1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/kthread.h>
21 #include <linux/backing-dev.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <linux/rbtree.h>
25 #include <asm/page.h>
26 #include <asm/unaligned.h>
27 #include <crypto/hash.h>
28 #include <crypto/md5.h>
29 #include <crypto/algapi.h>
30
31 #include <linux/device-mapper.h>
32
33 #define DM_MSG_PREFIX "crypt"
34
35 /*
36 * context holding the current state of a multi-part conversion
37 */
38 struct convert_context {
39 struct completion restart;
40 struct bio *bio_in;
41 struct bio *bio_out;
42 unsigned int offset_in;
43 unsigned int offset_out;
44 unsigned int idx_in;
45 unsigned int idx_out;
46 sector_t cc_sector;
47 atomic_t cc_pending;
48 struct ablkcipher_request *req;
49 };
50
51 /*
52 * per bio private data
53 */
54 struct dm_crypt_io {
55 struct crypt_config *cc;
56 struct bio *base_bio;
57 struct work_struct work;
58
59 struct convert_context ctx;
60
61 atomic_t io_pending;
62 int error;
63 sector_t sector;
64
65 struct rb_node rb_node;
66 } CRYPTO_MINALIGN_ATTR;
67
68 struct dm_crypt_request {
69 struct convert_context *ctx;
70 struct scatterlist sg_in;
71 struct scatterlist sg_out;
72 sector_t iv_sector;
73 };
74
75 struct crypt_config;
76
77 struct crypt_iv_operations {
78 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
79 const char *opts);
80 void (*dtr)(struct crypt_config *cc);
81 int (*init)(struct crypt_config *cc);
82 int (*wipe)(struct crypt_config *cc);
83 int (*generator)(struct crypt_config *cc, u8 *iv,
84 struct dm_crypt_request *dmreq);
85 int (*post)(struct crypt_config *cc, u8 *iv,
86 struct dm_crypt_request *dmreq);
87 };
88
89 struct iv_essiv_private {
90 struct crypto_hash *hash_tfm;
91 u8 *salt;
92 };
93
94 struct iv_benbi_private {
95 int shift;
96 };
97
98 #define LMK_SEED_SIZE 64 /* hash + 0 */
99 struct iv_lmk_private {
100 struct crypto_shash *hash_tfm;
101 u8 *seed;
102 };
103
104 /*
105 * Crypt: maps a linear range of a block device
106 * and encrypts / decrypts at the same time.
107 */
108 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
109
110 /*
111 * The fields in here must be read only after initialization.
112 */
113 struct crypt_config {
114 struct dm_dev *dev;
115 sector_t start;
116
117 /*
118 * pool for per bio private data, crypto requests and
119 * encryption requeusts/buffer pages
120 */
121 mempool_t *req_pool;
122 mempool_t *page_pool;
123 struct bio_set *bs;
124 struct mutex bio_alloc_lock;
125
126 struct workqueue_struct *io_queue;
127 struct workqueue_struct *crypt_queue;
128
129 struct task_struct *write_thread;
130 wait_queue_head_t write_thread_wait;
131 struct rb_root write_tree;
132
133 char *cipher;
134 char *cipher_string;
135
136 struct crypt_iv_operations *iv_gen_ops;
137 union {
138 struct iv_essiv_private essiv;
139 struct iv_benbi_private benbi;
140 struct iv_lmk_private lmk;
141 } iv_gen_private;
142 sector_t iv_offset;
143 unsigned int iv_size;
144
145 /* ESSIV: struct crypto_cipher *essiv_tfm */
146 void *iv_private;
147 struct crypto_ablkcipher **tfms;
148 unsigned tfms_count;
149
150 /*
151 * Layout of each crypto request:
152 *
153 * struct ablkcipher_request
154 * context
155 * padding
156 * struct dm_crypt_request
157 * padding
158 * IV
159 *
160 * The padding is added so that dm_crypt_request and the IV are
161 * correctly aligned.
162 */
163 unsigned int dmreq_start;
164
165 unsigned int per_bio_data_size;
166
167 unsigned long flags;
168 unsigned int key_size;
169 unsigned int key_parts;
170 u8 key[0];
171 };
172
173 #define MIN_IOS 16
174
175 static void clone_init(struct dm_crypt_io *, struct bio *);
176 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
177 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
178
179 /*
180 * Use this to access cipher attributes that are the same for each CPU.
181 */
any_tfm(struct crypt_config * cc)182 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
183 {
184 return cc->tfms[0];
185 }
186
187 /*
188 * Different IV generation algorithms:
189 *
190 * plain: the initial vector is the 32-bit little-endian version of the sector
191 * number, padded with zeros if necessary.
192 *
193 * plain64: the initial vector is the 64-bit little-endian version of the sector
194 * number, padded with zeros if necessary.
195 *
196 * essiv: "encrypted sector|salt initial vector", the sector number is
197 * encrypted with the bulk cipher using a salt as key. The salt
198 * should be derived from the bulk cipher's key via hashing.
199 *
200 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
201 * (needed for LRW-32-AES and possible other narrow block modes)
202 *
203 * null: the initial vector is always zero. Provides compatibility with
204 * obsolete loop_fish2 devices. Do not use for new devices.
205 *
206 * lmk: Compatible implementation of the block chaining mode used
207 * by the Loop-AES block device encryption system
208 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
209 * It operates on full 512 byte sectors and uses CBC
210 * with an IV derived from the sector number, the data and
211 * optionally extra IV seed.
212 * This means that after decryption the first block
213 * of sector must be tweaked according to decrypted data.
