• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
15  * 02110-1301, USA.
16  *
17  */
18 #define pr_fmt(fmt) "%s: " fmt, __func__
19 
20 #include <linux/bitmap.h>
21 #include <linux/bitops.h>
22 #include <linux/gpio.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irqchip/chained_irq.h>
27 #include <linux/irq.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/spinlock.h>
31 
32 #include <mach/msm_gpiomux.h>
33 #include <mach/msm_iomap.h>
34 
35 /* Bits of interest in the GPIO_IN_OUT register.
36  */
37 enum {
38 	GPIO_IN  = 0,
39 	GPIO_OUT = 1
40 };
41 
42 /* Bits of interest in the GPIO_INTR_STATUS register.
43  */
44 enum {
45 	INTR_STATUS = 0,
46 };
47 
48 /* Bits of interest in the GPIO_CFG register.
49  */
50 enum {
51 	GPIO_OE = 9,
52 };
53 
54 /* Bits of interest in the GPIO_INTR_CFG register.
55  * When a GPIO triggers, two separate decisions are made, controlled
56  * by two separate flags.
57  *
58  * - First, INTR_RAW_STATUS_EN controls whether or not the GPIO_INTR_STATUS
59  * register for that GPIO will be updated to reflect the triggering of that
60  * gpio.  If this bit is 0, this register will not be updated.
61  * - Second, INTR_ENABLE controls whether an interrupt is triggered.
62  *
63  * If INTR_ENABLE is set and INTR_RAW_STATUS_EN is NOT set, an interrupt
64  * can be triggered but the status register will not reflect it.
65  */
66 enum {
67 	INTR_ENABLE        = 0,
68 	INTR_POL_CTL       = 1,
69 	INTR_DECT_CTL      = 2,
70 	INTR_RAW_STATUS_EN = 3,
71 };
72 
73 /* Codes of interest in GPIO_INTR_CFG_SU.
74  */
75 enum {
76 	TARGET_PROC_SCORPION = 4,
77 	TARGET_PROC_NONE     = 7,
78 };
79 
80 
81 #define GPIO_INTR_CFG_SU(gpio)    (MSM_TLMM_BASE + 0x0400 + (0x04 * (gpio)))
82 #define GPIO_CONFIG(gpio)         (MSM_TLMM_BASE + 0x1000 + (0x10 * (gpio)))
83 #define GPIO_IN_OUT(gpio)         (MSM_TLMM_BASE + 0x1004 + (0x10 * (gpio)))
84 #define GPIO_INTR_CFG(gpio)       (MSM_TLMM_BASE + 0x1008 + (0x10 * (gpio)))
85 #define GPIO_INTR_STATUS(gpio)    (MSM_TLMM_BASE + 0x100c + (0x10 * (gpio)))
86 
87 /**
88  * struct msm_gpio_dev: the MSM8660 SoC GPIO device structure
89  *
90  * @enabled_irqs: a bitmap used to optimize the summary-irq handler.  By
91  * keeping track of which gpios are unmasked as irq sources, we avoid
92  * having to do readl calls on hundreds of iomapped registers each time
93  * the summary interrupt fires in order to locate the active interrupts.
94  *
95  * @wake_irqs: a bitmap for tracking which interrupt lines are enabled
96  * as wakeup sources.  When the device is suspended, interrupts which are
97  * not wakeup sources are disabled.
98  *
99  * @dual_edge_irqs: a bitmap used to track which irqs are configured
100  * as dual-edge, as this is not supported by the hardware and requires
101  * some special handling in the driver.
