• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 
19 #define	DM_MSG_PREFIX	"thin"
20 
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28 
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 		"A percentage of time allocated for copy on write");
31 
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38 
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43 
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101 
102 /*----------------------------------------------------------------*/
103 
104 /*
105  * Key building.
106  */
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)107 static void build_data_key(struct dm_thin_device *td,
108 			   dm_block_t b, struct dm_cell_key *key)
109 {
110 	key->virtual = 0;
111 	key->dev = dm_thin_dev_id(td);
112 	key->block = b;
113 }
114 
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 			      struct dm_cell_key *key)
117 {
118 	key->virtual = 1;
119 	key->dev = dm_thin_dev_id(td);
120 	key->block = b;
121 }
122 
123 /*----------------------------------------------------------------*/
124 
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131 
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136 	PM_WRITE,		/* metadata may be changed */
137 	PM_READ_ONLY,		/* metadata may not be changed */
138 	PM_FAIL,		/* all I/O fails */
139 };
140 
141 struct pool_features {
142 	enum pool_mode mode;
143 
144 	bool zero_new_blocks:1;
145 	bool discard_enabled:1;
146 	bool discard_passdown:1;
147 };
148 
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152 
153 struct pool {
154 	struct list_head list;
155 	struct dm_target *ti;	/* Only set if a pool target is bound */
156 
157 	struct mapped_device *pool_md;
158 	struct block_device *md_dev;
159 	struct dm_pool_metadata *pmd;
160 
161 	dm_block_t low_water_blocks;
162 	uint32_t sectors_per_block;
163 	int sectors_per_block_shift;
164 
165 	struct pool_features pf;
166 	unsigned low_water_triggered:1;	/* A dm event has been sent */
167 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
168 
169 	struct dm_bio_prison *prison;
170 	struct dm_kcopyd_client *copier;
171 
172 	struct workqueue_struct *wq;
173 	struct work_struct worker;
174 	struct delayed_work waker;
175 
176 	unsigned long last_commit_jiffies;
177 	unsigned ref_count;
178 
179 	spinlock_t lock;
180 	struct bio_list deferred_bios;
181 	struct bio_list deferred_flush_bios;
182 	struct list_head prepared_mappings;
183 	struct list_head prepared_discards;
184 
185 	struct bio_list retry_on_resume_list;
186 
187 	struct dm_deferred_set *shared_read_ds;
188 	struct dm_deferred_set *all_io_ds;
189 
190 	struct dm_thin_new_mapping *next_mapping;
191 	mempool_t *mapping_pool;
192 
193 	process_bio_fn process_bio;
194 	process_bio_fn process_discard;
195 
196 	process_mapping_fn process_prepared_mapping;
197 	process_mapping_fn process_prepared_discard;
198 };
199 
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202 
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207 	struct dm_target *ti;
208 	struct pool *pool;
209 	struct dm_dev *data_dev;
210 	struct dm_dev *metadata_dev;
211 	struct dm_target_callbacks callbacks;
212 
213 	dm_block_t low_water_blocks;
214 	struct pool_features requested_pf; /* Features requested during table load */
215 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217 
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222 	struct dm_dev *pool_dev;
223 	struct dm_dev *origin_dev;
224 	dm_thin_id dev_id;
225 
226 	struct pool *pool;
227 	struct dm_thin_device *td;
228 };
229 
230 /*----------------------------------------------------------------*/
231 
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
wake_worker(struct pool * pool)236 static void wake_worker(struct pool *pool)
237 {
238 	queue_work(pool->wq, &pool->worker);
239 }
240 
241 /*----------------------------------------------------------------*/
242 
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 		      struct dm_bio_prison_cell **cell_result)
245 {
246 	int r;
247 	struct dm_bio_prison_cell *cell_prealloc;
248 
249 	/*
250 	 * Allocate a cell from the prison's mempool.
251 	 * This might block but it can't fail.
252 	 */
253 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254 
255 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 	if (r)
257 		/*
258 		 * We reused an old cell; we can get rid of
259 		 * the new one.