214 * Loop-AES can use three encryption schemes:
215 * version 1: is plain aes-cbc mode
216 * version 2: uses 64 multikey scheme with lmk IV generator
217 * version 3: the same as version 2 with additional IV seed
218 * (it uses 65 keys, last key is used as IV seed)
219 *
220 * plumb: unimplemented, see:
221 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
222 */
223
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)224 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
225 struct dm_crypt_request *dmreq)
226 {
227 memset(iv, 0, cc->iv_size);
228 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
229
230 return 0;
231 }
232
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)233 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
234 struct dm_crypt_request *dmreq)
235 {
236 memset(iv, 0, cc->iv_size);
237 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
238
239 return 0;
240 }
241
242 /* Initialise ESSIV - compute salt but no local memory allocations */
crypt_iv_essiv_init(struct crypt_config * cc)243 static int crypt_iv_essiv_init(struct crypt_config *cc)
244 {
245 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
246 struct hash_desc desc;
247 struct scatterlist sg;
248 struct crypto_cipher *essiv_tfm;
249 int err;
250
251 sg_init_one(&sg, cc->key, cc->key_size);
252 desc.tfm = essiv->hash_tfm;
253 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
254
255 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
256 if (err)
257 return err;
258
259 essiv_tfm = cc->iv_private;
260
261 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
262 crypto_hash_digestsize(essiv->hash_tfm));
263 if (err)
264 return err;
265
266 return 0;
267 }
268
269 /* Wipe salt and reset key derived from volume key */
crypt_iv_essiv_wipe(struct crypt_config * cc)270 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
271 {
272 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
273 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
274 struct crypto_cipher *essiv_tfm;
275 int r, err = 0;
276
277 memset(essiv->salt, 0, salt_size);
278
279 essiv_tfm = cc->iv_private;
280 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
281 if (r)
282 err = r;
283
284 return err;
285 }
286
287 /* Set up per cpu cipher state */
setup_essiv_cpu(struct crypt_config * cc,struct dm_target * ti,u8 * salt,unsigned saltsize)288 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
289 struct dm_target *ti,
290 u8 *salt, unsigned saltsize)
291 {
292 struct crypto_cipher *essiv_tfm;
293 int err;
294
295 /* Setup the essiv_tfm with the given salt */
296 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
297 if (IS_ERR(essiv_tfm)) {
298 ti->error = "Error allocating crypto tfm for ESSIV";
299 return essiv_tfm;
300 }
301
302 if (crypto_cipher_blocksize(essiv_tfm) !=
303 crypto_ablkcipher_ivsize(any_tfm(cc))) {
304 ti->error = "Block size of ESSIV cipher does "
305 "not match IV size of block cipher";
306 crypto_free_cipher(essiv_tfm);
307 return ERR_PTR(-EINVAL);
308 }
309
310 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
311 if (err) {
312 ti->error = "Failed to set key for ESSIV cipher";
313 crypto_free_cipher(essiv_tfm);
314 return ERR_PTR(err);
315 }
316
317 return essiv_tfm;
318 }
319
crypt_iv_essiv_dtr(struct crypt_config * cc)320 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
321 {
322 struct crypto_cipher *essiv_tfm;
323 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
324
325 crypto_free_hash(essiv->hash_tfm);
326 essiv->hash_tfm = NULL;
327
328 kzfree(essiv->salt);
329 essiv->salt = NULL;
330
331 essiv_tfm = cc->iv_private;
332
333 if (essiv_tfm)
334 crypto_free_cipher(essiv_tfm);
335
336 cc->iv_private = NULL;
337 }
338
crypt_iv_essiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)339 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
340 const char *opts)
341 {
342 struct crypto_cipher *essiv_tfm = NULL;
343 struct crypto_hash *hash_tfm = NULL;
344 u8 *salt = NULL;
345 int err;
346
347 if (!opts) {
348 ti->error = "Digest algorithm missing for ESSIV mode";
349 return -EINVAL;
350 }
351
352 /* Allocate hash algorithm */
353 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
354 if (IS_ERR(hash_tfm)) {
355 ti->error = "Error initializing ESSIV hash";
356 err = PTR_ERR(hash_tfm);
357 goto bad;
358 }
359
360 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
361 if (!salt) {
362 ti->error = "Error kmallocing salt storage in ESSIV";
363 err = -ENOMEM;
364 goto bad;
365 }
366
367 cc->iv_gen_private.essiv.salt = salt;
368 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
369
370 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
371 crypto_hash_digestsize(hash_tfm));
372 if (IS_ERR(essiv_tfm)) {
373 crypt_iv_essiv_dtr(cc);
374 return PTR_ERR(essiv_tfm);
375 }
376 cc->iv_private = essiv_tfm;
377
378 return 0;
379
380 bad:
381 if (hash_tfm && !IS_ERR(hash_tfm))
382 crypto_free_hash(hash_tfm);
383 kfree(salt);
384 return err;
385 }
386
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)387 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
388 struct dm_crypt_request *dmreq)
389 {
390 struct crypto_cipher *essiv_tfm = cc->iv_private;
391
392 memset(iv, 0, cc->iv_size);
393 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
394 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
395
396 return 0;
397 }
398
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)399 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
400 const char *opts)
401 {
402 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
403 int log = ilog2(bs);
404
405 /* we need to calculate how far we must shift the sector count
406 * to get the cipher block count, we use this shift in _gen */
407
408 if (1 << log != bs) {
409 ti->error = "cypher blocksize is not a power of 2";
410 return -EINVAL;
411 }
412
413 if (log > 9) {
414 ti->error = "cypher blocksize is > 512";
415 return -EINVAL;
416 }
417
418 cc->iv_gen_private.benbi.shift = 9 - log;
419
420 return 0;
421 }
422
crypt_iv_benbi_dtr(struct crypt_config * cc)423 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
424 {
425 }
426
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)427 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
428 struct dm_crypt_request *dmreq)
429 {
430 __be64 val;
431
432 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
433
434 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
435 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
436
437 return 0;
438 }
439
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)440 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
441 struct dm_crypt_request *dmreq)
442 {
443 memset(iv, 0, cc->iv_size);
444
445 return 0;
446 }
447
crypt_iv_lmk_dtr(struct crypt_config * cc)448 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
449 {
450 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
451
452 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
453 crypto_free_shash(lmk->hash_tfm);
454 lmk->hash_tfm = NULL;
455
456 kzfree(lmk->seed);
457 lmk->seed = NULL;
458 }
459
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)460 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
461 const char *opts)
462 {
463 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
464
465 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
466 if (IS_ERR(lmk->hash_tfm)) {
467 ti->error = "Error initializing LMK hash";
468 return PTR_ERR(lmk->hash_tfm);
469 }
470
471 /* No seed in LMK version 2 */
472 if (cc->key_parts == cc->tfms_count) {
473 lmk->seed = NULL;
474 return 0;
475 }
476
477 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
478 if (!lmk->seed) {
479 crypt_iv_lmk_dtr(cc);
480 ti->error = "Error kmallocing seed storage in LMK";
481 return -ENOMEM;
482 }
483
484 return 0;
485 }
486
crypt_iv_lmk_init(struct crypt_config * cc)487 static int crypt_iv_lmk_init(struct crypt_config *cc)
488 {
489 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
490 int subkey_size = cc->key_size / cc->key_parts;
491
492 /* LMK seed is on the position of LMK_KEYS + 1 key */
493 if (lmk->seed)
494 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
495 crypto_shash_digestsize(lmk->hash_tfm));
496
497 return 0;
498 }
499
crypt_iv_lmk_wipe(struct crypt_config * cc)500 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
501 {
502 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
503
504 if (lmk->seed)
505 memset(lmk->seed, 0, LMK_SEED_SIZE);
506
507 return 0;
508 }
509
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)510 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
511 struct dm_crypt_request *dmreq,
