1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX "thin"
20
21 /*
22 * Tunable constants
23 */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
31
32 /*
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
35 */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40 * Device id is restricted to 24 bits.
41 */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
47 *
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
53 * same data blocks.
54 *
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
57 *
58 * Let's say we write to a shared block in what was the origin. The
59 * steps are:
60 *
61 * i) plug io further to this physical block. (see bio_prison code).
62 *
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
65 *
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
68 *
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
76 *
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
79 *
80 * Steps (ii) and (iii) occur in parallel.
81 *
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
85 *
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
89 *
90 * - The snap mapping still points to the old block. As it would after
91 * the commit.
92 *
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
100 */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105 * Key building.
106 */
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
109 {
110 key->virtual = 0;
111 key->dev = dm_thin_dev_id(td);
112 key->block = b;
113 }
114
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
117 {
118 key->virtual = 1;
119 key->dev = dm_thin_dev_id(td);
120 key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
128 * devices.
129 */
130 struct dm_thin_new_mapping;
131
132 /*
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
134 */
135 enum pool_mode {
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
139 };
140
141 struct pool_features {
142 enum pool_mode mode;
143
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154 struct list_head list;
155 struct dm_target *ti; /* Only set if a pool target is bound */
156
157 struct mapped_device *pool_md;
158 struct block_device *md_dev;
159 struct dm_pool_metadata *pmd;
160
161 dm_block_t low_water_blocks;
162 uint32_t sectors_per_block;
163 int sectors_per_block_shift;
164
165 struct pool_features pf;
166 unsigned low_water_triggered:1; /* A dm event has been sent */
167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
168
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
171
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
175
176 unsigned long last_commit_jiffies;
177 unsigned ref_count;
178
179 spinlock_t lock;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
184
185 struct bio_list retry_on_resume_list;
186
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
189
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
192
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
195
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204 * Target context for a pool.
205 */
206 struct pool_c {
207 struct dm_target *ti;
208 struct pool *pool;
209 struct dm_dev *data_dev;
210 struct dm_dev *metadata_dev;
211 struct dm_target_callbacks callbacks;
212
213 dm_block_t low_water_blocks;
214 struct pool_features requested_pf; /* Features requested during table load */
215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219 * Target context for a thin.
220 */
221 struct thin_c {
222 struct dm_dev *pool_dev;
223 struct dm_dev *origin_dev;
224 dm_thin_id dev_id;
225
226 struct pool *pool;
227 struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233 * wake_worker() is used when new work is queued and when pool_resume is
234 * ready to continue deferred IO processing.
235 */
wake_worker(struct pool * pool)236 static void wake_worker(struct pool *pool)
237 {
238 queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 struct dm_bio_prison_cell **cell_result)
245 {
246 int r;
247 struct dm_bio_prison_cell *cell_prealloc;
248
249 /*
250 * Allocate a cell from the prison's mempool.
251 * This might block but it can't fail.
252 */
253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 if (r)
257 /*
258 * We reused an old cell; we can get rid of
259 * the new one.
260 */
261 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263 return r;
264 }
265
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)266 static void cell_release(struct pool *pool,
267 struct dm_bio_prison_cell *cell,
268 struct bio_list *bios)
269 {
270 dm_cell_release(pool->prison, cell, bios);
271 dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)274 static void cell_release_no_holder(struct pool *pool,
275 struct dm_bio_prison_cell *cell,
276 struct bio_list *bios)
277 {
278 dm_cell_release_no_holder(pool->prison, cell, bios);
279 dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
cell_defer_no_holder_no_free(struct thin_c * tc,struct dm_bio_prison_cell * cell)282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 struct dm_bio_prison_cell *cell)
284 {
285 struct pool *pool = tc->pool;
286 unsigned long flags;
287
288 spin_lock_irqsave(&pool->lock, flags);
289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 spin_unlock_irqrestore(&pool->lock, flags);
291
292 wake_worker(pool);
293 }
294
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)295 static void cell_error(struct pool *pool,
296 struct dm_bio_prison_cell *cell)
297 {
298 dm_cell_error(pool->prison, cell);
299 dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305 * A global list of pools that uses a struct mapped_device as a key.
306 */
307 static struct dm_thin_pool_table {
308 struct mutex mutex;
309 struct list_head pools;
310 } dm_thin_pool_table;
311
pool_table_init(void)312 static void pool_table_init(void)
313 {
314 mutex_init(&dm_thin_pool_table.mutex);
315 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
__pool_table_insert(struct pool * pool)318 static void __pool_table_insert(struct pool *pool)
319 {
320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
__pool_table_remove(struct pool * pool)324 static void __pool_table_remove(struct pool *pool)
325 {
326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 list_del(&pool->list);
328 }
329
__pool_table_lookup(struct mapped_device * md)330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 struct pool *pool = NULL, *tmp;
333
334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 if (tmp->pool_md == md) {
338 pool = tmp;
339 break;
340 }
341 }
342
343 return pool;
344 }
345
__pool_table_lookup_metadata_dev(struct block_device * md_dev)346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 struct pool *pool = NULL, *tmp;
349
350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 if (tmp->md_dev == md_dev) {
354 pool = tmp;
355 break;
356 }
357 }
358
359 return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365 struct thin_c *tc;
366 struct dm_deferred_entry *shared_read_entry;
367 struct dm_deferred_entry *all_io_entry;
368 struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
__requeue_bio_list(struct thin_c * tc,struct bio_list * master)371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 struct bio *bio;
374 struct bio_list bios;
375
376 bio_list_init(&bios);
377 bio_list_merge(&bios, master);
378 bio_list_init(master);
379
380 while ((bio = bio_list_pop(&bios))) {
381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383 if (h->tc == tc)
384 bio_endio(bio, DM_ENDIO_REQUEUE);
385 else
386 bio_list_add(master, bio);
387 }
388 }
389
requeue_io(struct thin_c * tc)390 static void requeue_io(struct thin_c *tc)
391 {
392 struct pool *pool = tc->pool;
393 unsigned long flags;
394
395 spin_lock_irqsave(&pool->lock, flags);
396 __requeue_bio_list(tc, &pool->deferred_bios);
397 __requeue_bio_list(tc, &pool->retry_on_resume_list);
398 spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402 * This section of code contains the logic for processing a thin device's IO.
403 * Much of the code depends on pool object resources (lists, workqueues, etc)
404 * but most is exclusively called from the thin target rather than the thin-pool
405 * target.
406 */
407
block_size_is_power_of_two(struct pool * pool)408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 return pool->sectors_per_block_shift >= 0;
411 }
412
get_bio_block(struct thin_c * tc,struct bio * bio)413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 struct pool *pool = tc->pool;
416 sector_t block_nr = bio->bi_sector;
417
418 if (block_size_is_power_of_two(pool))
419 block_nr >>= pool->sectors_per_block_shift;
420 else
421 (void) sector_div(block_nr, pool->sectors_per_block);
422
423 return block_nr;
424 }
425
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 struct pool *pool = tc->pool;
429 sector_t bi_sector = bio->bi_sector;
430
431 bio->bi_bdev = tc->pool_dev->bdev;
432 if (block_size_is_power_of_two(pool))
433 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 (bi_sector & (pool->sectors_per_block - 1));
435 else
436 bio->bi_sector = (block * pool->sectors_per_block) +
437 sector_div(bi_sector, pool->sectors_per_block);
438 }
439
remap_to_origin(struct thin_c * tc,struct bio * bio)440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
bio_triggers_commit(struct thin_c * tc,struct bio * bio)445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 dm_thin_changed_this_transaction(tc->td);
449 }
450
inc_all_io_entry(struct pool * pool,struct bio * bio)451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 struct dm_thin_endio_hook *h;
454
455 if (bio->bi_rw & REQ_DISCARD)
456 return;
457
458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
issue(struct thin_c * tc,struct bio * bio)462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 struct pool *pool = tc->pool;
465 unsigned long flags;
466
467 if (!bio_triggers_commit(tc, bio)) {
468 generic_make_request(bio);
469 return;
470 }
471
472 /*
473 * Complete bio with an error if earlier I/O caused changes to
474 * the metadata that can't be committed e.g, due to I/O errors
475 * on the metadata device.
476 */
477 if (dm_thin_aborted_changes(tc->td)) {
478 bio_io_error(bio);
479 return;
480 }
481
482 /*
483 * Batch together any bios that trigger commits and then issue a
484 * single commit for them in process_deferred_bios().
485 */
486 spin_lock_irqsave(&pool->lock, flags);
487 bio_list_add(&pool->deferred_flush_bios, bio);
488 spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 remap_to_origin(tc, bio);
494 issue(tc, bio);
495 }
496
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 dm_block_t block)
499 {
500 remap(tc, bio, block);
501 issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507 * Bio endio functions.
508 */
509 struct dm_thin_new_mapping {
510 struct list_head list;
511
512 unsigned quiesced:1;
513 unsigned prepared:1;
514 unsigned pass_discard:1;
515
516 struct thin_c *tc;
517 dm_block_t virt_block;
518 dm_block_t data_block;
519 struct dm_bio_prison_cell *cell, *cell2;
520 int err;
521
522 /*
523 * If the bio covers the whole area of a block then we can avoid
524 * zeroing or copying. Instead this bio is hooked. The bio will
525 * still be in the cell, so care has to be taken to avoid issuing
526 * the bio twice.
527 */
528 struct bio *bio;
529 bio_end_io_t *saved_bi_end_io;
530 };
531
__maybe_add_mapping(struct dm_thin_new_mapping * m)532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 struct pool *pool = m->tc->pool;
535
536 if (m->quiesced && m->prepared) {
537 list_add(&m->list, &pool->prepared_mappings);
538 wake_worker(pool);
539 }
540 }
541
copy_complete(int read_err,unsigned long write_err,void * context)542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 unsigned long flags;
545 struct dm_thin_new_mapping *m = context;
546 struct pool *pool = m->tc->pool;
547
548 m->err = read_err || write_err ? -EIO : 0;
549
550 spin_lock_irqsave(&pool->lock, flags);
551 m->prepared = 1;
552 __maybe_add_mapping(m);
553 spin_unlock_irqrestore(&pool->lock, flags);
554 }
555
overwrite_endio(struct bio * bio,int err)556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 unsigned long flags;
559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 struct pool *pool = m->tc->pool;
562
563 m->err = err;
564
565 spin_lock_irqsave(&pool->lock, flags);
566 m->prepared = 1;
567 __maybe_add_mapping(m);
568 spin_unlock_irqrestore(&pool->lock, flags);
569 }
570
571 /*----------------------------------------------------------------*/
572
573 /*
574 * Workqueue.
