
773 }
774
sbp2_lun2int(u16 lun)775 static int sbp2_lun2int(u16 lun)
776 {
777 struct scsi_lun eight_bytes_lun;
778
779 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
780 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
781 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
782
783 return scsilun_to_int(&eight_bytes_lun);
784 }
785
786 /*
787 * Write retransmit retry values into the BUSY_TIMEOUT register.
788 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
789 * default retry_limit value is 0 (i.e. never retry transmission). We write a
790 * saner value after logging into the device.
791 * - The dual-phase retry protocol is optional to implement, and if not
792 * supported, writes to the dual-phase portion of the register will be
793 * ignored. We try to write the original 1394-1995 default here.
794 * - In the case of devices that are also SBP-3-compliant, all writes are
795 * ignored, as the register is read-only, but contains single-phase retry of
796 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
797 * write attempt is safe and yields more consistent behavior for all devices.
798 *
799 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
800 * and section 6.4 of the SBP-3 spec for further details.
801 */
sbp2_set_busy_timeout(struct sbp2_logical_unit * lu)802 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
803 {
804 struct fw_device *device = target_parent_device(lu->tgt);
805 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
806
807 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
808 lu->tgt->node_id, lu->generation, device->max_speed,
809 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
810 }
811
812 static void sbp2_reconnect(struct work_struct *work);
813
sbp2_login(struct work_struct * work)814 static void sbp2_login(struct work_struct *work)
815 {
816 struct sbp2_logical_unit *lu =
817 container_of(work, struct sbp2_logical_unit, work.work);
818 struct sbp2_target *tgt = lu->tgt;
819 struct fw_device *device = target_parent_device(tgt);
820 struct Scsi_Host *shost;
821 struct scsi_device *sdev;
822 struct sbp2_login_response response;
823 int generation, node_id, local_node_id;
824
825 if (fw_device_is_shutdown(device))
826 return;
827
828 generation = device->generation;
829 smp_rmb(); /* node IDs must not be older than generation */
830 node_id = device->node_id;
831 local_node_id = device->card->node_id;
832
833 /* If this is a re-login attempt, log out, or we might be rejected. */
834 if (lu->has_sdev)
835 sbp2_send_management_orb(lu, device->node_id, generation,
836 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
837
838 if (sbp2_send_management_orb(lu, node_id, generation,
839 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
840 if (lu->retries++ < 5) {
841 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
842 } else {
843 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
844 lu->lun);
845 /* Let any waiting I/O fail from now on. */
846 sbp2_unblock(lu->tgt);
847 }
848 return;
849 }
850
851 tgt->node_id = node_id;
852 tgt->address_high = local_node_id << 16;
853 smp_wmb(); /* node IDs must not be older than generation */
854 lu->generation = generation;
855
856 lu->command_block_agent_address =
857 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
858 << 32) | be32_to_cpu(response.command_block_agent.low);
859 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
860
861 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
862 lu->lun, lu->retries);
863
864 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
865 sbp2_set_busy_timeout(lu);
866
867 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
868 sbp2_agent_reset(lu);
869
870 /* This was a re-login. */
871 if (lu->has_sdev) {
872 sbp2_cancel_orbs(lu);
873 sbp2_conditionally_unblock(lu);
874
875 return;
876 }
877
878 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
879 ssleep(SBP2_INQUIRY_DELAY);
880
881 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
882 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
883 /*
884 * FIXME: We are unable to perform reconnects while in sbp2_login().
885 * Therefore __scsi_add_device() will get into trouble if a bus reset
886 * happens in parallel. It will either fail or leave us with an
887 * unusable sdev. As a workaround we check for this and retry the
888 * whole login and SCSI probing.