512 u8 *data)
513 {
514 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
515 struct {
516 struct shash_desc desc;
517 char ctx[crypto_shash_descsize(lmk->hash_tfm)];
518 } sdesc;
519 struct md5_state md5state;
520 u32 buf[4];
521 int i, r;
522
523 sdesc.desc.tfm = lmk->hash_tfm;
524 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
525
526 r = crypto_shash_init(&sdesc.desc);
527 if (r)
528 return r;
529
530 if (lmk->seed) {
531 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
532 if (r)
533 return r;
534 }
535
536 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
537 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
538 if (r)
539 return r;
540
541 /* Sector is cropped to 56 bits here */
542 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
543 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
544 buf[2] = cpu_to_le32(4024);
545 buf[3] = 0;
546 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
547 if (r)
548 return r;
549
550 /* No MD5 padding here */
551 r = crypto_shash_export(&sdesc.desc, &md5state);
552 if (r)
553 return r;
554
555 for (i = 0; i < MD5_HASH_WORDS; i++)
556 __cpu_to_le32s(&md5state.hash[i]);
557 memcpy(iv, &md5state.hash, cc->iv_size);
558
559 return 0;
560 }
561
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)562 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
563 struct dm_crypt_request *dmreq)
564 {
565 u8 *src;
566 int r = 0;
567
568 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
569 src = kmap_atomic(sg_page(&dmreq->sg_in));
570 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
571 kunmap_atomic(src);
572 } else
573 memset(iv, 0, cc->iv_size);
574
575 return r;
576 }
577
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)578 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
579 struct dm_crypt_request *dmreq)
580 {
581 u8 *dst;
582 int r;
583
584 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
585 return 0;
586
587 dst = kmap_atomic(sg_page(&dmreq->sg_out));
588 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
589
590 /* Tweak the first block of plaintext sector */
591 if (!r)
592 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
593
594 kunmap_atomic(dst);
595 return r;
596 }
597
598 static struct crypt_iv_operations crypt_iv_plain_ops = {
599 .generator = crypt_iv_plain_gen
600 };
601
602 static struct crypt_iv_operations crypt_iv_plain64_ops = {
603 .generator = crypt_iv_plain64_gen
604 };
605
606 static struct crypt_iv_operations crypt_iv_essiv_ops = {
607 .ctr = crypt_iv_essiv_ctr,
608 .dtr = crypt_iv_essiv_dtr,
609 .init = crypt_iv_essiv_init,
610 .wipe = crypt_iv_essiv_wipe,
611 .generator = crypt_iv_essiv_gen
612 };
613
614 static struct crypt_iv_operations crypt_iv_benbi_ops = {
615 .ctr = crypt_iv_benbi_ctr,
616 .dtr = crypt_iv_benbi_dtr,
617 .generator = crypt_iv_benbi_gen
618 };
619
620 static struct crypt_iv_operations crypt_iv_null_ops = {
621 .generator = crypt_iv_null_gen
622 };
623
624 static struct crypt_iv_operations crypt_iv_lmk_ops = {
625 .ctr = crypt_iv_lmk_ctr,
626 .dtr = crypt_iv_lmk_dtr,
627 .init = crypt_iv_lmk_init,
628 .wipe = crypt_iv_lmk_wipe,
629 .generator = crypt_iv_lmk_gen,
630 .post = crypt_iv_lmk_post
631 };
632
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)633 static void crypt_convert_init(struct crypt_config *cc,
634 struct convert_context *ctx,
635 struct bio *bio_out, struct bio *bio_in,
636 sector_t sector)
637 {
638 ctx->bio_in = bio_in;
639 ctx->bio_out = bio_out;
640 ctx->offset_in = 0;
641 ctx->offset_out = 0;
642 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
643 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
644 ctx->cc_sector = sector + cc->iv_offset;
645 init_completion(&ctx->restart);
646 }
647
dmreq_of_req(struct crypt_config * cc,struct ablkcipher_request * req)648 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
649 struct ablkcipher_request *req)
650 {
651 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
652 }
653
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)654 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
655 struct dm_crypt_request *dmreq)
656 {
657 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
658 }
659
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)660 static u8 *iv_of_dmreq(struct crypt_config *cc,
661 struct dm_crypt_request *dmreq)
662 {
663 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
664 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
665 }
666
crypt_convert_block(struct crypt_config * cc,struct convert_context * ctx,struct ablkcipher_request * req)667 static int crypt_convert_block(struct crypt_config *cc,
668 struct convert_context *ctx,
669 struct ablkcipher_request *req)
670 {
671 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
672 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
673 struct dm_crypt_request *dmreq;
674 u8 *iv;
675 int r;
676
677 dmreq = dmreq_of_req(cc, req);
678 iv = iv_of_dmreq(cc, dmreq);
679
680 dmreq->iv_sector = ctx->cc_sector;
681 dmreq->ctx = ctx;
682 sg_init_table(&dmreq->sg_in, 1);
683 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
684 bv_in->bv_offset + ctx->offset_in);
685
686 sg_init_table(&dmreq->sg_out, 1);
687 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
688 bv_out->bv_offset + ctx->offset_out);
689
690 ctx->offset_in += 1 << SECTOR_SHIFT;
691 if (ctx->offset_in >= bv_in->bv_len) {
692 ctx->offset_in = 0;
693 ctx->idx_in++;
694 }
695
696 ctx->offset_out += 1 << SECTOR_SHIFT;
697 if (ctx->offset_out >= bv_out->bv_len) {
698 ctx->offset_out = 0;
699 ctx->idx_out++;
700 }
701
702 if (cc->iv_gen_ops) {
703 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
704 if (r < 0)
705 return r;
706 }
707
708 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
709 1 << SECTOR_SHIFT, iv);
710
711 if (bio_data_dir(ctx->bio_in) == WRITE)
712 r = crypto_ablkcipher_encrypt(req);
713 else
714 r = crypto_ablkcipher_decrypt(req);
715
716 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
717 r = cc->iv_gen_ops->post(cc, iv, dmreq);
718
719 return r;
720 }
721
722 static void kcryptd_async_done(struct crypto_async_request *async_req,
723 int error);
724
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)725 static void crypt_alloc_req(struct crypt_config *cc,
726 struct convert_context *ctx)
727 {
728 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
729
730 if (!ctx->req)
731 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
732
733 ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
734 ablkcipher_request_set_callback(ctx->req,
735 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
736 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
737 }
738
crypt_free_req(struct crypt_config * cc,struct ablkcipher_request * req,struct bio * base_bio)739 static void crypt_free_req(struct crypt_config *cc,
740 struct ablkcipher_request *req, struct bio *base_bio)
741 {
742 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
743
744 if ((struct ablkcipher_request *)(io + 1) != req)
745 mempool_free(req, cc->req_pool);
746 }
747
748 /*
749 * Encrypt / decrypt data from one bio to another one (can be the same one)
750 */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx)751 static int crypt_convert(struct crypt_config *cc,
752 struct convert_context *ctx)
753 {
754 int r;
755
756 atomic_set(&ctx->cc_pending, 1);
757
758 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
759 ctx->idx_out < ctx->bio_out->bi_vcnt) {
760
761 crypt_alloc_req(cc, ctx);
762
763 atomic_inc(&ctx->cc_pending);
764
765 r = crypt_convert_block(cc, ctx, ctx->req);
766
767 switch (r) {
768 /* async */
769 case -EBUSY:
770 wait_for_completion(&ctx->restart);
771 INIT_COMPLETION(ctx->restart);
772 /* fall through*/
773 case -EINPROGRESS:
774 ctx->req = NULL;
775 ctx->cc_sector++;
776 continue;
777
778 /* sync */
779 case 0:
780 atomic_dec(&ctx->cc_pending);
781 ctx->cc_sector++;
782 cond_resched();
783 continue;
784
785 /* error */
786 default:
787 atomic_dec(&ctx->cc_pending);
788 return r;
789 }
790 }
791
792 return 0;
793 }
794
795 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
796
797 /*
798 * Generate a new unfragmented bio with the given size
799 * This should never violate the device limitations
800 *
801 * This function may be called concurrently. If we allocate from the mempool
802 * concurrently, there is a possibility of deadlock. For example, if we have
803 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
804 * the mempool concurrently, it may deadlock in a situation where both processes
805 * have allocated 128 pages and the mempool is exhausted.
