1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48
49 #include "irq_remapping.h"
50 #include "pci.h"
51
52 #define ROOT_SIZE VTD_PAGE_SIZE
53 #define CONTEXT_SIZE VTD_PAGE_SIZE
54
55 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
58
59 #define IOAPIC_RANGE_START (0xfee00000)
60 #define IOAPIC_RANGE_END (0xfeefffff)
61 #define IOVA_START_ADDR (0x1000)
62
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
64
65 #define MAX_AGAW_WIDTH 64
66
67 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
68 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
69
70 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
71 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
72 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
73 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
74 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
75
76 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
77 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
78 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
79
80 /* page table handling */
81 #define LEVEL_STRIDE (9)
82 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
83
84 /*
85 * This bitmap is used to advertise the page sizes our hardware support
86 * to the IOMMU core, which will then use this information to split
87 * physically contiguous memory regions it is mapping into page sizes
88 * that we support.
89 *
90 * Traditionally the IOMMU core just handed us the mappings directly,
91 * after making sure the size is an order of a 4KiB page and that the
92 * mapping has natural alignment.
93 *
94 * To retain this behavior, we currently advertise that we support
95 * all page sizes that are an order of 4KiB.
96 *
97 * If at some point we'd like to utilize the IOMMU core's new behavior,
98 * we could change this to advertise the real page sizes we support.
99 */
100 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
101
agaw_to_level(int agaw)102 static inline int agaw_to_level(int agaw)
103 {
104 return agaw + 2;
105 }
106
agaw_to_width(int agaw)107 static inline int agaw_to_width(int agaw)
108 {
109 return 30 + agaw * LEVEL_STRIDE;
110 }
111
width_to_agaw(int width)112 static inline int width_to_agaw(int width)
113 {
114 return (width - 30) / LEVEL_STRIDE;
115 }
116
level_to_offset_bits(int level)117 static inline unsigned int level_to_offset_bits(int level)
118 {
119 return (level - 1) * LEVEL_STRIDE;
120 }
121
pfn_level_offset(unsigned long pfn,int level)122 static inline int pfn_level_offset(unsigned long pfn, int level)
123 {
124 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
125 }
126
level_mask(int level)127 static inline unsigned long level_mask(int level)
128 {
129 return -1UL << level_to_offset_bits(level);
130 }
131
level_size(int level)132 static inline unsigned long level_size(int level)
133 {
134 return 1UL << level_to_offset_bits(level);
135 }
136
align_to_level(unsigned long pfn,int level)137 static inline unsigned long align_to_level(unsigned long pfn, int level)
138 {
139 return (pfn + level_size(level) - 1) & level_mask(level);
140 }
141
lvl_to_nr_pages(unsigned int lvl)142 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
143 {
144 return 1 << ((lvl - 1) * LEVEL_STRIDE);
145 }
146
147 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
148 are never going to work. */
dma_to_mm_pfn(unsigned long dma_pfn)149 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
150 {
151 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
152 }
153
mm_to_dma_pfn(unsigned long mm_pfn)154 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
155 {
156 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
157 }
page_to_dma_pfn(struct page * pg)158 static inline unsigned long page_to_dma_pfn(struct page *pg)
159 {
160 return mm_to_dma_pfn(page_to_pfn(pg));
161 }
virt_to_dma_pfn(void * p)162 static inline unsigned long virt_to_dma_pfn(void *p)
163 {
164 return page_to_dma_pfn(virt_to_page(p));
165 }
166
167 /* global iommu list, set NULL for ignored DMAR units */
168 static struct intel_iommu **g_iommus;
169
170 static void __init check_tylersburg_isoch(void);
171 static int rwbf_quirk;
172
173 /*
174 * set to 1 to panic kernel if can't successfully enable VT-d
175 * (used when kernel is launched w/ TXT)
176 */
177 static int force_on = 0;
178
179 /*
180 * 0: Present
181 * 1-11: Reserved
182 * 12-63: Context Ptr (12 - (haw-1))
183 * 64-127: Reserved
184 */
185 struct root_entry {
186 u64 val;
187 u64 rsvd1;
188 };
189 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
root_present(struct root_entry * root)190 static inline bool root_present(struct root_entry *root)
191 {
192 return (root->val & 1);
193 }
set_root_present(struct root_entry * root)194 static inline void set_root_present(struct root_entry *root)
195 {
196 root->val |= 1;
197 }
set_root_value(struct root_entry * root,unsigned long value)198 static inline void set_root_value(struct root_entry *root, unsigned long value)
199 {
200 root->val |= value & VTD_PAGE_MASK;
201 }
202
203 static inline struct context_entry *
get_context_addr_from_root(struct root_entry * root)204 get_context_addr_from_root(struct root_entry *root)
205 {
206 return (struct context_entry *)
207 (root_present(root)?phys_to_virt(
208 root->val & VTD_PAGE_MASK) :
209 NULL);
210 }
211
212 /*
213 * low 64 bits:
214 * 0: present
215 * 1: fault processing disable
216 * 2-3: translation type
217 * 12-63: address space root
218 * high 64 bits:
219 * 0-2: address width
220 * 3-6: aval
221 * 8-23: domain id
222 */
223 struct context_entry {
224 u64 lo;
225 u64 hi;
226 };
227
context_present(struct context_entry * context)228 static inline bool context_present(struct context_entry *context)
229 {
230 return (context->lo & 1);
231 }
context_set_present(struct context_entry * context)232 static inline void context_set_present(struct context_entry *context)
233 {
234 context->lo |= 1;
235 }
236
context_set_fault_enable(struct context_entry * context)237 static inline void context_set_fault_enable(struct context_entry *context)
238 {
239 context->lo &= (((u64)-1) << 2) | 1;
240 }
241
context_set_translation_type(struct context_entry * context,unsigned long value)242 static inline void context_set_translation_type(struct context_entry *context,
243 unsigned long value)
244 {
245 context->lo &= (((u64)-1) << 4) | 3;
246 context->lo |= (value & 3) << 2;
247 }
248
context_set_address_root(struct context_entry * context,unsigned long value)249 static inline void context_set_address_root(struct context_entry *context,
250 unsigned long value)
251 {
252 context->lo |= value & VTD_PAGE_MASK;
253 }
254
context_set_address_width(struct context_entry * context,unsigned long value)255 static inline void context_set_address_width(struct context_entry *context,
256 unsigned long value)
257 {
258 context->hi |= value & 7;
259 }
260
context_set_domain_id(struct context_entry * context,unsigned long value)261 static inline void context_set_domain_id(struct context_entry *context,
262 unsigned long value)
263 {
264 context->hi |= (value & ((1 << 16) - 1)) << 8;
265 }
266
context_clear_entry(struct context_entry * context)267 static inline void context_clear_entry(struct context_entry *context)
268 {
269 context->lo = 0;
270 context->hi = 0;
271 }
272
273 /*
274 * 0: readable
275 * 1: writable
276 * 2-6: reserved
277 * 7: super page
278 * 8-10: available
279 * 11: snoop behavior
280 * 12-63: Host physcial address
281 */
282 struct dma_pte {
283 u64 val;
284 };
285
dma_clear_pte(struct dma_pte * pte)286 static inline void dma_clear_pte(struct dma_pte *pte)
287 {
288 pte->val = 0;
289 }
290
dma_set_pte_readable(struct dma_pte * pte)291 static inline void dma_set_pte_readable(struct dma_pte *pte)
292 {
293 pte->val |= DMA_PTE_READ;
294 }
295
dma_set_pte_writable(struct dma_pte * pte)296 static inline void dma_set_pte_writable(struct dma_pte *pte)
297 {
298 pte->val |= DMA_PTE_WRITE;
299 }
300
dma_set_pte_snp(struct dma_pte * pte)301 static inline void dma_set_pte_snp(struct dma_pte *pte)
302 {
303 pte->val |= DMA_PTE_SNP;
304 }
305
dma_set_pte_prot(struct dma_pte * pte,unsigned long prot)306 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
307 {
308 pte->val = (pte->val & ~3) | (prot & 3);
309 }
310
dma_pte_addr(struct dma_pte * pte)311 static inline u64 dma_pte_addr(struct dma_pte *pte)
312 {
313 #ifdef CONFIG_64BIT
314 return pte->val & VTD_PAGE_MASK;
315 #else
316 /* Must have a full atomic 64-bit read */
317 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
318 #endif
319 }
320
dma_set_pte_pfn(struct dma_pte * pte,unsigned long pfn)321 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
322 {
323 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
324 }
325
dma_pte_present(struct dma_pte * pte)326 static inline bool dma_pte_present(struct dma_pte *pte)
327 {
328 return (pte->val & 3) != 0;
329 }
330
dma_pte_superpage(struct dma_pte * pte)331 static inline bool dma_pte_superpage(struct dma_pte *pte)
332 {
333 return (pte->val & (1 << 7));
334 }
335
first_pte_in_page(struct dma_pte * pte)336 static inline int first_pte_in_page(struct dma_pte *pte)
337 {
338 return !((unsigned long)pte & ~VTD_PAGE_MASK);
339 }
340
341 /*
342 * This domain is a statically identity mapping domain.
343 * 1. This domain creats a static 1:1 mapping to all usable memory.
344 * 2. It maps to each iommu if successful.
345 * 3. Each iommu mapps to this domain if successful.
346 */
347 static struct dmar_domain *si_domain;
348 static int hw_pass_through = 1;
349
350 /* devices under the same p2p bridge are owned in one domain */
351 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
352
353 /* domain represents a virtual machine, more than one devices
354 * across iommus may be owned in one domain, e.g. kvm guest.
355 */
356 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
357
358 /* si_domain contains mulitple devices */
359 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
360
361 /* define the limit of IOMMUs supported in each domain */
362 #ifdef CONFIG_X86
363 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
364 #else
365 # define IOMMU_UNITS_SUPPORTED 64
366 #endif
367
368 struct dmar_domain {
369 int id; /* domain id */
370 int nid; /* node id */
371 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
372 /* bitmap of iommus this domain uses*/
373
374 struct list_head devices; /* all devices' list */
375 struct iova_domain iovad; /* iova's that belong to this domain */
376
377 struct dma_pte *pgd; /* virtual address */
378 int gaw; /* max guest address width */
379
380 /* adjusted guest address width, 0 is level 2 30-bit */
381 int agaw;
382
383 int flags; /* flags to find out type of domain */
384
385 int iommu_coherency;/* indicate coherency of iommu access */
386 int iommu_snooping; /* indicate snooping control feature*/
387 int iommu_count; /* reference count of iommu */
388 int iommu_superpage;/* Level of superpages supported:
389 0 == 4KiB (no superpages), 1 == 2MiB,
390 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
391 spinlock_t iommu_lock; /* protect iommu set in domain */
392 u64 max_addr; /* maximum mapped address */
393 };
394
395 /* PCI domain-device relationship */
396 struct device_domain_info {
397 struct list_head link; /* link to domain siblings */
398 struct list_head global; /* link to global list */
399 int segment; /* PCI domain */
400 u8 bus; /* PCI bus number */
401 u8 devfn; /* PCI devfn number */
402 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
403 struct intel_iommu *iommu; /* IOMMU used by this device */
404 struct dmar_domain *domain; /* pointer to domain */
405 };
406
407 static void flush_unmaps_timeout(unsigned long data);
408
409 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
410
411 #define HIGH_WATER_MARK 250
412 struct deferred_flush_tables {
413 int next;
414 struct iova *iova[HIGH_WATER_MARK];
415 struct dmar_domain *domain[HIGH_WATER_MARK];
416 };
417
418 static struct deferred_flush_tables *deferred_flush;
419
420 /* bitmap for indexing intel_iommus */
421 static int g_num_of_iommus;
422
423 static DEFINE_SPINLOCK(async_umap_flush_lock);
424 static LIST_HEAD(unmaps_to_do);
425
426 static int timer_on;
427 static long list_size;
428
429 static void domain_remove_dev_info(struct dmar_domain *domain);
430
431 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
432 int dmar_disabled = 0;
433 #else
434 int dmar_disabled = 1;
435 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
436
437 int intel_iommu_enabled = 0;
438 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
439
440 static int dmar_map_gfx = 1;
441 static int dmar_forcedac;
442 static int intel_iommu_strict;
443 static int intel_iommu_superpage = 1;
444
445 int intel_iommu_gfx_mapped;
446 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
447
448 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
449 static DEFINE_SPINLOCK(device_domain_lock);
450 static LIST_HEAD(device_domain_list);
451
452 static struct iommu_ops intel_iommu_ops;
453
intel_iommu_setup(char * str)454 static int __init intel_iommu_setup(char *str)
455 {
456 if (!str)
457 return -EINVAL;
458 while (*str) {
459 if (!strncmp(str, "on", 2)) {
460 dmar_disabled = 0;
461 printk(KERN_INFO "Intel-IOMMU: enabled\n");
462 } else if (!strncmp(str, "off", 3)) {
463 dmar_disabled = 1;
464 printk(KERN_INFO "Intel-IOMMU: disabled\n");
465 } else if (!strncmp(str, "igfx_off", 8)) {
466 dmar_map_gfx = 0;
467 printk(KERN_INFO
468 "Intel-IOMMU: disable GFX device mapping\n");
469 } else if (!strncmp(str, "forcedac", 8)) {
470 printk(KERN_INFO
471 "Intel-IOMMU: Forcing DAC for PCI devices\n");
472 dmar_forcedac = 1;
473 } else if (!strncmp(str, "strict", 6)) {
474 printk(KERN_INFO
475 "Intel-IOMMU: disable batched IOTLB flush\n");
476 intel_iommu_strict = 1;
477 } else if (!strncmp(str, "sp_off", 6)) {
478 printk(KERN_INFO
479 "Intel-IOMMU: disable supported super page\n");
480 intel_iommu_superpage = 0;
481 }
482
483 str += strcspn(str, ",");
484 while (*str == ',')
485 str++;
486 }
487 return 0;
488 }
489 __setup("intel_iommu=", intel_iommu_setup);
490
491 static struct kmem_cache *iommu_domain_cache;
492 static struct kmem_cache *iommu_devinfo_cache;
493 static struct kmem_cache *iommu_iova_cache;
494
alloc_pgtable_page(int node)495 static inline void *alloc_pgtable_page(int node)
496 {
497 struct page *page;
498 void *vaddr = NULL;
499
500 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
501 if (page)
502 vaddr = page_address(page);
503 return vaddr;
504 }
505
free_pgtable_page(void * vaddr)506 static inline void free_pgtable_page(void *vaddr)
507 {
508 free_page((unsigned long)vaddr);
509 }
510
alloc_domain_mem(void)511 static inline void *alloc_domain_mem(void)
512 {
513 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
514 }
515
free_domain_mem(void * vaddr)516 static void free_domain_mem(void *vaddr)
517 {
518 kmem_cache_free(iommu_domain_cache, vaddr);
519 }
520
alloc_devinfo_mem(void)521 static inline void * alloc_devinfo_mem(void)
522 {
523 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
524 }
525
free_devinfo_mem(void * vaddr)526 static inline void free_devinfo_mem(void *vaddr)
527 {
528 kmem_cache_free(iommu_devinfo_cache, vaddr);
529 }
530
alloc_iova_mem(void)531 struct iova *alloc_iova_mem(void)
532 {
533 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
534 }
535
free_iova_mem(struct iova * iova)536 void free_iova_mem(struct iova *iova)
537 {
538 kmem_cache_free(iommu_iova_cache, iova);
539 }
540
541
__iommu_calculate_agaw(struct intel_iommu * iommu,int max_gaw)542 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
543 {
544 unsigned long sagaw;
545 int agaw = -1;
546
547 sagaw = cap_sagaw(iommu->cap);
548 for (agaw = width_to_agaw(max_gaw);
549 agaw >= 0; agaw--) {
550 if (test_bit(agaw, &sagaw))
551 break;
552 }
553
554 return agaw;
555 }
556
557 /*
558 * Calculate max SAGAW for each iommu.
559 */
iommu_calculate_max_sagaw(struct intel_iommu * iommu)560 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
561 {
562 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
563 }
564
565 /*
566 * calculate agaw for each iommu.
567 * "SAGAW" may be different across iommus, use a default agaw, and
568 * get a supported less agaw for iommus that don't support the default agaw.