575 */
576
577 /*
578 * Prepared mapping jobs.
579 */
580
581 /*
582 * This sends the bios in the cell back to the deferred_bios list.
583 */
cell_defer(struct thin_c * tc,struct dm_bio_prison_cell * cell)584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 struct pool *pool = tc->pool;
587 unsigned long flags;
588
589 spin_lock_irqsave(&pool->lock, flags);
590 cell_release(pool, cell, &pool->deferred_bios);
591 spin_unlock_irqrestore(&tc->pool->lock, flags);
592
593 wake_worker(pool);
594 }
595
596 /*
597 * Same as cell_defer above, except it omits the original holder of the cell.
598 */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 struct pool *pool = tc->pool;
602 unsigned long flags;
603
604 spin_lock_irqsave(&pool->lock, flags);
605 cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 spin_unlock_irqrestore(&pool->lock, flags);
607
608 wake_worker(pool);
609 }
610
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 if (m->bio)
614 m->bio->bi_end_io = m->saved_bi_end_io;
615 cell_error(m->tc->pool, m->cell);
616 list_del(&m->list);
617 mempool_free(m, m->tc->pool->mapping_pool);
618 }
619
process_prepared_mapping(struct dm_thin_new_mapping * m)620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 struct thin_c *tc = m->tc;
623 struct pool *pool = tc->pool;
624 struct bio *bio;
625 int r;
626
627 bio = m->bio;
628 if (bio)
629 bio->bi_end_io = m->saved_bi_end_io;
630
631 if (m->err) {
632 cell_error(pool, m->cell);
633 goto out;
634 }
635
636 /*
637 * Commit the prepared block into the mapping btree.
638 * Any I/O for this block arriving after this point will get
639 * remapped to it directly.
640 */
641 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 if (r) {
643 DMERR_LIMIT("dm_thin_insert_block() failed");
644 cell_error(pool, m->cell);
645 goto out;
646 }
647
648 /*
649 * Release any bios held while the block was being provisioned.
650 * If we are processing a write bio that completely covers the block,
651 * we already processed it so can ignore it now when processing
652 * the bios in the cell.
653 */
654 if (bio) {
655 cell_defer_no_holder(tc, m->cell);
656 bio_endio(bio, 0);
657 } else
658 cell_defer(tc, m->cell);
659
660 out:
661 list_del(&m->list);
662 mempool_free(m, pool->mapping_pool);
663 }
664
process_prepared_discard_fail(struct dm_thin_new_mapping * m)665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
666 {
667 struct thin_c *tc = m->tc;
668
669 bio_io_error(m->bio);
670 cell_defer_no_holder(tc, m->cell);
671 cell_defer_no_holder(tc, m->cell2);
672 mempool_free(m, tc->pool->mapping_pool);
673 }
674
process_prepared_discard_passdown(struct dm_thin_new_mapping * m)675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
676 {
677 struct thin_c *tc = m->tc;
678
679 inc_all_io_entry(tc->pool, m->bio);
680 cell_defer_no_holder(tc, m->cell);
681 cell_defer_no_holder(tc, m->cell2);
682
683 if (m->pass_discard)
684 remap_and_issue(tc, m->bio, m->data_block);
685 else
686 bio_endio(m->bio, 0);
687
688 mempool_free(m, tc->pool->mapping_pool);
689 }
690
process_prepared_discard(struct dm_thin_new_mapping * m)691 static void process_prepared_discard(struct dm_thin_new_mapping *m)
692 {
693 int r;
694 struct thin_c *tc = m->tc;
695
696 r = dm_thin_remove_block(tc->td, m->virt_block);
697 if (r)
698 DMERR_LIMIT("dm_thin_remove_block() failed");
699
700 process_prepared_discard_passdown(m);
701 }
702
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)703 static void process_prepared(struct pool *pool, struct list_head *head,
704 process_mapping_fn *fn)
705 {
706 unsigned long flags;
707 struct list_head maps;
708 struct dm_thin_new_mapping *m, *tmp;
709
710 INIT_LIST_HEAD(&maps);
711 spin_lock_irqsave(&pool->lock, flags);
712 list_splice_init(head, &maps);
713 spin_unlock_irqrestore(&pool->lock, flags);
714
715 list_for_each_entry_safe(m, tmp, &maps, list)
716 (*fn)(m);
717 }
718
719 /*
720 * Deferred bio jobs.
721 */
io_overlaps_block(struct pool * pool,struct bio * bio)722 static int io_overlaps_block(struct pool *pool, struct bio *bio)
723 {
724 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
725 }
726
io_overwrites_block(struct pool * pool,struct bio * bio)727 static int io_overwrites_block(struct pool *pool, struct bio *bio)
728 {
729 return (bio_data_dir(bio) == WRITE) &&
730 io_overlaps_block(pool, bio);
731 }
732
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
734 bio_end_io_t *fn)
735 {
736 *save = bio->bi_end_io;
737 bio->bi_end_io = fn;
738 }
739
ensure_next_mapping(struct pool * pool)740 static int ensure_next_mapping(struct pool *pool)
741 {
742 if (pool->next_mapping)
743 return 0;
744
745 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
746
747 return pool->next_mapping ? 0 : -ENOMEM;
748 }
749
get_next_mapping(struct pool * pool)750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
751 {
752 struct dm_thin_new_mapping *r = pool->next_mapping;
753
754 BUG_ON(!pool->next_mapping);
755
756 pool->next_mapping = NULL;
757
758 return r;
759 }
760
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
762 struct dm_dev *origin, dm_block_t data_origin,
763 dm_block_t data_dest,
764 struct dm_bio_prison_cell *cell, struct bio *bio)
765 {
766 int r;
767 struct pool *pool = tc->pool;
768 struct dm_thin_new_mapping *m = get_next_mapping(pool);
769
770 INIT_LIST_HEAD(&m->list);
771 m->quiesced = 0;
772 m->prepared = 0;
773 m->tc = tc;
774 m->virt_block = virt_block;
775 m->data_block = data_dest;
776 m->cell = cell;
777 m->err = 0;
778 m->bio = NULL;
779
780 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
781 m->quiesced = 1;
782
783 /*
784 * IO to pool_dev remaps to the pool target's data_dev.
785 *
786 * If the whole block of data is being overwritten, we can issue the
787 * bio immediately. Otherwise we use kcopyd to clone the data first.
788 */
789 if (io_overwrites_block(pool, bio)) {
790 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
791
792 h->overwrite_mapping = m;
793 m->bio = bio;
794 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
795 inc_all_io_entry(pool, bio);
796 remap_and_issue(tc, bio, data_dest);
797 } else {
798 struct dm_io_region from, to;
799
800 from.bdev = origin->bdev;
801 from.sector = data_origin * pool->sectors_per_block;
802 from.count = pool->sectors_per_block;
803
804 to.bdev = tc->pool_dev->bdev;
805 to.sector = data_dest * pool->sectors_per_block;
806 to.count = pool->sectors_per_block;
807
808 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
809 0, copy_complete, m);
810 if (r < 0) {
811 mempool_free(m, pool->mapping_pool);
812 DMERR_LIMIT("dm_kcopyd_copy() failed");
813 cell_error(pool, cell);
814 }
815 }
816 }
817
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
819 dm_block_t data_origin, dm_block_t data_dest,
820 struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822 schedule_copy(tc, virt_block, tc->pool_dev,
823 data_origin, data_dest, cell, bio);
824 }
825
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
827 dm_block_t data_dest,
828 struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830 schedule_copy(tc, virt_block, tc->origin_dev,
831 virt_block, data_dest, cell, bio);
832 }
833
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
835 dm_block_t data_block, struct dm_bio_prison_cell *cell,
836 struct bio *bio)
837 {
838 struct pool *pool = tc->pool;
839 struct dm_thin_new_mapping *m = get_next_mapping(pool);
840
841 INIT_LIST_HEAD(&m->list);
842 m->quiesced = 1;
843 m->prepared = 0;
844 m->tc = tc;
845 m->virt_block = virt_block;
846 m->data_block = data_block;
847 m->cell = cell;
848 m->err = 0;
849 m->bio = NULL;
850
851 /*
852 * If the whole block of data is being overwritten or we are not
853 * zeroing pre-existing data, we can issue the bio immediately.
854 * Otherwise we use kcopyd to zero the data first.
855 */
856 if (!pool->pf.zero_new_blocks)
857 process_prepared_mapping(m);
858
859 else if (io_overwrites_block(pool, bio)) {
860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861
862 h->overwrite_mapping = m;
863 m->bio = bio;
864 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
865 inc_all_io_entry(pool, bio);
866 remap_and_issue(tc, bio, data_block);
867 } else {
868 int r;
869 struct dm_io_region to;
870
871 to.bdev = tc->pool_dev->bdev;
872 to.sector = data_block * pool->sectors_per_block;
873 to.count = pool->sectors_per_block;
874
875 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
876 if (r < 0) {
877 mempool_free(m, pool->mapping_pool);
878 DMERR_LIMIT("dm_kcopyd_zero() failed");
879 cell_error(pool, cell);
880 }
881 }
882 }
883
commit(struct pool * pool)884 static int commit(struct pool *pool)
885 {
886 int r;
887
888 r = dm_pool_commit_metadata(pool->pmd);
889 if (r)
890 DMERR_LIMIT("commit failed: error = %d", r);
891
892 return r;
893 }
894
895 /*
896 * A non-zero return indicates read_only or fail_io mode.
897 * Many callers don't care about the return value.
898 */
commit_or_fallback(struct pool * pool)899 static int commit_or_fallback(struct pool *pool)
900 {
901 int r;
902
903 if (get_pool_mode(pool) != PM_WRITE)
904 return -EINVAL;
905
906 r = commit(pool);
907 if (r)
908 set_pool_mode(pool, PM_READ_ONLY);
909
910 return r;
911 }
912
alloc_data_block(struct thin_c * tc,dm_block_t * result)913 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
914 {
915 int r;
916 dm_block_t free_blocks;
917 unsigned long flags;
918 struct pool *pool = tc->pool;
919
920 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
921 if (r)
922 return r;
923
924 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
925 DMWARN("%s: reached low water mark for data device: sending event.",
926 dm_device_name(pool->pool_md));
927 spin_lock_irqsave(&pool->lock, flags);
928 pool->low_water_triggered = 1;
929 spin_unlock_irqrestore(&pool->lock, flags);
930 dm_table_event(pool->ti->table);
931 }
932
933 if (!free_blocks) {
934 if (pool->no_free_space)
935 return -ENOSPC;
936 else {
937 /*
938 * Try to commit to see if that will free up some
939 * more space.