806 *
807 * In order to avoid this scenario we allocate the pages under a mutex.
808 *
809 * In order to not degrade performance with excessive locking, we try
810 * non-blocking allocations without a mutex first but on failure we fallback
811 * to blocking allocations with a mutex.
812 */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned size)813 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
814 {
815 struct crypt_config *cc = io->cc;
816 struct bio *clone;
817 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
818 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
819 unsigned i, len, remaining_size;
820 struct page *page;
821 struct bio_vec *bvec;
822
823 retry:
824 if (unlikely(gfp_mask & __GFP_WAIT))
825 mutex_lock(&cc->bio_alloc_lock);
826
827 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
828 if (!clone)
829 goto return_clone;
830
831 clone_init(io, clone);
832
833 remaining_size = size;
834
835 for (i = 0; i < nr_iovecs; i++) {
836 page = mempool_alloc(cc->page_pool, gfp_mask);
837 if (!page) {
838 crypt_free_buffer_pages(cc, clone);
839 bio_put(clone);
840 gfp_mask |= __GFP_WAIT;
841 goto retry;
842 }
843
844 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
845
846 bvec = &clone->bi_io_vec[clone->bi_vcnt++];
847 bvec->bv_page = page;
848 bvec->bv_len = len;
849 bvec->bv_offset = 0;
850
851 clone->bi_size += len;
852
853 remaining_size -= len;
854 }
855
856 return_clone:
857 if (unlikely(gfp_mask & __GFP_WAIT))
858 mutex_unlock(&cc->bio_alloc_lock);
859
860 return clone;
861 }
862
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)863 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
864 {
865 unsigned int i;
866 struct bio_vec *bv;
867
868 bio_for_each_segment_all(bv, clone, i) {
869 BUG_ON(!bv->bv_page);
870 mempool_free(bv->bv_page, cc->page_pool);
871 bv->bv_page = NULL;
872 }
873 }
874
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)875 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
876 struct bio *bio, sector_t sector)
877 {
878 io->cc = cc;
879 io->base_bio = bio;
880 io->sector = sector;
881 io->error = 0;
882 io->ctx.req = NULL;
883 atomic_set(&io->io_pending, 0);
884 }
885
crypt_inc_pending(struct dm_crypt_io * io)886 static void crypt_inc_pending(struct dm_crypt_io *io)
887 {
888 atomic_inc(&io->io_pending);
889 }
890
891 /*
892 * One of the bios was finished. Check for completion of
893 * the whole request and correctly clean up the buffer.
894 */
crypt_dec_pending(struct dm_crypt_io * io)895 static void crypt_dec_pending(struct dm_crypt_io *io)
896 {
897 struct crypt_config *cc = io->cc;
898 struct bio *base_bio = io->base_bio;
899 int error = io->error;
900
901 if (!atomic_dec_and_test(&io->io_pending))
902 return;
903
904 if (io->ctx.req)
905 crypt_free_req(cc, io->ctx.req, base_bio);
906
907 bio_endio(base_bio, error);
908 }
909
910 /*
911 * kcryptd/kcryptd_io:
912 *
913 * Needed because it would be very unwise to do decryption in an
914 * interrupt context.
915 *
916 * kcryptd performs the actual encryption or decryption.
917 *
918 * kcryptd_io performs the IO submission.
919 *
920 * They must be separated as otherwise the final stages could be
921 * starved by new requests which can block in the first stages due
922 * to memory allocation.
923 *
924 * The work is done per CPU global for all dm-crypt instances.
925 * They should not depend on each other and do not block.
926 */
crypt_endio(struct bio * clone,int error)927 static void crypt_endio(struct bio *clone, int error)
928 {
929 struct dm_crypt_io *io = clone->bi_private;
930 struct crypt_config *cc = io->cc;
931 unsigned rw = bio_data_dir(clone);
932
933 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
934 error = -EIO;
935
936 /*
937 * free the processed pages
938 */
939 if (rw == WRITE)
940 crypt_free_buffer_pages(cc, clone);
941
942 bio_put(clone);
943
944 if (rw == READ && !error) {
945 kcryptd_queue_crypt(io);
946 return;
947 }
948
949 if (unlikely(error))
950 io->error = error;
951
952 crypt_dec_pending(io);
953 }
954
clone_init(struct dm_crypt_io * io,struct bio * clone)955 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
956 {
957 struct crypt_config *cc = io->cc;
958
959 clone->bi_private = io;
960 clone->bi_end_io = crypt_endio;
961 clone->bi_bdev = cc->dev->bdev;
962 clone->bi_rw = io->base_bio->bi_rw;
963 }
964
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)965 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
966 {
967 struct crypt_config *cc = io->cc;
968 struct bio *base_bio = io->base_bio;
969 struct bio *clone;
970
971 /*
972 * The block layer might modify the bvec array, so always
973 * copy the required bvecs because we need the original
974 * one in order to decrypt the whole bio data *afterwards*.