260 		 */
261 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262 
263 	return r;
264 }
265 
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)266 static void cell_release(struct pool *pool,
267 			 struct dm_bio_prison_cell *cell,
268 			 struct bio_list *bios)
269 {
270 	dm_cell_release(pool->prison, cell, bios);
271 	dm_bio_prison_free_cell(pool->prison, cell);
272 }
273 
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)274 static void cell_release_no_holder(struct pool *pool,
275 				   struct dm_bio_prison_cell *cell,
276 				   struct bio_list *bios)
277 {
278 	dm_cell_release_no_holder(pool->prison, cell, bios);
279 	dm_bio_prison_free_cell(pool->prison, cell);
280 }
281 
cell_defer_no_holder_no_free(struct thin_c * tc,struct dm_bio_prison_cell * cell)282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 					 struct dm_bio_prison_cell *cell)
284 {
285 	struct pool *pool = tc->pool;
286 	unsigned long flags;
287 
288 	spin_lock_irqsave(&pool->lock, flags);
289 	dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 	spin_unlock_irqrestore(&pool->lock, flags);
291 
292 	wake_worker(pool);
293 }
294 
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)295 static void cell_error(struct pool *pool,
296 		       struct dm_bio_prison_cell *cell)
297 {
298 	dm_cell_error(pool->prison, cell);
299 	dm_bio_prison_free_cell(pool->prison, cell);
300 }
301 
302 /*----------------------------------------------------------------*/
303 
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308 	struct mutex mutex;
309 	struct list_head pools;
310 } dm_thin_pool_table;
311 
pool_table_init(void)312 static void pool_table_init(void)
313 {
314 	mutex_init(&dm_thin_pool_table.mutex);
315 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317 
__pool_table_insert(struct pool * pool)318 static void __pool_table_insert(struct pool *pool)
319 {
320 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 	list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323 
__pool_table_remove(struct pool * pool)324 static void __pool_table_remove(struct pool *pool)
325 {
326 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 	list_del(&pool->list);
328 }
329 
__pool_table_lookup(struct mapped_device * md)330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 	struct pool *pool = NULL, *tmp;
333 
334 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335 
336 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 		if (tmp->pool_md == md) {
338 			pool = tmp;
339 			break;
340 		}
341 	}
342 
343 	return pool;
344 }
345 
__pool_table_lookup_metadata_dev(struct block_device * md_dev)346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 	struct pool *pool = NULL, *tmp;
349 
350 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351 
352 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 		if (tmp->md_dev == md_dev) {
354 			pool = tmp;
355 			break;
356 		}
357 	}
358 
359 	return pool;
360 }
361 
362 /*----------------------------------------------------------------*/
363 
364 struct dm_thin_endio_hook {
365 	struct thin_c *tc;
366 	struct dm_deferred_entry *shared_read_entry;
367 	struct dm_deferred_entry *all_io_entry;
368 	struct dm_thin_new_mapping *overwrite_mapping;
369 };
370 
__requeue_bio_list(struct thin_c * tc,struct bio_list * master)371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 	struct bio *bio;
374 	struct bio_list bios;
375 
376 	bio_list_init(&bios);
377 	bio_list_merge(&bios, master);
378 	bio_list_init(master);
379 
380 	while ((bio = bio_list_pop(&bios))) {
381 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382 
383 		if (h->tc == tc)
384 			bio_endio(bio, DM_ENDIO_REQUEUE);
385 		else
386 			bio_list_add(master, bio);
387 	}
388 }
389 
requeue_io(struct thin_c * tc)390 static void requeue_io(struct thin_c *tc)
391 {
392 	struct pool *pool = tc->pool;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&pool->lock, flags);
396 	__requeue_bio_list(tc, &pool->deferred_bios);
397 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
398 	spin_unlock_irqrestore(&pool->lock, flags);
399 }
400 
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407 
block_size_is_power_of_two(struct pool * pool)408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 	return pool->sectors_per_block_shift >= 0;
411 }
412 
get_bio_block(struct thin_c * tc,struct bio * bio)413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 	struct pool *pool = tc->pool;
416 	sector_t block_nr = bio->bi_sector;
417 
418 	if (block_size_is_power_of_two(pool))
419 		block_nr >>= pool->sectors_per_block_shift;
420 	else
421 		(void) sector_div(block_nr, pool->sectors_per_block);
422 
423 	return block_nr;
424 }
425 
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 	struct pool *pool = tc->pool;
429 	sector_t bi_sector = bio->bi_sector;
430 
431 	bio->bi_bdev = tc->pool_dev->bdev;
432 	if (block_size_is_power_of_two(pool))
433 		bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 				(bi_sector & (pool->sectors_per_block - 1));
435 	else
436 		bio->bi_sector = (block * pool->sectors_per_block) +
437 				 sector_div(bi_sector, pool->sectors_per_block);
438 }
439 
remap_to_origin(struct thin_c * tc,struct bio * bio)440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 	bio->bi_bdev = tc->origin_dev->bdev;
443 }
444 
bio_triggers_commit(struct thin_c * tc,struct bio * bio)445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 		dm_thin_changed_this_transaction(tc->td);
449 }
450 
inc_all_io_entry(struct pool * pool,struct bio * bio)451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 	struct dm_thin_endio_hook *h;
454 
455 	if (bio->bi_rw & REQ_DISCARD)
456 		return;
457 
458 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461 
issue(struct thin_c * tc,struct bio * bio)462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 	struct pool *pool = tc->pool;
465 	unsigned long flags;
466 
467 	if (!bio_triggers_commit(tc, bio)) {
468 		generic_make_request(bio);
469 		return;
470 	}
471 
472 	/*
473 	 * Complete bio with an error if earlier I/O caused changes to
474 	 * the metadata that can't be committed e.g, due to I/O errors
475 	 * on the metadata device.
476 	 */
477 	if (dm_thin_aborted_changes(tc->td)) {
478 		bio_io_error(bio);
479 		return;
480 	}
481 
482 	/*
483 	 * Batch together any bios that trigger commits and then issue a
484 	 * single commit for them in process_deferred_bios().