940 */
941 (void) commit_or_fallback(pool);
942
943 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944 if (r)
945 return r;
946
947 /*
948 * If we still have no space we set a flag to avoid
949 * doing all this checking and return -ENOSPC.
950 */
951 if (!free_blocks) {
952 DMWARN("%s: no free space available.",
953 dm_device_name(pool->pool_md));
954 spin_lock_irqsave(&pool->lock, flags);
955 pool->no_free_space = 1;
956 spin_unlock_irqrestore(&pool->lock, flags);
957 return -ENOSPC;
958 }
959 }
960 }
961
962 r = dm_pool_alloc_data_block(pool->pmd, result);
963 if (r)
964 return r;
965
966 return 0;
967 }
968
969 /*
970 * If we have run out of space, queue bios until the device is
971 * resumed, presumably after having been reloaded with more space.
972 */
retry_on_resume(struct bio * bio)973 static void retry_on_resume(struct bio *bio)
974 {
975 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
976 struct thin_c *tc = h->tc;
977 struct pool *pool = tc->pool;
978 unsigned long flags;
979
980 spin_lock_irqsave(&pool->lock, flags);
981 bio_list_add(&pool->retry_on_resume_list, bio);
982 spin_unlock_irqrestore(&pool->lock, flags);
983 }
984
no_space(struct pool * pool,struct dm_bio_prison_cell * cell)985 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
986 {
987 struct bio *bio;
988 struct bio_list bios;
989
990 bio_list_init(&bios);
991 cell_release(pool, cell, &bios);
992
993 while ((bio = bio_list_pop(&bios)))
994 retry_on_resume(bio);
995 }
996
process_discard(struct thin_c * tc,struct bio * bio)997 static void process_discard(struct thin_c *tc, struct bio *bio)
998 {
999 int r;
1000 unsigned long flags;
1001 struct pool *pool = tc->pool;
1002 struct dm_bio_prison_cell *cell, *cell2;
1003 struct dm_cell_key key, key2;
1004 dm_block_t block = get_bio_block(tc, bio);
1005 struct dm_thin_lookup_result lookup_result;
1006 struct dm_thin_new_mapping *m;
1007
1008 build_virtual_key(tc->td, block, &key);
1009 if (bio_detain(tc->pool, &key, bio, &cell))
1010 return;
1011
1012 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1013 switch (r) {
1014 case 0:
1015 /*
1016 * Check nobody is fiddling with this pool block. This can
1017 * happen if someone's in the process of breaking sharing
1018 * on this block.
1019 */
1020 build_data_key(tc->td, lookup_result.block, &key2);
1021 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1022 cell_defer_no_holder(tc, cell);
1023 break;
1024 }
1025
1026 if (io_overlaps_block(pool, bio)) {
1027 /*
1028 * IO may still be going to the destination block. We must
1029 * quiesce before we can do the removal.
1030 */
1031 m = get_next_mapping(pool);
1032 m->tc = tc;
1033 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1034 m->virt_block = block;
1035 m->data_block = lookup_result.block;
1036 m->cell = cell;
1037 m->cell2 = cell2;
1038 m->err = 0;
1039 m->bio = bio;
1040
1041 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1042 spin_lock_irqsave(&pool->lock, flags);
1043 list_add(&m->list, &pool->prepared_discards);
1044 spin_unlock_irqrestore(&pool->lock, flags);
1045 wake_worker(pool);
1046 }
1047 } else {
1048 inc_all_io_entry(pool, bio);
1049 cell_defer_no_holder(tc, cell);
1050 cell_defer_no_holder(tc, cell2);
1051
1052 /*
1053 * The DM core makes sure that the discard doesn't span
1054 * a block boundary. So we submit the discard of a
1055 * partial block appropriately.
1056 */
1057 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1058 remap_and_issue(tc, bio, lookup_result.block);
1059 else
1060 bio_endio(bio, 0);
1061 }
1062 break;
1063
1064 case -ENODATA:
1065 /*
1066 * It isn't provisioned, just forget it.
1067 */
1068 cell_defer_no_holder(tc, cell);
1069 bio_endio(bio, 0);
1070 break;
1071
1072 default:
1073 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1074 __func__, r);
1075 cell_defer_no_holder(tc, cell);
1076 bio_io_error(bio);
1077 break;
1078 }
1079 }
1080
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1081 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1082 struct dm_cell_key *key,
1083 struct dm_thin_lookup_result *lookup_result,
1084 struct dm_bio_prison_cell *cell)
1085 {
1086 int r;
1087 dm_block_t data_block;
1088
1089 r = alloc_data_block(tc, &data_block);
1090 switch (r) {
1091 case 0:
1092 schedule_internal_copy(tc, block, lookup_result->block,
1093 data_block, cell, bio);
1094 break;
1095
1096 case -ENOSPC:
1097 no_space(tc->pool, cell);
1098 break;
1099
1100 default:
1101 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1102 __func__, r);
1103 cell_error(tc->pool, cell);
1104 break;
1105 }
1106 }
1107
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result)1108 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1109 dm_block_t block,
1110 struct dm_thin_lookup_result *lookup_result)
1111 {
1112 struct dm_bio_prison_cell *cell;
1113 struct pool *pool = tc->pool;
1114 struct dm_cell_key key;
1115
1116 /*
1117 * If cell is already occupied, then sharing is already in the process
1118 * of being broken so we have nothing further to do here.
1119 */
1120 build_data_key(tc->td, lookup_result->block, &key);
1121 if (bio_detain(pool, &key, bio, &cell))
1122 return;
1123
1124 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1125 break_sharing(tc, bio, block, &key, lookup_result, cell);
1126 else {
1127 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1128
1129 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1130 inc_all_io_entry(pool, bio);
1131 cell_defer_no_holder(tc, cell);
1132
1133 remap_and_issue(tc, bio, lookup_result->block);
1134 }
1135 }
1136
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1137 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1138 struct dm_bio_prison_cell *cell)
1139 {
1140 int r;
1141 dm_block_t data_block;
1142 struct pool *pool = tc->pool;
1143
1144 /*
1145 * Remap empty bios (flushes) immediately, without provisioning.
1146 */
1147 if (!bio->bi_size) {
1148 inc_all_io_entry(pool, bio);
1149 cell_defer_no_holder(tc, cell);
1150
1151 remap_and_issue(tc, bio, 0);
1152 return;
1153 }
1154
1155 /*
1156 * Fill read bios with zeroes and complete them immediately.
1157 */
1158 if (bio_data_dir(bio) == READ) {
1159 zero_fill_bio(bio);
1160 cell_defer_no_holder(tc, cell);
1161 bio_endio(bio, 0);
1162 return;
1163 }
1164
1165 r = alloc_data_block(tc, &data_block);
1166 switch (r) {
1167 case 0:
1168 if (tc->origin_dev)
1169 schedule_external_copy(tc, block, data_block, cell, bio);
1170 else
1171 schedule_zero(tc, block, data_block, cell, bio);
1172 break;
1173
1174 case -ENOSPC:
1175 no_space(pool, cell);
1176 break;
1177
1178 default:
1179 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1180 __func__, r);
1181 set_pool_mode(pool, PM_READ_ONLY);
1182 cell_error(pool, cell);
1183 break;
1184 }
1185 }
1186
process_bio(struct thin_c * tc,struct bio * bio)1187 static void process_bio(struct thin_c *tc, struct bio *bio)
1188 {
1189 int r;
1190 struct pool *pool = tc->pool;
1191 dm_block_t block = get_bio_block(tc, bio);
1192 struct dm_bio_prison_cell *cell;
1193 struct dm_cell_key key;
1194 struct dm_thin_lookup_result lookup_result;
1195
1196 /*
1197 * If cell is already occupied, then the block is already
1198 * being provisioned so we have nothing further to do here.
1199 */
1200 build_virtual_key(tc->td, block, &key);
1201 if (bio_detain(pool, &key, bio, &cell))
1202 return;
1203
1204 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1205 switch (r) {
1206 case 0:
1207 if (lookup_result.shared) {
1208 process_shared_bio(tc, bio, block, &lookup_result);
1209 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1210 } else {
1211 inc_all_io_entry(pool, bio);
1212 cell_defer_no_holder(tc, cell);
1213
1214 remap_and_issue(tc, bio, lookup_result.block);
1215 }
1216 break;
1217
1218 case -ENODATA:
1219 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1220 inc_all_io_entry(pool, bio);
1221 cell_defer_no_holder(tc, cell);
1222
1223 remap_to_origin_and_issue(tc, bio);
1224 } else
1225 provision_block(tc, bio, block, cell);
1226 break;
1227
1228 default:
1229 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1230 __func__, r);
1231 cell_defer_no_holder(tc, cell);
1232 bio_io_error(bio);
1233 break;
1234 }
1235 }
1236
process_bio_read_only(struct thin_c * tc,struct bio * bio)1237 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1238 {
1239 int r;
1240 int rw = bio_data_dir(bio);
1241 dm_block_t block = get_bio_block(tc, bio);
1242 struct dm_thin_lookup_result lookup_result;
1243
1244 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1245 switch (r) {
1246 case 0:
1247 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1248 bio_io_error(bio);
1249 else {
1250 inc_all_io_entry(tc->pool, bio);
1251 remap_and_issue(tc, bio, lookup_result.block);
1252 }
1253 break;
1254
1255 case -ENODATA:
1256 if (rw != READ) {
1257 bio_io_error(bio);
1258 break;
1259 }
1260
1261 if (tc->origin_dev) {
1262 inc_all_io_entry(tc->pool, bio);
1263 remap_to_origin_and_issue(tc, bio);
1264 break;
1265 }
1266
1267 zero_fill_bio(bio);
1268 bio_endio(bio, 0);
1269 break;
1270
1271 default:
1272 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1273 __func__, r);
1274 bio_io_error(bio);
1275 break;
1276 }
1277 }
1278
process_bio_fail(struct thin_c * tc,struct bio * bio)1279 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1280 {
1281 bio_io_error(bio);
1282 }
1283
1284 /*
1285 * FIXME: should we also commit due to size of transaction, measured in
1286 * metadata blocks?