975 */
976 clone = bio_clone_bioset(base_bio, gfp, cc->bs);
977 if (!clone)
978 return 1;
979
980 crypt_inc_pending(io);
981
982 clone_init(io, clone);
983 clone->bi_sector = cc->start + io->sector;
984
985 generic_make_request(clone);
986 return 0;
987 }
988
kcryptd_io_read_work(struct work_struct * work)989 static void kcryptd_io_read_work(struct work_struct *work)
990 {
991 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
992
993 crypt_inc_pending(io);
994 if (kcryptd_io_read(io, GFP_NOIO))
995 io->error = -ENOMEM;
996 crypt_dec_pending(io);
997 }
998
kcryptd_queue_read(struct dm_crypt_io * io)999 static void kcryptd_queue_read(struct dm_crypt_io *io)
1000 {
1001 struct crypt_config *cc = io->cc;
1002
1003 INIT_WORK(&io->work, kcryptd_io_read_work);
1004 queue_work(cc->io_queue, &io->work);
1005 }
1006
kcryptd_io_write(struct dm_crypt_io * io)1007 static void kcryptd_io_write(struct dm_crypt_io *io)
1008 {
1009 struct bio *clone = io->ctx.bio_out;
1010
1011 generic_make_request(clone);
1012 }
1013
1014 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1015
dmcrypt_write(void * data)1016 static int dmcrypt_write(void *data)
1017 {
1018 struct crypt_config *cc = data;
1019 struct dm_crypt_io *io;
1020
1021 while (1) {
1022 struct rb_root write_tree;
1023 struct blk_plug plug;
1024
1025 DECLARE_WAITQUEUE(wait, current);
1026
1027 spin_lock_irq(&cc->write_thread_wait.lock);
1028 continue_locked:
1029
1030 if (!RB_EMPTY_ROOT(&cc->write_tree))
1031 goto pop_from_list;
1032
1033 __set_current_state(TASK_INTERRUPTIBLE);
1034 __add_wait_queue(&cc->write_thread_wait, &wait);
1035
1036 spin_unlock_irq(&cc->write_thread_wait.lock);
1037
1038 if (unlikely(kthread_should_stop())) {
1039 set_task_state(current, TASK_RUNNING);
1040 remove_wait_queue(&cc->write_thread_wait, &wait);
1041 break;
1042 }
1043
1044 schedule();
1045
1046 set_task_state(current, TASK_RUNNING);
1047 spin_lock_irq(&cc->write_thread_wait.lock);
1048 __remove_wait_queue(&cc->write_thread_wait, &wait);
1049 goto continue_locked;
1050
1051 pop_from_list:
1052 write_tree = cc->write_tree;
1053 cc->write_tree = RB_ROOT;
1054 spin_unlock_irq(&cc->write_thread_wait.lock);
1055
1056 BUG_ON(rb_parent(write_tree.rb_node));
1057
1058 /*
1059 * Note: we cannot walk the tree here with rb_next because
1060 * the structures may be freed when kcryptd_io_write is called.
1061 */
1062 blk_start_plug(&plug);
1063 do {
1064 io = crypt_io_from_node(rb_first(&write_tree));
1065 rb_erase(&io->rb_node, &write_tree);
1066 kcryptd_io_write(io);
1067 } while (!RB_EMPTY_ROOT(&write_tree));
1068 blk_finish_plug(&plug);
1069 }
1070 return 0;
1071 }
1072
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)1073 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1074 {
1075 struct bio *clone = io->ctx.bio_out;
1076 struct crypt_config *cc = io->cc;
1077 unsigned long flags;
1078 sector_t sector;
1079 struct rb_node **rbp, *parent;
1080
1081 if (unlikely(io->error < 0)) {
1082 crypt_free_buffer_pages(cc, clone);
1083 bio_put(clone);
1084 crypt_dec_pending(io);
1085 return;
1086 }
1087
1088 /* crypt_convert should have filled the clone bio */
1089 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1090
1091 clone->bi_sector = cc->start + io->sector;
1092
1093 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1094 rbp = &cc->write_tree.rb_node;
1095 parent = NULL;
1096 sector = io->sector;
1097 while (*rbp) {
1098 parent = *rbp;
1099 if (sector < crypt_io_from_node(parent)->sector)
1100 rbp = &(*rbp)->rb_left;
1101 else
1102 rbp = &(*rbp)->rb_right;
1103 }
1104 rb_link_node(&io->rb_node, parent, rbp);
1105 rb_insert_color(&io->rb_node, &cc->write_tree);
1106
1107 wake_up_locked(&cc->write_thread_wait);
1108 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1109 }
1110
kcryptd_crypt_write_convert(struct dm_crypt_io * io)1111 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1112 {
1113 struct crypt_config *cc = io->cc;
1114 struct bio *clone;
1115 int crypt_finished;
1116 sector_t sector = io->sector;
1117 int r;
1118
1119 /*
1120 * Prevent io from disappearing until this function completes.
1121 */
1122 crypt_inc_pending(io);
1123 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1124
1125 clone = crypt_alloc_buffer(io, io->base_bio->bi_size);
1126 if (unlikely(!clone)) {
1127 io->error = -EIO;
1128 goto dec;
1129 }
1130
1131 io->ctx.bio_out = clone;
1132
1133 sector += bio_sectors(clone);
1134
1135 crypt_inc_pending(io);
1136 r = crypt_convert(cc, &io->ctx);
1137 if (r)
1138 io->error = -EIO;
1139 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1140
1141 /* Encryption was already finished, submit io now */
1142 if (crypt_finished) {
1143 kcryptd_crypt_write_io_submit(io, 0);
1144 io->sector = sector;
1145 }
1146
1147 dec:
1148 crypt_dec_pending(io);
1149 }
1150
kcryptd_crypt_read_done(struct dm_crypt_io * io)1151 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1152 {
1153 crypt_dec_pending(io);
1154 }
1155
kcryptd_crypt_read_convert(struct dm_crypt_io * io)1156 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1157 {
1158 struct crypt_config *cc = io->cc;
1159 int r = 0;
1160
1161 crypt_inc_pending(io);
1162
1163 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1164 io->sector);
1165
1166 r = crypt_convert(cc, &io->ctx);
1167 if (r < 0)
1168 io->error = -EIO;
1169
1170 if (atomic_dec_and_test(&io->ctx.cc_pending))
1171 kcryptd_crypt_read_done(io);
1172
1173 crypt_dec_pending(io);
1174 }
1175
kcryptd_async_done(struct crypto_async_request * async_req,int error)1176 static void kcryptd_async_done(struct crypto_async_request *async_req,
1177 int error)
1178 {
1179 struct dm_crypt_request *dmreq = async_req->data;
1180 struct convert_context *ctx = dmreq->ctx;
1181 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1182 struct crypt_config *cc = io->cc;
1183
1184 if (error == -EINPROGRESS) {
1185 complete(&ctx->restart);
1186 return;
1187 }
1188
1189 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1190 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1191
1192 if (error < 0)
1193 io->error = -EIO;
1194