889 */
890
891 /* Reported error during __scsi_add_device() */
892 if (IS_ERR(sdev))
893 goto out_logout_login;
894
895 /* Unreported error during __scsi_add_device() */
896 smp_rmb(); /* get current card generation */
897 if (generation != device->card->generation) {
898 scsi_remove_device(sdev);
899 scsi_device_put(sdev);
900 goto out_logout_login;
901 }
902
903 /* No error during __scsi_add_device() */
904 lu->has_sdev = true;
905 scsi_device_put(sdev);
906 sbp2_allow_block(lu);
907
908 return;
909
910 out_logout_login:
911 smp_rmb(); /* generation may have changed */
912 generation = device->generation;
913 smp_rmb(); /* node_id must not be older than generation */
914
915 sbp2_send_management_orb(lu, device->node_id, generation,
916 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
917 /*
918 * If a bus reset happened, sbp2_update will have requeued
919 * lu->work already. Reset the work from reconnect to login.
920 */
921 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
922 }
923
sbp2_reconnect(struct work_struct * work)924 static void sbp2_reconnect(struct work_struct *work)
925 {
926 struct sbp2_logical_unit *lu =
927 container_of(work, struct sbp2_logical_unit, work.work);
928 struct sbp2_target *tgt = lu->tgt;
929 struct fw_device *device = target_parent_device(tgt);
930 int generation, node_id, local_node_id;
931
932 if (fw_device_is_shutdown(device))
933 return;
934
935 generation = device->generation;
936 smp_rmb(); /* node IDs must not be older than generation */
937 node_id = device->node_id;
938 local_node_id = device->card->node_id;
939
940 if (sbp2_send_management_orb(lu, node_id, generation,
941 SBP2_RECONNECT_REQUEST,
942 lu->login_id, NULL) < 0) {
943 /*
944 * If reconnect was impossible even though we are in the
945 * current generation, fall back and try to log in again.
946 *
947 * We could check for "Function rejected" status, but
948 * looking at the bus generation as simpler and more general.
949 */
950 smp_rmb(); /* get current card generation */
951 if (generation == device->card->generation ||
952 lu->retries++ >= 5) {
953 dev_err(tgt_dev(tgt), "failed to reconnect\n");
954 lu->retries = 0;
955 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
956 }
957 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
958
959 return;
960 }
961
962 tgt->node_id = node_id;
963 tgt->address_high = local_node_id << 16;
964 smp_wmb(); /* node IDs must not be older than generation */
965 lu->generation = generation;
966
967 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
968 lu->lun, lu->retries);
969
970 sbp2_agent_reset(lu);
971 sbp2_cancel_orbs(lu);
972 sbp2_conditionally_unblock(lu);
973 }
974
sbp2_add_logical_unit(struct sbp2_target * tgt,int lun_entry)975 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
976 {
977 struct sbp2_logical_unit *lu;
978
979 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
980 if (!lu)
981 return -ENOMEM;
982
983 lu->address_handler.length = 0x100;
984 lu->address_handler.address_callback = sbp2_status_write;
985 lu->address_handler.callback_data = lu;
986
987 if (fw_core_add_address_handler(&lu->address_handler,
988 &fw_high_memory_region) < 0) {
989 kfree(lu);
990 return -ENOMEM;
991 }
992
993 lu->tgt = tgt;
994 lu->lun = lun_entry & 0xffff;
995 lu->login_id = INVALID_LOGIN_ID;
996 lu->retries = 0;
997 lu->has_sdev = false;
998 lu->blocked = false;
999 ++tgt->dont_block;
1000 INIT_LIST_HEAD(&lu->orb_list);
1001 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1002
1003 list_add_tail(&lu->link, &tgt->lu_list);
1004 return 0;
1005 }
1006
sbp2_get_unit_unique_id(struct sbp2_target * tgt,const u32 * leaf)1007 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1008 const u32 *leaf)
1009 {
1010 if ((leaf[0] & 0xffff0000) == 0x00020000)
1011 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1012 }
1013
sbp2_scan_logical_unit_dir(struct sbp2_target * tgt,const u32 * directory)1014 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1015 const u32 *directory)
1016 {
1017 struct fw_csr_iterator ci;
1018 int key, value;
1019
1020 fw_csr_iterator_init(&ci, directory);
1021 while (fw_csr_iterator_next(&ci, &key, &value))
1022 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1023 sbp2_add_logical_unit(tgt, value) < 0)
1024 return -ENOMEM;
1025 return 0;
1026 }
1027
sbp2_scan_unit_dir(struct sbp2_target * tgt,const u32 * directory,u32 * model,u32 * firmware_revision)1028 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1029 u32 *model, u32 *firmware_revision)
1030 {
1031 struct fw_csr_iterator ci;
1032 int key, value;
1033
1034 fw_csr_iterator_init(&ci, directory);
1035 while (fw_csr_iterator_next(&ci, &key, &value)) {