1287 */
need_commit_due_to_time(struct pool * pool)1288 static int need_commit_due_to_time(struct pool *pool)
1289 {
1290 return jiffies < pool->last_commit_jiffies ||
1291 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1292 }
1293
process_deferred_bios(struct pool * pool)1294 static void process_deferred_bios(struct pool *pool)
1295 {
1296 unsigned long flags;
1297 struct bio *bio;
1298 struct bio_list bios;
1299
1300 bio_list_init(&bios);
1301
1302 spin_lock_irqsave(&pool->lock, flags);
1303 bio_list_merge(&bios, &pool->deferred_bios);
1304 bio_list_init(&pool->deferred_bios);
1305 spin_unlock_irqrestore(&pool->lock, flags);
1306
1307 while ((bio = bio_list_pop(&bios))) {
1308 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1309 struct thin_c *tc = h->tc;
1310
1311 /*
1312 * If we've got no free new_mapping structs, and processing
1313 * this bio might require one, we pause until there are some
1314 * prepared mappings to process.
1315 */
1316 if (ensure_next_mapping(pool)) {
1317 spin_lock_irqsave(&pool->lock, flags);
1318 bio_list_merge(&pool->deferred_bios, &bios);
1319 spin_unlock_irqrestore(&pool->lock, flags);
1320
1321 break;
1322 }
1323
1324 if (bio->bi_rw & REQ_DISCARD)
1325 pool->process_discard(tc, bio);
1326 else
1327 pool->process_bio(tc, bio);
1328 }
1329
1330 /*
1331 * If there are any deferred flush bios, we must commit
1332 * the metadata before issuing them.
1333 */
1334 bio_list_init(&bios);
1335 spin_lock_irqsave(&pool->lock, flags);
1336 bio_list_merge(&bios, &pool->deferred_flush_bios);
1337 bio_list_init(&pool->deferred_flush_bios);
1338 spin_unlock_irqrestore(&pool->lock, flags);
1339
1340 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1341 return;
1342
1343 if (commit_or_fallback(pool)) {
1344 while ((bio = bio_list_pop(&bios)))
1345 bio_io_error(bio);
1346 return;
1347 }
1348 pool->last_commit_jiffies = jiffies;
1349
1350 while ((bio = bio_list_pop(&bios)))
1351 generic_make_request(bio);
1352 }
1353
do_worker(struct work_struct * ws)1354 static void do_worker(struct work_struct *ws)
1355 {
1356 struct pool *pool = container_of(ws, struct pool, worker);
1357
1358 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1359 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1360 process_deferred_bios(pool);
1361 }
1362
1363 /*
1364 * We want to commit periodically so that not too much
1365 * unwritten data builds up.
1366 */
do_waker(struct work_struct * ws)1367 static void do_waker(struct work_struct *ws)
1368 {
1369 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1370 wake_worker(pool);
1371 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1372 }
1373
1374 /*----------------------------------------------------------------*/
1375
get_pool_mode(struct pool * pool)1376 static enum pool_mode get_pool_mode(struct pool *pool)
1377 {
1378 return pool->pf.mode;
1379 }
1380
set_pool_mode(struct pool * pool,enum pool_mode mode)1381 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1382 {
1383 int r;
1384
1385 pool->pf.mode = mode;
1386
1387 switch (mode) {
1388 case PM_FAIL:
1389 DMERR("switching pool to failure mode");
1390 pool->process_bio = process_bio_fail;
1391 pool->process_discard = process_bio_fail;
1392 pool->process_prepared_mapping = process_prepared_mapping_fail;
1393 pool->process_prepared_discard = process_prepared_discard_fail;
1394 break;
1395
1396 case PM_READ_ONLY:
1397 DMERR("switching pool to read-only mode");
1398 r = dm_pool_abort_metadata(pool->pmd);
1399 if (r) {
1400 DMERR("aborting transaction failed");
1401 set_pool_mode(pool, PM_FAIL);
1402 } else {
1403 dm_pool_metadata_read_only(pool->pmd);
1404 pool->process_bio = process_bio_read_only;
1405 pool->process_discard = process_discard;
1406 pool->process_prepared_mapping = process_prepared_mapping_fail;
1407 pool->process_prepared_discard = process_prepared_discard_passdown;
1408 }
1409 break;
1410
1411 case PM_WRITE:
1412 pool->process_bio = process_bio;
1413 pool->process_discard = process_discard;
1414 pool->process_prepared_mapping = process_prepared_mapping;
1415 pool->process_prepared_discard = process_prepared_discard;
1416 break;
1417 }
1418 }
1419
1420 /*----------------------------------------------------------------*/
1421
1422 /*
1423 * Mapping functions.
1424 */
1425
1426 /*
1427 * Called only while mapping a thin bio to hand it over to the workqueue.
1428 */
thin_defer_bio(struct thin_c * tc,struct bio * bio)1429 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1430 {
1431 unsigned long flags;
1432 struct pool *pool = tc->pool;
1433
1434 spin_lock_irqsave(&pool->lock, flags);
1435 bio_list_add(&pool->deferred_bios, bio);
1436 spin_unlock_irqrestore(&pool->lock, flags);
1437
1438 wake_worker(pool);
1439 }
1440
thin_hook_bio(struct thin_c * tc,struct bio * bio)1441 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1442 {
1443 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1444
1445 h->tc = tc;
1446 h->shared_read_entry = NULL;
1447 h->all_io_entry = NULL;
1448 h->overwrite_mapping = NULL;
1449 }
1450
1451 /*
1452 * Non-blocking function called from the thin target's map function.
1453 */
thin_bio_map(struct dm_target * ti,struct bio * bio)1454 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1455 {
1456 int r;
1457 struct thin_c *tc = ti->private;
1458 dm_block_t block = get_bio_block(tc, bio);
1459 struct dm_thin_device *td = tc->td;
1460 struct dm_thin_lookup_result result;
1461 struct dm_bio_prison_cell cell1, cell2;
1462 struct dm_bio_prison_cell *cell_result;
1463 struct dm_cell_key key;
1464
1465 thin_hook_bio(tc, bio);
1466
1467 if (get_pool_mode(tc->pool) == PM_FAIL) {
1468 bio_io_error(bio);
1469 return DM_MAPIO_SUBMITTED;
1470 }
1471
1472 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1473 thin_defer_bio(tc, bio);
1474 return DM_MAPIO_SUBMITTED;
1475 }
1476
1477 r = dm_thin_find_block(td, block, 0, &result);
1478
1479 /*
1480 * Note that we defer readahead too.
1481 */
1482 switch (r) {
1483 case 0:
1484 if (unlikely(result.shared)) {
1485 /*
1486 * We have a race condition here between the
1487 * result.shared value returned by the lookup and
1488 * snapshot creation, which may cause new
1489 * sharing.
1490 *
1491 * To avoid this always quiesce the origin before
1492 * taking the snap. You want to do this anyway to
1493 * ensure a consistent application view
1494 * (i.e. lockfs).
1495 *
1496 * More distant ancestors are irrelevant. The
1497 * shared flag will be set in their case.
1498 */
1499 thin_defer_bio(tc, bio);
1500 return DM_MAPIO_SUBMITTED;
1501 }
1502
1503 build_virtual_key(tc->td, block, &key);
1504 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1505 return DM_MAPIO_SUBMITTED;
1506
1507 build_data_key(tc->td, result.block, &key);
1508 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1509 cell_defer_no_holder_no_free(tc, &cell1);
1510 return DM_MAPIO_SUBMITTED;
1511 }
1512
1513 inc_all_io_entry(tc->pool, bio);
1514 cell_defer_no_holder_no_free(tc, &cell2);
1515 cell_defer_no_holder_no_free(tc, &cell1);
1516
1517 remap(tc, bio, result.block);
1518 return DM_MAPIO_REMAPPED;
1519
1520 case -ENODATA:
1521 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1522 /*
1523 * This block isn't provisioned, and we have no way
1524 * of doing so. Just error it.
1525 */
1526 bio_io_error(bio);
1527 return DM_MAPIO_SUBMITTED;
1528 }
1529 /* fall through */
1530
1531 case -EWOULDBLOCK:
1532 /*
1533 * In future, the failed dm_thin_find_block above could
1534 * provide the hint to load the metadata into cache.
1535 */
1536 thin_defer_bio(tc, bio);
1537 return DM_MAPIO_SUBMITTED;
1538
1539 default:
1540 /*
1541 * Must always call bio_io_error on failure.
1542 * dm_thin_find_block can fail with -EINVAL if the
1543 * pool is switched to fail-io mode.
1544 */
1545 bio_io_error(bio);
1546 return DM_MAPIO_SUBMITTED;
1547 }
1548 }
1549
pool_is_congested(struct dm_target_callbacks * cb,int bdi_bits)1550 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1551 {
1552 int r;
1553 unsigned long flags;
1554 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1555
1556 spin_lock_irqsave(&pt->pool->lock, flags);
1557 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1558 spin_unlock_irqrestore(&pt->pool->lock, flags);
1559
1560 if (!r) {
1561 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1562 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1563 }
1564
1565 return r;
1566 }
1567
__requeue_bios(struct pool * pool)1568 static void __requeue_bios(struct pool *pool)
1569 {
1570 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1571 bio_list_init(&pool->retry_on_resume_list);
1572 }
1573
1574 /*----------------------------------------------------------------
1575 * Binding of control targets to a pool object
1576 *--------------------------------------------------------------*/
data_dev_supports_discard(struct pool_c * pt)1577 static bool data_dev_supports_discard(struct pool_c *pt)
1578 {
1579 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1580
1581 return q && blk_queue_discard(q);
1582 }
1583
is_factor(sector_t block_size,uint32_t n)1584 static bool is_factor(sector_t block_size, uint32_t n)
1585 {
1586 return !sector_div(block_size, n);
1587 }
1588
1589 /*
1590 * If discard_passdown was enabled verify that the data device
1591 * supports discards. Disable discard_passdown if not.