1195 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1196
1197 if (!atomic_dec_and_test(&ctx->cc_pending))
1198 return;
1199
1200 if (bio_data_dir(io->base_bio) == READ)
1201 kcryptd_crypt_read_done(io);
1202 else
1203 kcryptd_crypt_write_io_submit(io, 1);
1204 }
1205
kcryptd_crypt(struct work_struct * work)1206 static void kcryptd_crypt(struct work_struct *work)
1207 {
1208 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1209
1210 if (bio_data_dir(io->base_bio) == READ)
1211 kcryptd_crypt_read_convert(io);
1212 else
1213 kcryptd_crypt_write_convert(io);
1214 }
1215
kcryptd_queue_crypt(struct dm_crypt_io * io)1216 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1217 {
1218 struct crypt_config *cc = io->cc;
1219
1220 INIT_WORK(&io->work, kcryptd_crypt);
1221 queue_work(cc->crypt_queue, &io->work);
1222 }
1223
1224 /*
1225 * Decode key from its hex representation
1226 */
crypt_decode_key(u8 * key,char * hex,unsigned int size)1227 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1228 {
1229 char buffer[3];
1230 unsigned int i;
1231
1232 buffer[2] = '\0';
1233
1234 for (i = 0; i < size; i++) {
1235 buffer[0] = *hex++;
1236 buffer[1] = *hex++;
1237
1238 if (kstrtou8(buffer, 16, &key[i]))
1239 return -EINVAL;
1240 }
1241
1242 if (*hex != '\0')
1243 return -EINVAL;
1244
1245 return 0;
1246 }
1247
crypt_free_tfms(struct crypt_config * cc)1248 static void crypt_free_tfms(struct crypt_config *cc)
1249 {
1250 unsigned i;
1251
1252 if (!cc->tfms)
1253 return;
1254
1255 for (i = 0; i < cc->tfms_count; i++)
1256 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1257 crypto_free_ablkcipher(cc->tfms[i]);
1258 cc->tfms[i] = NULL;
1259 }
1260
1261 kfree(cc->tfms);
1262 cc->tfms = NULL;
1263 }
1264
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)1265 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1266 {
1267 unsigned i;
1268 int err;
1269
1270 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1271 GFP_KERNEL);
1272 if (!cc->tfms)
1273 return -ENOMEM;
1274
1275 for (i = 0; i < cc->tfms_count; i++) {
1276 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1277 if (IS_ERR(cc->tfms[i])) {
1278 err = PTR_ERR(cc->tfms[i]);
1279 crypt_free_tfms(cc);
1280 return err;
1281 }
1282 }
1283
1284 return 0;
1285 }
1286
crypt_setkey_allcpus(struct crypt_config * cc)1287 static int crypt_setkey_allcpus(struct crypt_config *cc)
1288 {
1289 unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1290 int err = 0, i, r;
1291
1292 for (i = 0; i < cc->tfms_count; i++) {
1293 r = crypto_ablkcipher_setkey(cc->tfms[i],
1294 cc->key + (i * subkey_size),
1295 subkey_size);
1296 if (r)
1297 err = r;
1298 }
1299
1300 return err;
1301 }
1302
crypt_set_key(struct crypt_config * cc,char * key)1303 static int crypt_set_key(struct crypt_config *cc, char *key)
1304 {
1305 int r = -EINVAL;
1306 int key_string_len = strlen(key);
1307
1308 /* The key size may not be changed. */
1309 if (cc->key_size != (key_string_len >> 1))
1310 goto out;
1311
1312 /* Hyphen (which gives a key_size of zero) means there is no key. */
1313 if (!cc->key_size && strcmp(key, "-"))
1314 goto out;
1315
1316 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1317 goto out;
1318
1319 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1320
1321 r = crypt_setkey_allcpus(cc);
1322
1323 out:
1324 /* Hex key string not needed after here, so wipe it. */
1325 memset(key, '0', key_string_len);
1326
1327 return r;
1328 }
1329
crypt_wipe_key(struct crypt_config * cc)1330 static int crypt_wipe_key(struct crypt_config *cc)
1331 {
1332 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1333 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1334
1335 return crypt_setkey_allcpus(cc);
1336 }
1337
crypt_dtr(struct dm_target * ti)1338 static void crypt_dtr(struct dm_target *ti)
1339 {
1340 struct crypt_config *cc = ti->private;
1341
1342 ti->private = NULL;
1343
1344 if (!cc)
1345 return;
1346
1347 if (cc->write_thread)
1348 kthread_stop(cc->write_thread);
1349
1350 if (cc->io_queue)
1351 destroy_workqueue(cc->io_queue);
1352 if (cc->crypt_queue)
1353 destroy_workqueue(cc->crypt_queue);
1354
1355 crypt_free_tfms(cc);
1356
1357 if (cc->bs)
1358 bioset_free(cc->bs);
1359
1360 if (cc->page_pool)
1361 mempool_destroy(cc->page_pool);
1362 if (cc->req_pool)
1363 mempool_destroy(cc->req_pool);
1364
1365 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1366 cc->iv_gen_ops->dtr(cc);
1367
1368 if (cc->dev)
1369 dm_put_device(ti, cc->dev);
1370
1371 kzfree(cc->cipher);
1372 kzfree(cc->cipher_string);
1373
1374 /* Must zero key material before freeing */
1375 kzfree(cc);
1376 }
1377
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)1378 static int crypt_ctr_cipher(struct dm_target *ti,
1379 char *cipher_in, char *key)
1380 {
1381 struct crypt_config *cc = ti->private;
1382 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1383 char *cipher_api = NULL;
1384 int ret = -EINVAL;
1385 char dummy;
1386
1387 /* Convert to crypto api definition? */
1388 if (strchr(cipher_in, '(')) {
1389 ti->error = "Bad cipher specification";
1390 return -EINVAL;
1391 }
1392
1393 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1394 if (!cc->cipher_string)
1395 goto bad_mem;
1396
1397 /*
1398 * Legacy dm-crypt cipher specification
1399 * cipher[:keycount]-mode-iv:ivopts
1400 */
1401 tmp = cipher_in;
1402 keycount = strsep(&tmp, "-");
1403 cipher = strsep(&keycount, ":");
1404
1405 if (!keycount)
1406 cc->tfms_count = 1;
1407 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1408 !is_power_of_2(cc->tfms_count)) {
1409 ti->error = "Bad cipher key count specification";
1410 return -EINVAL;
1411 }
1412 cc->key_parts = cc->tfms_count;
1413
1414 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1415 if (!cc->cipher)
1416 goto bad_mem;
1417
1418 chainmode = strsep(&tmp, "-");
1419 ivopts = strsep(&tmp, "-");
1420 ivmode = strsep(&ivopts, ":");
1421
1422 if (tmp)
1423 DMWARN("Ignoring unexpected additional cipher options");
1424
1425 /*
1426 * For compatibility with the original dm-crypt mapping format, if
1427 * only the cipher name is supplied, use cbc-plain.