485 	 */
486 	spin_lock_irqsave(&pool->lock, flags);
487 	bio_list_add(&pool->deferred_flush_bios, bio);
488 	spin_unlock_irqrestore(&pool->lock, flags);
489 }
490 
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 	remap_to_origin(tc, bio);
494 	issue(tc, bio);
495 }
496 
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 			    dm_block_t block)
499 {
500 	remap(tc, bio, block);
501 	issue(tc, bio);
502 }
503 
504 /*----------------------------------------------------------------*/
505 
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510 	struct list_head list;
511 
512 	unsigned quiesced:1;
513 	unsigned prepared:1;
514 	unsigned pass_discard:1;
515 
516 	struct thin_c *tc;
517 	dm_block_t virt_block;
518 	dm_block_t data_block;
519 	struct dm_bio_prison_cell *cell, *cell2;
520 	int err;
521 
522 	/*
523 	 * If the bio covers the whole area of a block then we can avoid
524 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
525 	 * still be in the cell, so care has to be taken to avoid issuing
526 	 * the bio twice.
527 	 */
528 	struct bio *bio;
529 	bio_end_io_t *saved_bi_end_io;
530 };
531 
__maybe_add_mapping(struct dm_thin_new_mapping * m)532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 	struct pool *pool = m->tc->pool;
535 
536 	if (m->quiesced && m->prepared) {
537 		list_add(&m->list, &pool->prepared_mappings);
538 		wake_worker(pool);
539 	}
540 }
541 
copy_complete(int read_err,unsigned long write_err,void * context)542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 	unsigned long flags;
545 	struct dm_thin_new_mapping *m = context;
546 	struct pool *pool = m->tc->pool;
547 
548 	m->err = read_err || write_err ? -EIO : 0;
549 
550 	spin_lock_irqsave(&pool->lock, flags);
551 	m->prepared = 1;
552 	__maybe_add_mapping(m);
553 	spin_unlock_irqrestore(&pool->lock, flags);
554 }
555 
overwrite_endio(struct bio * bio,int err)556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 	unsigned long flags;
559 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 	struct pool *pool = m->tc->pool;
562 
563 	m->err = err;
564 
565 	spin_lock_irqsave(&pool->lock, flags);
566 	m->prepared = 1;
567 	__maybe_add_mapping(m);
568 	spin_unlock_irqrestore(&pool->lock, flags);
569 }
570 
571 /*----------------------------------------------------------------*/
572 
573 /*
574  * Workqueue.
575  */
576 
577 /*
578  * Prepared mapping jobs.
579  */
580 
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
cell_defer(struct thin_c * tc,struct dm_bio_prison_cell * cell)584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 	struct pool *pool = tc->pool;
587 	unsigned long flags;
588 
589 	spin_lock_irqsave(&pool->lock, flags);
590 	cell_release(pool, cell, &pool->deferred_bios);
591 	spin_unlock_irqrestore(&tc->pool->lock, flags);
592 
593 	wake_worker(pool);
594 }
595 
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 	struct pool *pool = tc->pool;
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&pool->lock, flags);
605 	cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 	spin_unlock_irqrestore(&pool->lock, flags);
607 
608 	wake_worker(pool);
609 }
610 
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 	if (m->bio)
614 		m->bio->bi_end_io = m->saved_bi_end_io;
615 	cell_error(m->tc->pool, m->cell);
616 	list_del(&m->list);
617 	mempool_free(m, m->tc->pool->mapping_pool);
618 }
619 
process_prepared_mapping(struct dm_thin_new_mapping * m)620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 	struct thin_c *tc = m->tc;
623 	struct pool *pool = tc->pool;
624 	struct bio *bio;
625 	int r;
626 
627 	bio = m->bio;
628 	if (bio)
629 		bio->bi_end_io = m->saved_bi_end_io;
630 
631 	if (m->err) {
632 		cell_error(pool, m->cell);
633 		goto out;
634 	}
635 
636 	/*
637 	 * Commit the prepared block into the mapping btree.
638 	 * Any I/O for this block arriving after this point will get
639 	 * remapped to it directly.
640 	 */
641 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 	if (r) {
643 		DMERR_LIMIT("dm_thin_insert_block() failed");
644 		cell_error(pool, m->cell);
645 		goto out;
646 	}
647 
648 	/*
649 	 * Release any bios held while the block was being provisioned.
650 	 * If we are processing a write bio that completely covers the block,
651 	 * we already processed it so can ignore it now when processing
652 	 * the bios in the cell.
653 	 */
654 	if (bio) {
655 		cell_defer_no_holder(tc, m->cell);
656 		bio_endio(bio, 0);
657 	} else
658 		cell_defer(tc, m->cell);
659 
660 out:
661 	list_del(&m->list);
662 	mempool_free(m, pool->mapping_pool);
663 }
664 
process_prepared_discard_fail(struct dm_thin_new_mapping * m)665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
666 {
667 	struct thin_c *tc = m->tc;
668 
669 	bio_io_error(m->bio);
670 	cell_defer_no_holder(tc, m->cell);
671 	cell_defer_no_holder(tc, m->cell2);
672 	mempool_free(m, tc->pool->mapping_pool);
673 }
674 
process_prepared_discard_passdown(struct dm_thin_new_mapping * m)675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
676 {
677 	struct thin_c *tc = m->tc;
678 
679 	inc_all_io_entry(tc->pool, m->bio);
680 	cell_defer_no_holder(tc, m->cell);
681 	cell_defer_no_holder(tc, m->cell2);
682 
683 	if (m->pass_discard)
684 		remap_and_issue(tc, m->bio, m->data_block);
685 	else
686 		bio_endio(m->bio, 0);
687 
688 	mempool_free(m, tc->pool->mapping_pool);
689 }
690 
process_prepared_discard(struct dm_thin_new_mapping * m)691 static void process_prepared_discard(struct dm_thin_new_mapping *m)
692 {
693 	int r;
694 	struct thin_c *tc = m->tc;
695 
696 	r = dm_thin_remove_block(tc->td, m->virt_block);
697 	if (r)
698 		DMERR_LIMIT("dm_thin_remove_block() failed");
699 
700 	process_prepared_discard_passdown(m);
701 }
702 
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)703 static void process_prepared(struct pool *pool, struct list_head *head,
704 			     process_mapping_fn *fn)
705 {
706 	unsigned long flags;
707 	struct list_head maps;
708 	struct dm_thin_new_mapping *m, *tmp;
709 
710 	INIT_LIST_HEAD(&maps);
711 	spin_lock_irqsave(&pool->lock, flags);
712 	list_splice_init(head, &maps);
713 	spin_unlock_irqrestore(&pool->lock, flags);
714 
715 	list_for_each_entry_safe(m, tmp, &maps, list)
716 		(*fn)(m);
717 }
718 
719 /*
720  * Deferred bio jobs.