1036 switch (key) {
1037
1038 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1039 tgt->management_agent_address =
1040 CSR_REGISTER_BASE + 4 * value;
1041 break;
1042
1043 case CSR_DIRECTORY_ID:
1044 tgt->directory_id = value;
1045 break;
1046
1047 case CSR_MODEL:
1048 *model = value;
1049 break;
1050
1051 case SBP2_CSR_FIRMWARE_REVISION:
1052 *firmware_revision = value;
1053 break;
1054
1055 case SBP2_CSR_UNIT_CHARACTERISTICS:
1056 /* the timeout value is stored in 500ms units */
1057 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1058 break;
1059
1060 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1061 if (sbp2_add_logical_unit(tgt, value) < 0)
1062 return -ENOMEM;
1063 break;
1064
1065 case SBP2_CSR_UNIT_UNIQUE_ID:
1066 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1067 break;
1068
1069 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1070 /* Adjust for the increment in the iterator */
1071 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1072 return -ENOMEM;
1073 break;
1074 }
1075 }
1076 return 0;
1077 }
1078
1079 /*
1080 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1081 * provided in the config rom. Most devices do provide a value, which
1082 * we'll use for login management orbs, but with some sane limits.
1083 */
sbp2_clamp_management_orb_timeout(struct sbp2_target * tgt)1084 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1085 {
1086 unsigned int timeout = tgt->mgt_orb_timeout;
1087
1088 if (timeout > 40000)
1089 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1090 timeout / 1000);
1091
1092 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1093 }
1094
sbp2_init_workarounds(struct sbp2_target * tgt,u32 model,u32 firmware_revision)1095 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1096 u32 firmware_revision)
1097 {
1098 int i;
1099 unsigned int w = sbp2_param_workarounds;
1100
1101 if (w)
1102 dev_notice(tgt_dev(tgt),
1103 "Please notify linux1394-devel@lists.sf.net "
1104 "if you need the workarounds parameter\n");
1105
1106 if (w & SBP2_WORKAROUND_OVERRIDE)
1107 goto out;
1108
1109 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1110
1111 if (sbp2_workarounds_table[i].firmware_revision !=
1112 (firmware_revision & 0xffffff00))
1113 continue;
1114
1115 if (sbp2_workarounds_table[i].model != model &&
1116 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1117 continue;
1118
1119 w |= sbp2_workarounds_table[i].workarounds;
1120 break;
1121 }
1122 out:
1123 if (w)
1124 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1125 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1126 w, firmware_revision, model);
1127 tgt->workarounds = w;
1128 }
1129
1130 static struct scsi_host_template scsi_driver_template;
1131 static int sbp2_remove(struct device *dev);
1132
sbp2_probe(struct device * dev)1133 static int sbp2_probe(struct device *dev)
1134 {
1135 struct fw_unit *unit = fw_unit(dev);
1136 struct fw_device *device = fw_parent_device(unit);
1137 struct sbp2_target *tgt;
1138 struct sbp2_logical_unit *lu;
1139 struct Scsi_Host *shost;
1140 u32 model, firmware_revision;
1141
1142 /* cannot (or should not) handle targets on the local node */
1143 if (device->is_local)
1144 return -ENODEV;
1145
1146 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1147 WARN_ON(dma_set_max_seg_size(device->card->device,
1148 SBP2_MAX_SEG_SIZE));
1149
1150 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1151 if (shost == NULL)
1152 return -ENOMEM;
1153
1154 tgt = (struct sbp2_target *)shost->hostdata;
1155 dev_set_drvdata(&unit->device, tgt);
1156 tgt->unit = unit;
1157 INIT_LIST_HEAD(&tgt->lu_list);
1158 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1159
1160 if (fw_device_enable_phys_dma(device) < 0)
1161 goto fail_shost_put;
1162
1163 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1164
1165 if (scsi_add_host_with_dma(shost, &unit->device,
1166 device->card->device) < 0)
1167 goto fail_shost_put;
1168
1169 /* implicit directory ID */
1170 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1171 + CSR_CONFIG_ROM) & 0xffffff;
1172
1173 firmware_revision = SBP2_ROM_VALUE_MISSING;
1174 model = SBP2_ROM_VALUE_MISSING;
1175
1176 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1177 &firmware_revision) < 0)
1178 goto fail_remove;
1179
1180 sbp2_clamp_management_orb_timeout(tgt);
1181 sbp2_init_workarounds(tgt, model, firmware_revision);
1182
1183 /*
1184 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1185 * and so on up to 4096 bytes. The SBP-2 max_payload field
1186 * specifies the max payload size as 2 ^ (max_payload + 2), so
1187 * if we set this to max_speed + 7, we get the right value.