1428 */
1429 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1430 chainmode = "cbc";
1431 ivmode = "plain";
1432 }
1433
1434 if (strcmp(chainmode, "ecb") && !ivmode) {
1435 ti->error = "IV mechanism required";
1436 return -EINVAL;
1437 }
1438
1439 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1440 if (!cipher_api)
1441 goto bad_mem;
1442
1443 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1444 "%s(%s)", chainmode, cipher);
1445 if (ret < 0) {
1446 kfree(cipher_api);
1447 goto bad_mem;
1448 }
1449
1450 /* Allocate cipher */
1451 ret = crypt_alloc_tfms(cc, cipher_api);
1452 if (ret < 0) {
1453 ti->error = "Error allocating crypto tfm";
1454 goto bad;
1455 }
1456
1457 /* Initialize and set key */
1458 ret = crypt_set_key(cc, key);
1459 if (ret < 0) {
1460 ti->error = "Error decoding and setting key";
1461 goto bad;
1462 }
1463
1464 /* Initialize IV */
1465 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1466 if (cc->iv_size)
1467 /* at least a 64 bit sector number should fit in our buffer */
1468 cc->iv_size = max(cc->iv_size,
1469 (unsigned int)(sizeof(u64) / sizeof(u8)));
1470 else if (ivmode) {
1471 DMWARN("Selected cipher does not support IVs");
1472 ivmode = NULL;
1473 }
1474
1475 /* Choose ivmode, see comments at iv code. */
1476 if (ivmode == NULL)
1477 cc->iv_gen_ops = NULL;
1478 else if (strcmp(ivmode, "plain") == 0)
1479 cc->iv_gen_ops = &crypt_iv_plain_ops;
1480 else if (strcmp(ivmode, "plain64") == 0)
1481 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1482 else if (strcmp(ivmode, "essiv") == 0)
1483 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1484 else if (strcmp(ivmode, "benbi") == 0)
1485 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1486 else if (strcmp(ivmode, "null") == 0)
1487 cc->iv_gen_ops = &crypt_iv_null_ops;
1488 else if (strcmp(ivmode, "lmk") == 0) {
1489 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1490 /* Version 2 and 3 is recognised according
1491 * to length of provided multi-key string.
1492 * If present (version 3), last key is used as IV seed.
1493 */
1494 if (cc->key_size % cc->key_parts)
1495 cc->key_parts++;
1496 } else {
1497 ret = -EINVAL;
1498 ti->error = "Invalid IV mode";
1499 goto bad;
1500 }
1501
1502 /* Allocate IV */
1503 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1504 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1505 if (ret < 0) {
1506 ti->error = "Error creating IV";
1507 goto bad;
1508 }
1509 }
1510
1511 /* Initialize IV (set keys for ESSIV etc) */
1512 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1513 ret = cc->iv_gen_ops->init(cc);
1514 if (ret < 0) {
1515 ti->error = "Error initialising IV";
1516 goto bad;
1517 }
1518 }
1519
1520 ret = 0;
1521 bad:
1522 kfree(cipher_api);
1523 return ret;
1524
1525 bad_mem:
1526 ti->error = "Cannot allocate cipher strings";
1527 return -ENOMEM;
1528 }
1529
1530 /*
1531 * Construct an encryption mapping:
1532 * <cipher> <key> <iv_offset> <dev_path> <start>
1533 */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1534 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1535 {
1536 struct crypt_config *cc;
1537 unsigned int key_size, opt_params;
1538 unsigned long long tmpll;
1539 int ret;
1540 size_t iv_size_padding;
1541 struct dm_arg_set as;
1542 const char *opt_string;
1543 char dummy;
1544
1545 static struct dm_arg _args[] = {
1546 {0, 1, "Invalid number of feature args"},
1547 };
1548
1549 if (argc < 5) {
1550 ti->error = "Not enough arguments";
1551 return -EINVAL;
1552 }
1553
1554 key_size = strlen(argv[1]) >> 1;
1555
1556 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1557 if (!cc) {
1558 ti->error = "Cannot allocate encryption context";
1559 return -ENOMEM;
1560 }
1561 cc->key_size = key_size;
1562
1563 ti->private = cc;
1564 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1565 if (ret < 0)
1566 goto bad;
1567
1568 cc->dmreq_start = sizeof(struct ablkcipher_request);
1569 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1570 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1571
1572 if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1573 /* Allocate the padding exactly */
1574 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1575 & crypto_ablkcipher_alignmask(any_tfm(cc));
1576 } else {
1577 /*
1578 * If the cipher requires greater alignment than kmalloc
1579 * alignment, we don't know the exact position of the
1580 * initialization vector. We must assume worst case.
1581 */
1582 iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1583 }
1584
1585 ret = -ENOMEM;
1586 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1587 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1588 if (!cc->req_pool) {
1589 ti->error = "Cannot allocate crypt request mempool";
1590 goto bad;
1591 }
1592
1593 cc->per_bio_data_size = ti->per_bio_data_size =
1594 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1595 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1596 ARCH_KMALLOC_MINALIGN);
1597
1598 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1599 if (!cc->page_pool) {
1600 ti->error = "Cannot allocate page mempool";
1601 goto bad;
1602 }
1603
1604 cc->bs = bioset_create(MIN_IOS, 0);
1605 if (!cc->bs) {
1606 ti->error = "Cannot allocate crypt bioset";
1607 goto bad;
1608 }
1609
1610 mutex_init(&cc->bio_alloc_lock);
1611
1612 ret = -EINVAL;
1613 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1614 ti->error = "Invalid iv_offset sector";
1615 goto bad;
1616 }
1617 cc->iv_offset = tmpll;
1618
1619 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1620 ti->error = "Device lookup failed";
1621 goto bad;
1622 }
1623
1624 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1625 ti->error = "Invalid device sector";
1626 goto bad;
1627 }
1628 cc->start = tmpll;
1629
1630 argv += 5;
1631 argc -= 5;
1632
1633 /* Optional parameters */
1634 if (argc) {
1635 as.argc = argc;
1636 as.argv = argv;
1637
1638 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1639 if (ret)
1640 goto bad;
1641
1642 opt_string = dm_shift_arg(&as);
1643
1644 if (opt_params == 1 && opt_string &&
1645 !strcasecmp(opt_string, "allow_discards"))
1646 ti->num_discard_bios = 1;
1647 else if (opt_params) {
1648 ret = -EINVAL;
1649 ti->error = "Invalid feature arguments";
1650 goto bad;
1651 }
1652 }
1653
1654 ret = -ENOMEM;
1655 cc->io_queue = alloc_workqueue("kcryptd_io",