102  */
103 struct msm_gpio_dev {
104 	struct gpio_chip gpio_chip;
105 	DECLARE_BITMAP(enabled_irqs, NR_GPIO_IRQS);
106 	DECLARE_BITMAP(wake_irqs, NR_GPIO_IRQS);
107 	DECLARE_BITMAP(dual_edge_irqs, NR_GPIO_IRQS);
108 };
109 
110 static DEFINE_SPINLOCK(tlmm_lock);
111 
to_msm_gpio_dev(struct gpio_chip * chip)112 static inline struct msm_gpio_dev *to_msm_gpio_dev(struct gpio_chip *chip)
113 {
114 	return container_of(chip, struct msm_gpio_dev, gpio_chip);
115 }
116 
set_gpio_bits(unsigned n,void __iomem * reg)117 static inline void set_gpio_bits(unsigned n, void __iomem *reg)
118 {
119 	writel(readl(reg) | n, reg);
120 }
121 
clear_gpio_bits(unsigned n,void __iomem * reg)122 static inline void clear_gpio_bits(unsigned n, void __iomem *reg)
123 {
124 	writel(readl(reg) & ~n, reg);
125 }
126 
msm_gpio_get(struct gpio_chip * chip,unsigned offset)127 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
128 {
129 	return readl(GPIO_IN_OUT(offset)) & BIT(GPIO_IN);
130 }
131 
msm_gpio_set(struct gpio_chip * chip,unsigned offset,int val)132 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int val)
133 {
134 	writel(val ? BIT(GPIO_OUT) : 0, GPIO_IN_OUT(offset));
135 }
136 
msm_gpio_direction_input(struct gpio_chip * chip,unsigned offset)137 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
138 {
139 	unsigned long irq_flags;
140 
141 	spin_lock_irqsave(&tlmm_lock, irq_flags);
142 	clear_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset));
143 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
144 	return 0;
145 }
146 
msm_gpio_direction_output(struct gpio_chip * chip,unsigned offset,int val)147 static int msm_gpio_direction_output(struct gpio_chip *chip,
148 				unsigned offset,
149 				int val)
150 {
151 	unsigned long irq_flags;
152 
153 	spin_lock_irqsave(&tlmm_lock, irq_flags);
154 	msm_gpio_set(chip, offset, val);
155 	set_gpio_bits(BIT(GPIO_OE), GPIO_CONFIG(offset));
156 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
157 	return 0;
158 }
159 
msm_gpio_request(struct gpio_chip * chip,unsigned offset)160 static int msm_gpio_request(struct gpio_chip *chip, unsigned offset)
161 {
162 	return msm_gpiomux_get(chip->base + offset);
163 }
164 
msm_gpio_free(struct gpio_chip * chip,unsigned offset)165 static void msm_gpio_free(struct gpio_chip *chip, unsigned offset)
166 {
167 	msm_gpiomux_put(chip->base + offset);
168 }
169 
msm_gpio_to_irq(struct gpio_chip * chip,unsigned offset)170 static int msm_gpio_to_irq(struct gpio_chip *chip, unsigned offset)
171 {
172 	return MSM_GPIO_TO_INT(chip->base + offset);
173 }
174 
msm_irq_to_gpio(struct gpio_chip * chip,unsigned irq)175 static inline int msm_irq_to_gpio(struct gpio_chip *chip, unsigned irq)
176 {
177 	return irq - MSM_GPIO_TO_INT(chip->base);
178 }
179 
180 static struct msm_gpio_dev msm_gpio = {
181 	.gpio_chip = {
182 		.base             = 0,
183 		.ngpio            = NR_GPIO_IRQS,
184 		.direction_input  = msm_gpio_direction_input,
185 		.direction_output = msm_gpio_direction_output,
186 		.get              = msm_gpio_get,
187 		.set              = msm_gpio_set,
188 		.to_irq           = msm_gpio_to_irq,
189 		.request          = msm_gpio_request,
190 		.free             = msm_gpio_free,
191 	},
192 };
193 
194 /* For dual-edge interrupts in software, since the hardware has no
195  * such support:
196  *
197  * At appropriate moments, this function may be called to flip the polarity
198  * settings of both-edge irq lines to try and catch the next edge.
199  *
200  * The attempt is considered successful if:
201  * - the status bit goes high, indicating that an edge was caught, or
202  * - the input value of the gpio doesn't change during the attempt.
203  * If the value changes twice during the process, that would cause the first
204  * test to fail but would force the second, as two opposite
205  * transitions would cause a detection no matter the polarity setting.
206  *
207  * The do-loop tries to sledge-hammer closed the timing hole between
208  * the initial value-read and the polarity-write - if the line value changes
209  * during that window, an interrupt is lost, the new polarity setting is
210  * incorrect, and the first success test will fail, causing a retry.
211  *
212  * Algorithm comes from Google's msmgpio driver, see mach-msm/gpio.c.