1188 */
1189 tgt->max_payload = min3(device->max_speed + 7, 10U,
1190 device->card->max_receive - 1);
1191
1192 /* Do the login in a workqueue so we can easily reschedule retries. */
1193 list_for_each_entry(lu, &tgt->lu_list, link)
1194 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1195
1196 return 0;
1197
1198 fail_remove:
1199 sbp2_remove(dev);
1200 return -ENOMEM;
1201
1202 fail_shost_put:
1203 scsi_host_put(shost);
1204 return -ENOMEM;
1205 }
1206
sbp2_update(struct fw_unit * unit)1207 static void sbp2_update(struct fw_unit *unit)
1208 {
1209 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1210 struct sbp2_logical_unit *lu;
1211
1212 fw_device_enable_phys_dma(fw_parent_device(unit));
1213
1214 /*
1215 * Fw-core serializes sbp2_update() against sbp2_remove().
1216 * Iteration over tgt->lu_list is therefore safe here.
1217 */
1218 list_for_each_entry(lu, &tgt->lu_list, link) {
1219 sbp2_conditionally_block(lu);
1220 lu->retries = 0;
1221 sbp2_queue_work(lu, 0);
1222 }
1223 }
1224
sbp2_remove(struct device * dev)1225 static int sbp2_remove(struct device *dev)
1226 {
1227 struct fw_unit *unit = fw_unit(dev);
1228 struct fw_device *device = fw_parent_device(unit);
1229 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1230 struct sbp2_logical_unit *lu, *next;
1231 struct Scsi_Host *shost =
1232 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1233 struct scsi_device *sdev;
1234
1235 /* prevent deadlocks */
1236 sbp2_unblock(tgt);
1237
1238 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1239 cancel_delayed_work_sync(&lu->work);
1240 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1241 if (sdev) {
1242 scsi_remove_device(sdev);
1243 scsi_device_put(sdev);
1244 }
1245 if (lu->login_id != INVALID_LOGIN_ID) {
1246 int generation, node_id;
1247 /*
1248 * tgt->node_id may be obsolete here if we failed
1249 * during initial login or after a bus reset where
1250 * the topology changed.