1592 */
disable_passdown_if_not_supported(struct pool_c * pt)1593 static void disable_passdown_if_not_supported(struct pool_c *pt)
1594 {
1595 struct pool *pool = pt->pool;
1596 struct block_device *data_bdev = pt->data_dev->bdev;
1597 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1598 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1599 const char *reason = NULL;
1600 char buf[BDEVNAME_SIZE];
1601
1602 if (!pt->adjusted_pf.discard_passdown)
1603 return;
1604
1605 if (!data_dev_supports_discard(pt))
1606 reason = "discard unsupported";
1607
1608 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1609 reason = "max discard sectors smaller than a block";
1610
1611 else if (data_limits->discard_granularity > block_size)
1612 reason = "discard granularity larger than a block";
1613
1614 else if (!is_factor(block_size, data_limits->discard_granularity))
1615 reason = "discard granularity not a factor of block size";
1616
1617 if (reason) {
1618 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1619 pt->adjusted_pf.discard_passdown = false;
1620 }
1621 }
1622
bind_control_target(struct pool * pool,struct dm_target * ti)1623 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1624 {
1625 struct pool_c *pt = ti->private;
1626
1627 /*
1628 * We want to make sure that degraded pools are never upgraded.
1629 */
1630 enum pool_mode old_mode = pool->pf.mode;
1631 enum pool_mode new_mode = pt->adjusted_pf.mode;
1632
1633 if (old_mode > new_mode)
1634 new_mode = old_mode;
1635
1636 pool->ti = ti;
1637 pool->low_water_blocks = pt->low_water_blocks;
1638 pool->pf = pt->adjusted_pf;
1639
1640 set_pool_mode(pool, new_mode);
1641
1642 return 0;
1643 }
1644
unbind_control_target(struct pool * pool,struct dm_target * ti)1645 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1646 {
1647 if (pool->ti == ti)
1648 pool->ti = NULL;
1649 }
1650
1651 /*----------------------------------------------------------------
1652 * Pool creation
1653 *--------------------------------------------------------------*/
1654 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)1655 static void pool_features_init(struct pool_features *pf)
1656 {
1657 pf->mode = PM_WRITE;
1658 pf->zero_new_blocks = true;
1659 pf->discard_enabled = true;
1660 pf->discard_passdown = true;
1661 }
1662
__pool_destroy(struct pool * pool)1663 static void __pool_destroy(struct pool *pool)
1664 {
1665 __pool_table_remove(pool);
1666
1667 if (dm_pool_metadata_close(pool->pmd) < 0)
1668 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1669
1670 dm_bio_prison_destroy(pool->prison);
1671 dm_kcopyd_client_destroy(pool->copier);
1672
1673 if (pool->wq)
1674 destroy_workqueue(pool->wq);
1675
1676 if (pool->next_mapping)
1677 mempool_free(pool->next_mapping, pool->mapping_pool);
1678 mempool_destroy(pool->mapping_pool);
1679 dm_deferred_set_destroy(pool->shared_read_ds);
1680 dm_deferred_set_destroy(pool->all_io_ds);
1681 kfree(pool);
1682 }
1683
1684 static struct kmem_cache *_new_mapping_cache;
1685
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,int read_only,char ** error)1686 static struct pool *pool_create(struct mapped_device *pool_md,
1687 struct block_device *metadata_dev,
1688 unsigned long block_size,
1689 int read_only, char **error)
1690 {
1691 int r;
1692 void *err_p;
1693 struct pool *pool;
1694 struct dm_pool_metadata *pmd;
1695 bool format_device = read_only ? false : true;
1696
1697 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1698 if (IS_ERR(pmd)) {
1699 *error = "Error creating metadata object";
1700 return (struct pool *)pmd;
1701 }
1702
1703 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1704 if (!pool) {
1705 *error = "Error allocating memory for pool";
1706 err_p = ERR_PTR(-ENOMEM);
1707 goto bad_pool;
1708 }
1709
1710 pool->pmd = pmd;
1711 pool->sectors_per_block = block_size;
1712 if (block_size & (block_size - 1))
1713 pool->sectors_per_block_shift = -1;
1714 else
1715 pool->sectors_per_block_shift = __ffs(block_size);
1716 pool->low_water_blocks = 0;
1717 pool_features_init(&pool->pf);
1718 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1719 if (!pool->prison) {
1720 *error = "Error creating pool's bio prison";
1721 err_p = ERR_PTR(-ENOMEM);
1722 goto bad_prison;
1723 }
1724
1725 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1726 if (IS_ERR(pool->copier)) {
1727 r = PTR_ERR(pool->copier);
1728 *error = "Error creating pool's kcopyd client";
1729 err_p = ERR_PTR(r);
1730 goto bad_kcopyd_client;
1731 }
1732
1733 /*
1734 * Create singlethreaded workqueue that will service all devices
1735 * that use this metadata.
1736 */
1737 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1738 if (!pool->wq) {
1739 *error = "Error creating pool's workqueue";
1740 err_p = ERR_PTR(-ENOMEM);
1741 goto bad_wq;
1742 }
1743
1744 INIT_WORK(&pool->worker, do_worker);
1745 INIT_DELAYED_WORK(&pool->waker, do_waker);
1746 spin_lock_init(&pool->lock);
1747 bio_list_init(&pool->deferred_bios);
1748 bio_list_init(&pool->deferred_flush_bios);
1749 INIT_LIST_HEAD(&pool->prepared_mappings);
1750 INIT_LIST_HEAD(&pool->prepared_discards);
1751 pool->low_water_triggered = 0;
1752 pool->no_free_space = 0;
1753 bio_list_init(&pool->retry_on_resume_list);
1754
1755 pool->shared_read_ds = dm_deferred_set_create();
1756 if (!pool->shared_read_ds) {
1757 *error = "Error creating pool's shared read deferred set";
1758 err_p = ERR_PTR(-ENOMEM);
1759 goto bad_shared_read_ds;
1760 }
1761
1762 pool->all_io_ds = dm_deferred_set_create();
1763 if (!pool->all_io_ds) {
1764 *error = "Error creating pool's all io deferred set";
1765 err_p = ERR_PTR(-ENOMEM);
1766 goto bad_all_io_ds;
1767 }
1768
1769 pool->next_mapping = NULL;
1770 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1771 _new_mapping_cache);
1772 if (!pool->mapping_pool) {
1773 *error = "Error creating pool's mapping mempool";
1774 err_p = ERR_PTR(-ENOMEM);
1775 goto bad_mapping_pool;
1776 }
1777
1778 pool->ref_count = 1;
1779 pool->last_commit_jiffies = jiffies;
1780 pool->pool_md = pool_md;
1781 pool->md_dev = metadata_dev;
1782 __pool_table_insert(pool);
1783
1784 return pool;
1785
1786 bad_mapping_pool:
1787 dm_deferred_set_destroy(pool->all_io_ds);
1788 bad_all_io_ds:
1789 dm_deferred_set_destroy(pool->shared_read_ds);
1790 bad_shared_read_ds:
1791 destroy_workqueue(pool->wq);
1792 bad_wq:
1793 dm_kcopyd_client_destroy(pool->copier);
1794 bad_kcopyd_client:
1795 dm_bio_prison_destroy(pool->prison);
1796 bad_prison:
1797 kfree(pool);
1798 bad_pool:
1799 if (dm_pool_metadata_close(pmd))
1800 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1801
1802 return err_p;
1803 }
1804
__pool_inc(struct pool * pool)1805 static void __pool_inc(struct pool *pool)
1806 {
1807 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1808 pool->ref_count++;
1809 }
1810
__pool_dec(struct pool * pool)1811 static void __pool_dec(struct pool *pool)
1812 {
1813 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1814 BUG_ON(!pool->ref_count);
1815 if (!--pool->ref_count)
1816 __pool_destroy(pool);
1817 }
1818
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,int read_only,char ** error,int * created)1819 static struct pool *__pool_find(struct mapped_device *pool_md,
1820 struct block_device *metadata_dev,
1821 unsigned long block_size, int read_only,
1822 char **error, int *created)
1823 {
1824 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1825
1826 if (pool) {
1827 if (pool->pool_md != pool_md) {
1828 *error = "metadata device already in use by a pool";
1829 return ERR_PTR(-EBUSY);
1830 }
1831 __pool_inc(pool);
1832
1833 } else {
1834 pool = __pool_table_lookup(pool_md);
1835 if (pool) {
1836 if (pool->md_dev != metadata_dev) {
1837 *error = "different pool cannot replace a pool";
1838 return ERR_PTR(-EINVAL);
1839 }
1840 __pool_inc(pool);
1841
1842 } else {
1843 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1844 *created = 1;
1845 }
1846 }
1847
1848 return pool;
1849 }
1850
1851 /*----------------------------------------------------------------
1852 * Pool target methods
1853 *--------------------------------------------------------------*/
pool_dtr(struct dm_target * ti)1854 static void pool_dtr(struct dm_target *ti)
1855 {
1856 struct pool_c *pt = ti->private;
1857
1858 mutex_lock(&dm_thin_pool_table.mutex);
1859
1860 unbind_control_target(pt->pool, ti);
1861 __pool_dec(pt->pool);
1862 dm_put_device(ti, pt->metadata_dev);
1863 dm_put_device(ti, pt->data_dev);
1864 kfree(pt);
1865
1866 mutex_unlock(&dm_thin_pool_table.mutex);
1867 }
1868
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)1869 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1870 struct dm_target *ti)
1871 {
1872 int r;
1873 unsigned argc;
1874 const char *arg_name;
1875
1876 static struct dm_arg _args[] = {
1877 {0, 3, "Invalid number of pool feature arguments"},
1878 };
1879
1880 /*
1881 * No feature arguments supplied.
1882 */
1883 if (!as->argc)
1884 return 0;
1885
1886 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1887 if (r)
1888 return -EINVAL;
1889
1890 while (argc && !r) {
1891 arg_name = dm_shift_arg(as);
1892 argc--;
1893
1894 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1895 pf->zero_new_blocks = false;
1896
1897 else if (!strcasecmp(arg_name, "ignore_discard"))
1898 pf->discard_enabled = false;
1899
1900 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1901 pf->discard_passdown = false;
1902
1903 else if (!strcasecmp(arg_name, "read_only"))
1904 pf->mode = PM_READ_ONLY;
1905
1906 else {
1907 ti->error = "Unrecognised pool feature requested";
1908 r = -EINVAL;
1909 break;
1910 }
1911 }
1912
1913 return r;
1914 }
1915
metadata_low_callback(void * context)1916 static void metadata_low_callback(void *context)
1917 {
1918 struct pool *pool = context;
1919
1920 DMWARN("%s: reached low water mark for metadata device: sending event.",
1921 dm_device_name(pool->pool_md));
1922
1923 dm_table_event(pool->ti->table);
1924 }
1925
get_metadata_dev_size(struct block_device * bdev)1926 static sector_t get_metadata_dev_size(struct block_device *bdev)
1927 {
1928 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1929 char buffer[BDEVNAME_SIZE];
1930
1931 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1932 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1933 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1934 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1935 }
1936
1937 return metadata_dev_size;
1938 }
1939
get_metadata_dev_size_in_blocks(struct block_device * bdev)1940 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1941 {
1942 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1943
1944 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1945
1946 return metadata_dev_size;
1947 }
1948
1949 /*
1950 * When a metadata threshold is crossed a dm event is triggered, and
1951 * userland should respond by growing the metadata device. We could let
1952 * userland set the threshold, like we do with the data threshold, but I'm
1953 * not sure they know enough to do this well.