213  */
msm_gpio_update_dual_edge_pos(unsigned gpio)214 static void msm_gpio_update_dual_edge_pos(unsigned gpio)
215 {
216 	int loop_limit = 100;
217 	unsigned val, val2, intstat;
218 
219 	do {
220 		val = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN);
221 		if (val)
222 			clear_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio));
223 		else
224 			set_gpio_bits(BIT(INTR_POL_CTL), GPIO_INTR_CFG(gpio));
225 		val2 = readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN);
226 		intstat = readl(GPIO_INTR_STATUS(gpio)) & BIT(INTR_STATUS);
227 		if (intstat || val == val2)
228 			return;
229 	} while (loop_limit-- > 0);
230 	pr_err("dual-edge irq failed to stabilize, "
231 	       "interrupts dropped. %#08x != %#08x\n",
232 	       val, val2);
233 }
234 
msm_gpio_irq_ack(struct irq_data * d)235 static void msm_gpio_irq_ack(struct irq_data *d)
236 {
237 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
238 
239 	writel(BIT(INTR_STATUS), GPIO_INTR_STATUS(gpio));
240 	if (test_bit(gpio, msm_gpio.dual_edge_irqs))
241 		msm_gpio_update_dual_edge_pos(gpio);
242 }
243 
msm_gpio_irq_mask(struct irq_data * d)244 static void msm_gpio_irq_mask(struct irq_data *d)
245 {
246 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
247 	unsigned long irq_flags;
248 
249 	spin_lock_irqsave(&tlmm_lock, irq_flags);
250 	writel(TARGET_PROC_NONE, GPIO_INTR_CFG_SU(gpio));
251 	clear_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio));
252 	__clear_bit(gpio, msm_gpio.enabled_irqs);
253 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
254 }
255 
msm_gpio_irq_unmask(struct irq_data * d)256 static void msm_gpio_irq_unmask(struct irq_data *d)
257 {
258 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
259 	unsigned long irq_flags;
260 
261 	spin_lock_irqsave(&tlmm_lock, irq_flags);
262 	__set_bit(gpio, msm_gpio.enabled_irqs);
263 	set_gpio_bits(INTR_RAW_STATUS_EN | INTR_ENABLE, GPIO_INTR_CFG(gpio));
264 	writel(TARGET_PROC_SCORPION, GPIO_INTR_CFG_SU(gpio));
265 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
266 }
267 
msm_gpio_irq_set_type(struct irq_data * d,unsigned int flow_type)268 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int flow_type)
269 {
270 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
271 	unsigned long irq_flags;
272 	uint32_t bits;
273 
274 	spin_lock_irqsave(&tlmm_lock, irq_flags);
275 
276 	bits = readl(GPIO_INTR_CFG(gpio));
277 
278 	if (flow_type & IRQ_TYPE_EDGE_BOTH) {
279 		bits |= BIT(INTR_DECT_CTL);
280 		__irq_set_handler_locked(d->irq, handle_edge_irq);
281 		if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
282 			__set_bit(gpio, msm_gpio.dual_edge_irqs);
283 		else
284 			__clear_bit(gpio, msm_gpio.dual_edge_irqs);
285 	} else {
286 		bits &= ~BIT(INTR_DECT_CTL);
287 		__irq_set_handler_locked(d->irq, handle_level_irq);
288 		__clear_bit(gpio, msm_gpio.dual_edge_irqs);
289 	}
290 
291 	if (flow_type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_LEVEL_HIGH))
292 		bits |= BIT(INTR_POL_CTL);
293 	else
294 		bits &= ~BIT(INTR_POL_CTL);
295 
296 	writel(bits, GPIO_INTR_CFG(gpio));
297 
298 	if ((flow_type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
299 		msm_gpio_update_dual_edge_pos(gpio);
300 
301 	spin_unlock_irqrestore(&tlmm_lock, irq_flags);
302 
303 	return 0;
304 }
305 
306 /*
307  * When the summary IRQ is raised, any number of GPIO lines may be high.
308  * It is the job of the summary handler to find all those GPIO lines
309  * which have been set as summary IRQ lines and which are triggered,
310  * and to call their interrupt handlers.