1251 */
1252 generation = device->generation;
1253 smp_rmb(); /* node_id vs. generation */
1254 node_id = device->node_id;
1255 sbp2_send_management_orb(lu, node_id, generation,
1256 SBP2_LOGOUT_REQUEST,
1257 lu->login_id, NULL);
1258 }
1259 fw_core_remove_address_handler(&lu->address_handler);
1260 list_del(&lu->link);
1261 kfree(lu);
1262 }
1263 scsi_remove_host(shost);
1264 dev_notice(dev, "released target %d:0:0\n", shost->host_no);
1265
1266 scsi_host_put(shost);
1267 return 0;
1268 }
1269
1270 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1271 #define SBP2_SW_VERSION_ENTRY 0x00010483
1272
1273 static const struct ieee1394_device_id sbp2_id_table[] = {
1274 {
1275 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1276 IEEE1394_MATCH_VERSION,
1277 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1278 .version = SBP2_SW_VERSION_ENTRY,
1279 },
1280 { }
1281 };
1282
1283 static struct fw_driver sbp2_driver = {
1284 .driver = {
1285 .owner = THIS_MODULE,
1286 .name = KBUILD_MODNAME,
1287 .bus = &fw_bus_type,
1288 .probe = sbp2_probe,
1289 .remove = sbp2_remove,
1290 },
1291 .update = sbp2_update,
1292 .id_table = sbp2_id_table,
1293 };
1294
sbp2_unmap_scatterlist(struct device * card_device,struct sbp2_command_orb * orb)1295 static void sbp2_unmap_scatterlist(struct device *card_device,
1296 struct sbp2_command_orb *orb)
1297 {
1298 scsi_dma_unmap(orb->cmd);
1299
1300 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1301 dma_unmap_single(card_device, orb->page_table_bus,
1302 sizeof(orb->page_table), DMA_TO_DEVICE);
1303 }
1304
sbp2_status_to_sense_data(u8 * sbp2_status,u8 * sense_data)1305 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1306 {
1307 int sam_status;
1308 int sfmt = (sbp2_status[0] >> 6) & 0x03;
1309
1310 if (sfmt == 2 || sfmt == 3) {
1311 /*
1312 * Reserved for future standardization (2) or
1313 * Status block format vendor-dependent (3)
1314 */
1315 return DID_ERROR << 16;
1316 }
1317
1318 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1319 sense_data[1] = 0x0;
1320 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1321 sense_data[3] = sbp2_status[4];
1322 sense_data[4] = sbp2_status[5];
1323 sense_data[5] = sbp2_status[6];
1324 sense_data[6] = sbp2_status[7];
1325 sense_data[7] = 10;
1326 sense_data[8] = sbp2_status[8];
1327 sense_data[9] = sbp2_status[9];
1328 sense_data[10] = sbp2_status[10];
1329 sense_data[11] = sbp2_status[11];
1330 sense_data[12] = sbp2_status[2];
1331 sense_data[13] = sbp2_status[3];
1332 sense_data[14] = sbp2_status[12];
1333 sense_data[15] = sbp2_status[13];
1334
1335 sam_status = sbp2_status[0] & 0x3f;
1336
1337 switch (sam_status) {
1338 case SAM_STAT_GOOD:
1339 case SAM_STAT_CHECK_CONDITION:
1340 case SAM_STAT_CONDITION_MET:
1341 case SAM_STAT_BUSY:
1342 case SAM_STAT_RESERVATION_CONFLICT:
1343 case SAM_STAT_COMMAND_TERMINATED:
1344 return DID_OK << 16 | sam_status;
1345
1346 default:
1347 return DID_ERROR << 16;
1348 }
1349 }
1350
complete_command_orb(struct sbp2_orb * base_orb,struct sbp2_status * status)1351 static void complete_command_orb(struct sbp2_orb *base_orb,
1352 struct sbp2_status *status)
1353 {
1354 struct sbp2_command_orb *orb =
1355 container_of(base_orb, struct sbp2_command_orb, base);
1356 struct fw_device *device = target_parent_device(orb->lu->tgt);
1357 int result;
1358
1359 if (status != NULL) {
1360 if (STATUS_GET_DEAD(*status))
1361 sbp2_agent_reset_no_wait(orb->lu);
1362
1363 switch (STATUS_GET_RESPONSE(*status)) {
1364 case SBP2_STATUS_REQUEST_COMPLETE:
1365 result = DID_OK << 16;
1366 break;
1367 case SBP2_STATUS_TRANSPORT_FAILURE:
1368 result = DID_BUS_BUSY << 16;
1369 break;
1370 case SBP2_STATUS_ILLEGAL_REQUEST:
1371 case SBP2_STATUS_VENDOR_DEPENDENT:
1372 default:
1373 result = DID_ERROR << 16;
1374 break;
1375 }
1376
1377 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1378 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1379 orb->cmd->sense_buffer);
1380 } else {
1381 /*
1382 * If the orb completes with status == NULL, something
1383 * went wrong, typically a bus reset happened mid-orb
1384 * or when sending the write (less likely).