569 */
iommu_calculate_agaw(struct intel_iommu * iommu)570 int iommu_calculate_agaw(struct intel_iommu *iommu)
571 {
572 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
573 }
574
575 /* This functionin only returns single iommu in a domain */
domain_get_iommu(struct dmar_domain * domain)576 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
577 {
578 int iommu_id;
579
580 /* si_domain and vm domain should not get here. */
581 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
582 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
583
584 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
585 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
586 return NULL;
587
588 return g_iommus[iommu_id];
589 }
590
domain_update_iommu_coherency(struct dmar_domain * domain)591 static void domain_update_iommu_coherency(struct dmar_domain *domain)
592 {
593 int i;
594
595 i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
596
597 domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
598
599 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
600 if (!ecap_coherent(g_iommus[i]->ecap)) {
601 domain->iommu_coherency = 0;
602 break;
603 }
604 }
605 }
606
domain_update_iommu_snooping(struct dmar_domain * domain)607 static void domain_update_iommu_snooping(struct dmar_domain *domain)
608 {
609 int i;
610
611 domain->iommu_snooping = 1;
612
613 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
614 if (!ecap_sc_support(g_iommus[i]->ecap)) {
615 domain->iommu_snooping = 0;
616 break;
617 }
618 }
619 }
620
domain_update_iommu_superpage(struct dmar_domain * domain)621 static void domain_update_iommu_superpage(struct dmar_domain *domain)
622 {
623 struct dmar_drhd_unit *drhd;
624 struct intel_iommu *iommu = NULL;
625 int mask = 0xf;
626
627 if (!intel_iommu_superpage) {
628 domain->iommu_superpage = 0;
629 return;
630 }
631
632 /* set iommu_superpage to the smallest common denominator */
633 for_each_active_iommu(iommu, drhd) {
634 mask &= cap_super_page_val(iommu->cap);
635 if (!mask) {
636 break;
637 }
638 }
639 domain->iommu_superpage = fls(mask);
640 }
641
642 /* Some capabilities may be different across iommus */
domain_update_iommu_cap(struct dmar_domain * domain)643 static void domain_update_iommu_cap(struct dmar_domain *domain)
644 {
645 domain_update_iommu_coherency(domain);
646 domain_update_iommu_snooping(domain);
647 domain_update_iommu_superpage(domain);
648 }
649
device_to_iommu(int segment,u8 bus,u8 devfn)650 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
651 {
652 struct dmar_drhd_unit *drhd = NULL;
653 int i;
654
655 for_each_drhd_unit(drhd) {
656 if (drhd->ignored)
657 continue;
658 if (segment != drhd->segment)
659 continue;
660
661 for (i = 0; i < drhd->devices_cnt; i++) {
662 if (drhd->devices[i] &&
663 drhd->devices[i]->bus->number == bus &&
664 drhd->devices[i]->devfn == devfn)
665 return drhd->iommu;
666 if (drhd->devices[i] &&
667 drhd->devices[i]->subordinate &&
668 drhd->devices[i]->subordinate->number <= bus &&
669 drhd->devices[i]->subordinate->busn_res.end >= bus)
670 return drhd->iommu;
671 }
672
673 if (drhd->include_all)
674 return drhd->iommu;
675 }
676
677 return NULL;
678 }
679
domain_flush_cache(struct dmar_domain * domain,void * addr,int size)680 static void domain_flush_cache(struct dmar_domain *domain,
681 void *addr, int size)
682 {
683 if (!domain->iommu_coherency)
684 clflush_cache_range(addr, size);
685 }
686
687 /* Gets context entry for a given bus and devfn */
device_to_context_entry(struct intel_iommu * iommu,u8 bus,u8 devfn)688 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
689 u8 bus, u8 devfn)
690 {
691 struct root_entry *root;
692 struct context_entry *context;
693 unsigned long phy_addr;
694 unsigned long flags;
695
696 spin_lock_irqsave(&iommu->lock, flags);
697 root = &iommu->root_entry[bus];
698 context = get_context_addr_from_root(root);
699 if (!context) {
700 context = (struct context_entry *)
701 alloc_pgtable_page(iommu->node);
702 if (!context) {
703 spin_unlock_irqrestore(&iommu->lock, flags);
704 return NULL;
705 }
706 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
707 phy_addr = virt_to_phys((void *)context);
708 set_root_value(root, phy_addr);
709 set_root_present(root);
710 __iommu_flush_cache(iommu, root, sizeof(*root));
711 }
712 spin_unlock_irqrestore(&iommu->lock, flags);
713 return &context[devfn];
714 }
715
device_context_mapped(struct intel_iommu * iommu,u8 bus,u8 devfn)716 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
717 {
718 struct root_entry *root;
719 struct context_entry *context;
720 int ret;
721 unsigned long flags;
722
723 spin_lock_irqsave(&iommu->lock, flags);
724 root = &iommu->root_entry[bus];
725 context = get_context_addr_from_root(root);
726 if (!context) {
727 ret = 0;
728 goto out;
729 }
730 ret = context_present(&context[devfn]);
731 out:
732 spin_unlock_irqrestore(&iommu->lock, flags);
733 return ret;
734 }
735
clear_context_table(struct intel_iommu * iommu,u8 bus,u8 devfn)736 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
737 {
738 struct root_entry *root;
739 struct context_entry *context;
740 unsigned long flags;
741
742 spin_lock_irqsave(&iommu->lock, flags);
743 root = &iommu->root_entry[bus];
744 context = get_context_addr_from_root(root);
745 if (context) {
746 context_clear_entry(&context[devfn]);
747 __iommu_flush_cache(iommu, &context[devfn], \
748 sizeof(*context));
749 }
750 spin_unlock_irqrestore(&iommu->lock, flags);
751 }
752
free_context_table(struct intel_iommu * iommu)753 static void free_context_table(struct intel_iommu *iommu)
754 {
755 struct root_entry *root;
756 int i;
757 unsigned long flags;
758 struct context_entry *context;
759
760 spin_lock_irqsave(&iommu->lock, flags);
761 if (!iommu->root_entry) {
762 goto out;
763 }
764 for (i = 0; i < ROOT_ENTRY_NR; i++) {
765 root = &iommu->root_entry[i];
766 context = get_context_addr_from_root(root);
767 if (context)
768 free_pgtable_page(context);
769 }
770 free_pgtable_page(iommu->root_entry);
771 iommu->root_entry = NULL;
772 out:
773 spin_unlock_irqrestore(&iommu->lock, flags);
774 }
775
pfn_to_dma_pte(struct dmar_domain * domain,unsigned long pfn,int target_level)776 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
777 unsigned long pfn, int target_level)
778 {
779 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
780 struct dma_pte *parent, *pte = NULL;
781 int level = agaw_to_level(domain->agaw);
782 int offset;
783
784 BUG_ON(!domain->pgd);
785 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
786 parent = domain->pgd;
787
788 while (level > 0) {
789 void *tmp_page;
790
791 offset = pfn_level_offset(pfn, level);
792 pte = &parent[offset];
793 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
794 break;
795 if (level == target_level)
796 break;
797
798 if (!dma_pte_present(pte)) {
799 uint64_t pteval;
800
801 tmp_page = alloc_pgtable_page(domain->nid);
802
803 if (!tmp_page)
804 return NULL;
805
806 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
807 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
808 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
809 /* Someone else set it while we were thinking; use theirs. */
810 free_pgtable_page(tmp_page);
811 } else {
812 dma_pte_addr(pte);
813 domain_flush_cache(domain, pte, sizeof(*pte));
814 }
815 }
816 parent = phys_to_virt(dma_pte_addr(pte));
817 level--;
818 }
819
820 return pte;
821 }
822
823
824 /* return address's pte at specific level */
dma_pfn_level_pte(struct dmar_domain * domain,unsigned long pfn,int level,int * large_page)825 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
826 unsigned long pfn,
827 int level, int *large_page)
828 {
829 struct dma_pte *parent, *pte = NULL;
830 int total = agaw_to_level(domain->agaw);
831 int offset;
832
833 parent = domain->pgd;
834 while (level <= total) {
835 offset = pfn_level_offset(pfn, total);
836 pte = &parent[offset];
837 if (level == total)
838 return pte;
839
840 if (!dma_pte_present(pte)) {
841 *large_page = total;
842 break;
843 }
844
845 if (pte->val & DMA_PTE_LARGE_PAGE) {
846 *large_page = total;
847 return pte;
848 }
849
850 parent = phys_to_virt(dma_pte_addr(pte));
851 total--;
852 }
853 return NULL;
854 }
855
856 /* clear last level pte, a tlb flush should be followed */
dma_pte_clear_range(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn)857 static int dma_pte_clear_range(struct dmar_domain *domain,
858 unsigned long start_pfn,
859 unsigned long last_pfn)
860 {
861 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
862 unsigned int large_page = 1;
863 struct dma_pte *first_pte, *pte;
864 int order;
865
866 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
867 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
868 BUG_ON(start_pfn > last_pfn);
869
870 /* we don't need lock here; nobody else touches the iova range */
871 do {
872 large_page = 1;
873 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
874 if (!pte) {
875 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
876 continue;
877 }
878 do {
879 dma_clear_pte(pte);
880 start_pfn += lvl_to_nr_pages(large_page);
881 pte++;
882 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
883
884 domain_flush_cache(domain, first_pte,
885 (void *)pte - (void *)first_pte);
886
887 } while (start_pfn && start_pfn <= last_pfn);
888
889 order = (large_page - 1) * 9;
890 return order;
891 }
892
893 /* free page table pages. last level pte should already be cleared */
dma_pte_free_pagetable(struct dmar_domain * domain,unsigned long start_pfn,unsigned long last_pfn)894 static void dma_pte_free_pagetable(struct dmar_domain *domain,
895 unsigned long start_pfn,
896 unsigned long last_pfn)
897 {
898 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
899 struct dma_pte *first_pte, *pte;
900 int total = agaw_to_level(domain->agaw);
901 int level;
902 unsigned long tmp;
903 int large_page = 2;
904
905 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
906 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
907 BUG_ON(start_pfn > last_pfn);
908
909 /* We don't need lock here; nobody else touches the iova range */
910 level = 2;
911 while (level <= total) {
912 tmp = align_to_level(start_pfn, level);
913
914 /* If we can't even clear one PTE at this level, we're done */
915 if (tmp + level_size(level) - 1 > last_pfn)
916 return;
917
918 do {
919 large_page = level;
920 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
921 if (large_page > level)
922 level = large_page + 1;
923 if (!pte) {
924 tmp = align_to_level(tmp + 1, level + 1);
925 continue;
926 }
927 do {
928 if (dma_pte_present(pte)) {
929 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
930 dma_clear_pte(pte);
931 }
932 pte++;
933 tmp += level_size(level);
934 } while (!first_pte_in_page(pte) &&
935 tmp + level_size(level) - 1 <= last_pfn);
936
937 domain_flush_cache(domain, first_pte,
938 (void *)pte - (void *)first_pte);
939
940 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
941 level++;
942 }
943 /* free pgd */
944 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
945 free_pgtable_page(domain->pgd);
946 domain->pgd = NULL;
947 }
948 }
949
950 /* iommu handling */
iommu_alloc_root_entry(struct intel_iommu * iommu)951 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
952 {
953 struct root_entry *root;
954 unsigned long flags;
955
956 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
957 if (!root)
958 return -ENOMEM;
959
960 __iommu_flush_cache(iommu, root, ROOT_SIZE);
961
962 spin_lock_irqsave(&iommu->lock, flags);
963 iommu->root_entry = root;
964 spin_unlock_irqrestore(&iommu->lock, flags);
965
966 return 0;
967 }
968
iommu_set_root_entry(struct intel_iommu * iommu)969 static void iommu_set_root_entry(struct intel_iommu *iommu)
970 {
971 void *addr;
972 u32 sts;
973 unsigned long flag;
974
975 addr = iommu->root_entry;
976
977 raw_spin_lock_irqsave(&iommu->register_lock, flag);
978 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
979
980 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
981
982 /* Make sure hardware complete it */
983 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
984 readl, (sts & DMA_GSTS_RTPS), sts);
985
986 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
987 }
988
iommu_flush_write_buffer(struct intel_iommu * iommu)989 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
990 {
991 u32 val;
992 unsigned long flag;
993
994 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
995 return;
996
997 raw_spin_lock_irqsave(&iommu->register_lock, flag);
998 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
999
1000 /* Make sure hardware complete it */
1001 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1002 readl, (!(val & DMA_GSTS_WBFS)), val);
1003
1004 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1005 }
1006
1007 /* return value determine if we need a write buffer flush */
__iommu_flush_context(struct intel_iommu * iommu,u16 did,u16 source_id,u8 function_mask,u64 type)1008 static void __iommu_flush_context(struct intel_iommu *iommu,
1009 u16 did, u16 source_id, u8 function_mask,
1010 u64 type)
1011 {
1012 u64 val = 0;
1013 unsigned long flag;
1014
1015 switch (type) {
1016 case DMA_CCMD_GLOBAL_INVL:
1017 val = DMA_CCMD_GLOBAL_INVL;
1018 break;
1019 case DMA_CCMD_DOMAIN_INVL:
1020 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1021 break;
1022 case DMA_CCMD_DEVICE_INVL:
1023 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1024 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1025 break;
1026 default:
1027 BUG();
1028 }
1029 val |= DMA_CCMD_ICC;
1030
1031 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1032 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1033
1034 /* Make sure hardware complete it */
1035 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1036 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1037
1038 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1039 }
1040
1041 /* return value determine if we need a write buffer flush */
__iommu_flush_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type)1042 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1043 u64 addr, unsigned int size_order, u64 type)
1044 {
1045 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1046 u64 val = 0, val_iva = 0;
1047 unsigned long flag;
1048
1049 switch (type) {
1050 case DMA_TLB_GLOBAL_FLUSH:
1051 /* global flush doesn't need set IVA_REG */
1052 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1053 break;
1054 case DMA_TLB_DSI_FLUSH:
1055 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1056 break;
1057 case DMA_TLB_PSI_FLUSH:
1058 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1059 /* Note: always flush non-leaf currently */
1060 val_iva = size_order | addr;
1061 break;
1062 default:
1063 BUG();
1064 }
1065 /* Note: set drain read/write */
1066 #if 0
1067 /*
1068 * This is probably to be super secure.. Looks like we can
1069 * ignore it without any impact.
1070 */
1071 if (cap_read_drain(iommu->cap))
1072 val |= DMA_TLB_READ_DRAIN;
1073 #endif
1074 if (cap_write_drain(iommu->cap))
1075 val |= DMA_TLB_WRITE_DRAIN;
1076
1077 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1078 /* Note: Only uses first TLB reg currently */
1079 if (val_iva)
1080 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1081 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1082
1083 /* Make sure hardware complete it */
1084 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1085 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1086
1087 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1088
1089 /* check IOTLB invalidation granularity */
1090 if (DMA_TLB_IAIG(val) == 0)
1091 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1092 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1093 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1094 (unsigned long long)DMA_TLB_IIRG(type),
1095 (unsigned long long)DMA_TLB_IAIG(val));
1096 }
1097
iommu_support_dev_iotlb(struct dmar_domain * domain,int segment,u8 bus,u8 devfn)1098 static struct device_domain_info *iommu_support_dev_iotlb(
1099 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1100 {
1101 int found = 0;
1102 unsigned long flags;
1103 struct device_domain_info *info;
1104 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1105
1106 if (!ecap_dev_iotlb_support(iommu->ecap))
1107 return NULL;
1108
1109 if (!iommu->qi)
1110 return NULL;
1111
1112 spin_lock_irqsave(&device_domain_lock, flags);
1113 list_for_each_entry(info, &domain->devices, link)
1114 if (info->bus == bus && info->devfn == devfn) {
1115 found = 1;
1116 break;
1117 }
1118 spin_unlock_irqrestore(&device_domain_lock, flags);
1119
1120 if (!found || !info->dev)
1121 return NULL;
1122
1123 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1124 return NULL;
1125
1126 if (!dmar_find_matched_atsr_unit(info->dev))
1127 return NULL;
1128
1129 info->iommu = iommu;
1130
1131 return info;
1132 }
1133
iommu_enable_dev_iotlb(struct device_domain_info * info)1134 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1135 {
1136 if (!info)
1137 return;
1138
1139 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1140 }
1141
iommu_disable_dev_iotlb(struct device_domain_info * info)1142 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1143 {
1144 if (!info->dev || !pci_ats_enabled(info->dev))
1145 return;
1146
1147 pci_disable_ats(info->dev);
1148 }
1149
iommu_flush_dev_iotlb(struct dmar_domain * domain,u64 addr,unsigned mask)1150 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1151 u64 addr, unsigned mask)
1152 {
1153 u16 sid, qdep;
1154 unsigned long flags;
1155 struct device_domain_info *info;
1156
1157 spin_lock_irqsave(&device_domain_lock, flags);
1158 list_for_each_entry(info, &domain->devices, link) {
1159 if (!info->dev || !pci_ats_enabled(info->dev))
1160 continue;
1161
1162 sid = info->bus << 8 | info->devfn;
1163 qdep = pci_ats_queue_depth(info->dev);
1164 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1165 }
1166 spin_unlock_irqrestore(&device_domain_lock, flags);
1167 }
1168
iommu_flush_iotlb_psi(struct intel_iommu * iommu,u16 did,unsigned long pfn,unsigned int pages,int map)1169 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1170 unsigned long pfn, unsigned int pages, int map)
1171 {
1172 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1173 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1174
1175 BUG_ON(pages == 0);
1176
1177 /*
1178 * Fallback to domain selective flush if no PSI support or the size is
1179 * too big.