721  */
io_overlaps_block(struct pool * pool,struct bio * bio)722 static int io_overlaps_block(struct pool *pool, struct bio *bio)
723 {
724 	return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
725 }
726 
io_overwrites_block(struct pool * pool,struct bio * bio)727 static int io_overwrites_block(struct pool *pool, struct bio *bio)
728 {
729 	return (bio_data_dir(bio) == WRITE) &&
730 		io_overlaps_block(pool, bio);
731 }
732 
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
734 			       bio_end_io_t *fn)
735 {
736 	*save = bio->bi_end_io;
737 	bio->bi_end_io = fn;
738 }
739 
ensure_next_mapping(struct pool * pool)740 static int ensure_next_mapping(struct pool *pool)
741 {
742 	if (pool->next_mapping)
743 		return 0;
744 
745 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
746 
747 	return pool->next_mapping ? 0 : -ENOMEM;
748 }
749 
get_next_mapping(struct pool * pool)750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
751 {
752 	struct dm_thin_new_mapping *r = pool->next_mapping;
753 
754 	BUG_ON(!pool->next_mapping);
755 
756 	pool->next_mapping = NULL;
757 
758 	return r;
759 }
760 
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
762 			  struct dm_dev *origin, dm_block_t data_origin,
763 			  dm_block_t data_dest,
764 			  struct dm_bio_prison_cell *cell, struct bio *bio)
765 {
766 	int r;
767 	struct pool *pool = tc->pool;
768 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
769 
770 	INIT_LIST_HEAD(&m->list);
771 	m->quiesced = 0;
772 	m->prepared = 0;
773 	m->tc = tc;
774 	m->virt_block = virt_block;
775 	m->data_block = data_dest;
776 	m->cell = cell;
777 	m->err = 0;
778 	m->bio = NULL;
779 
780 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
781 		m->quiesced = 1;
782 
783 	/*
784 	 * IO to pool_dev remaps to the pool target's data_dev.
785 	 *
786 	 * If the whole block of data is being overwritten, we can issue the
787 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
788 	 */
789 	if (io_overwrites_block(pool, bio)) {
790 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
791 
792 		h->overwrite_mapping = m;
793 		m->bio = bio;
794 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
795 		inc_all_io_entry(pool, bio);
796 		remap_and_issue(tc, bio, data_dest);
797 	} else {
798 		struct dm_io_region from, to;
799 
800 		from.bdev = origin->bdev;
801 		from.sector = data_origin * pool->sectors_per_block;
802 		from.count = pool->sectors_per_block;
803 
804 		to.bdev = tc->pool_dev->bdev;
805 		to.sector = data_dest * pool->sectors_per_block;
806 		to.count = pool->sectors_per_block;
807 
808 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
809 				   0, copy_complete, m);
810 		if (r < 0) {
811 			mempool_free(m, pool->mapping_pool);
812 			DMERR_LIMIT("dm_kcopyd_copy() failed");
813 			cell_error(pool, cell);
814 		}
815 	}
816 }
817 
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
819 				   dm_block_t data_origin, dm_block_t data_dest,
820 				   struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822 	schedule_copy(tc, virt_block, tc->pool_dev,
823 		      data_origin, data_dest, cell, bio);
824 }
825 
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
827 				   dm_block_t data_dest,
828 				   struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830 	schedule_copy(tc, virt_block, tc->origin_dev,
831 		      virt_block, data_dest, cell, bio);
832 }
833 
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
835 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
836 			  struct bio *bio)
837 {
838 	struct pool *pool = tc->pool;
839 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
840 
841 	INIT_LIST_HEAD(&m->list);
842 	m->quiesced = 1;
843 	m->prepared = 0;
844 	m->tc = tc;
845 	m->virt_block = virt_block;
846 	m->data_block = data_block;
847 	m->cell = cell;
848 	m->err = 0;
849 	m->bio = NULL;
850 
851 	/*
852 	 * If the whole block of data is being overwritten or we are not
853 	 * zeroing pre-existing data, we can issue the bio immediately.
854 	 * Otherwise we use kcopyd to zero the data first.