1385 */
1386 result = DID_BUS_BUSY << 16;
1387 sbp2_conditionally_block(orb->lu);
1388 }
1389
1390 dma_unmap_single(device->card->device, orb->base.request_bus,
1391 sizeof(orb->request), DMA_TO_DEVICE);
1392 sbp2_unmap_scatterlist(device->card->device, orb);
1393
1394 orb->cmd->result = result;
1395 orb->cmd->scsi_done(orb->cmd);
1396 }
1397
sbp2_map_scatterlist(struct sbp2_command_orb * orb,struct fw_device * device,struct sbp2_logical_unit * lu)1398 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1399 struct fw_device *device, struct sbp2_logical_unit *lu)
1400 {
1401 struct scatterlist *sg = scsi_sglist(orb->cmd);
1402 int i, n;
1403
1404 n = scsi_dma_map(orb->cmd);
1405 if (n <= 0)
1406 goto fail;
1407
1408 /*
1409 * Handle the special case where there is only one element in
1410 * the scatter list by converting it to an immediate block
1411 * request. This is also a workaround for broken devices such
1412 * as the second generation iPod which doesn't support page
1413 * tables.
1414 */
1415 if (n == 1) {
1416 orb->request.data_descriptor.high =
1417 cpu_to_be32(lu->tgt->address_high);
1418 orb->request.data_descriptor.low =
1419 cpu_to_be32(sg_dma_address(sg));
1420 orb->request.misc |=
1421 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1422 return 0;
1423 }
1424
1425 for_each_sg(sg, sg, n, i) {
1426 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1427 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1428 }
1429
1430 orb->page_table_bus =
1431 dma_map_single(device->card->device, orb->page_table,
1432 sizeof(orb->page_table), DMA_TO_DEVICE);
1433 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1434 goto fail_page_table;
1435
1436 /*
1437 * The data_descriptor pointer is the one case where we need
1438 * to fill in the node ID part of the address. All other
1439 * pointers assume that the data referenced reside on the
1440 * initiator (i.e. us), but data_descriptor can refer to data
1441 * on other nodes so we need to put our ID in descriptor.high.
1442 */
1443 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1444 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1445 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1446 COMMAND_ORB_DATA_SIZE(n));
1447
1448 return 0;
1449
1450 fail_page_table:
1451 scsi_dma_unmap(orb->cmd);
1452 fail:
1453 return -ENOMEM;
1454 }
1455
1456 /* SCSI stack integration */
1457
sbp2_scsi_queuecommand(struct Scsi_Host * shost,struct scsi_cmnd * cmd)1458 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1459 struct scsi_cmnd *cmd)
1460 {
1461 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1462 struct fw_device *device = target_parent_device(lu->tgt);
1463 struct sbp2_command_orb *orb;
1464 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1465
1466 /*
1467 * Bidirectional commands are not yet implemented, and unknown
1468 * transfer direction not handled.
1469 */
1470 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1471 dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1472 cmd->result = DID_ERROR << 16;
1473 cmd->scsi_done(cmd);
1474 return 0;
1475 }
1476
1477 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1478 if (orb == NULL)
1479 return SCSI_MLQUEUE_HOST_BUSY;
1480
1481 /* Initialize rcode to something not RCODE_COMPLETE. */
1482 orb->base.rcode = -1;
1483 kref_init(&orb->base.kref);
1484 orb->lu = lu;
1485 orb->cmd = cmd;
1486 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1487 orb->request.misc = cpu_to_be32(
1488 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1489 COMMAND_ORB_SPEED(device->max_speed) |
1490 COMMAND_ORB_NOTIFY);
1491
1492 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1493 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1494
1495 generation = device->generation;
1496 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1497
1498 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1499 goto out;
1500
1501 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1502
1503 orb->base.callback = complete_command_orb;
1504 orb->base.request_bus =
1505 dma_map_single(device->card->device, &orb->request,
1506 sizeof(orb->request), DMA_TO_DEVICE);
1507 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1508 sbp2_unmap_scatterlist(device->card->device, orb);
1509 goto out;
1510 }
1511
1512 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1513 lu->command_block_agent_address + SBP2_ORB_POINTER);
1514 retval = 0;
1515 out:
1516 kref_put(&orb->base.kref, free_orb);
1517 return retval;
1518 }
1519
sbp2_scsi_slave_alloc(struct scsi_device * sdev)1520 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1521 {
1522 struct sbp2_logical_unit *lu = sdev->hostdata;
1523
1524 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1525 if (!lu)
1526 return -ENOSYS;
1527
1528 sdev->allow_restart = 1;
1529
1530 /*
1531 * SBP-2 does not require any alignment, but we set it anyway
1532 * for compatibility with earlier versions of this driver.