1180 * PSI requires page size to be 2 ^ x, and the base address is naturally
1181 * aligned to the size
1182 */
1183 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1184 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1185 DMA_TLB_DSI_FLUSH);
1186 else
1187 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1188 DMA_TLB_PSI_FLUSH);
1189
1190 /*
1191 * In caching mode, changes of pages from non-present to present require
1192 * flush. However, device IOTLB doesn't need to be flushed in this case.
1193 */
1194 if (!cap_caching_mode(iommu->cap) || !map)
1195 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1196 }
1197
iommu_disable_protect_mem_regions(struct intel_iommu * iommu)1198 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1199 {
1200 u32 pmen;
1201 unsigned long flags;
1202
1203 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1204 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1205 pmen &= ~DMA_PMEN_EPM;
1206 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1207
1208 /* wait for the protected region status bit to clear */
1209 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1210 readl, !(pmen & DMA_PMEN_PRS), pmen);
1211
1212 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1213 }
1214
iommu_enable_translation(struct intel_iommu * iommu)1215 static int iommu_enable_translation(struct intel_iommu *iommu)
1216 {
1217 u32 sts;
1218 unsigned long flags;
1219
1220 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1221 iommu->gcmd |= DMA_GCMD_TE;
1222 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1223
1224 /* Make sure hardware complete it */
1225 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1226 readl, (sts & DMA_GSTS_TES), sts);
1227
1228 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1229 return 0;
1230 }
1231
iommu_disable_translation(struct intel_iommu * iommu)1232 static int iommu_disable_translation(struct intel_iommu *iommu)
1233 {
1234 u32 sts;
1235 unsigned long flag;
1236
1237 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1238 iommu->gcmd &= ~DMA_GCMD_TE;
1239 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1240
1241 /* Make sure hardware complete it */
1242 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1243 readl, (!(sts & DMA_GSTS_TES)), sts);
1244
1245 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1246 return 0;
1247 }
1248
1249
iommu_init_domains(struct intel_iommu * iommu)1250 static int iommu_init_domains(struct intel_iommu *iommu)
1251 {
1252 unsigned long ndomains;
1253 unsigned long nlongs;
1254
1255 ndomains = cap_ndoms(iommu->cap);
1256 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1257 ndomains);
1258 nlongs = BITS_TO_LONGS(ndomains);
1259
1260 spin_lock_init(&iommu->lock);
1261
1262 /* TBD: there might be 64K domains,
1263 * consider other allocation for future chip
1264 */
1265 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1266 if (!iommu->domain_ids) {
1267 printk(KERN_ERR "Allocating domain id array failed\n");
1268 return -ENOMEM;
1269 }
1270 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1271 GFP_KERNEL);
1272 if (!iommu->domains) {
1273 printk(KERN_ERR "Allocating domain array failed\n");
1274 return -ENOMEM;
1275 }
1276
1277 /*
1278 * if Caching mode is set, then invalid translations are tagged
1279 * with domainid 0. Hence we need to pre-allocate it.
1280 */
1281 if (cap_caching_mode(iommu->cap))
1282 set_bit(0, iommu->domain_ids);
1283 return 0;
1284 }
1285
1286
1287 static void domain_exit(struct dmar_domain *domain);
1288 static void vm_domain_exit(struct dmar_domain *domain);
1289
free_dmar_iommu(struct intel_iommu * iommu)1290 void free_dmar_iommu(struct intel_iommu *iommu)
1291 {
1292 struct dmar_domain *domain;
1293 int i;
1294 unsigned long flags;
1295
1296 if ((iommu->domains) && (iommu->domain_ids)) {
1297 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1298 domain = iommu->domains[i];
1299 clear_bit(i, iommu->domain_ids);
1300
1301 spin_lock_irqsave(&domain->iommu_lock, flags);
1302 if (--domain->iommu_count == 0) {
1303 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1304 vm_domain_exit(domain);
1305 else
1306 domain_exit(domain);
1307 }
1308 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1309 }
1310 }
1311
1312 if (iommu->gcmd & DMA_GCMD_TE)
1313 iommu_disable_translation(iommu);
1314
1315 if (iommu->irq) {
1316 irq_set_handler_data(iommu->irq, NULL);
1317 /* This will mask the irq */
1318 free_irq(iommu->irq, iommu);
1319 destroy_irq(iommu->irq);
1320 }
1321
1322 kfree(iommu->domains);
1323 kfree(iommu->domain_ids);
1324
1325 g_iommus[iommu->seq_id] = NULL;
1326
1327 /* if all iommus are freed, free g_iommus */
1328 for (i = 0; i < g_num_of_iommus; i++) {
1329 if (g_iommus[i])
1330 break;
1331 }
1332
1333 if (i == g_num_of_iommus)
1334 kfree(g_iommus);
1335
1336 /* free context mapping */
1337 free_context_table(iommu);
1338 }
1339
alloc_domain(void)1340 static struct dmar_domain *alloc_domain(void)
1341 {
1342 struct dmar_domain *domain;
1343
1344 domain = alloc_domain_mem();
1345 if (!domain)
1346 return NULL;
1347
1348 domain->nid = -1;
1349 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1350 domain->flags = 0;
1351
1352 return domain;
1353 }
1354
iommu_attach_domain(struct dmar_domain * domain,struct intel_iommu * iommu)1355 static int iommu_attach_domain(struct dmar_domain *domain,
1356 struct intel_iommu *iommu)
1357 {
1358 int num;
1359 unsigned long ndomains;
1360 unsigned long flags;
1361
1362 ndomains = cap_ndoms(iommu->cap);
1363
1364 spin_lock_irqsave(&iommu->lock, flags);
1365
1366 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1367 if (num >= ndomains) {
1368 spin_unlock_irqrestore(&iommu->lock, flags);
1369 printk(KERN_ERR "IOMMU: no free domain ids\n");
1370 return -ENOMEM;
1371 }
1372
1373 domain->id = num;
1374 set_bit(num, iommu->domain_ids);
1375 set_bit(iommu->seq_id, domain->iommu_bmp);
1376 iommu->domains[num] = domain;
1377 spin_unlock_irqrestore(&iommu->lock, flags);
1378
1379 return 0;
1380 }
1381
iommu_detach_domain(struct dmar_domain * domain,struct intel_iommu * iommu)1382 static void iommu_detach_domain(struct dmar_domain *domain,
1383 struct intel_iommu *iommu)
1384 {
1385 unsigned long flags;
1386 int num, ndomains;
1387 int found = 0;
1388
1389 spin_lock_irqsave(&iommu->lock, flags);
1390 ndomains = cap_ndoms(iommu->cap);
1391 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1392 if (iommu->domains[num] == domain) {
1393 found = 1;
1394 break;
1395 }
1396 }
1397
1398 if (found) {
1399 clear_bit(num, iommu->domain_ids);
1400 clear_bit(iommu->seq_id, domain->iommu_bmp);
1401 iommu->domains[num] = NULL;
1402 }
1403 spin_unlock_irqrestore(&iommu->lock, flags);
1404 }
1405
1406 static struct iova_domain reserved_iova_list;
1407 static struct lock_class_key reserved_rbtree_key;
1408
dmar_init_reserved_ranges(void)1409 static int dmar_init_reserved_ranges(void)
1410 {
1411 struct pci_dev *pdev = NULL;
1412 struct iova *iova;
1413 int i;
1414
1415 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1416
1417 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1418 &reserved_rbtree_key);
1419
1420 /* IOAPIC ranges shouldn't be accessed by DMA */
1421 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1422 IOVA_PFN(IOAPIC_RANGE_END));
1423 if (!iova) {
1424 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1425 return -ENODEV;
1426 }
1427
1428 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1429 for_each_pci_dev(pdev) {
1430 struct resource *r;
1431
1432 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1433 r = &pdev->resource[i];
1434 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1435 continue;
1436 iova = reserve_iova(&reserved_iova_list,
1437 IOVA_PFN(r->start),
1438 IOVA_PFN(r->end));
1439 if (!iova) {
1440 printk(KERN_ERR "Reserve iova failed\n");
1441 return -ENODEV;
1442 }
1443 }
1444 }
1445 return 0;
1446 }
1447
domain_reserve_special_ranges(struct dmar_domain * domain)1448 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1449 {
1450 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1451 }
1452
guestwidth_to_adjustwidth(int gaw)1453 static inline int guestwidth_to_adjustwidth(int gaw)
1454 {
1455 int agaw;
1456 int r = (gaw - 12) % 9;
1457
1458 if (r == 0)
1459 agaw = gaw;
1460 else
1461 agaw = gaw + 9 - r;
1462 if (agaw > 64)
1463 agaw = 64;
1464 return agaw;
1465 }
1466
domain_init(struct dmar_domain * domain,int guest_width)1467 static int domain_init(struct dmar_domain *domain, int guest_width)
1468 {
1469 struct intel_iommu *iommu;
1470 int adjust_width, agaw;
1471 unsigned long sagaw;
1472
1473 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1474 spin_lock_init(&domain->iommu_lock);
1475
1476 domain_reserve_special_ranges(domain);
1477
1478 /* calculate AGAW */
1479 iommu = domain_get_iommu(domain);
1480 if (guest_width > cap_mgaw(iommu->cap))
1481 guest_width = cap_mgaw(iommu->cap);
1482 domain->gaw = guest_width;
1483 adjust_width = guestwidth_to_adjustwidth(guest_width);
1484 agaw = width_to_agaw(adjust_width);
1485 sagaw = cap_sagaw(iommu->cap);
1486 if (!test_bit(agaw, &sagaw)) {
1487 /* hardware doesn't support it, choose a bigger one */
1488 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1489 agaw = find_next_bit(&sagaw, 5, agaw);
1490 if (agaw >= 5)
1491 return -ENODEV;
1492 }
1493 domain->agaw = agaw;
1494 INIT_LIST_HEAD(&domain->devices);
1495
1496 if (ecap_coherent(iommu->ecap))
1497 domain->iommu_coherency = 1;
1498 else
1499 domain->iommu_coherency = 0;
1500
1501 if (ecap_sc_support(iommu->ecap))
1502 domain->iommu_snooping = 1;
1503 else
1504 domain->iommu_snooping = 0;
1505
1506 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1507 domain->iommu_count = 1;
1508 domain->nid = iommu->node;
1509
1510 /* always allocate the top pgd */
1511 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1512 if (!domain->pgd)
1513 return -ENOMEM;
1514 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1515 return 0;
1516 }
1517
domain_exit(struct dmar_domain * domain)1518 static void domain_exit(struct dmar_domain *domain)
1519 {
1520 struct dmar_drhd_unit *drhd;
1521 struct intel_iommu *iommu;
1522
1523 /* Domain 0 is reserved, so dont process it */
1524 if (!domain)
1525 return;
1526
1527 /* Flush any lazy unmaps that may reference this domain */
1528 if (!intel_iommu_strict)
1529 flush_unmaps_timeout(0);
1530
1531 domain_remove_dev_info(domain);
1532 /* destroy iovas */
1533 put_iova_domain(&domain->iovad);
1534
1535 /* clear ptes */
1536 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1537
1538 /* free page tables */
1539 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1540
1541 for_each_active_iommu(iommu, drhd)
1542 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1543 iommu_detach_domain(domain, iommu);
1544
1545 free_domain_mem(domain);
1546 }
1547
domain_context_mapping_one(struct dmar_domain * domain,int segment,u8 bus,u8 devfn,int translation)1548 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1549 u8 bus, u8 devfn, int translation)
1550 {
1551 struct context_entry *context;
1552 unsigned long flags;
1553 struct intel_iommu *iommu;
1554 struct dma_pte *pgd;
1555 unsigned long num;
1556 unsigned long ndomains;
1557 int id;
1558 int agaw;
1559 struct device_domain_info *info = NULL;
1560
1561 pr_debug("Set context mapping for %02x:%02x.%d\n",
1562 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1563
1564 BUG_ON(!domain->pgd);
1565 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1566 translation != CONTEXT_TT_MULTI_LEVEL);
1567
1568 iommu = device_to_iommu(segment, bus, devfn);
1569 if (!iommu)
1570 return -ENODEV;
1571
1572 context = device_to_context_entry(iommu, bus, devfn);
1573 if (!context)
1574 return -ENOMEM;
1575 spin_lock_irqsave(&iommu->lock, flags);
1576 if (context_present(context)) {
1577 spin_unlock_irqrestore(&iommu->lock, flags);
1578 return 0;
1579 }
1580
1581 id = domain->id;
1582 pgd = domain->pgd;
1583
1584 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1585 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1586 int found = 0;
1587
1588 /* find an available domain id for this device in iommu */
1589 ndomains = cap_ndoms(iommu->cap);
1590 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1591 if (iommu->domains[num] == domain) {
1592 id = num;
1593 found = 1;
1594 break;
1595 }
1596 }
1597
1598 if (found == 0) {
1599 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1600 if (num >= ndomains) {
1601 spin_unlock_irqrestore(&iommu->lock, flags);
1602 printk(KERN_ERR "IOMMU: no free domain ids\n");
1603 return -EFAULT;
1604 }
1605
1606 set_bit(num, iommu->domain_ids);
1607 iommu->domains[num] = domain;
1608 id = num;
1609 }
1610
1611 /* Skip top levels of page tables for
1612 * iommu which has less agaw than default.
1613 * Unnecessary for PT mode.
1614 */
1615 if (translation != CONTEXT_TT_PASS_THROUGH) {
1616 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1617 pgd = phys_to_virt(dma_pte_addr(pgd));
1618 if (!dma_pte_present(pgd)) {
1619 spin_unlock_irqrestore(&iommu->lock, flags);
1620 return -ENOMEM;
1621 }
1622 }
1623 }
1624 }
1625
1626 context_set_domain_id(context, id);
1627
1628 if (translation != CONTEXT_TT_PASS_THROUGH) {
1629 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1630 translation = info ? CONTEXT_TT_DEV_IOTLB :
1631 CONTEXT_TT_MULTI_LEVEL;
1632 }
1633 /*
1634 * In pass through mode, AW must be programmed to indicate the largest
1635 * AGAW value supported by hardware. And ASR is ignored by hardware.