1954 */
calc_metadata_threshold(struct pool_c * pt)1955 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1956 {
1957 /*
1958 * 4M is ample for all ops with the possible exception of thin
1959 * device deletion which is harmless if it fails (just retry the
1960 * delete after you've grown the device).
1961 */
1962 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1963 return min((dm_block_t)1024ULL /* 4M */, quarter);
1964 }
1965
1966 /*
1967 * thin-pool <metadata dev> <data dev>
1968 * <data block size (sectors)>
1969 * <low water mark (blocks)>
1970 * [<#feature args> [<arg>]*]
1971 *
1972 * Optional feature arguments are:
1973 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1974 * ignore_discard: disable discard
1975 * no_discard_passdown: don't pass discards down to the data device
1976 */
pool_ctr(struct dm_target * ti,unsigned argc,char ** argv)1977 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1978 {
1979 int r, pool_created = 0;
1980 struct pool_c *pt;
1981 struct pool *pool;
1982 struct pool_features pf;
1983 struct dm_arg_set as;
1984 struct dm_dev *data_dev;
1985 unsigned long block_size;
1986 dm_block_t low_water_blocks;
1987 struct dm_dev *metadata_dev;
1988 fmode_t metadata_mode;
1989
1990 /*
1991 * FIXME Remove validation from scope of lock.
1992 */
1993 mutex_lock(&dm_thin_pool_table.mutex);
1994
1995 if (argc < 4) {
1996 ti->error = "Invalid argument count";
1997 r = -EINVAL;
1998 goto out_unlock;
1999 }
2000
2001 as.argc = argc;
2002 as.argv = argv;
2003
2004 /*
2005 * Set default pool features.
2006 */
2007 pool_features_init(&pf);
2008
2009 dm_consume_args(&as, 4);
2010 r = parse_pool_features(&as, &pf, ti);
2011 if (r)
2012 goto out_unlock;
2013
2014 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2015 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2016 if (r) {
2017 ti->error = "Error opening metadata block device";
2018 goto out_unlock;
2019 }
2020
2021 /*
2022 * Run for the side-effect of possibly issuing a warning if the
2023 * device is too big.
2024 */
2025 (void) get_metadata_dev_size(metadata_dev->bdev);
2026
2027 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2028 if (r) {
2029 ti->error = "Error getting data device";
2030 goto out_metadata;
2031 }
2032
2033 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2034 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2035 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2036 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2037 ti->error = "Invalid block size";
2038 r = -EINVAL;
2039 goto out;
2040 }
2041
2042 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2043 ti->error = "Invalid low water mark";
2044 r = -EINVAL;
2045 goto out;
2046 }
2047
2048 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2049 if (!pt) {
2050 r = -ENOMEM;
2051 goto out;
2052 }
2053
2054 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2055 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2056 if (IS_ERR(pool)) {
2057 r = PTR_ERR(pool);
2058 goto out_free_pt;
2059 }
2060
2061 /*
2062 * 'pool_created' reflects whether this is the first table load.
2063 * Top level discard support is not allowed to be changed after
2064 * initial load. This would require a pool reload to trigger thin
2065 * device changes.
2066 */
2067 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2068 ti->error = "Discard support cannot be disabled once enabled";
2069 r = -EINVAL;
2070 goto out_flags_changed;
2071 }
2072
2073 pt->pool = pool;
2074 pt->ti = ti;
2075 pt->metadata_dev = metadata_dev;
2076 pt->data_dev = data_dev;
2077 pt->low_water_blocks = low_water_blocks;
2078 pt->adjusted_pf = pt->requested_pf = pf;
2079 ti->num_flush_bios = 1;
2080
2081 /*
2082 * Only need to enable discards if the pool should pass
2083 * them down to the data device. The thin device's discard
2084 * processing will cause mappings to be removed from the btree.
2085 */
2086 if (pf.discard_enabled && pf.discard_passdown) {
2087 ti->num_discard_bios = 1;
2088
2089 /*
2090 * Setting 'discards_supported' circumvents the normal
2091 * stacking of discard limits (this keeps the pool and
2092 * thin devices' discard limits consistent).
2093 */
2094 ti->discards_supported = true;
2095 ti->discard_zeroes_data_unsupported = true;
2096 }
2097 ti->private = pt;
2098
2099 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2100 calc_metadata_threshold(pt),
2101 metadata_low_callback,
2102 pool);
2103 if (r)
2104 goto out_free_pt;
2105
2106 pt->callbacks.congested_fn = pool_is_congested;
2107 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2108
2109 mutex_unlock(&dm_thin_pool_table.mutex);
2110
2111 return 0;
2112
2113 out_flags_changed:
2114 __pool_dec(pool);
2115 out_free_pt:
2116 kfree(pt);
2117 out:
2118 dm_put_device(ti, data_dev);
2119 out_metadata:
2120 dm_put_device(ti, metadata_dev);
2121 out_unlock:
2122 mutex_unlock(&dm_thin_pool_table.mutex);
2123
2124 return r;
2125 }
2126
pool_map(struct dm_target * ti,struct bio * bio)2127 static int pool_map(struct dm_target *ti, struct bio *bio)
2128 {
2129 int r;
2130 struct pool_c *pt = ti->private;
2131 struct pool *pool = pt->pool;
2132 unsigned long flags;
2133
2134 /*
2135 * As this is a singleton target, ti->begin is always zero.
2136 */
2137 spin_lock_irqsave(&pool->lock, flags);
2138 bio->bi_bdev = pt->data_dev->bdev;
2139 r = DM_MAPIO_REMAPPED;
2140 spin_unlock_irqrestore(&pool->lock, flags);
2141
2142 return r;
2143 }
2144
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)2145 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2146 {
2147 int r;
2148 struct pool_c *pt = ti->private;
2149 struct pool *pool = pt->pool;
2150 sector_t data_size = ti->len;
2151 dm_block_t sb_data_size;
2152
2153 *need_commit = false;
2154
2155 (void) sector_div(data_size, pool->sectors_per_block);
2156
2157 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2158 if (r) {
2159 DMERR("failed to retrieve data device size");
2160 return r;
2161 }
2162
2163 if (data_size < sb_data_size) {
2164 DMERR("pool target (%llu blocks) too small: expected %llu",
2165 (unsigned long long)data_size, sb_data_size);
2166 return -EINVAL;
2167
2168 } else if (data_size > sb_data_size) {
2169 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2170 if (r) {
2171 DMERR("failed to resize data device");
2172 set_pool_mode(pool, PM_READ_ONLY);
2173 return r;
2174 }
2175
2176 *need_commit = true;
2177 }
2178
2179 return 0;
2180 }
2181
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)2182 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2183 {
2184 int r;
2185 struct pool_c *pt = ti->private;
2186 struct pool *pool = pt->pool;
2187 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2188
2189 *need_commit = false;
2190
2191 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2192
2193 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2194 if (r) {
2195 DMERR("failed to retrieve data device size");
2196 return r;
2197 }
2198
2199 if (metadata_dev_size < sb_metadata_dev_size) {
2200 DMERR("metadata device (%llu blocks) too small: expected %llu",
2201 metadata_dev_size, sb_metadata_dev_size);
2202 return -EINVAL;
2203
2204 } else if (metadata_dev_size > sb_metadata_dev_size) {
2205 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2206 if (r) {
2207 DMERR("failed to resize metadata device");
2208 return r;
2209 }
2210
2211 *need_commit = true;
2212 }
2213
2214 return 0;
2215 }
2216
2217 /*
2218 * Retrieves the number of blocks of the data device from
2219 * the superblock and compares it to the actual device size,
2220 * thus resizing the data device in case it has grown.
2221 *
2222 * This both copes with opening preallocated data devices in the ctr
2223 * being followed by a resume
2224 * -and-
2225 * calling the resume method individually after userspace has
2226 * grown the data device in reaction to a table event.
2227 */
pool_preresume(struct dm_target * ti)2228 static int pool_preresume(struct dm_target *ti)
2229 {
2230 int r;
2231 bool need_commit1, need_commit2;
2232 struct pool_c *pt = ti->private;
2233 struct pool *pool = pt->pool;
2234
2235 /*
2236 * Take control of the pool object.