1656 WQ_HIGHPRI |
1657 WQ_NON_REENTRANT|
1658 WQ_MEM_RECLAIM,
1659 1);
1660 if (!cc->io_queue) {
1661 ti->error = "Couldn't create kcryptd io queue";
1662 goto bad;
1663 }
1664
1665 cc->crypt_queue = alloc_workqueue("kcryptd",
1666 WQ_HIGHPRI |
1667 WQ_MEM_RECLAIM |
1668 WQ_UNBOUND, num_online_cpus());
1669 if (!cc->crypt_queue) {
1670 ti->error = "Couldn't create kcryptd queue";
1671 goto bad;
1672 }
1673
1674 init_waitqueue_head(&cc->write_thread_wait);
1675 cc->write_tree = RB_ROOT;
1676
1677 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1678 if (IS_ERR(cc->write_thread)) {
1679 ret = PTR_ERR(cc->write_thread);
1680 cc->write_thread = NULL;
1681 ti->error = "Couldn't spawn write thread";
1682 goto bad;
1683 }
1684 wake_up_process(cc->write_thread);
1685
1686 ti->num_flush_bios = 1;
1687 ti->discard_zeroes_data_unsupported = true;
1688
1689 return 0;
1690
1691 bad:
1692 crypt_dtr(ti);
1693 return ret;
1694 }
1695
crypt_map(struct dm_target * ti,struct bio * bio)1696 static int crypt_map(struct dm_target *ti, struct bio *bio)
1697 {
1698 struct dm_crypt_io *io;
1699 struct crypt_config *cc = ti->private;
1700
1701 /*
1702 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1703 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1704 * - for REQ_DISCARD caller must use flush if IO ordering matters
1705 */
1706 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1707 bio->bi_bdev = cc->dev->bdev;
1708 if (bio_sectors(bio))
1709 bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1710 return DM_MAPIO_REMAPPED;
1711 }
1712
1713 io = dm_per_bio_data(bio, cc->per_bio_data_size);
1714 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_sector));
1715 io->ctx.req = (struct ablkcipher_request *)(io + 1);
1716
1717 if (bio_data_dir(io->base_bio) == READ) {
1718 if (kcryptd_io_read(io, GFP_NOWAIT))
1719 kcryptd_queue_read(io);
1720 } else
1721 kcryptd_queue_crypt(io);
1722
1723 return DM_MAPIO_SUBMITTED;
1724 }
1725
crypt_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)1726 static void crypt_status(struct dm_target *ti, status_type_t type,
1727 unsigned status_flags, char *result, unsigned maxlen)
1728 {
1729 struct crypt_config *cc = ti->private;
1730 unsigned i, sz = 0;
1731
1732 switch (type) {
1733 case STATUSTYPE_INFO:
1734 result[0] = '\0';
1735 break;
1736
1737 case STATUSTYPE_TABLE:
1738 DMEMIT("%s ", cc->cipher_string);
1739
1740 if (cc->key_size > 0)
1741 for (i = 0; i < cc->key_size; i++)
1742 DMEMIT("%02x", cc->key[i]);
1743 else
1744 DMEMIT("-");
1745
1746 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1747 cc->dev->name, (unsigned long long)cc->start);
1748
1749 if (ti->num_discard_bios)
1750 DMEMIT(" 1 allow_discards");
1751
1752 break;
1753 }
1754 }
1755
crypt_postsuspend(struct dm_target * ti)1756 static void crypt_postsuspend(struct dm_target *ti)
1757 {
1758 struct crypt_config *cc = ti->private;
1759
1760 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1761 }
1762
crypt_preresume(struct dm_target * ti)1763 static int crypt_preresume(struct dm_target *ti)
1764 {
1765 struct crypt_config *cc = ti->private;
1766
1767 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1768 DMERR("aborting resume - crypt key is not set.");
1769 return -EAGAIN;
1770 }
1771
1772 return 0;
1773 }
1774
crypt_resume(struct dm_target * ti)1775 static void crypt_resume(struct dm_target *ti)
1776 {
1777 struct crypt_config *cc = ti->private;
1778
1779 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1780 }
1781
1782 /* Message interface
1783 * key set <key>
1784 * key wipe
1785 */
crypt_message(struct dm_target * ti,unsigned argc,char ** argv)1786 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1787 {
1788 struct crypt_config *cc = ti->private;
1789 int ret = -EINVAL;
1790
1791 if (argc < 2)
1792 goto error;
1793
1794 if (!strcasecmp(argv[0], "key")) {
1795 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1796 DMWARN("not suspended during key manipulation.");
1797 return -EINVAL;
1798 }
1799 if (argc == 3 && !strcasecmp(argv[1], "set")) {
1800 ret = crypt_set_key(cc, argv[2]);
1801 if (ret)
1802 return ret;
1803 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1804 ret = cc->iv_gen_ops->init(cc);
1805 return ret;
1806 }
1807 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1808 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1809 ret = cc->iv_gen_ops->wipe(cc);
1810 if (ret)
1811 return ret;
1812 }
1813 return crypt_wipe_key(cc);
1814 }
1815 }
1816
1817 error:
1818 DMWARN("unrecognised message received.");
1819 return -EINVAL;
1820 }
1821
crypt_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)1822 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1823 struct bio_vec *biovec, int max_size)
1824 {
1825 struct crypt_config *cc = ti->private;
1826 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1827
1828 if (!q->merge_bvec_fn)
1829 return max_size;
1830
1831 bvm->bi_bdev = cc->dev->bdev;
1832 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1833
1834 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1835 }
1836
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)1837 static int crypt_iterate_devices(struct dm_target *ti,
1838 iterate_devices_callout_fn fn, void *data)
1839 {
1840 struct crypt_config *cc = ti->private;
1841
1842 return fn(ti, cc->dev, cc->start, ti->len, data);
1843 }
1844
1845 static struct target_type crypt_target = {
1846 .name = "crypt",
1847 .version = {1, 12, 1},
1848 .module = THIS_MODULE,
1849 .ctr = crypt_ctr,
1850 .dtr = crypt_dtr,
1851 .map = crypt_map,
1852 .status = crypt_status,
1853 .postsuspend = crypt_postsuspend,
1854 .preresume = crypt_preresume,
1855 .resume = crypt_resume,
1856 .message = crypt_message,
1857 .merge = crypt_merge,
1858 .iterate_devices = crypt_iterate_devices,
1859 };
1860
dm_crypt_init(void)1861 static int __init dm_crypt_init(void)
1862 {
1863 int r;
1864
1865 r = dm_register_target(&crypt_target);
1866 if (r < 0)
1867 DMERR("register failed %d", r);
1868
1869 return r;
1870 }
1871
dm_crypt_exit(void)1872 static void __exit dm_crypt_exit(void)
1873 {
1874 dm_unregister_target(&crypt_target);
1875 }
1876
1877 module_init(dm_crypt_init);
1878 module_exit(dm_crypt_exit);
1879
1880 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1881 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1882 MODULE_LICENSE("GPL");
1883