1636 */
1637 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1638 context_set_address_width(context, iommu->msagaw);
1639 else {
1640 context_set_address_root(context, virt_to_phys(pgd));
1641 context_set_address_width(context, iommu->agaw);
1642 }
1643
1644 context_set_translation_type(context, translation);
1645 context_set_fault_enable(context);
1646 context_set_present(context);
1647 domain_flush_cache(domain, context, sizeof(*context));
1648
1649 /*
1650 * It's a non-present to present mapping. If hardware doesn't cache
1651 * non-present entry we only need to flush the write-buffer. If the
1652 * _does_ cache non-present entries, then it does so in the special
1653 * domain #0, which we have to flush:
1654 */
1655 if (cap_caching_mode(iommu->cap)) {
1656 iommu->flush.flush_context(iommu, 0,
1657 (((u16)bus) << 8) | devfn,
1658 DMA_CCMD_MASK_NOBIT,
1659 DMA_CCMD_DEVICE_INVL);
1660 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1661 } else {
1662 iommu_flush_write_buffer(iommu);
1663 }
1664 iommu_enable_dev_iotlb(info);
1665 spin_unlock_irqrestore(&iommu->lock, flags);
1666
1667 spin_lock_irqsave(&domain->iommu_lock, flags);
1668 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1669 domain->iommu_count++;
1670 if (domain->iommu_count == 1)
1671 domain->nid = iommu->node;
1672 domain_update_iommu_cap(domain);
1673 }
1674 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1675 return 0;
1676 }
1677
1678 static int
domain_context_mapping(struct dmar_domain * domain,struct pci_dev * pdev,int translation)1679 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1680 int translation)
1681 {
1682 int ret;
1683 struct pci_dev *tmp, *parent;
1684
1685 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1686 pdev->bus->number, pdev->devfn,
1687 translation);
1688 if (ret)
1689 return ret;
1690
1691 /* dependent device mapping */
1692 tmp = pci_find_upstream_pcie_bridge(pdev);
1693 if (!tmp)
1694 return 0;
1695 /* Secondary interface's bus number and devfn 0 */
1696 parent = pdev->bus->self;
1697 while (parent != tmp) {
1698 ret = domain_context_mapping_one(domain,
1699 pci_domain_nr(parent->bus),
1700 parent->bus->number,
1701 parent->devfn, translation);
1702 if (ret)
1703 return ret;
1704 parent = parent->bus->self;
1705 }
1706 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1707 return domain_context_mapping_one(domain,
1708 pci_domain_nr(tmp->subordinate),
1709 tmp->subordinate->number, 0,
1710 translation);
1711 else /* this is a legacy PCI bridge */
1712 return domain_context_mapping_one(domain,
1713 pci_domain_nr(tmp->bus),
1714 tmp->bus->number,
1715 tmp->devfn,
1716 translation);
1717 }
1718
domain_context_mapped(struct pci_dev * pdev)1719 static int domain_context_mapped(struct pci_dev *pdev)
1720 {
1721 int ret;
1722 struct pci_dev *tmp, *parent;
1723 struct intel_iommu *iommu;
1724
1725 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1726 pdev->devfn);
1727 if (!iommu)
1728 return -ENODEV;
1729
1730 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1731 if (!ret)
1732 return ret;
1733 /* dependent device mapping */
1734 tmp = pci_find_upstream_pcie_bridge(pdev);
1735 if (!tmp)
1736 return ret;
1737 /* Secondary interface's bus number and devfn 0 */
1738 parent = pdev->bus->self;
1739 while (parent != tmp) {
1740 ret = device_context_mapped(iommu, parent->bus->number,
1741 parent->devfn);
1742 if (!ret)
1743 return ret;
1744 parent = parent->bus->self;
1745 }
1746 if (pci_is_pcie(tmp))
1747 return device_context_mapped(iommu, tmp->subordinate->number,
1748 0);
1749 else
1750 return device_context_mapped(iommu, tmp->bus->number,
1751 tmp->devfn);
1752 }
1753
1754 /* Returns a number of VTD pages, but aligned to MM page size */
aligned_nrpages(unsigned long host_addr,size_t size)1755 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1756 size_t size)
1757 {
1758 host_addr &= ~PAGE_MASK;
1759 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1760 }
1761
1762 /* Return largest possible superpage level for a given mapping */
hardware_largepage_caps(struct dmar_domain * domain,unsigned long iov_pfn,unsigned long phy_pfn,unsigned long pages)1763 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1764 unsigned long iov_pfn,
1765 unsigned long phy_pfn,
1766 unsigned long pages)
1767 {
1768 int support, level = 1;
1769 unsigned long pfnmerge;
1770
1771 support = domain->iommu_superpage;
1772
1773 /* To use a large page, the virtual *and* physical addresses
1774 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1775 of them will mean we have to use smaller pages. So just
1776 merge them and check both at once. */
1777 pfnmerge = iov_pfn | phy_pfn;
1778
1779 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1780 pages >>= VTD_STRIDE_SHIFT;
1781 if (!pages)
1782 break;
1783 pfnmerge >>= VTD_STRIDE_SHIFT;
1784 level++;
1785 support--;
1786 }
1787 return level;
1788 }
1789
__domain_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long phys_pfn,unsigned long nr_pages,int prot)1790 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1791 struct scatterlist *sg, unsigned long phys_pfn,
1792 unsigned long nr_pages, int prot)
1793 {
1794 struct dma_pte *first_pte = NULL, *pte = NULL;
1795 phys_addr_t uninitialized_var(pteval);
1796 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1797 unsigned long sg_res;
1798 unsigned int largepage_lvl = 0;
1799 unsigned long lvl_pages = 0;
1800
1801 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1802
1803 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1804 return -EINVAL;
1805
1806 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1807
1808 if (sg)
1809 sg_res = 0;
1810 else {
1811 sg_res = nr_pages + 1;
1812 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1813 }
1814
1815 while (nr_pages > 0) {
1816 uint64_t tmp;
1817
1818 if (!sg_res) {
1819 sg_res = aligned_nrpages(sg->offset, sg->length);
1820 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1821 sg->dma_length = sg->length;
1822 pteval = page_to_phys(sg_page(sg)) | prot;
1823 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1824 }
1825
1826 if (!pte) {
1827 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1828
1829 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1830 if (!pte)
1831 return -ENOMEM;
1832 /* It is large page*/
1833 if (largepage_lvl > 1) {
1834 pteval |= DMA_PTE_LARGE_PAGE;
1835 /* Ensure that old small page tables are removed to make room
1836 for superpage, if they exist. */
1837 dma_pte_clear_range(domain, iov_pfn,
1838 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1839 dma_pte_free_pagetable(domain, iov_pfn,
1840 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1841 } else {
1842 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1843 }
1844
1845 }
1846 /* We don't need lock here, nobody else
1847 * touches the iova range
1848 */
1849 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1850 if (tmp) {
1851 static int dumps = 5;
1852 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1853 iov_pfn, tmp, (unsigned long long)pteval);
1854 if (dumps) {
1855 dumps--;
1856 debug_dma_dump_mappings(NULL);
1857 }
1858 WARN_ON(1);
1859 }
1860
1861 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1862
1863 BUG_ON(nr_pages < lvl_pages);
1864 BUG_ON(sg_res < lvl_pages);
1865
1866 nr_pages -= lvl_pages;
1867 iov_pfn += lvl_pages;
1868 phys_pfn += lvl_pages;
1869 pteval += lvl_pages * VTD_PAGE_SIZE;
1870 sg_res -= lvl_pages;
1871
1872 /* If the next PTE would be the first in a new page, then we
1873 need to flush the cache on the entries we've just written.
1874 And then we'll need to recalculate 'pte', so clear it and
1875 let it get set again in the if (!pte) block above.
1876
1877 If we're done (!nr_pages) we need to flush the cache too.
1878
1879 Also if we've been setting superpages, we may need to
1880 recalculate 'pte' and switch back to smaller pages for the
1881 end of the mapping, if the trailing size is not enough to
1882 use another superpage (i.e. sg_res < lvl_pages). */
1883 pte++;
1884 if (!nr_pages || first_pte_in_page(pte) ||
1885 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1886 domain_flush_cache(domain, first_pte,
1887 (void *)pte - (void *)first_pte);
1888 pte = NULL;
1889 }
1890
1891 if (!sg_res && nr_pages)
1892 sg = sg_next(sg);
1893 }
1894 return 0;
1895 }
1896
domain_sg_mapping(struct dmar_domain * domain,unsigned long iov_pfn,struct scatterlist * sg,unsigned long nr_pages,int prot)1897 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1898 struct scatterlist *sg, unsigned long nr_pages,
1899 int prot)
1900 {
1901 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1902 }
1903
domain_pfn_mapping(struct dmar_domain * domain,unsigned long iov_pfn,unsigned long phys_pfn,unsigned long nr_pages,int prot)1904 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1905 unsigned long phys_pfn, unsigned long nr_pages,
1906 int prot)
1907 {
1908 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1909 }
1910
iommu_detach_dev(struct intel_iommu * iommu,u8 bus,u8 devfn)1911 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1912 {
1913 if (!iommu)
1914 return;
1915
1916 clear_context_table(iommu, bus, devfn);
1917 iommu->flush.flush_context(iommu, 0, 0, 0,
1918 DMA_CCMD_GLOBAL_INVL);
1919 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1920 }
1921
unlink_domain_info(struct device_domain_info * info)1922 static inline void unlink_domain_info(struct device_domain_info *info)
1923 {
1924 assert_spin_locked(&device_domain_lock);
1925 list_del(&info->link);
1926 list_del(&info->global);
1927 if (info->dev)
1928 info->dev->dev.archdata.iommu = NULL;
1929 }
1930
domain_remove_dev_info(struct dmar_domain * domain)1931 static void domain_remove_dev_info(struct dmar_domain *domain)
1932 {
1933 struct device_domain_info *info;
1934 unsigned long flags;
1935 struct intel_iommu *iommu;
1936
1937 spin_lock_irqsave(&device_domain_lock, flags);
1938 while (!list_empty(&domain->devices)) {
1939 info = list_entry(domain->devices.next,
1940 struct device_domain_info, link);
1941 unlink_domain_info(info);
1942 spin_unlock_irqrestore(&device_domain_lock, flags);
1943
1944 iommu_disable_dev_iotlb(info);
1945 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1946 iommu_detach_dev(iommu, info->bus, info->devfn);
1947 free_devinfo_mem(info);
1948
1949 spin_lock_irqsave(&device_domain_lock, flags);
1950 }
1951 spin_unlock_irqrestore(&device_domain_lock, flags);
1952 }
1953
1954 /*
1955 * find_domain
1956 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1957 */
1958 static struct dmar_domain *
find_domain(struct pci_dev * pdev)1959 find_domain(struct pci_dev *pdev)
1960 {
1961 struct device_domain_info *info;
1962
1963 /* No lock here, assumes no domain exit in normal case */
1964 info = pdev->dev.archdata.iommu;
1965 if (info)
1966 return info->domain;
1967 return NULL;
1968 }
1969
1970 /* domain is initialized */
get_domain_for_dev(struct pci_dev * pdev,int gaw)1971 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1972 {
1973 struct dmar_domain *domain, *found = NULL;
1974 struct intel_iommu *iommu;
1975 struct dmar_drhd_unit *drhd;
1976 struct device_domain_info *info, *tmp;
1977 struct pci_dev *dev_tmp;
1978 unsigned long flags;
1979 int bus = 0, devfn = 0;
1980 int segment;
1981 int ret;
1982
1983 domain = find_domain(pdev);
1984 if (domain)
1985 return domain;
1986
1987 segment = pci_domain_nr(pdev->bus);
1988
1989 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1990 if (dev_tmp) {
1991 if (pci_is_pcie(dev_tmp)) {
1992 bus = dev_tmp->subordinate->number;
1993 devfn = 0;
1994 } else {
1995 bus = dev_tmp->bus->number;
1996 devfn = dev_tmp->devfn;
1997 }
1998 spin_lock_irqsave(&device_domain_lock, flags);
1999 list_for_each_entry(info, &device_domain_list, global) {
2000 if (info->segment == segment &&
2001 info->bus == bus && info->devfn == devfn) {
2002 found = info->domain;
2003 break;
2004 }
2005 }
2006 spin_unlock_irqrestore(&device_domain_lock, flags);
2007 /* pcie-pci bridge already has a domain, uses it */
2008 if (found) {
2009 domain = found;
2010 goto found_domain;
2011 }
2012 }
2013
2014 domain = alloc_domain();
2015 if (!domain)
2016 goto error;
2017
2018 /* Allocate new domain for the device */
2019 drhd = dmar_find_matched_drhd_unit(pdev);
2020 if (!drhd) {
2021 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2022 pci_name(pdev));
2023 free_domain_mem(domain);
2024 return NULL;
2025 }
2026 iommu = drhd->iommu;
2027
2028 ret = iommu_attach_domain(domain, iommu);
2029 if (ret) {
2030 free_domain_mem(domain);
2031 goto error;
2032 }
2033
2034 if (domain_init(domain, gaw)) {
2035 domain_exit(domain);
2036 goto error;
2037 }
2038
2039 /* register pcie-to-pci device */
2040 if (dev_tmp) {
2041 info = alloc_devinfo_mem();
2042 if (!info) {
2043 domain_exit(domain);
2044 goto error;
2045 }
2046 info->segment = segment;
2047 info->bus = bus;
2048 info->devfn = devfn;
2049 info->dev = NULL;
2050 info->domain = domain;
2051 /* This domain is shared by devices under p2p bridge */
2052 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2053
2054 /* pcie-to-pci bridge already has a domain, uses it */
2055 found = NULL;
2056 spin_lock_irqsave(&device_domain_lock, flags);
2057 list_for_each_entry(tmp, &device_domain_list, global) {
2058 if (tmp->segment == segment &&
2059 tmp->bus == bus && tmp->devfn == devfn) {
2060 found = tmp->domain;
2061 break;
2062 }
2063 }
2064 if (found) {
2065 spin_unlock_irqrestore(&device_domain_lock, flags);
2066 free_devinfo_mem(info);
2067 domain_exit(domain);
2068 domain = found;
2069 } else {
2070 list_add(&info->link, &domain->devices);
2071 list_add(&info->global, &device_domain_list);
2072 spin_unlock_irqrestore(&device_domain_lock, flags);
2073 }
2074 }
2075
2076 found_domain:
2077 info = alloc_devinfo_mem();
2078 if (!info)
2079 goto error;
2080 info->segment = segment;
2081 info->bus = pdev->bus->number;
2082 info->devfn = pdev->devfn;
2083 info->dev = pdev;
2084 info->domain = domain;
2085 spin_lock_irqsave(&device_domain_lock, flags);
2086 /* somebody is fast */
2087 found = find_domain(pdev);
2088 if (found != NULL) {
2089 spin_unlock_irqrestore(&device_domain_lock, flags);
2090 if (found != domain) {
2091 domain_exit(domain);
2092 domain = found;
2093 }
2094 free_devinfo_mem(info);
2095 return domain;
2096 }
2097 list_add(&info->link, &domain->devices);
2098 list_add(&info->global, &device_domain_list);
2099 pdev->dev.archdata.iommu = info;
2100 spin_unlock_irqrestore(&device_domain_lock, flags);
2101 return domain;
2102 error:
2103 /* recheck it here, maybe others set it */
2104 return find_domain(pdev);
2105 }
2106
2107 static int iommu_identity_mapping;
2108 #define IDENTMAP_ALL 1
2109 #define IDENTMAP_GFX 2
2110 #define IDENTMAP_AZALIA 4
2111
iommu_domain_identity_map(struct dmar_domain * domain,unsigned long long start,unsigned long long end)2112 static int iommu_domain_identity_map(struct dmar_domain *domain,
2113 unsigned long long start,
2114 unsigned long long end)
2115 {
2116 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2117 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2118
2119 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2120 dma_to_mm_pfn(last_vpfn))) {
2121 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2122 return -ENOMEM;
2123 }
2124
2125 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2126 start, end, domain->id);
2127 /*
2128 * RMRR range might have overlap with physical memory range,
2129 * clear it first
2130 */
2131 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2132
2133 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2134 last_vpfn - first_vpfn + 1,
2135 DMA_PTE_READ|DMA_PTE_WRITE);
2136 }
2137
iommu_prepare_identity_map(struct pci_dev * pdev,unsigned long long start,unsigned long long end)2138 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2139 unsigned long long start,
2140 unsigned long long end)
2141 {
2142 struct dmar_domain *domain;
2143 int ret;
2144
2145 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2146 if (!domain)
2147 return -ENOMEM;
2148
2149 /* For _hardware_ passthrough, don't bother. But for software
2150 passthrough, we do it anyway -- it may indicate a memory
2151 range which is reserved in E820, so which didn't get set
2152 up to start with in si_domain */
2153 if (domain == si_domain && hw_pass_through) {
2154 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2155 pci_name(pdev), start, end);
2156 return 0;
2157 }
2158
2159 printk(KERN_INFO
2160 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2161 pci_name(pdev), start, end);
2162
2163 if (end < start) {
2164 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2165 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2166 dmi_get_system_info(DMI_BIOS_VENDOR),
2167 dmi_get_system_info(DMI_BIOS_VERSION),
2168 dmi_get_system_info(DMI_PRODUCT_VERSION));
2169 ret = -EIO;
2170 goto error;
2171 }
2172
2173 if (end >> agaw_to_width(domain->agaw)) {
2174 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2175 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2176 agaw_to_width(domain->agaw),
2177 dmi_get_system_info(DMI_BIOS_VENDOR),
2178 dmi_get_system_info(DMI_BIOS_VERSION),
2179 dmi_get_system_info(DMI_PRODUCT_VERSION));
2180 ret = -EIO;
2181 goto error;
2182 }
2183
2184 ret = iommu_domain_identity_map(domain, start, end);
2185 if (ret)
2186 goto error;
2187
2188 /* context entry init */
2189 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2190 if (ret)
2191 goto error;
2192
2193 return 0;
2194
2195 error:
2196 domain_exit(domain);
2197 return ret;
2198 }
2199
iommu_prepare_rmrr_dev(struct dmar_rmrr_unit * rmrr,struct pci_dev * pdev)2200 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2201 struct pci_dev *pdev)
2202 {
2203 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2204 return 0;
2205 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2206 rmrr->end_address);
2207 }
2208
2209 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
iommu_prepare_isa(void)2210 static inline void iommu_prepare_isa(void)
2211 {
2212 struct pci_dev *pdev;
2213 int ret;
2214
2215 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2216 if (!pdev)
2217 return;
2218
2219 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2220 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2221
2222 if (ret)
2223 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2224 "floppy might not work\n");
2225
2226 }
2227 #else
iommu_prepare_isa(void)2228 static inline void iommu_prepare_isa(void)
2229 {
2230 return;
2231 }
2232 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2233
2234 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2235
si_domain_init(int hw)2236 static int __init si_domain_init(int hw)
2237 {
2238 struct dmar_drhd_unit *drhd;
2239 struct intel_iommu *iommu;
2240 int nid, ret = 0;
2241
2242 si_domain = alloc_domain();
2243 if (!si_domain)
2244 return -EFAULT;
2245
2246 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2247
2248 for_each_active_iommu(iommu, drhd) {
2249 ret = iommu_attach_domain(si_domain, iommu);
2250 if (ret) {
2251 domain_exit(si_domain);
2252 return -EFAULT;
2253 }
2254 }
2255
2256 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2257 domain_exit(si_domain);
2258 return -EFAULT;
2259 }
2260
2261 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2262
2263 if (hw)
2264 return 0;
2265
2266 for_each_online_node(nid) {
2267 unsigned long start_pfn, end_pfn;
2268 int i;
2269
2270 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2271 ret = iommu_domain_identity_map(si_domain,
2272 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2273 if (ret)
2274 return ret;
2275 }
2276 }
2277
2278 return 0;
2279 }
2280
2281 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2282 struct pci_dev *pdev);
identity_mapping(struct pci_dev * pdev)2283 static int identity_mapping(struct pci_dev *pdev)
2284 {
2285 struct device_domain_info *info;
2286
2287 if (likely(!iommu_identity_mapping))
2288 return 0;
2289
2290 info = pdev->dev.archdata.iommu;
2291 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2292 return (info->domain == si_domain);
2293
2294 return 0;
2295 }
2296
domain_add_dev_info(struct dmar_domain * domain,struct pci_dev * pdev,int translation)2297 static int domain_add_dev_info(struct dmar_domain *domain,
2298 struct pci_dev *pdev,
2299 int translation)
2300 {
2301 struct device_domain_info *info;
2302 unsigned long flags;
2303 int ret;
2304
2305 info = alloc_devinfo_mem();
2306 if (!info)
2307 return -ENOMEM;
2308
2309 info->segment = pci_domain_nr(pdev->bus);
2310 info->bus = pdev->bus->number;
2311 info->devfn = pdev->devfn;
2312 info->dev = pdev;
2313 info->domain = domain;
2314
2315 spin_lock_irqsave(&device_domain_lock, flags);
2316 list_add(&info->link, &domain->devices);
2317 list_add(&info->global, &device_domain_list);
2318 pdev->dev.archdata.iommu = info;
2319 spin_unlock_irqrestore(&device_domain_lock, flags);
2320
2321 ret = domain_context_mapping(domain, pdev, translation);
2322 if (ret) {
2323 spin_lock_irqsave(&device_domain_lock, flags);
2324 unlink_domain_info(info);
2325 spin_unlock_irqrestore(&device_domain_lock, flags);
2326 free_devinfo_mem(info);
2327 return ret;
2328 }
2329
2330 return 0;
2331 }
2332
device_has_rmrr(struct pci_dev * dev)2333 static bool device_has_rmrr(struct pci_dev *dev)
2334 {
2335 struct dmar_rmrr_unit *rmrr;
2336 int i;
2337
2338 for_each_rmrr_units(rmrr) {
2339 for (i = 0; i < rmrr->devices_cnt; i++) {
2340 /*
2341 * Return TRUE if this RMRR contains the device that
2342 * is passed in.