855 	 */
856 	if (!pool->pf.zero_new_blocks)
857 		process_prepared_mapping(m);
858 
859 	else if (io_overwrites_block(pool, bio)) {
860 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 
862 		h->overwrite_mapping = m;
863 		m->bio = bio;
864 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
865 		inc_all_io_entry(pool, bio);
866 		remap_and_issue(tc, bio, data_block);
867 	} else {
868 		int r;
869 		struct dm_io_region to;
870 
871 		to.bdev = tc->pool_dev->bdev;
872 		to.sector = data_block * pool->sectors_per_block;
873 		to.count = pool->sectors_per_block;
874 
875 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
876 		if (r < 0) {
877 			mempool_free(m, pool->mapping_pool);
878 			DMERR_LIMIT("dm_kcopyd_zero() failed");
879 			cell_error(pool, cell);
880 		}
881 	}
882 }
883 
commit(struct pool * pool)884 static int commit(struct pool *pool)
885 {
886 	int r;
887 
888 	r = dm_pool_commit_metadata(pool->pmd);
889 	if (r)
890 		DMERR_LIMIT("commit failed: error = %d", r);
891 
892 	return r;
893 }
894 
895 /*
896  * A non-zero return indicates read_only or fail_io mode.
897  * Many callers don't care about the return value.
898  */
commit_or_fallback(struct pool * pool)899 static int commit_or_fallback(struct pool *pool)
900 {
901 	int r;
902 
903 	if (get_pool_mode(pool) != PM_WRITE)
904 		return -EINVAL;
905 
906 	r = commit(pool);
907 	if (r)
908 		set_pool_mode(pool, PM_READ_ONLY);
909 
910 	return r;
911 }
912 
alloc_data_block(struct thin_c * tc,dm_block_t * result)913 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
914 {
915 	int r;
916 	dm_block_t free_blocks;
917 	unsigned long flags;
918 	struct pool *pool = tc->pool;
919 
920 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
921 	if (r)
922 		return r;
923 
924 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
925 		DMWARN("%s: reached low water mark for data device: sending event.",
926 		       dm_device_name(pool->pool_md));
927 		spin_lock_irqsave(&pool->lock, flags);
928 		pool->low_water_triggered = 1;
929 		spin_unlock_irqrestore(&pool->lock, flags);
930 		dm_table_event(pool->ti->table);
931 	}
932 
933 	if (!free_blocks) {
934 		if (pool->no_free_space)
935 			return -ENOSPC;
936 		else {
937 			/*
938 			 * Try to commit to see if that will free up some
939 			 * more space.
940 			 */
941 			(void) commit_or_fallback(pool);
942 
943 			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944 			if (r)
945 				return r;
946 
947 			/*
948 			 * If we still have no space we set a flag to avoid
949 			 * doing all this checking and return -ENOSPC.
950 			 */
951 			if (!free_blocks) {
952 				DMWARN("%s: no free space available.",
953 				       dm_device_name(pool->pool_md));
954 				spin_lock_irqsave(&pool->lock, flags);
955 				pool->no_free_space = 1;
956 				spin_unlock_irqrestore(&pool->lock, flags);
957 				return -ENOSPC;
958 			}
959 		}
960 	}
961 
962 	r = dm_pool_alloc_data_block(pool->pmd, result);
963 	if (r)
964 		return r;
965 
966 	return 0;
967 }
968 
969 /*
970  * If we have run out of space, queue bios until the device is
971  * resumed, presumably after having been reloaded with more space.
972  */
retry_on_resume(struct bio * bio)973 static void retry_on_resume(struct bio *bio)
974 {
975 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
976 	struct thin_c *tc = h->tc;
977 	struct pool *pool = tc->pool;
978 	unsigned long flags;
979 
980 	spin_lock_irqsave(&pool->lock, flags);
981 	bio_list_add(&pool->retry_on_resume_list, bio);
982 	spin_unlock_irqrestore(&pool->lock, flags);
983 }
984 
no_space(struct pool * pool,struct dm_bio_prison_cell * cell)985 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
986 {
987 	struct bio *bio;
988 	struct bio_list bios;
989 
990 	bio_list_init(&bios);
991 	cell_release(pool, cell, &bios);
992 
993 	while ((bio = bio_list_pop(&bios)))
994 		retry_on_resume(bio);
995 }
996 
process_discard(struct thin_c * tc,struct bio * bio)997 static void process_discard(struct thin_c *tc, struct bio *bio)
998 {
999 	int r;
1000 	unsigned long flags;
1001 	struct pool *pool = tc->pool;
1002 	struct dm_bio_prison_cell *cell, *cell2;
1003 	struct dm_cell_key key, key2;
1004 	dm_block_t block = get_bio_block(tc, bio);
1005 	struct dm_thin_lookup_result lookup_result;
1006 	struct dm_thin_new_mapping *m;
1007 
1008 	build_virtual_key(tc->td, block, &key);
1009 	if (bio_detain(tc->pool, &key, bio, &cell))
1010 		return;
1011 
1012 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1013 	switch (r) {
1014 	case 0:
1015 		/*
1016 		 * Check nobody is fiddling with this pool block.  This can
1017 		 * happen if someone's in the process of breaking sharing
1018 		 * on this block.