2237 */
2238 r = bind_control_target(pool, ti);
2239 if (r)
2240 return r;
2241
2242 r = maybe_resize_data_dev(ti, &need_commit1);
2243 if (r)
2244 return r;
2245
2246 r = maybe_resize_metadata_dev(ti, &need_commit2);
2247 if (r)
2248 return r;
2249
2250 if (need_commit1 || need_commit2)
2251 (void) commit_or_fallback(pool);
2252
2253 return 0;
2254 }
2255
pool_resume(struct dm_target * ti)2256 static void pool_resume(struct dm_target *ti)
2257 {
2258 struct pool_c *pt = ti->private;
2259 struct pool *pool = pt->pool;
2260 unsigned long flags;
2261
2262 spin_lock_irqsave(&pool->lock, flags);
2263 pool->low_water_triggered = 0;
2264 pool->no_free_space = 0;
2265 __requeue_bios(pool);
2266 spin_unlock_irqrestore(&pool->lock, flags);
2267
2268 do_waker(&pool->waker.work);
2269 }
2270
pool_postsuspend(struct dm_target * ti)2271 static void pool_postsuspend(struct dm_target *ti)
2272 {
2273 struct pool_c *pt = ti->private;
2274 struct pool *pool = pt->pool;
2275
2276 cancel_delayed_work(&pool->waker);
2277 flush_workqueue(pool->wq);
2278 (void) commit_or_fallback(pool);
2279 }
2280
check_arg_count(unsigned argc,unsigned args_required)2281 static int check_arg_count(unsigned argc, unsigned args_required)
2282 {
2283 if (argc != args_required) {
2284 DMWARN("Message received with %u arguments instead of %u.",
2285 argc, args_required);
2286 return -EINVAL;
2287 }
2288
2289 return 0;
2290 }
2291
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)2292 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2293 {
2294 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2295 *dev_id <= MAX_DEV_ID)
2296 return 0;
2297
2298 if (warning)
2299 DMWARN("Message received with invalid device id: %s", arg);
2300
2301 return -EINVAL;
2302 }
2303
process_create_thin_mesg(unsigned argc,char ** argv,struct pool * pool)2304 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2305 {
2306 dm_thin_id dev_id;
2307 int r;
2308
2309 r = check_arg_count(argc, 2);
2310 if (r)
2311 return r;
2312
2313 r = read_dev_id(argv[1], &dev_id, 1);
2314 if (r)
2315 return r;
2316
2317 r = dm_pool_create_thin(pool->pmd, dev_id);
2318 if (r) {
2319 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2320 argv[1]);
2321 return r;
2322 }
2323
2324 return 0;
2325 }
2326
process_create_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2327 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2328 {
2329 dm_thin_id dev_id;
2330 dm_thin_id origin_dev_id;
2331 int r;
2332
2333 r = check_arg_count(argc, 3);
2334 if (r)
2335 return r;
2336
2337 r = read_dev_id(argv[1], &dev_id, 1);
2338 if (r)
2339 return r;
2340
2341 r = read_dev_id(argv[2], &origin_dev_id, 1);
2342 if (r)
2343 return r;
2344
2345 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2346 if (r) {
2347 DMWARN("Creation of new snapshot %s of device %s failed.",
2348 argv[1], argv[2]);
2349 return r;
2350 }
2351
2352 return 0;
2353 }
2354
process_delete_mesg(unsigned argc,char ** argv,struct pool * pool)2355 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2356 {
2357 dm_thin_id dev_id;
2358 int r;
2359
2360 r = check_arg_count(argc, 2);
2361 if (r)
2362 return r;
2363
2364 r = read_dev_id(argv[1], &dev_id, 1);
2365 if (r)
2366 return r;
2367
2368 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2369 if (r)
2370 DMWARN("Deletion of thin device %s failed.", argv[1]);
2371
2372 return r;
2373 }
2374
process_set_transaction_id_mesg(unsigned argc,char ** argv,struct pool * pool)2375 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2376 {
2377 dm_thin_id old_id, new_id;
2378 int r;
2379
2380 r = check_arg_count(argc, 3);
2381 if (r)
2382 return r;
2383
2384 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2385 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2386 return -EINVAL;
2387 }
2388
2389 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2390 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2391 return -EINVAL;
2392 }
2393
2394 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2395 if (r) {
2396 DMWARN("Failed to change transaction id from %s to %s.",
2397 argv[1], argv[2]);
2398 return r;
2399 }
2400
2401 return 0;
2402 }
2403
process_reserve_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2404 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2405 {
2406 int r;
2407
2408 r = check_arg_count(argc, 1);
2409 if (r)
2410 return r;
2411
2412 (void) commit_or_fallback(pool);
2413
2414 r = dm_pool_reserve_metadata_snap(pool->pmd);
2415 if (r)
2416 DMWARN("reserve_metadata_snap message failed.");
2417
2418 return r;
2419 }
2420
process_release_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2421 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2422 {
2423 int r;
2424
2425 r = check_arg_count(argc, 1);
2426 if (r)
2427 return r;
2428
2429 r = dm_pool_release_metadata_snap(pool->pmd);
2430 if (r)
2431 DMWARN("release_metadata_snap message failed.");
2432
2433 return r;
2434 }
2435
2436 /*
2437 * Messages supported:
2438 * create_thin <dev_id>
2439 * create_snap <dev_id> <origin_id>
2440 * delete <dev_id>
2441 * trim <dev_id> <new_size_in_sectors>
2442 * set_transaction_id <current_trans_id> <new_trans_id>
2443 * reserve_metadata_snap
2444 * release_metadata_snap
2445 */
pool_message(struct dm_target * ti,unsigned argc,char ** argv)2446 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2447 {
2448 int r = -EINVAL;
2449 struct pool_c *pt = ti->private;
2450 struct pool *pool = pt->pool;
2451
2452 if (!strcasecmp(argv[0], "create_thin"))
2453 r = process_create_thin_mesg(argc, argv, pool);
2454
2455 else if (!strcasecmp(argv[0], "create_snap"))
2456 r = process_create_snap_mesg(argc, argv, pool);
2457
2458 else if (!strcasecmp(argv[0], "delete"))
2459 r = process_delete_mesg(argc, argv, pool);
2460
2461 else if (!strcasecmp(argv[0], "set_transaction_id"))
2462 r = process_set_transaction_id_mesg(argc, argv, pool);
2463
2464 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2465 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2466
2467 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2468 r = process_release_metadata_snap_mesg(argc, argv, pool);
2469
2470 else
2471 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2472
2473 if (!r)
2474 (void) commit_or_fallback(pool);
2475
2476 return r;
2477 }
2478
emit_flags(struct pool_features * pf,char * result,unsigned sz,unsigned maxlen)2479 static void emit_flags(struct pool_features *pf, char *result,
2480 unsigned sz, unsigned maxlen)
2481 {
2482 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2483 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2484 DMEMIT("%u ", count);
2485
2486 if (!pf->zero_new_blocks)
2487 DMEMIT("skip_block_zeroing ");
2488
2489 if (!pf->discard_enabled)
2490 DMEMIT("ignore_discard ");
2491
2492 if (!pf->discard_passdown)
2493 DMEMIT("no_discard_passdown ");
2494
2495 if (pf->mode == PM_READ_ONLY)
2496 DMEMIT("read_only ");
2497 }
2498
2499 /*
2500 * Status line is:
2501 * <transaction id> <used metadata sectors>/<total metadata sectors>
2502 * <used data sectors>/<total data sectors> <held metadata root>
2503 */
pool_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)2504 static void pool_status(struct dm_target *ti, status_type_t type,
2505 unsigned status_flags, char *result, unsigned maxlen)
2506 {
2507 int r;
2508 unsigned sz = 0;
2509 uint64_t transaction_id;
2510 dm_block_t nr_free_blocks_data;
2511 dm_block_t nr_free_blocks_metadata;
2512 dm_block_t nr_blocks_data;
2513 dm_block_t nr_blocks_metadata;
2514 dm_block_t held_root;
2515 char buf[BDEVNAME_SIZE];
2516 char buf2[BDEVNAME_SIZE];
2517 struct pool_c *pt = ti->private;
2518 struct pool *pool = pt->pool;
2519
2520 switch (type) {
2521 case STATUSTYPE_INFO:
2522 if (get_pool_mode(pool) == PM_FAIL) {
2523 DMEMIT("Fail");
2524 break;
2525 }
2526
2527 /* Commit to ensure statistics aren't out-of-date */
2528 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2529 (void) commit_or_fallback(pool);
2530
2531 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2532 if (r) {
2533 DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2534 goto err;
2535 }
2536
2537 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2538 if (r) {
2539 DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2540 goto err;
2541 }
2542
2543 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2544 if (r) {
2545 DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2546 goto err;
2547 }
2548
2549 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2550 if (r) {
2551 DMERR("dm_pool_get_free_block_count returned %d", r);
2552 goto err;
2553 }
2554
2555 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2556 if (r) {
2557 DMERR("dm_pool_get_data_dev_size returned %d", r);
2558 goto err;
2559 }
2560
2561 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2562 if (r) {
2563 DMERR("dm_pool_get_metadata_snap returned %d", r);
2564 goto err;
2565 }
2566
2567 DMEMIT("%llu %llu/%llu %llu/%llu ",
2568 (unsigned long long)transaction_id,
2569 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2570 (unsigned long long)nr_blocks_metadata,
2571 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2572 (unsigned long long)nr_blocks_data);
2573
2574 if (held_root)
2575 DMEMIT("%llu ", held_root);
2576 else
2577 DMEMIT("- ");
2578
2579 if (pool->pf.mode == PM_READ_ONLY)
2580 DMEMIT("ro ");
2581 else
2582 DMEMIT("rw ");
2583
2584 if (!pool->pf.discard_enabled)
2585 DMEMIT("ignore_discard");
2586 else if (pool->pf.discard_passdown)
2587 DMEMIT("discard_passdown");
2588 else
2589 DMEMIT("no_discard_passdown");
2590
2591 break;
2592
2593 case STATUSTYPE_TABLE:
2594 DMEMIT("%s %s %lu %llu ",
2595 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2596 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2597 (unsigned long)pool->sectors_per_block,
2598 (unsigned long long)pt->low_water_blocks);
2599 emit_flags(&pt->requested_pf, result, sz, maxlen);
2600 break;
2601 }
2602 return;
2603
2604 err:
2605 DMEMIT("Error");
2606 }
2607
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2608 static int pool_iterate_devices(struct dm_target *ti,
2609 iterate_devices_callout_fn fn, void *data)
2610 {
2611 struct pool_c *pt = ti->private;
2612
2613 return fn(ti, pt->data_dev, 0, ti->len, data);
2614 }
2615
pool_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)2616 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2617 struct bio_vec *biovec, int max_size)
2618 {
2619 struct pool_c *pt = ti->private;
2620 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2621
2622 if (!q->merge_bvec_fn)
2623 return max_size;
2624
2625 bvm->bi_bdev = pt->data_dev->bdev;
2626
2627 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2628 }
2629
set_discard_limits(struct pool_c * pt,struct queue_limits * limits)2630 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2631 {
2632 struct pool *pool = pt->pool;
2633 struct queue_limits *data_limits;
2634
2635 limits->max_discard_sectors = pool->sectors_per_block;
2636
2637 /*
2638 * discard_granularity is just a hint, and not enforced.
2639 */
2640 if (pt->adjusted_pf.discard_passdown) {
2641 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2642 limits->discard_granularity = data_limits->discard_granularity;
2643 } else
2644 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2645 }
2646
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)2647 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2648 {
2649 struct pool_c *pt = ti->private;
2650 struct pool *pool = pt->pool;
2651
2652 blk_limits_io_min(limits, 0);
2653 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2654
2655 /*
2656 * pt->adjusted_pf is a staging area for the actual features to use.
2657 * They get transferred to the live pool in bind_control_target()
2658 * called from pool_preresume().