2343 */
2344 if (rmrr->devices[i] == dev)
2345 return true;
2346 }
2347 }
2348 return false;
2349 }
2350
iommu_should_identity_map(struct pci_dev * pdev,int startup)2351 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2352 {
2353
2354 /*
2355 * We want to prevent any device associated with an RMRR from
2356 * getting placed into the SI Domain. This is done because
2357 * problems exist when devices are moved in and out of domains
2358 * and their respective RMRR info is lost. We exempt USB devices
2359 * from this process due to their usage of RMRRs that are known
2360 * to not be needed after BIOS hand-off to OS.
2361 */
2362 if (device_has_rmrr(pdev) &&
2363 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2364 return 0;
2365
2366 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2367 return 1;
2368
2369 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2370 return 1;
2371
2372 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2373 return 0;
2374
2375 /*
2376 * We want to start off with all devices in the 1:1 domain, and
2377 * take them out later if we find they can't access all of memory.
2378 *
2379 * However, we can't do this for PCI devices behind bridges,
2380 * because all PCI devices behind the same bridge will end up
2381 * with the same source-id on their transactions.
2382 *
2383 * Practically speaking, we can't change things around for these
2384 * devices at run-time, because we can't be sure there'll be no
2385 * DMA transactions in flight for any of their siblings.
2386 *
2387 * So PCI devices (unless they're on the root bus) as well as
2388 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2389 * the 1:1 domain, just in _case_ one of their siblings turns out
2390 * not to be able to map all of memory.
2391 */
2392 if (!pci_is_pcie(pdev)) {
2393 if (!pci_is_root_bus(pdev->bus))
2394 return 0;
2395 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2396 return 0;
2397 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2398 return 0;
2399
2400 /*
2401 * At boot time, we don't yet know if devices will be 64-bit capable.
2402 * Assume that they will -- if they turn out not to be, then we can
2403 * take them out of the 1:1 domain later.
2404 */
2405 if (!startup) {
2406 /*
2407 * If the device's dma_mask is less than the system's memory
2408 * size then this is not a candidate for identity mapping.
2409 */
2410 u64 dma_mask = pdev->dma_mask;
2411
2412 if (pdev->dev.coherent_dma_mask &&
2413 pdev->dev.coherent_dma_mask < dma_mask)
2414 dma_mask = pdev->dev.coherent_dma_mask;
2415
2416 return dma_mask >= dma_get_required_mask(&pdev->dev);
2417 }
2418
2419 return 1;
2420 }
2421
iommu_prepare_static_identity_mapping(int hw)2422 static int __init iommu_prepare_static_identity_mapping(int hw)
2423 {
2424 struct pci_dev *pdev = NULL;
2425 int ret;
2426
2427 ret = si_domain_init(hw);
2428 if (ret)
2429 return -EFAULT;
2430
2431 for_each_pci_dev(pdev) {
2432 if (iommu_should_identity_map(pdev, 1)) {
2433 ret = domain_add_dev_info(si_domain, pdev,
2434 hw ? CONTEXT_TT_PASS_THROUGH :
2435 CONTEXT_TT_MULTI_LEVEL);
2436 if (ret) {
2437 /* device not associated with an iommu */
2438 if (ret == -ENODEV)
2439 continue;
2440 return ret;
2441 }
2442 pr_info("IOMMU: %s identity mapping for device %s\n",
2443 hw ? "hardware" : "software", pci_name(pdev));
2444 }
2445 }
2446
2447 return 0;
2448 }
2449
init_dmars(void)2450 static int __init init_dmars(void)
2451 {
2452 struct dmar_drhd_unit *drhd;
2453 struct dmar_rmrr_unit *rmrr;
2454 struct pci_dev *pdev;
2455 struct intel_iommu *iommu;
2456 int i, ret;
2457
2458 /*
2459 * for each drhd
2460 * allocate root
2461 * initialize and program root entry to not present
2462 * endfor
2463 */
2464 for_each_drhd_unit(drhd) {
2465 /*
2466 * lock not needed as this is only incremented in the single
2467 * threaded kernel __init code path all other access are read
2468 * only
2469 */
2470 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2471 g_num_of_iommus++;
2472 continue;
2473 }
2474 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2475 IOMMU_UNITS_SUPPORTED);
2476 }
2477
2478 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2479 GFP_KERNEL);
2480 if (!g_iommus) {
2481 printk(KERN_ERR "Allocating global iommu array failed\n");
2482 ret = -ENOMEM;
2483 goto error;
2484 }
2485
2486 deferred_flush = kzalloc(g_num_of_iommus *
2487 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2488 if (!deferred_flush) {
2489 ret = -ENOMEM;
2490 goto error;
2491 }
2492
2493 for_each_drhd_unit(drhd) {
2494 if (drhd->ignored)
2495 continue;
2496
2497 iommu = drhd->iommu;
2498 g_iommus[iommu->seq_id] = iommu;
2499
2500 ret = iommu_init_domains(iommu);
2501 if (ret)
2502 goto error;
2503
2504 /*
2505 * TBD:
2506 * we could share the same root & context tables
2507 * among all IOMMU's. Need to Split it later.
2508 */
2509 ret = iommu_alloc_root_entry(iommu);
2510 if (ret) {
2511 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2512 goto error;
2513 }
2514 if (!ecap_pass_through(iommu->ecap))
2515 hw_pass_through = 0;
2516 }
2517
2518 /*
2519 * Start from the sane iommu hardware state.
2520 */
2521 for_each_drhd_unit(drhd) {
2522 if (drhd->ignored)
2523 continue;
2524
2525 iommu = drhd->iommu;
2526
2527 /*
2528 * If the queued invalidation is already initialized by us
2529 * (for example, while enabling interrupt-remapping) then
2530 * we got the things already rolling from a sane state.
2531 */
2532 if (iommu->qi)
2533 continue;
2534
2535 /*
2536 * Clear any previous faults.
2537 */
2538 dmar_fault(-1, iommu);
2539 /*
2540 * Disable queued invalidation if supported and already enabled
2541 * before OS handover.
2542 */
2543 dmar_disable_qi(iommu);
2544 }
2545
2546 for_each_drhd_unit(drhd) {
2547 if (drhd->ignored)
2548 continue;
2549
2550 iommu = drhd->iommu;
2551
2552 if (dmar_enable_qi(iommu)) {
2553 /*
2554 * Queued Invalidate not enabled, use Register Based
2555 * Invalidate
2556 */
2557 iommu->flush.flush_context = __iommu_flush_context;
2558 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2559 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2560 "invalidation\n",
2561 iommu->seq_id,
2562 (unsigned long long)drhd->reg_base_addr);
2563 } else {
2564 iommu->flush.flush_context = qi_flush_context;
2565 iommu->flush.flush_iotlb = qi_flush_iotlb;
2566 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2567 "invalidation\n",
2568 iommu->seq_id,
2569 (unsigned long long)drhd->reg_base_addr);
2570 }
2571 }
2572
2573 if (iommu_pass_through)
2574 iommu_identity_mapping |= IDENTMAP_ALL;
2575
2576 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2577 iommu_identity_mapping |= IDENTMAP_GFX;
2578 #endif
2579
2580 check_tylersburg_isoch();
2581
2582 /*
2583 * If pass through is not set or not enabled, setup context entries for
2584 * identity mappings for rmrr, gfx, and isa and may fall back to static
2585 * identity mapping if iommu_identity_mapping is set.
2586 */
2587 if (iommu_identity_mapping) {
2588 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2589 if (ret) {
2590 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2591 goto error;
2592 }
2593 }
2594 /*
2595 * For each rmrr
2596 * for each dev attached to rmrr
2597 * do
2598 * locate drhd for dev, alloc domain for dev
2599 * allocate free domain
2600 * allocate page table entries for rmrr
2601 * if context not allocated for bus
2602 * allocate and init context
2603 * set present in root table for this bus
2604 * init context with domain, translation etc
2605 * endfor
2606 * endfor
2607 */
2608 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2609 for_each_rmrr_units(rmrr) {
2610 for (i = 0; i < rmrr->devices_cnt; i++) {
2611 pdev = rmrr->devices[i];
2612 /*
2613 * some BIOS lists non-exist devices in DMAR
2614 * table.
2615 */
2616 if (!pdev)
2617 continue;
2618 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2619 if (ret)
2620 printk(KERN_ERR
2621 "IOMMU: mapping reserved region failed\n");
2622 }
2623 }
2624
2625 iommu_prepare_isa();
2626
2627 /*
2628 * for each drhd
2629 * enable fault log
2630 * global invalidate context cache
2631 * global invalidate iotlb
2632 * enable translation
2633 */
2634 for_each_drhd_unit(drhd) {
2635 if (drhd->ignored) {
2636 /*
2637 * we always have to disable PMRs or DMA may fail on
2638 * this device
2639 */
2640 if (force_on)
2641 iommu_disable_protect_mem_regions(drhd->iommu);
2642 continue;
2643 }
2644 iommu = drhd->iommu;
2645
2646 iommu_flush_write_buffer(iommu);
2647
2648 ret = dmar_set_interrupt(iommu);
2649 if (ret)
2650 goto error;
2651
2652 iommu_set_root_entry(iommu);
2653
2654 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2655 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2656
2657 ret = iommu_enable_translation(iommu);
2658 if (ret)
2659 goto error;
2660
2661 iommu_disable_protect_mem_regions(iommu);
2662 }
2663
2664 return 0;
2665 error:
2666 for_each_drhd_unit(drhd) {
2667 if (drhd->ignored)
2668 continue;
2669 iommu = drhd->iommu;
2670 free_iommu(iommu);
2671 }
2672 kfree(g_iommus);
2673 return ret;
2674 }
2675
2676 /* This takes a number of _MM_ pages, not VTD pages */
intel_alloc_iova(struct device * dev,struct dmar_domain * domain,unsigned long nrpages,uint64_t dma_mask)2677 static struct iova *intel_alloc_iova(struct device *dev,
2678 struct dmar_domain *domain,
2679 unsigned long nrpages, uint64_t dma_mask)
2680 {
2681 struct pci_dev *pdev = to_pci_dev(dev);
2682 struct iova *iova = NULL;
2683
2684 /* Restrict dma_mask to the width that the iommu can handle */
2685 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2686
2687 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2688 /*
2689 * First try to allocate an io virtual address in
2690 * DMA_BIT_MASK(32) and if that fails then try allocating
2691 * from higher range
2692 */
2693 iova = alloc_iova(&domain->iovad, nrpages,
2694 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2695 if (iova)
2696 return iova;
2697 }
2698 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2699 if (unlikely(!iova)) {
2700 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2701 nrpages, pci_name(pdev));
2702 return NULL;
2703 }
2704
2705 return iova;
2706 }
2707
__get_valid_domain_for_dev(struct pci_dev * pdev)2708 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2709 {
2710 struct dmar_domain *domain;
2711 int ret;
2712
2713 domain = get_domain_for_dev(pdev,
2714 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2715 if (!domain) {
2716 printk(KERN_ERR
2717 "Allocating domain for %s failed", pci_name(pdev));
2718 return NULL;
2719 }
2720
2721 /* make sure context mapping is ok */
2722 if (unlikely(!domain_context_mapped(pdev))) {
2723 ret = domain_context_mapping(domain, pdev,
2724 CONTEXT_TT_MULTI_LEVEL);
2725 if (ret) {
2726 printk(KERN_ERR
2727 "Domain context map for %s failed",
2728 pci_name(pdev));
2729 return NULL;
2730 }
2731 }
2732
2733 return domain;
2734 }
2735
get_valid_domain_for_dev(struct pci_dev * dev)2736 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2737 {
2738 struct device_domain_info *info;
2739
2740 /* No lock here, assumes no domain exit in normal case */
2741 info = dev->dev.archdata.iommu;
2742 if (likely(info))
2743 return info->domain;
2744
2745 return __get_valid_domain_for_dev(dev);
2746 }
2747
iommu_dummy(struct pci_dev * pdev)2748 static int iommu_dummy(struct pci_dev *pdev)
2749 {
2750 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2751 }
2752
2753 /* Check if the pdev needs to go through non-identity map and unmap process.*/
iommu_no_mapping(struct device * dev)2754 static int iommu_no_mapping(struct device *dev)
2755 {
2756 struct pci_dev *pdev;
2757 int found;
2758
2759 if (unlikely(dev->bus != &pci_bus_type))
2760 return 1;
2761
2762 pdev = to_pci_dev(dev);
2763 if (iommu_dummy(pdev))
2764 return 1;
2765
2766 if (!iommu_identity_mapping)
2767 return 0;
2768
2769 found = identity_mapping(pdev);
2770 if (found) {
2771 if (iommu_should_identity_map(pdev, 0))
2772 return 1;
2773 else {
2774 /*
2775 * 32 bit DMA is removed from si_domain and fall back
2776 * to non-identity mapping.