1533 */
1534 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1535
1536 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1537 sdev->inquiry_len = 36;
1538
1539 return 0;
1540 }
1541
sbp2_scsi_slave_configure(struct scsi_device * sdev)1542 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1543 {
1544 struct sbp2_logical_unit *lu = sdev->hostdata;
1545
1546 sdev->use_10_for_rw = 1;
1547
1548 if (sbp2_param_exclusive_login)
1549 sdev->manage_start_stop = 1;
1550
1551 if (sdev->type == TYPE_ROM)
1552 sdev->use_10_for_ms = 1;
1553
1554 if (sdev->type == TYPE_DISK &&
1555 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1556 sdev->skip_ms_page_8 = 1;
1557
1558 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1559 sdev->fix_capacity = 1;
1560
1561 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1562 sdev->start_stop_pwr_cond = 1;
1563
1564 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1565 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1566
1567 return 0;
1568 }
1569
1570 /*
1571 * Called by scsi stack when something has really gone wrong. Usually
1572 * called when a command has timed-out for some reason.
1573 */
sbp2_scsi_abort(struct scsi_cmnd * cmd)1574 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1575 {
1576 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1577
1578 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1579 sbp2_agent_reset(lu);
1580 sbp2_cancel_orbs(lu);
1581
1582 return SUCCESS;
1583 }
1584
1585 /*
1586 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1587 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1588 *
1589 * This is the concatenation of target port identifier and logical unit
1590 * identifier as per SAM-2...SAM-4 annex A.
1591 */
sbp2_sysfs_ieee1394_id_show(struct device * dev,struct device_attribute * attr,char * buf)1592 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1593 struct device_attribute *attr, char *buf)
1594 {
1595 struct scsi_device *sdev = to_scsi_device(dev);
1596 struct sbp2_logical_unit *lu;
1597
1598 if (!sdev)
1599 return 0;
1600
1601 lu = sdev->hostdata;
1602
1603 return sprintf(buf, "%016llx:%06x:%04x\n",
1604 (unsigned long long)lu->tgt->guid,
1605 lu->tgt->directory_id, lu->lun);
1606 }
1607
1608 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1609
1610 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1611 &dev_attr_ieee1394_id,
1612 NULL
1613 };
1614
1615 static struct scsi_host_template scsi_driver_template = {
1616 .module = THIS_MODULE,
1617 .name = "SBP-2 IEEE-1394",
1618 .proc_name = "sbp2",
1619 .queuecommand = sbp2_scsi_queuecommand,
1620 .slave_alloc = sbp2_scsi_slave_alloc,
1621 .slave_configure = sbp2_scsi_slave_configure,
1622 .eh_abort_handler = sbp2_scsi_abort,
1623 .this_id = -1,
1624 .sg_tablesize = SG_ALL,
1625 .use_clustering = ENABLE_CLUSTERING,
1626 .cmd_per_lun = 1,
1627 .can_queue = 1,
1628 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1629 };
1630
1631 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1632 MODULE_DESCRIPTION("SCSI over IEEE1394");
1633 MODULE_LICENSE("GPL");
1634 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1635
1636 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1637 MODULE_ALIAS("sbp2");
1638
sbp2_init(void)1639 static int __init sbp2_init(void)
1640 {
1641 return driver_register(&sbp2_driver.driver);
1642 }
1643
sbp2_cleanup(void)1644 static void __exit sbp2_cleanup(void)
1645 {
1646 driver_unregister(&sbp2_driver.driver);
1647 }
1648
1649 module_init(sbp2_init);
1650 module_exit(sbp2_cleanup);
1651