311  */
msm_summary_irq_handler(unsigned int irq,struct irq_desc * desc)312 static void msm_summary_irq_handler(unsigned int irq, struct irq_desc *desc)
313 {
314 	unsigned long i;
315 	struct irq_chip *chip = irq_desc_get_chip(desc);
316 
317 	chained_irq_enter(chip, desc);
318 
319 	for_each_set_bit(i, msm_gpio.enabled_irqs, NR_GPIO_IRQS) {
320 		if (readl(GPIO_INTR_STATUS(i)) & BIT(INTR_STATUS))
321 			generic_handle_irq(msm_gpio_to_irq(&msm_gpio.gpio_chip,
322 							   i));
323 	}
324 
325 	chained_irq_exit(chip, desc);
326 }
327 
msm_gpio_irq_set_wake(struct irq_data * d,unsigned int on)328 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
329 {
330 	int gpio = msm_irq_to_gpio(&msm_gpio.gpio_chip, d->irq);
331 
332 	if (on) {
333 		if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
334 			irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 1);
335 		set_bit(gpio, msm_gpio.wake_irqs);
336 	} else {
337 		clear_bit(gpio, msm_gpio.wake_irqs);
338 		if (bitmap_empty(msm_gpio.wake_irqs, NR_GPIO_IRQS))
339 			irq_set_irq_wake(TLMM_SCSS_SUMMARY_IRQ, 0);
340 	}
341 
342 	return 0;
343 }
344 
345 static struct irq_chip msm_gpio_irq_chip = {
346 	.name		= "msmgpio",
347 	.irq_mask	= msm_gpio_irq_mask,
348 	.irq_unmask	= msm_gpio_irq_unmask,
349 	.irq_ack	= msm_gpio_irq_ack,
350 	.irq_set_type	= msm_gpio_irq_set_type,
351 	.irq_set_wake	= msm_gpio_irq_set_wake,
352 };
353 
msm_gpio_probe(struct platform_device * dev)354 static int msm_gpio_probe(struct platform_device *dev)
355 {
356 	int i, irq, ret;
357 
358 	bitmap_zero(msm_gpio.enabled_irqs, NR_GPIO_IRQS);
359 	bitmap_zero(msm_gpio.wake_irqs, NR_GPIO_IRQS);
360 	bitmap_zero(msm_gpio.dual_edge_irqs, NR_GPIO_IRQS);
361 	msm_gpio.gpio_chip.label = dev->name;
362 	ret = gpiochip_add(&msm_gpio.gpio_chip);
363 	if (ret < 0)
364 		return ret;
365 
366 	for (i = 0; i < msm_gpio.gpio_chip.ngpio; ++i) {
367 		irq = msm_gpio_to_irq(&msm_gpio.gpio_chip, i);
368 		irq_set_chip_and_handler(irq, &msm_gpio_irq_chip,
369 					 handle_level_irq);
370 		set_irq_flags(irq, IRQF_VALID);
371 	}
372 
373 	irq_set_chained_handler(TLMM_SCSS_SUMMARY_IRQ,
374 				msm_summary_irq_handler);
375 	return 0;
376 }
377 
msm_gpio_remove(struct platform_device * dev)378 static int msm_gpio_remove(struct platform_device *dev)
379 {
380 	int ret = gpiochip_remove(&msm_gpio.gpio_chip);
381 
382 	if (ret < 0)
383 		return ret;
384 
385 	irq_set_handler(TLMM_SCSS_SUMMARY_IRQ, NULL);
386 
387 	return 0;
388 }
389 
390 static struct platform_driver msm_gpio_driver = {
391 	.probe = msm_gpio_probe,
392 	.remove = msm_gpio_remove,
393 	.driver = {
394 		.name = "msmgpio",
395 		.owner = THIS_MODULE,
396 	},
397 };
398 
399 static struct platform_device msm_device_gpio = {
400 	.name = "msmgpio",
401 	.id   = -1,
402 };
403 
msm_gpio_init(void)404 static int __init msm_gpio_init(void)
405 {
406 	int rc;
407 
408 	rc = platform_driver_register(&msm_gpio_driver);
409 	if (!rc) {
410 		rc = platform_device_register(&msm_device_gpio);
411 		if (rc)
412 			platform_driver_unregister(&msm_gpio_driver);
413 	}
414 
415 	return rc;
416 }
417 
msm_gpio_exit(void)418 static void __exit msm_gpio_exit(void)
419 {
420 	platform_device_unregister(&msm_device_gpio);
421 	platform_driver_unregister(&msm_gpio_driver);
422 }
423 
424 postcore_initcall(msm_gpio_init);
425 module_exit(msm_gpio_exit);
426 
427 MODULE_AUTHOR("Gregory Bean <gbean@codeaurora.org>");
428 MODULE_DESCRIPTION("Driver for Qualcomm MSM TLMMv2 SoC GPIOs");
429 MODULE_LICENSE("GPL v2");
430 MODULE_ALIAS("platform:msmgpio");
431