2777 */
2778 domain_remove_one_dev_info(si_domain, pdev);
2779 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2780 pci_name(pdev));
2781 return 0;
2782 }
2783 } else {
2784 /*
2785 * In case of a detached 64 bit DMA device from vm, the device
2786 * is put into si_domain for identity mapping.
2787 */
2788 if (iommu_should_identity_map(pdev, 0)) {
2789 int ret;
2790 ret = domain_add_dev_info(si_domain, pdev,
2791 hw_pass_through ?
2792 CONTEXT_TT_PASS_THROUGH :
2793 CONTEXT_TT_MULTI_LEVEL);
2794 if (!ret) {
2795 printk(KERN_INFO "64bit %s uses identity mapping\n",
2796 pci_name(pdev));
2797 return 1;
2798 }
2799 }
2800 }
2801
2802 return 0;
2803 }
2804
__intel_map_single(struct device * hwdev,phys_addr_t paddr,size_t size,int dir,u64 dma_mask)2805 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2806 size_t size, int dir, u64 dma_mask)
2807 {
2808 struct pci_dev *pdev = to_pci_dev(hwdev);
2809 struct dmar_domain *domain;
2810 phys_addr_t start_paddr;
2811 struct iova *iova;
2812 int prot = 0;
2813 int ret;
2814 struct intel_iommu *iommu;
2815 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2816
2817 BUG_ON(dir == DMA_NONE);
2818
2819 if (iommu_no_mapping(hwdev))
2820 return paddr;
2821
2822 domain = get_valid_domain_for_dev(pdev);
2823 if (!domain)
2824 return 0;
2825
2826 iommu = domain_get_iommu(domain);
2827 size = aligned_nrpages(paddr, size);
2828
2829 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2830 if (!iova)
2831 goto error;
2832
2833 /*
2834 * Check if DMAR supports zero-length reads on write only
2835 * mappings..
2836 */
2837 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2838 !cap_zlr(iommu->cap))
2839 prot |= DMA_PTE_READ;
2840 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2841 prot |= DMA_PTE_WRITE;
2842 /*
2843 * paddr - (paddr + size) might be partial page, we should map the whole
2844 * page. Note: if two part of one page are separately mapped, we
2845 * might have two guest_addr mapping to the same host paddr, but this
2846 * is not a big problem
2847 */
2848 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2849 mm_to_dma_pfn(paddr_pfn), size, prot);
2850 if (ret)
2851 goto error;
2852
2853 /* it's a non-present to present mapping. Only flush if caching mode */
2854 if (cap_caching_mode(iommu->cap))
2855 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2856 else
2857 iommu_flush_write_buffer(iommu);
2858
2859 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2860 start_paddr += paddr & ~PAGE_MASK;
2861 return start_paddr;
2862
2863 error:
2864 if (iova)
2865 __free_iova(&domain->iovad, iova);
2866 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2867 pci_name(pdev), size, (unsigned long long)paddr, dir);
2868 return 0;
2869 }
2870
intel_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2871 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2872 unsigned long offset, size_t size,
2873 enum dma_data_direction dir,
2874 struct dma_attrs *attrs)
2875 {
2876 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2877 dir, to_pci_dev(dev)->dma_mask);
2878 }
2879
flush_unmaps(void)2880 static void flush_unmaps(void)
2881 {
2882 int i, j;
2883
2884 timer_on = 0;
2885
2886 /* just flush them all */
2887 for (i = 0; i < g_num_of_iommus; i++) {
2888 struct intel_iommu *iommu = g_iommus[i];
2889 if (!iommu)
2890 continue;
2891
2892 if (!deferred_flush[i].next)
2893 continue;
2894
2895 /* In caching mode, global flushes turn emulation expensive */
2896 if (!cap_caching_mode(iommu->cap))
2897 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2898 DMA_TLB_GLOBAL_FLUSH);
2899 for (j = 0; j < deferred_flush[i].next; j++) {
2900 unsigned long mask;
2901 struct iova *iova = deferred_flush[i].iova[j];
2902 struct dmar_domain *domain = deferred_flush[i].domain[j];
2903
2904 /* On real hardware multiple invalidations are expensive */
2905 if (cap_caching_mode(iommu->cap))
2906 iommu_flush_iotlb_psi(iommu, domain->id,
2907 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2908 else {
2909 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2910 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2911 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2912 }
2913 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2914 }
2915 deferred_flush[i].next = 0;
2916 }
2917
2918 list_size = 0;
2919 }
2920
flush_unmaps_timeout(unsigned long data)2921 static void flush_unmaps_timeout(unsigned long data)
2922 {
2923 unsigned long flags;
2924
2925 spin_lock_irqsave(&async_umap_flush_lock, flags);
2926 flush_unmaps();
2927 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2928 }
2929
add_unmap(struct dmar_domain * dom,struct iova * iova)2930 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2931 {
2932 unsigned long flags;
2933 int next, iommu_id;
2934 struct intel_iommu *iommu;
2935
2936 spin_lock_irqsave(&async_umap_flush_lock, flags);
2937 if (list_size == HIGH_WATER_MARK)
2938 flush_unmaps();
2939
2940 iommu = domain_get_iommu(dom);
2941 iommu_id = iommu->seq_id;
2942
2943 next = deferred_flush[iommu_id].next;
2944 deferred_flush[iommu_id].domain[next] = dom;
2945 deferred_flush[iommu_id].iova[next] = iova;
2946 deferred_flush[iommu_id].next++;
2947
2948 if (!timer_on) {
2949 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2950 timer_on = 1;
2951 }
2952 list_size++;
2953 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2954 }
2955
intel_unmap_page(struct device * dev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)2956 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2957 size_t size, enum dma_data_direction dir,
2958 struct dma_attrs *attrs)
2959 {
2960 struct pci_dev *pdev = to_pci_dev(dev);
2961 struct dmar_domain *domain;
2962 unsigned long start_pfn, last_pfn;
2963 struct iova *iova;
2964 struct intel_iommu *iommu;
2965
2966 if (iommu_no_mapping(dev))
2967 return;
2968
2969 domain = find_domain(pdev);
2970 BUG_ON(!domain);
2971
2972 iommu = domain_get_iommu(domain);
2973
2974 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2975 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2976 (unsigned long long)dev_addr))
2977 return;
2978
2979 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2980 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2981
2982 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2983 pci_name(pdev), start_pfn, last_pfn);
2984
2985 /* clear the whole page */
2986 dma_pte_clear_range(domain, start_pfn, last_pfn);
2987
2988 /* free page tables */
2989 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2990
2991 if (intel_iommu_strict) {
2992 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2993 last_pfn - start_pfn + 1, 0);
2994 /* free iova */
2995 __free_iova(&domain->iovad, iova);
2996 } else {
2997 add_unmap(domain, iova);
2998 /*
2999 * queue up the release of the unmap to save the 1/6th of the
3000 * cpu used up by the iotlb flush operation...
3001 */
3002 }
3003 }
3004
intel_alloc_coherent(struct device * hwdev,size_t size,dma_addr_t * dma_handle,gfp_t flags,struct dma_attrs * attrs)3005 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
3006 dma_addr_t *dma_handle, gfp_t flags,
3007 struct dma_attrs *attrs)
3008 {
3009 void *vaddr;
3010 int order;
3011
3012 size = PAGE_ALIGN(size);
3013 order = get_order(size);
3014
3015 if (!iommu_no_mapping(hwdev))
3016 flags &= ~(GFP_DMA | GFP_DMA32);
3017 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
3018 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
3019 flags |= GFP_DMA;
3020 else
3021 flags |= GFP_DMA32;
3022 }
3023
3024 vaddr = (void *)__get_free_pages(flags, order);
3025 if (!vaddr)
3026 return NULL;
3027 memset(vaddr, 0, size);
3028
3029 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
3030 DMA_BIDIRECTIONAL,
3031 hwdev->coherent_dma_mask);
3032 if (*dma_handle)
3033 return vaddr;
3034 free_pages((unsigned long)vaddr, order);
3035 return NULL;
3036 }
3037
intel_free_coherent(struct device * hwdev,size_t size,void * vaddr,dma_addr_t dma_handle,struct dma_attrs * attrs)3038 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
3039 dma_addr_t dma_handle, struct dma_attrs *attrs)
3040 {
3041 int order;
3042
3043 size = PAGE_ALIGN(size);
3044 order = get_order(size);
3045
3046 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3047 free_pages((unsigned long)vaddr, order);
3048 }
3049
intel_unmap_sg(struct device * hwdev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)3050 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3051 int nelems, enum dma_data_direction dir,
3052 struct dma_attrs *attrs)
3053 {
3054 struct pci_dev *pdev = to_pci_dev(hwdev);
3055 struct dmar_domain *domain;
3056 unsigned long start_pfn, last_pfn;
3057 struct iova *iova;
3058 struct intel_iommu *iommu;
3059
3060 if (iommu_no_mapping(hwdev))
3061 return;
3062
3063 domain = find_domain(pdev);
3064 BUG_ON(!domain);
3065
3066 iommu = domain_get_iommu(domain);
3067
3068 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3069 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3070 (unsigned long long)sglist[0].dma_address))
3071 return;
3072
3073 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3074 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3075
3076 /* clear the whole page */
3077 dma_pte_clear_range(domain, start_pfn, last_pfn);
3078
3079 /* free page tables */
3080 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3081
3082 if (intel_iommu_strict) {
3083 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3084 last_pfn - start_pfn + 1, 0);
3085 /* free iova */
3086 __free_iova(&domain->iovad, iova);
3087 } else {
3088 add_unmap(domain, iova);
3089 /*
3090 * queue up the release of the unmap to save the 1/6th of the
3091 * cpu used up by the iotlb flush operation...
3092 */
3093 }
3094 }
3095
intel_nontranslate_map_sg(struct device * hddev,struct scatterlist * sglist,int nelems,int dir)3096 static int intel_nontranslate_map_sg(struct device *hddev,
3097 struct scatterlist *sglist, int nelems, int dir)
3098 {
3099 int i;
3100 struct scatterlist *sg;
3101
3102 for_each_sg(sglist, sg, nelems, i) {
3103 BUG_ON(!sg_page(sg));
3104 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3105 sg->dma_length = sg->length;
3106 }
3107 return nelems;
3108 }
3109
intel_map_sg(struct device * hwdev,struct scatterlist * sglist,int nelems,enum dma_data_direction dir,struct dma_attrs * attrs)3110 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3111 enum dma_data_direction dir, struct dma_attrs *attrs)
3112 {
3113 int i;
3114 struct pci_dev *pdev = to_pci_dev(hwdev);
3115 struct dmar_domain *domain;
3116 size_t size = 0;
3117 int prot = 0;
3118 struct iova *iova = NULL;
3119 int ret;
3120 struct scatterlist *sg;
3121 unsigned long start_vpfn;
3122 struct intel_iommu *iommu;
3123
3124 BUG_ON(dir == DMA_NONE);
3125 if (iommu_no_mapping(hwdev))
3126 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3127
3128 domain = get_valid_domain_for_dev(pdev);
3129 if (!domain)
3130 return 0;
3131
3132 iommu = domain_get_iommu(domain);
3133
3134 for_each_sg(sglist, sg, nelems, i)
3135 size += aligned_nrpages(sg->offset, sg->length);
3136
3137 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3138 pdev->dma_mask);
3139 if (!iova) {
3140 sglist->dma_length = 0;
3141 return 0;
3142 }
3143
3144 /*
3145 * Check if DMAR supports zero-length reads on write only
3146 * mappings..
3147 */
3148 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3149 !cap_zlr(iommu->cap))
3150 prot |= DMA_PTE_READ;
3151 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3152 prot |= DMA_PTE_WRITE;
3153
3154 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3155
3156 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3157 if (unlikely(ret)) {
3158 /* clear the page */
3159 dma_pte_clear_range(domain, start_vpfn,
3160 start_vpfn + size - 1);
3161 /* free page tables */
3162 dma_pte_free_pagetable(domain, start_vpfn,
3163 start_vpfn + size - 1);
3164 /* free iova */
3165 __free_iova(&domain->iovad, iova);
3166 return 0;
3167 }
3168
3169 /* it's a non-present to present mapping. Only flush if caching mode */
3170 if (cap_caching_mode(iommu->cap))
3171 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3172 else
3173 iommu_flush_write_buffer(iommu);
3174
3175 return nelems;
3176 }
3177
intel_mapping_error(struct device * dev,dma_addr_t dma_addr)3178 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3179 {
3180 return !dma_addr;
3181 }
3182
3183 struct dma_map_ops intel_dma_ops = {
3184 .alloc = intel_alloc_coherent,
3185 .free = intel_free_coherent,
3186 .map_sg = intel_map_sg,
3187 .unmap_sg = intel_unmap_sg,
3188 .map_page = intel_map_page,
3189 .unmap_page = intel_unmap_page,
3190 .mapping_error = intel_mapping_error,
3191 };
3192
iommu_domain_cache_init(void)3193 static inline int iommu_domain_cache_init(void)
3194 {
3195 int ret = 0;
3196
3197 iommu_domain_cache = kmem_cache_create("iommu_domain",
3198 sizeof(struct dmar_domain),
3199 0,
3200 SLAB_HWCACHE_ALIGN,
3201
3202 NULL);
3203 if (!iommu_domain_cache) {
3204 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3205 ret = -ENOMEM;
3206 }
3207
3208 return ret;
3209 }
3210
iommu_devinfo_cache_init(void)3211 static inline int iommu_devinfo_cache_init(void)
3212 {
3213 int ret = 0;
3214
3215 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3216 sizeof(struct device_domain_info),
3217 0,
3218 SLAB_HWCACHE_ALIGN,
3219 NULL);
3220 if (!iommu_devinfo_cache) {
3221 printk(KERN_ERR "Couldn't create devinfo cache\n");
3222 ret = -ENOMEM;
3223 }
3224
3225 return ret;
3226 }
3227
iommu_iova_cache_init(void)3228 static inline int iommu_iova_cache_init(void)
3229 {
3230 int ret = 0;
3231
3232 iommu_iova_cache = kmem_cache_create("iommu_iova",
3233 sizeof(struct iova),
3234 0,
3235 SLAB_HWCACHE_ALIGN,
3236 NULL);
3237 if (!iommu_iova_cache) {
3238 printk(KERN_ERR "Couldn't create iova cache\n");
3239 ret = -ENOMEM;
3240 }
3241
3242 return ret;
3243 }
3244
iommu_init_mempool(void)3245 static int __init iommu_init_mempool(void)
3246 {
3247 int ret;
3248 ret = iommu_iova_cache_init();
3249 if (ret)
3250 return ret;
3251
3252 ret = iommu_domain_cache_init();
3253 if (ret)
3254 goto domain_error;
3255
3256 ret = iommu_devinfo_cache_init();
3257 if (!ret)
3258 return ret;
3259
3260 kmem_cache_destroy(iommu_domain_cache);
3261 domain_error:
3262 kmem_cache_destroy(iommu_iova_cache);
3263
3264 return -ENOMEM;
3265 }
3266
iommu_exit_mempool(void)3267 static void __init iommu_exit_mempool(void)
3268 {
3269 kmem_cache_destroy(iommu_devinfo_cache);
3270 kmem_cache_destroy(iommu_domain_cache);
3271 kmem_cache_destroy(iommu_iova_cache);
3272
3273 }
3274
quirk_ioat_snb_local_iommu(struct pci_dev * pdev)3275 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3276 {
3277 struct dmar_drhd_unit *drhd;
3278 u32 vtbar;
3279 int rc;
3280
3281 /* We know that this device on this chipset has its own IOMMU.
3282 * If we find it under a different IOMMU, then the BIOS is lying
3283 * to us. Hope that the IOMMU for this device is actually
3284 * disabled, and it needs no translation...