1019 		 */
1020 		build_data_key(tc->td, lookup_result.block, &key2);
1021 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1022 			cell_defer_no_holder(tc, cell);
1023 			break;
1024 		}
1025 
1026 		if (io_overlaps_block(pool, bio)) {
1027 			/*
1028 			 * IO may still be going to the destination block.  We must
1029 			 * quiesce before we can do the removal.
1030 			 */
1031 			m = get_next_mapping(pool);
1032 			m->tc = tc;
1033 			m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1034 			m->virt_block = block;
1035 			m->data_block = lookup_result.block;
1036 			m->cell = cell;
1037 			m->cell2 = cell2;
1038 			m->err = 0;
1039 			m->bio = bio;
1040 
1041 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1042 				spin_lock_irqsave(&pool->lock, flags);
1043 				list_add(&m->list, &pool->prepared_discards);
1044 				spin_unlock_irqrestore(&pool->lock, flags);
1045 				wake_worker(pool);
1046 			}
1047 		} else {
1048 			inc_all_io_entry(pool, bio);
1049 			cell_defer_no_holder(tc, cell);
1050 			cell_defer_no_holder(tc, cell2);
1051 
1052 			/*
1053 			 * The DM core makes sure that the discard doesn't span
1054 			 * a block boundary.  So we submit the discard of a
1055 			 * partial block appropriately.
1056 			 */
1057 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1058 				remap_and_issue(tc, bio, lookup_result.block);
1059 			else
1060 				bio_endio(bio, 0);
1061 		}
1062 		break;
1063 
1064 	case -ENODATA:
1065 		/*
1066 		 * It isn't provisioned, just forget it.
1067 		 */
1068 		cell_defer_no_holder(tc, cell);
1069 		bio_endio(bio, 0);
1070 		break;
1071 
1072 	default:
1073 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1074 			    __func__, r);
1075 		cell_defer_no_holder(tc, cell);
1076 		bio_io_error(bio);
1077 		break;
1078 	}
1079 }
1080 
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1081 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1082 			  struct dm_cell_key *key,
1083 			  struct dm_thin_lookup_result *lookup_result,
1084 			  struct dm_bio_prison_cell *cell)
1085 {
1086 	int r;
1087 	dm_block_t data_block;
1088 
1089 	r = alloc_data_block(tc, &data_block);
1090 	switch (r) {
1091 	case 0:
1092 		schedule_internal_copy(tc, block, lookup_result->block,
1093 				       data_block, cell, bio);
1094 		break;
1095 
1096 	case -ENOSPC:
1097 		no_space(tc->pool, cell);
1098 		break;
1099 
1100 	default:
1101 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1102 			    __func__, r);
1103 		cell_error(tc->pool, cell);
1104 		break;
1105 	}
1106 }
1107 
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result)1108 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1109 			       dm_block_t block,
1110 			       struct dm_thin_lookup_result *lookup_result)
1111 {
1112 	struct dm_bio_prison_cell *cell;
1113 	struct pool *pool = tc->pool;
1114 	struct dm_cell_key key;
1115 
1116 	/*
1117 	 * If cell is already occupied, then sharing is already in the process
1118 	 * of being broken so we have nothing further to do here.
1119 	 */
1120 	build_data_key(tc->td, lookup_result->block, &key);
1121 	if (bio_detain(pool, &key, bio, &cell))
1122 		return;
1123 
1124 	if (bio_data_dir(bio) == WRITE && bio->bi_size)
1125 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1126 	else {
1127 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1128 
1129 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1130 		inc_all_io_entry(pool, bio);
1131 		cell_defer_no_holder(tc, cell);
1132 
1133 		remap_and_issue(tc, bio, lookup_result->block);
1134 	}
1135 }
1136 
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1137 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1138 			    struct dm_bio_prison_cell *cell)
1139 {
1140 	int r;
1141 	dm_block_t data_block;
1142 	struct pool *pool = tc->pool;
1143 
1144 	/*
1145 	 * Remap empty bios (flushes) immediately, without provisioning.
1146 	 */
1147 	if (!bio->bi_size) {
1148 		inc_all_io_entry(pool, bio);
1149 		cell_defer_no_holder(tc, cell);
1150 
1151 		remap_and_issue(tc, bio, 0);
1152 		return;
1153 	}
1154 
1155 	/*
1156 	 * Fill read bios with zeroes and complete them immediately.
1157 	 */
1158 	if (bio_data_dir(bio) == READ) {
1159 		zero_fill_bio(bio);
1160 		cell_defer_no_holder(tc, cell);
1161 		bio_endio(bio, 0);
1162 		return;
1163 	}
1164 
1165 	r = alloc_data_block(tc, &data_block);
1166 	switch (r) {
1167 	case 0:
1168 		if (tc->origin_dev)
1169 			schedule_external_copy(tc, block, data_block, cell, bio);
1170 		else
1171 			schedule_zero(tc, block, data_block, cell, bio);
1172 		break;
1173 
1174 	case -ENOSPC:
1175 		no_space(pool, cell);
1176 		break;
1177 
1178 	default:
1179 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1180 			    __func__, r);
1181 		set_pool_mode(pool, PM_READ_ONLY);
1182 		cell_error(pool, cell);
1183 		break;
1184 	}
1185 }
1186 
process_bio(struct thin_c * tc,struct bio * bio)1187 static void process_bio(struct thin_c *tc, struct bio *bio)
1188 {
1189 	int r;
1190 	struct pool *pool = tc->pool;
1191 	dm_block_t block = get_bio_block(tc, bio);
1192 	struct dm_bio_prison_cell *cell;
1193 	struct dm_cell_key key;
1194 	struct dm_thin_lookup_result lookup_result;
1195 
1196 	/*
1197 	 * If cell is already occupied, then the block is already
1198 	 * being provisioned so we have nothing further to do here.