2659 */
2660 if (!pt->adjusted_pf.discard_enabled)
2661 return;
2662
2663 disable_passdown_if_not_supported(pt);
2664
2665 set_discard_limits(pt, limits);
2666 }
2667
2668 static struct target_type pool_target = {
2669 .name = "thin-pool",
2670 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2671 DM_TARGET_IMMUTABLE,
2672 .version = {1, 8, 0},
2673 .module = THIS_MODULE,
2674 .ctr = pool_ctr,
2675 .dtr = pool_dtr,
2676 .map = pool_map,
2677 .postsuspend = pool_postsuspend,
2678 .preresume = pool_preresume,
2679 .resume = pool_resume,
2680 .message = pool_message,
2681 .status = pool_status,
2682 .merge = pool_merge,
2683 .iterate_devices = pool_iterate_devices,
2684 .io_hints = pool_io_hints,
2685 };
2686
2687 /*----------------------------------------------------------------
2688 * Thin target methods
2689 *--------------------------------------------------------------*/
thin_dtr(struct dm_target * ti)2690 static void thin_dtr(struct dm_target *ti)
2691 {
2692 struct thin_c *tc = ti->private;
2693
2694 mutex_lock(&dm_thin_pool_table.mutex);
2695
2696 __pool_dec(tc->pool);
2697 dm_pool_close_thin_device(tc->td);
2698 dm_put_device(ti, tc->pool_dev);
2699 if (tc->origin_dev)
2700 dm_put_device(ti, tc->origin_dev);
2701 kfree(tc);
2702
2703 mutex_unlock(&dm_thin_pool_table.mutex);
2704 }
2705
2706 /*
2707 * Thin target parameters:
2708 *
2709 * <pool_dev> <dev_id> [origin_dev]
2710 *
2711 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2712 * dev_id: the internal device identifier
2713 * origin_dev: a device external to the pool that should act as the origin
2714 *
2715 * If the pool device has discards disabled, they get disabled for the thin
2716 * device as well.
2717 */
thin_ctr(struct dm_target * ti,unsigned argc,char ** argv)2718 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2719 {
2720 int r;
2721 struct thin_c *tc;
2722 struct dm_dev *pool_dev, *origin_dev;
2723 struct mapped_device *pool_md;
2724
2725 mutex_lock(&dm_thin_pool_table.mutex);
2726
2727 if (argc != 2 && argc != 3) {
2728 ti->error = "Invalid argument count";
2729 r = -EINVAL;
2730 goto out_unlock;
2731 }
2732
2733 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2734 if (!tc) {
2735 ti->error = "Out of memory";
2736 r = -ENOMEM;
2737 goto out_unlock;
2738 }
2739
2740 if (argc == 3) {
2741 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2742 if (r) {
2743 ti->error = "Error opening origin device";
2744 goto bad_origin_dev;
2745 }
2746 tc->origin_dev = origin_dev;
2747 }
2748
2749 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2750 if (r) {
2751 ti->error = "Error opening pool device";
2752 goto bad_pool_dev;
2753 }
2754 tc->pool_dev = pool_dev;
2755
2756 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2757 ti->error = "Invalid device id";
2758 r = -EINVAL;
2759 goto bad_common;
2760 }
2761
2762 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2763 if (!pool_md) {
2764 ti->error = "Couldn't get pool mapped device";
2765 r = -EINVAL;
2766 goto bad_common;
2767 }
2768
2769 tc->pool = __pool_table_lookup(pool_md);
2770 if (!tc->pool) {
2771 ti->error = "Couldn't find pool object";
2772 r = -EINVAL;
2773 goto bad_pool_lookup;
2774 }
2775 __pool_inc(tc->pool);
2776
2777 if (get_pool_mode(tc->pool) == PM_FAIL) {
2778 ti->error = "Couldn't open thin device, Pool is in fail mode";
2779 goto bad_thin_open;
2780 }
2781
2782 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2783 if (r) {
2784 ti->error = "Couldn't open thin internal device";
2785 goto bad_thin_open;
2786 }
2787
2788 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2789 if (r)
2790 goto bad_thin_open;
2791
2792 ti->num_flush_bios = 1;
2793 ti->flush_supported = true;
2794 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2795
2796 /* In case the pool supports discards, pass them on. */
2797 if (tc->pool->pf.discard_enabled) {
2798 ti->discards_supported = true;
2799 ti->num_discard_bios = 1;
2800 ti->discard_zeroes_data_unsupported = true;
2801 /* Discard bios must be split on a block boundary */
2802 ti->split_discard_bios = true;
2803 }
2804
2805 dm_put(pool_md);
2806
2807 mutex_unlock(&dm_thin_pool_table.mutex);
2808
2809 return 0;
2810
2811 bad_thin_open:
2812 __pool_dec(tc->pool);
2813 bad_pool_lookup:
2814 dm_put(pool_md);
2815 bad_common:
2816 dm_put_device(ti, tc->pool_dev);
2817 bad_pool_dev:
2818 if (tc->origin_dev)
2819 dm_put_device(ti, tc->origin_dev);
2820 bad_origin_dev:
2821 kfree(tc);
2822 out_unlock:
2823 mutex_unlock(&dm_thin_pool_table.mutex);
2824
2825 return r;
2826 }
2827
thin_map(struct dm_target * ti,struct bio * bio)2828 static int thin_map(struct dm_target *ti, struct bio *bio)
2829 {
2830 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2831
2832 return thin_bio_map(ti, bio);
2833 }
2834
thin_endio(struct dm_target * ti,struct bio * bio,int err)2835 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2836 {
2837 unsigned long flags;
2838 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2839 struct list_head work;
2840 struct dm_thin_new_mapping *m, *tmp;
2841 struct pool *pool = h->tc->pool;
2842
2843 if (h->shared_read_entry) {
2844 INIT_LIST_HEAD(&work);
2845 dm_deferred_entry_dec(h->shared_read_entry, &work);
2846
2847 spin_lock_irqsave(&pool->lock, flags);
2848 list_for_each_entry_safe(m, tmp, &work, list) {
2849 list_del(&m->list);
2850 m->quiesced = 1;
2851 __maybe_add_mapping(m);
2852 }
2853 spin_unlock_irqrestore(&pool->lock, flags);
2854 }
2855
2856 if (h->all_io_entry) {
2857 INIT_LIST_HEAD(&work);
2858 dm_deferred_entry_dec(h->all_io_entry, &work);
2859 if (!list_empty(&work)) {
2860 spin_lock_irqsave(&pool->lock, flags);
2861 list_for_each_entry_safe(m, tmp, &work, list)
2862 list_add(&m->list, &pool->prepared_discards);
2863 spin_unlock_irqrestore(&pool->lock, flags);
2864 wake_worker(pool);
2865 }
2866 }
2867
2868 return 0;
2869 }
2870
thin_postsuspend(struct dm_target * ti)2871 static void thin_postsuspend(struct dm_target *ti)
2872 {
2873 if (dm_noflush_suspending(ti))
2874 requeue_io((struct thin_c *)ti->private);
2875 }
2876
2877 /*
2878 * <nr mapped sectors> <highest mapped sector>
2879 */
thin_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)2880 static void thin_status(struct dm_target *ti, status_type_t type,
2881 unsigned status_flags, char *result, unsigned maxlen)
2882 {
2883 int r;
2884 ssize_t sz = 0;
2885 dm_block_t mapped, highest;
2886 char buf[BDEVNAME_SIZE];
2887 struct thin_c *tc = ti->private;
2888
2889 if (get_pool_mode(tc->pool) == PM_FAIL) {
2890 DMEMIT("Fail");
2891 return;
2892 }
2893
2894 if (!tc->td)
2895 DMEMIT("-");
2896 else {
2897 switch (type) {
2898 case STATUSTYPE_INFO:
2899 r = dm_thin_get_mapped_count(tc->td, &mapped);
2900 if (r) {
2901 DMERR("dm_thin_get_mapped_count returned %d", r);
2902 goto err;
2903 }
2904
2905 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2906 if (r < 0) {
2907 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2908 goto err;
2909 }
2910
2911 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2912 if (r)
2913 DMEMIT("%llu", ((highest + 1) *
2914 tc->pool->sectors_per_block) - 1);
2915 else
2916 DMEMIT("-");
2917 break;
2918
2919 case STATUSTYPE_TABLE:
2920 DMEMIT("%s %lu",
2921 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2922 (unsigned long) tc->dev_id);
2923 if (tc->origin_dev)
2924 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2925 break;
2926 }
2927 }
2928
2929 return;
2930
2931 err:
2932 DMEMIT("Error");
2933 }
2934
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2935 static int thin_iterate_devices(struct dm_target *ti,
2936 iterate_devices_callout_fn fn, void *data)
2937 {
2938 sector_t blocks;
2939 struct thin_c *tc = ti->private;
2940 struct pool *pool = tc->pool;
2941
2942 /*
2943 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2944 * we follow a more convoluted path through to the pool's target.
2945 */
2946 if (!pool->ti)
2947 return 0; /* nothing is bound */
2948
2949 blocks = pool->ti->len;
2950 (void) sector_div(blocks, pool->sectors_per_block);
2951 if (blocks)
2952 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2953
2954 return 0;
2955 }
2956
2957 static struct target_type thin_target = {
2958 .name = "thin",
2959 .version = {1, 8, 0},
2960 .module = THIS_MODULE,
2961 .ctr = thin_ctr,
2962 .dtr = thin_dtr,
2963 .map = thin_map,
2964 .end_io = thin_endio,
2965 .postsuspend = thin_postsuspend,
2966 .status = thin_status,
2967 .iterate_devices = thin_iterate_devices,
2968 };
2969
2970 /*----------------------------------------------------------------*/
2971
dm_thin_init(void)2972 static int __init dm_thin_init(void)
2973 {
2974 int r;
2975
2976 pool_table_init();
2977
2978 r = dm_register_target(&thin_target);
2979 if (r)
2980 return r;
2981
2982 r = dm_register_target(&pool_target);
2983 if (r)
2984 goto bad_pool_target;
2985
2986 r = -ENOMEM;
2987
2988 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2989 if (!_new_mapping_cache)
2990 goto bad_new_mapping_cache;
2991
2992 return 0;
2993
2994 bad_new_mapping_cache:
2995 dm_unregister_target(&pool_target);
2996 bad_pool_target:
2997 dm_unregister_target(&thin_target);
2998
2999 return r;
3000 }
3001
dm_thin_exit(void)3002 static void dm_thin_exit(void)
3003 {
3004 dm_unregister_target(&thin_target);
3005 dm_unregister_target(&pool_target);
3006
3007 kmem_cache_destroy(_new_mapping_cache);
3008 }
3009
3010 module_init(dm_thin_init);
3011 module_exit(dm_thin_exit);
3012
3013 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3014 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3015 MODULE_LICENSE("GPL");
3016