3285 */
3286 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3287 if (rc) {
3288 /* "can't" happen */
3289 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3290 return;
3291 }
3292 vtbar &= 0xffff0000;
3293
3294 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3295 drhd = dmar_find_matched_drhd_unit(pdev);
3296 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3297 TAINT_FIRMWARE_WORKAROUND,
3298 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3299 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3300 }
3301 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3302
init_no_remapping_devices(void)3303 static void __init init_no_remapping_devices(void)
3304 {
3305 struct dmar_drhd_unit *drhd;
3306
3307 for_each_drhd_unit(drhd) {
3308 if (!drhd->include_all) {
3309 int i;
3310 for (i = 0; i < drhd->devices_cnt; i++)
3311 if (drhd->devices[i] != NULL)
3312 break;
3313 /* ignore DMAR unit if no pci devices exist */
3314 if (i == drhd->devices_cnt)
3315 drhd->ignored = 1;
3316 }
3317 }
3318
3319 for_each_drhd_unit(drhd) {
3320 int i;
3321 if (drhd->ignored || drhd->include_all)
3322 continue;
3323
3324 for (i = 0; i < drhd->devices_cnt; i++)
3325 if (drhd->devices[i] &&
3326 !IS_GFX_DEVICE(drhd->devices[i]))
3327 break;
3328
3329 if (i < drhd->devices_cnt)
3330 continue;
3331
3332 /* This IOMMU has *only* gfx devices. Either bypass it or
3333 set the gfx_mapped flag, as appropriate */
3334 if (dmar_map_gfx) {
3335 intel_iommu_gfx_mapped = 1;
3336 } else {
3337 drhd->ignored = 1;
3338 for (i = 0; i < drhd->devices_cnt; i++) {
3339 if (!drhd->devices[i])
3340 continue;
3341 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3342 }
3343 }
3344 }
3345 }
3346
3347 #ifdef CONFIG_SUSPEND
init_iommu_hw(void)3348 static int init_iommu_hw(void)
3349 {
3350 struct dmar_drhd_unit *drhd;
3351 struct intel_iommu *iommu = NULL;
3352
3353 for_each_active_iommu(iommu, drhd)
3354 if (iommu->qi)
3355 dmar_reenable_qi(iommu);
3356
3357 for_each_iommu(iommu, drhd) {
3358 if (drhd->ignored) {
3359 /*
3360 * we always have to disable PMRs or DMA may fail on
3361 * this device
3362 */
3363 if (force_on)
3364 iommu_disable_protect_mem_regions(iommu);
3365 continue;
3366 }
3367
3368 iommu_flush_write_buffer(iommu);
3369
3370 iommu_set_root_entry(iommu);
3371
3372 iommu->flush.flush_context(iommu, 0, 0, 0,
3373 DMA_CCMD_GLOBAL_INVL);
3374 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3375 DMA_TLB_GLOBAL_FLUSH);
3376 if (iommu_enable_translation(iommu))
3377 return 1;
3378 iommu_disable_protect_mem_regions(iommu);
3379 }
3380
3381 return 0;
3382 }
3383
iommu_flush_all(void)3384 static void iommu_flush_all(void)
3385 {
3386 struct dmar_drhd_unit *drhd;
3387 struct intel_iommu *iommu;
3388
3389 for_each_active_iommu(iommu, drhd) {
3390 iommu->flush.flush_context(iommu, 0, 0, 0,
3391 DMA_CCMD_GLOBAL_INVL);
3392 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3393 DMA_TLB_GLOBAL_FLUSH);
3394 }
3395 }
3396
iommu_suspend(void)3397 static int iommu_suspend(void)
3398 {
3399 struct dmar_drhd_unit *drhd;
3400 struct intel_iommu *iommu = NULL;
3401 unsigned long flag;
3402
3403 for_each_active_iommu(iommu, drhd) {
3404 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3405 GFP_ATOMIC);
3406 if (!iommu->iommu_state)
3407 goto nomem;
3408 }
3409
3410 iommu_flush_all();
3411
3412 for_each_active_iommu(iommu, drhd) {
3413 iommu_disable_translation(iommu);
3414
3415 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3416
3417 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3418 readl(iommu->reg + DMAR_FECTL_REG);
3419 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3420 readl(iommu->reg + DMAR_FEDATA_REG);
3421 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3422 readl(iommu->reg + DMAR_FEADDR_REG);
3423 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3424 readl(iommu->reg + DMAR_FEUADDR_REG);
3425
3426 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3427 }
3428 return 0;
3429
3430 nomem:
3431 for_each_active_iommu(iommu, drhd)
3432 kfree(iommu->iommu_state);
3433
3434 return -ENOMEM;
3435 }
3436
iommu_resume(void)3437 static void iommu_resume(void)
3438 {
3439 struct dmar_drhd_unit *drhd;
3440 struct intel_iommu *iommu = NULL;
3441 unsigned long flag;
3442
3443 if (init_iommu_hw()) {
3444 if (force_on)
3445 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3446 else
3447 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3448 return;
3449 }
3450
3451 for_each_active_iommu(iommu, drhd) {
3452
3453 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3454
3455 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3456 iommu->reg + DMAR_FECTL_REG);
3457 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3458 iommu->reg + DMAR_FEDATA_REG);
3459 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3460 iommu->reg + DMAR_FEADDR_REG);
3461 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3462 iommu->reg + DMAR_FEUADDR_REG);
3463
3464 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3465 }
3466
3467 for_each_active_iommu(iommu, drhd)
3468 kfree(iommu->iommu_state);
3469 }
3470
3471 static struct syscore_ops iommu_syscore_ops = {
3472 .resume = iommu_resume,
3473 .suspend = iommu_suspend,
3474 };
3475
init_iommu_pm_ops(void)3476 static void __init init_iommu_pm_ops(void)
3477 {
3478 register_syscore_ops(&iommu_syscore_ops);
3479 }
3480
3481 #else
init_iommu_pm_ops(void)3482 static inline void init_iommu_pm_ops(void) {}
3483 #endif /* CONFIG_PM */
3484
3485 LIST_HEAD(dmar_rmrr_units);
3486
dmar_register_rmrr_unit(struct dmar_rmrr_unit * rmrr)3487 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3488 {
3489 list_add(&rmrr->list, &dmar_rmrr_units);
3490 }
3491
3492
dmar_parse_one_rmrr(struct acpi_dmar_header * header)3493 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3494 {
3495 struct acpi_dmar_reserved_memory *rmrr;
3496 struct dmar_rmrr_unit *rmrru;
3497
3498 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3499 if (!rmrru)
3500 return -ENOMEM;
3501
3502 rmrru->hdr = header;
3503 rmrr = (struct acpi_dmar_reserved_memory *)header;
3504 rmrru->base_address = rmrr->base_address;
3505 rmrru->end_address = rmrr->end_address;
3506
3507 dmar_register_rmrr_unit(rmrru);
3508 return 0;
3509 }
3510
3511 static int __init
rmrr_parse_dev(struct dmar_rmrr_unit * rmrru)3512 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3513 {
3514 struct acpi_dmar_reserved_memory *rmrr;
3515 int ret;
3516
3517 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3518 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3519 ((void *)rmrr) + rmrr->header.length,
3520 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3521
3522 if (ret || (rmrru->devices_cnt == 0)) {
3523 list_del(&rmrru->list);
3524 kfree(rmrru);
3525 }
3526 return ret;
3527 }
3528
3529 static LIST_HEAD(dmar_atsr_units);
3530
dmar_parse_one_atsr(struct acpi_dmar_header * hdr)3531 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3532 {
3533 struct acpi_dmar_atsr *atsr;
3534 struct dmar_atsr_unit *atsru;
3535
3536 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3537 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3538 if (!atsru)
3539 return -ENOMEM;
3540
3541 atsru->hdr = hdr;
3542 atsru->include_all = atsr->flags & 0x1;
3543
3544 list_add(&atsru->list, &dmar_atsr_units);
3545
3546 return 0;
3547 }
3548
atsr_parse_dev(struct dmar_atsr_unit * atsru)3549 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3550 {
3551 int rc;
3552 struct acpi_dmar_atsr *atsr;
3553
3554 if (atsru->include_all)
3555 return 0;
3556
3557 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3558 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3559 (void *)atsr + atsr->header.length,
3560 &atsru->devices_cnt, &atsru->devices,
3561 atsr->segment);
3562 if (rc || !atsru->devices_cnt) {
3563 list_del(&atsru->list);
3564 kfree(atsru);
3565 }
3566
3567 return rc;
3568 }
3569
dmar_find_matched_atsr_unit(struct pci_dev * dev)3570 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3571 {
3572 int i;
3573 struct pci_bus *bus;
3574 struct acpi_dmar_atsr *atsr;
3575 struct dmar_atsr_unit *atsru;
3576
3577 dev = pci_physfn(dev);
3578
3579 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3580 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3581 if (atsr->segment == pci_domain_nr(dev->bus))
3582 goto found;
3583 }
3584
3585 return 0;
3586
3587 found:
3588 for (bus = dev->bus; bus; bus = bus->parent) {
3589 struct pci_dev *bridge = bus->self;
3590
3591 if (!bridge || !pci_is_pcie(bridge) ||
3592 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3593 return 0;
3594
3595 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3596 for (i = 0; i < atsru->devices_cnt; i++)
3597 if (atsru->devices[i] == bridge)
3598 return 1;
3599 break;
3600 }
3601 }
3602
3603 if (atsru->include_all)
3604 return 1;
3605
3606 return 0;
3607 }
3608
dmar_parse_rmrr_atsr_dev(void)3609 int __init dmar_parse_rmrr_atsr_dev(void)
3610 {
3611 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3612 struct dmar_atsr_unit *atsr, *atsr_n;
3613 int ret = 0;
3614
3615 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3616 ret = rmrr_parse_dev(rmrr);
3617 if (ret)
3618 return ret;
3619 }
3620
3621 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3622 ret = atsr_parse_dev(atsr);
3623 if (ret)
3624 return ret;
3625 }
3626
3627 return ret;
3628 }
3629
3630 /*
3631 * Here we only respond to action of unbound device from driver.
3632 *
3633 * Added device is not attached to its DMAR domain here yet. That will happen
3634 * when mapping the device to iova.
3635 */
device_notifier(struct notifier_block * nb,unsigned long action,void * data)3636 static int device_notifier(struct notifier_block *nb,
3637 unsigned long action, void *data)
3638 {
3639 struct device *dev = data;
3640 struct pci_dev *pdev = to_pci_dev(dev);
3641 struct dmar_domain *domain;
3642
3643 if (iommu_no_mapping(dev))
3644 return 0;
3645
3646 domain = find_domain(pdev);
3647 if (!domain)
3648 return 0;
3649
3650 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3651 domain_remove_one_dev_info(domain, pdev);
3652
3653 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3654 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3655 list_empty(&domain->devices))
3656 domain_exit(domain);
3657 }
3658
3659 return 0;
3660 }
3661
3662 static struct notifier_block device_nb = {
3663 .notifier_call = device_notifier,
3664 };
3665
intel_iommu_init(void)3666 int __init intel_iommu_init(void)
3667 {
3668 int ret = 0;
3669 struct dmar_drhd_unit *drhd;
3670
3671 /* VT-d is required for a TXT/tboot launch, so enforce that */
3672 force_on = tboot_force_iommu();
3673
3674 if (dmar_table_init()) {
3675 if (force_on)
3676 panic("tboot: Failed to initialize DMAR table\n");
3677 return -ENODEV;
3678 }
3679
3680 /*
3681 * Disable translation if already enabled prior to OS handover.
3682 */
3683 for_each_drhd_unit(drhd) {
3684 struct intel_iommu *iommu;
3685
3686 if (drhd->ignored)
3687 continue;
3688
3689 iommu = drhd->iommu;
3690 if (iommu->gcmd & DMA_GCMD_TE)
3691 iommu_disable_translation(iommu);
3692 }
3693
3694 if (dmar_dev_scope_init() < 0) {
3695 if (force_on)
3696 panic("tboot: Failed to initialize DMAR device scope\n");
3697 return -ENODEV;
3698 }
3699
3700 if (no_iommu || dmar_disabled)
3701 return -ENODEV;
3702
3703 if (iommu_init_mempool()) {
3704 if (force_on)
3705 panic("tboot: Failed to initialize iommu memory\n");
3706 return -ENODEV;
3707 }
3708
3709 if (list_empty(&dmar_rmrr_units))
3710 printk(KERN_INFO "DMAR: No RMRR found\n");
3711
3712 if (list_empty(&dmar_atsr_units))
3713 printk(KERN_INFO "DMAR: No ATSR found\n");
3714
3715 if (dmar_init_reserved_ranges()) {
3716 if (force_on)
3717 panic("tboot: Failed to reserve iommu ranges\n");
3718 return -ENODEV;
3719 }
3720
3721 init_no_remapping_devices();
3722
3723 ret = init_dmars();
3724 if (ret) {
3725 if (force_on)
3726 panic("tboot: Failed to initialize DMARs\n");
3727 printk(KERN_ERR "IOMMU: dmar init failed\n");
3728 put_iova_domain(&reserved_iova_list);
3729 iommu_exit_mempool();
3730 return ret;
3731 }
3732 printk(KERN_INFO
3733 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3734
3735 init_timer(&unmap_timer);
3736 #ifdef CONFIG_SWIOTLB
3737 swiotlb = 0;
3738 #endif
3739 dma_ops = &intel_dma_ops;
3740
3741 init_iommu_pm_ops();
3742
3743 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3744
3745 bus_register_notifier(&pci_bus_type, &device_nb);
3746
3747 intel_iommu_enabled = 1;
3748
3749 return 0;
3750 }
3751
iommu_detach_dependent_devices(struct intel_iommu * iommu,struct pci_dev * pdev)3752 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3753 struct pci_dev *pdev)
3754 {
3755 struct pci_dev *tmp, *parent;
3756
3757 if (!iommu || !pdev)
3758 return;
3759
3760 /* dependent device detach */
3761 tmp = pci_find_upstream_pcie_bridge(pdev);
3762 /* Secondary interface's bus number and devfn 0 */
3763 if (tmp) {
3764 parent = pdev->bus->self;
3765 while (parent != tmp) {
3766 iommu_detach_dev(iommu, parent->bus->number,
3767 parent->devfn);
3768 parent = parent->bus->self;
3769 }
3770 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3771 iommu_detach_dev(iommu,
3772 tmp->subordinate->number, 0);
3773 else /* this is a legacy PCI bridge */
3774 iommu_detach_dev(iommu, tmp->bus->number,
3775 tmp->devfn);
3776 }
3777 }
3778
domain_remove_one_dev_info(struct dmar_domain * domain,struct pci_dev * pdev)3779 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3780 struct pci_dev *pdev)
3781 {
3782 struct device_domain_info *info;
3783 struct intel_iommu *iommu;
3784 unsigned long flags;
3785 int found = 0;
3786 struct list_head *entry, *tmp;
3787
3788 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3789 pdev->devfn);
3790 if (!iommu)
3791 return;
3792
3793 spin_lock_irqsave(&device_domain_lock, flags);
3794 list_for_each_safe(entry, tmp, &domain->devices) {
3795 info = list_entry(entry, struct device_domain_info, link);
3796 if (info->segment == pci_domain_nr(pdev->bus) &&
3797 info->bus == pdev->bus->number &&
3798 info->devfn == pdev->devfn) {
3799 unlink_domain_info(info);
3800 spin_unlock_irqrestore(&device_domain_lock, flags);
3801
3802 iommu_disable_dev_iotlb(info);
3803 iommu_detach_dev(iommu, info->bus, info->devfn);
3804 iommu_detach_dependent_devices(iommu, pdev);
3805 free_devinfo_mem(info);
3806
3807 spin_lock_irqsave(&device_domain_lock, flags);
3808
3809 if (found)
3810 break;
3811 else
3812 continue;
3813 }
3814
3815 /* if there is no other devices under the same iommu
3816 * owned by this domain, clear this iommu in iommu_bmp
3817 * update iommu count and coherency
3818 */
3819 if (iommu == device_to_iommu(info->segment, info->bus,
3820 info->devfn))
3821 found = 1;
3822 }
3823
3824 spin_unlock_irqrestore(&device_domain_lock, flags);
3825
3826 if (found == 0) {
3827 unsigned long tmp_flags;
3828 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3829 clear_bit(iommu->seq_id, domain->iommu_bmp);
3830 domain->iommu_count--;
3831 domain_update_iommu_cap(domain);
3832 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3833
3834 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3835 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3836 spin_lock_irqsave(&iommu->lock, tmp_flags);
3837 clear_bit(domain->id, iommu->domain_ids);
3838 iommu->domains[domain->id] = NULL;
3839 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3840 }
3841 }
3842 }
3843
vm_domain_remove_all_dev_info(struct dmar_domain * domain)3844 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3845 {
3846 struct device_domain_info *info;
3847 struct intel_iommu *iommu;
3848 unsigned long flags1, flags2;
3849
3850 spin_lock_irqsave(&device_domain_lock, flags1);
3851 while (!list_empty(&domain->devices)) {
3852 info = list_entry(domain->devices.next,
3853 struct device_domain_info, link);
3854 unlink_domain_info(info);
3855 spin_unlock_irqrestore(&device_domain_lock, flags1);
3856
3857 iommu_disable_dev_iotlb(info);
3858 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3859 iommu_detach_dev(iommu, info->bus, info->devfn);
3860 iommu_detach_dependent_devices(iommu, info->dev);
3861
3862 /* clear this iommu in iommu_bmp, update iommu count
3863 * and capabilities
3864 */
3865 spin_lock_irqsave(&domain->iommu_lock, flags2);
3866 if (test_and_clear_bit(iommu->seq_id,
3867 domain->iommu_bmp)) {