1199 	 */
1200 	build_virtual_key(tc->td, block, &key);
1201 	if (bio_detain(pool, &key, bio, &cell))
1202 		return;
1203 
1204 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1205 	switch (r) {
1206 	case 0:
1207 		if (lookup_result.shared) {
1208 			process_shared_bio(tc, bio, block, &lookup_result);
1209 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1210 		} else {
1211 			inc_all_io_entry(pool, bio);
1212 			cell_defer_no_holder(tc, cell);
1213 
1214 			remap_and_issue(tc, bio, lookup_result.block);
1215 		}
1216 		break;
1217 
1218 	case -ENODATA:
1219 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1220 			inc_all_io_entry(pool, bio);
1221 			cell_defer_no_holder(tc, cell);
1222 
1223 			remap_to_origin_and_issue(tc, bio);
1224 		} else
1225 			provision_block(tc, bio, block, cell);
1226 		break;
1227 
1228 	default:
1229 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1230 			    __func__, r);
1231 		cell_defer_no_holder(tc, cell);
1232 		bio_io_error(bio);
1233 		break;
1234 	}
1235 }
1236 
process_bio_read_only(struct thin_c * tc,struct bio * bio)1237 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1238 {
1239 	int r;
1240 	int rw = bio_data_dir(bio);
1241 	dm_block_t block = get_bio_block(tc, bio);
1242 	struct dm_thin_lookup_result lookup_result;
1243 
1244 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1245 	switch (r) {
1246 	case 0:
1247 		if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1248 			bio_io_error(bio);
1249 		else {
1250 			inc_all_io_entry(tc->pool, bio);
1251 			remap_and_issue(tc, bio, lookup_result.block);
1252 		}
1253 		break;
1254 
1255 	case -ENODATA:
1256 		if (rw != READ) {
1257 			bio_io_error(bio);
1258 			break;
1259 		}
1260 
1261 		if (tc->origin_dev) {
1262 			inc_all_io_entry(tc->pool, bio);
1263 			remap_to_origin_and_issue(tc, bio);
1264 			break;
1265 		}
1266 
1267 		zero_fill_bio(bio);
1268 		bio_endio(bio, 0);
1269 		break;
1270 
1271 	default:
1272 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1273 			    __func__, r);
1274 		bio_io_error(bio);
1275 		break;
1276 	}
1277 }
1278 
process_bio_fail(struct thin_c * tc,struct bio * bio)1279 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1280 {
1281 	bio_io_error(bio);
1282 }
1283 
1284 /*
1285  * FIXME: should we also commit due to size of transaction, measured in
1286  * metadata blocks?
1287  */
need_commit_due_to_time(struct pool * pool)1288 static int need_commit_due_to_time(struct pool *pool)
1289 {
1290 	return jiffies < pool->last_commit_jiffies ||
1291 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1292 }
1293 
process_deferred_bios(struct pool * pool)1294 static void process_deferred_bios(struct pool *pool)
1295 {
1296 	unsigned long flags;
1297 	struct bio *bio;
1298 	struct bio_list bios;
1299 
1300 	bio_list_init(&bios);
1301 
1302 	spin_lock_irqsave(&pool->lock, flags);
1303 	bio_list_merge(&bios, &pool->deferred_bios);
1304 	bio_list_init(&pool->deferred_bios);
1305 	spin_unlock_irqrestore(&pool->lock, flags);
1306 
1307 	while ((bio = bio_list_pop(&bios))) {
1308 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1309 		struct thin_c *tc = h->tc;
1310 
1311 		/*
1312 		 * If we've got no free new_mapping structs, and processing
1313 		 * this bio might require one, we pause until there are some
1314 		 * prepared mappings to process.
1315 		 */
1316 		if (ensure_next_mapping(pool)) {
1317 			spin_lock_irqsave(&pool->lock, flags);
1318 			bio_list_merge(&pool->deferred_bios, &bios);
1319 			spin_unlock_irqrestore(&pool->lock, flags);
1320 
1321 			break;
1322 		}
1323 
1324 		if (bio->bi_rw & REQ_DISCARD)
1325 			pool->process_discard(tc, bio);
1326 		else
1327 			pool->process_bio(tc, bio);
1328 	}
1329 
1330 	/*
1331 	 * If there are any deferred flush bios, we must commit
1332 	 * the metadata before issuing them.
1333 	 */
1334 	bio_list_init(&bios);
1335 	spin_lock_irqsave(&pool->lock, flags);
1336 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1337 	bio_list_init(&pool->deferred_flush_bios);
1338 	spin_unlock_irqrestore(&pool->lock, flags);
1339 
1340 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1341 		return;
1342 
1343 	if (commit_or_fallback(pool)) {
1344 		while ((bio = bio_list_pop(&bios)))
1345 			bio_io_error(bio);
1346 		return;
1347 	}
1348 	pool->last_commit_jiffies = jiffies;
1349 
1350 	while ((bio = bio_list_pop(&bios)))
1351 		generic_make_request(bio);
1352 }
1353 
do_worker(struct work_struct * ws)1354 static void do_worker(struct work_struct *ws)
1355 {
1356 	struct pool *pool = container_of(ws, struct pool, worker);
1357 
1358 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1359 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1360 	process_deferred_bios(pool);
1361 }
1362 
1363 /*
1364  * We want to commit periodically so that not too much
1365  * unwritten data builds up.