3868 domain->iommu_count--;
3869 domain_update_iommu_cap(domain);
3870 }
3871 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3872
3873 free_devinfo_mem(info);
3874 spin_lock_irqsave(&device_domain_lock, flags1);
3875 }
3876 spin_unlock_irqrestore(&device_domain_lock, flags1);
3877 }
3878
3879 /* domain id for virtual machine, it won't be set in context */
3880 static unsigned long vm_domid;
3881
iommu_alloc_vm_domain(void)3882 static struct dmar_domain *iommu_alloc_vm_domain(void)
3883 {
3884 struct dmar_domain *domain;
3885
3886 domain = alloc_domain_mem();
3887 if (!domain)
3888 return NULL;
3889
3890 domain->id = vm_domid++;
3891 domain->nid = -1;
3892 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3893 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3894
3895 return domain;
3896 }
3897
md_domain_init(struct dmar_domain * domain,int guest_width)3898 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3899 {
3900 int adjust_width;
3901
3902 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3903 spin_lock_init(&domain->iommu_lock);
3904
3905 domain_reserve_special_ranges(domain);
3906
3907 /* calculate AGAW */
3908 domain->gaw = guest_width;
3909 adjust_width = guestwidth_to_adjustwidth(guest_width);
3910 domain->agaw = width_to_agaw(adjust_width);
3911
3912 INIT_LIST_HEAD(&domain->devices);
3913
3914 domain->iommu_count = 0;
3915 domain->iommu_coherency = 0;
3916 domain->iommu_snooping = 0;
3917 domain->iommu_superpage = 0;
3918 domain->max_addr = 0;
3919 domain->nid = -1;
3920
3921 /* always allocate the top pgd */
3922 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3923 if (!domain->pgd)
3924 return -ENOMEM;
3925 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3926 return 0;
3927 }
3928
iommu_free_vm_domain(struct dmar_domain * domain)3929 static void iommu_free_vm_domain(struct dmar_domain *domain)
3930 {
3931 unsigned long flags;
3932 struct dmar_drhd_unit *drhd;
3933 struct intel_iommu *iommu;
3934 unsigned long i;
3935 unsigned long ndomains;
3936
3937 for_each_drhd_unit(drhd) {
3938 if (drhd->ignored)
3939 continue;
3940 iommu = drhd->iommu;
3941
3942 ndomains = cap_ndoms(iommu->cap);
3943 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3944 if (iommu->domains[i] == domain) {
3945 spin_lock_irqsave(&iommu->lock, flags);
3946 clear_bit(i, iommu->domain_ids);
3947 iommu->domains[i] = NULL;
3948 spin_unlock_irqrestore(&iommu->lock, flags);
3949 break;
3950 }
3951 }
3952 }
3953 }
3954
vm_domain_exit(struct dmar_domain * domain)3955 static void vm_domain_exit(struct dmar_domain *domain)
3956 {
3957 /* Domain 0 is reserved, so dont process it */
3958 if (!domain)
3959 return;
3960
3961 vm_domain_remove_all_dev_info(domain);
3962 /* destroy iovas */
3963 put_iova_domain(&domain->iovad);
3964
3965 /* clear ptes */
3966 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3967
3968 /* free page tables */
3969 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3970
3971 iommu_free_vm_domain(domain);
3972 free_domain_mem(domain);
3973 }
3974
intel_iommu_domain_init(struct iommu_domain * domain)3975 static int intel_iommu_domain_init(struct iommu_domain *domain)
3976 {
3977 struct dmar_domain *dmar_domain;
3978
3979 dmar_domain = iommu_alloc_vm_domain();
3980 if (!dmar_domain) {
3981 printk(KERN_ERR
3982 "intel_iommu_domain_init: dmar_domain == NULL\n");
3983 return -ENOMEM;
3984 }
3985 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3986 printk(KERN_ERR
3987 "intel_iommu_domain_init() failed\n");
3988 vm_domain_exit(dmar_domain);
3989 return -ENOMEM;
3990 }
3991 domain_update_iommu_cap(dmar_domain);
3992 domain->priv = dmar_domain;
3993
3994 domain->geometry.aperture_start = 0;
3995 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3996 domain->geometry.force_aperture = true;
3997
3998 return 0;
3999 }
4000
intel_iommu_domain_destroy(struct iommu_domain * domain)4001 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4002 {
4003 struct dmar_domain *dmar_domain = domain->priv;
4004
4005 domain->priv = NULL;
4006 vm_domain_exit(dmar_domain);
4007 }
4008
intel_iommu_attach_device(struct iommu_domain * domain,struct device * dev)4009 static int intel_iommu_attach_device(struct iommu_domain *domain,
4010 struct device *dev)
4011 {
4012 struct dmar_domain *dmar_domain = domain->priv;
4013 struct pci_dev *pdev = to_pci_dev(dev);
4014 struct intel_iommu *iommu;
4015 int addr_width;
4016
4017 /* normally pdev is not mapped */
4018 if (unlikely(domain_context_mapped(pdev))) {
4019 struct dmar_domain *old_domain;
4020
4021 old_domain = find_domain(pdev);
4022 if (old_domain) {
4023 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4024 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4025 domain_remove_one_dev_info(old_domain, pdev);
4026 else
4027 domain_remove_dev_info(old_domain);
4028 }
4029 }
4030
4031 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4032 pdev->devfn);
4033 if (!iommu)
4034 return -ENODEV;
4035
4036 /* check if this iommu agaw is sufficient for max mapped address */
4037 addr_width = agaw_to_width(iommu->agaw);
4038 if (addr_width > cap_mgaw(iommu->cap))
4039 addr_width = cap_mgaw(iommu->cap);
4040
4041 if (dmar_domain->max_addr > (1LL << addr_width)) {
4042 printk(KERN_ERR "%s: iommu width (%d) is not "
4043 "sufficient for the mapped address (%llx)\n",
4044 __func__, addr_width, dmar_domain->max_addr);
4045 return -EFAULT;
4046 }
4047 dmar_domain->gaw = addr_width;
4048
4049 /*
4050 * Knock out extra levels of page tables if necessary
4051 */
4052 while (iommu->agaw < dmar_domain->agaw) {
4053 struct dma_pte *pte;
4054
4055 pte = dmar_domain->pgd;
4056 if (dma_pte_present(pte)) {
4057 dmar_domain->pgd = (struct dma_pte *)
4058 phys_to_virt(dma_pte_addr(pte));
4059 free_pgtable_page(pte);
4060 }
4061 dmar_domain->agaw--;
4062 }
4063
4064 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4065 }
4066
intel_iommu_detach_device(struct iommu_domain * domain,struct device * dev)4067 static void intel_iommu_detach_device(struct iommu_domain *domain,
4068 struct device *dev)
4069 {
4070 struct dmar_domain *dmar_domain = domain->priv;
4071 struct pci_dev *pdev = to_pci_dev(dev);
4072
4073 domain_remove_one_dev_info(dmar_domain, pdev);
4074 }
4075
intel_iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t hpa,size_t size,int iommu_prot)4076 static int intel_iommu_map(struct iommu_domain *domain,
4077 unsigned long iova, phys_addr_t hpa,
4078 size_t size, int iommu_prot)
4079 {
4080 struct dmar_domain *dmar_domain = domain->priv;
4081 u64 max_addr;
4082 int prot = 0;
4083 int ret;
4084
4085 if (iommu_prot & IOMMU_READ)
4086 prot |= DMA_PTE_READ;
4087 if (iommu_prot & IOMMU_WRITE)
4088 prot |= DMA_PTE_WRITE;
4089 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4090 prot |= DMA_PTE_SNP;
4091
4092 max_addr = iova + size;
4093 if (dmar_domain->max_addr < max_addr) {
4094 u64 end;
4095
4096 /* check if minimum agaw is sufficient for mapped address */
4097 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4098 if (end < max_addr) {
4099 printk(KERN_ERR "%s: iommu width (%d) is not "
4100 "sufficient for the mapped address (%llx)\n",
4101 __func__, dmar_domain->gaw, max_addr);
4102 return -EFAULT;
4103 }
4104 dmar_domain->max_addr = max_addr;
4105 }
4106 /* Round up size to next multiple of PAGE_SIZE, if it and
4107 the low bits of hpa would take us onto the next page */
4108 size = aligned_nrpages(hpa, size);
4109 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4110 hpa >> VTD_PAGE_SHIFT, size, prot);
4111 return ret;
4112 }
4113
intel_iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)4114 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4115 unsigned long iova, size_t size)
4116 {
4117 struct dmar_domain *dmar_domain = domain->priv;
4118 int order;
4119
4120 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4121 (iova + size - 1) >> VTD_PAGE_SHIFT);
4122
4123 if (dmar_domain->max_addr == iova + size)
4124 dmar_domain->max_addr = iova;
4125
4126 return PAGE_SIZE << order;
4127 }
4128
intel_iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)4129 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4130 dma_addr_t iova)
4131 {
4132 struct dmar_domain *dmar_domain = domain->priv;
4133 struct dma_pte *pte;
4134 u64 phys = 0;
4135
4136 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4137 if (pte)
4138 phys = dma_pte_addr(pte);
4139
4140 return phys;
4141 }
4142
intel_iommu_domain_has_cap(struct iommu_domain * domain,unsigned long cap)4143 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4144 unsigned long cap)
4145 {
4146 struct dmar_domain *dmar_domain = domain->priv;
4147
4148 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4149 return dmar_domain->iommu_snooping;
4150 if (cap == IOMMU_CAP_INTR_REMAP)
4151 return irq_remapping_enabled;
4152
4153 return 0;
4154 }
4155
4156 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4157
intel_iommu_add_device(struct device * dev)4158 static int intel_iommu_add_device(struct device *dev)
4159 {
4160 struct pci_dev *pdev = to_pci_dev(dev);
4161 struct pci_dev *bridge, *dma_pdev = NULL;
4162 struct iommu_group *group;
4163 int ret;
4164
4165 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4166 pdev->bus->number, pdev->devfn))
4167 return -ENODEV;
4168
4169 bridge = pci_find_upstream_pcie_bridge(pdev);
4170 if (bridge) {
4171 if (pci_is_pcie(bridge))
4172 dma_pdev = pci_get_domain_bus_and_slot(
4173 pci_domain_nr(pdev->bus),
4174 bridge->subordinate->number, 0);
4175 if (!dma_pdev)
4176 dma_pdev = pci_dev_get(bridge);
4177 } else
4178 dma_pdev = pci_dev_get(pdev);
4179
4180 /* Account for quirked devices */
4181 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4182
4183 /*
4184 * If it's a multifunction device that does not support our
4185 * required ACS flags, add to the same group as function 0.
4186 */
4187 if (dma_pdev->multifunction &&
4188 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
4189 swap_pci_ref(&dma_pdev,
4190 pci_get_slot(dma_pdev->bus,
4191 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
4192 0)));
4193
4194 /*
4195 * Devices on the root bus go through the iommu. If that's not us,
4196 * find the next upstream device and test ACS up to the root bus.
4197 * Finding the next device may require skipping virtual buses.
4198 */
4199 while (!pci_is_root_bus(dma_pdev->bus)) {
4200 struct pci_bus *bus = dma_pdev->bus;
4201
4202 while (!bus->self) {
4203 if (!pci_is_root_bus(bus))
4204 bus = bus->parent;
4205 else
4206 goto root_bus;
4207 }
4208
4209 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4210 break;
4211
4212 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4213 }
4214
4215 root_bus:
4216 group = iommu_group_get(&dma_pdev->dev);
4217 pci_dev_put(dma_pdev);
4218 if (!group) {
4219 group = iommu_group_alloc();
4220 if (IS_ERR(group))
4221 return PTR_ERR(group);
4222 }
4223
4224 ret = iommu_group_add_device(group, dev);
4225
4226 iommu_group_put(group);
4227 return ret;
4228 }
4229
intel_iommu_remove_device(struct device * dev)4230 static void intel_iommu_remove_device(struct device *dev)
4231 {
4232 iommu_group_remove_device(dev);
4233 }
4234
4235 static struct iommu_ops intel_iommu_ops = {
4236 .domain_init = intel_iommu_domain_init,
4237 .domain_destroy = intel_iommu_domain_destroy,
4238 .attach_dev = intel_iommu_attach_device,
4239 .detach_dev = intel_iommu_detach_device,
4240 .map = intel_iommu_map,
4241 .unmap = intel_iommu_unmap,
4242 .iova_to_phys = intel_iommu_iova_to_phys,
4243 .domain_has_cap = intel_iommu_domain_has_cap,
4244 .add_device = intel_iommu_add_device,
4245 .remove_device = intel_iommu_remove_device,
4246 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4247 };
4248
quirk_iommu_g4x_gfx(struct pci_dev * dev)4249 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4250 {
4251 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4252 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4253 dmar_map_gfx = 0;
4254 }
4255
4256 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4257 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4258 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4259 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4260 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4261 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4262 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4263
quirk_iommu_rwbf(struct pci_dev * dev)4264 static void quirk_iommu_rwbf(struct pci_dev *dev)
4265 {
4266 /*
4267 * Mobile 4 Series Chipset neglects to set RWBF capability,
4268 * but needs it. Same seems to hold for the desktop versions.
4269 */
4270 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4271 rwbf_quirk = 1;
4272 }
4273
4274 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4275 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4276 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4277 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4278 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4279 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4280 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4281
4282 #define GGC 0x52
4283 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4284 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4285 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4286 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4287 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4288 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4289 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4290 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4291
quirk_calpella_no_shadow_gtt(struct pci_dev * dev)4292 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4293 {
4294 unsigned short ggc;
4295
4296 if (pci_read_config_word(dev, GGC, &ggc))
4297 return;
4298
4299 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4300 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4301 dmar_map_gfx = 0;
4302 } else if (dmar_map_gfx) {
4303 /* we have to ensure the gfx device is idle before we flush */
4304 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4305 intel_iommu_strict = 1;
4306 }
4307 }
4308 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4309 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4310 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4311 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4312
4313 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4314 ISOCH DMAR unit for the Azalia sound device, but not give it any
4315 TLB entries, which causes it to deadlock. Check for that. We do
4316 this in a function called from init_dmars(), instead of in a PCI
4317 quirk, because we don't want to print the obnoxious "BIOS broken"
4318 message if VT-d is actually disabled.
4319 */
check_tylersburg_isoch(void)4320 static void __init check_tylersburg_isoch(void)
4321 {
4322 struct pci_dev *pdev;
4323 uint32_t vtisochctrl;
4324
4325 /* If there's no Azalia in the system anyway, forget it. */
4326 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4327 if (!pdev)
4328 return;
4329 pci_dev_put(pdev);
4330
4331 /* System Management Registers. Might be hidden, in which case
4332 we can't do the sanity check. But that's OK, because the
4333 known-broken BIOSes _don't_ actually hide it, so far. */
4334 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4335 if (!pdev)
4336 return;
4337
4338 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4339 pci_dev_put(pdev);
4340 return;
4341 }
4342
4343 pci_dev_put(pdev);
4344
4345 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4346 if (vtisochctrl & 1)
4347 return;
4348
4349 /* Drop all bits other than the number of TLB entries */
4350 vtisochctrl &= 0x1c;
4351
4352 /* If we have the recommended number of TLB entries (16), fine. */
4353 if (vtisochctrl == 0x10)
4354 return;
4355
4356 /* Zero TLB entries? You get to ride the short bus to school. */
4357 if (!vtisochctrl) {
4358 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4359 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4360 dmi_get_system_info(DMI_BIOS_VENDOR),
4361 dmi_get_system_info(DMI_BIOS_VERSION),
4362 dmi_get_system_info(DMI_PRODUCT_VERSION));
4363 iommu_identity_mapping |= IDENTMAP_AZALIA;
4364 return;
4365 }
4366
4367 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4368 vtisochctrl);
4369 }
4370