1366  */
do_waker(struct work_struct * ws)1367 static void do_waker(struct work_struct *ws)
1368 {
1369 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1370 	wake_worker(pool);
1371 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1372 }
1373 
1374 /*----------------------------------------------------------------*/
1375 
get_pool_mode(struct pool * pool)1376 static enum pool_mode get_pool_mode(struct pool *pool)
1377 {
1378 	return pool->pf.mode;
1379 }
1380 
set_pool_mode(struct pool * pool,enum pool_mode mode)1381 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1382 {
1383 	int r;
1384 
1385 	pool->pf.mode = mode;
1386 
1387 	switch (mode) {
1388 	case PM_FAIL:
1389 		DMERR("switching pool to failure mode");
1390 		pool->process_bio = process_bio_fail;
1391 		pool->process_discard = process_bio_fail;
1392 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1393 		pool->process_prepared_discard = process_prepared_discard_fail;
1394 		break;
1395 
1396 	case PM_READ_ONLY:
1397 		DMERR("switching pool to read-only mode");
1398 		r = dm_pool_abort_metadata(pool->pmd);
1399 		if (r) {
1400 			DMERR("aborting transaction failed");
1401 			set_pool_mode(pool, PM_FAIL);
1402 		} else {
1403 			dm_pool_metadata_read_only(pool->pmd);
1404 			pool->process_bio = process_bio_read_only;
1405 			pool->process_discard = process_discard;
1406 			pool->process_prepared_mapping = process_prepared_mapping_fail;
1407 			pool->process_prepared_discard = process_prepared_discard_passdown;
1408 		}
1409 		break;
1410 
1411 	case PM_WRITE:
1412 		pool->process_bio = process_bio;
1413 		pool->process_discard = process_discard;
1414 		pool->process_prepared_mapping = process_prepared_mapping;
1415 		pool->process_prepared_discard = process_prepared_discard;
1416 		break;
1417 	}
1418 }
1419 
1420 /*----------------------------------------------------------------*/
1421 
1422 /*
1423  * Mapping functions.
1424  */
1425 
1426 /*
1427  * Called only while mapping a thin bio to hand it over to the workqueue.
1428  */
thin_defer_bio(struct thin_c * tc,struct bio * bio)1429 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1430 {
1431 	unsigned long flags;
1432 	struct pool *pool = tc->pool;
1433 
1434 	spin_lock_irqsave(&pool->lock, flags);
1435 	bio_list_add(&pool->deferred_bios, bio);
1436 	spin_unlock_irqrestore(&pool->lock, flags);
1437 
1438 	wake_worker(pool);
1439 }
1440 
thin_hook_bio(struct thin_c * tc,struct bio * bio)1441 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1442 {
1443 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1444 
1445 	h->tc = tc;
1446 	h->shared_read_entry = NULL;
1447 	h->all_io_entry = NULL;
1448 	h->overwrite_mapping = NULL;
1449 }
1450 
1451 /*
1452  * Non-blocking function called from the thin target's map function.
1453  */
thin_bio_map(struct dm_target * ti,struct bio * bio)1454 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1455 {
1456 	int r;
1457 	struct thin_c *tc = ti->private;
1458 	dm_block_t block = get_bio_block(tc, bio);
1459 	struct dm_thin_device *td = tc->td;
1460 	struct dm_thin_lookup_result result;
1461 	struct dm_bio_prison_cell cell1, cell2;
1462 	struct dm_bio_prison_cell *cell_result;
1463 	struct dm_cell_key key;
1464 
1465 	thin_hook_bio(tc, bio);
1466 
1467 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1468 		bio_io_error(bio);
1469 		return DM_MAPIO_SUBMITTED;
1470 	}
1471 
1472 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1473 		thin_defer_bio(tc, bio);
1474 		return DM_MAPIO_SUBMITTED;
1475 	}
1476 
1477 	r = dm_thin_find_block(td, block, 0, &result);
1478 
1479 	/*
1480 	 * Note that we defer readahead too.
1481 	 */
1482 	switch (r) {
1483 	case 0:
1484 		if (unlikely(result.shared)) {
1485 			/*
1486 			 * We have a race condition here between the
1487 			 * result.shared value returned by the lookup and
1488 			 * snapshot creation, which may cause new
1489 			 * sharing.
1490 			 *
1491 			 * To avoid this always quiesce the origin before
1492 			 * taking the snap.  You want to do this anyway to
1493 			 * ensure a consistent application view
1494 			 * (i.e. lockfs).
1495 			 *
1496 			 * More distant ancestors are irrelevant. The
1497 			 * shared flag will be set in their case.
1498 			 */
1499 			thin_defer_bio(tc, bio);
1500 			return DM_MAPIO_SUBMITTED;
1501 		}
1502 
1503 		build_virtual_key(tc->td, block, &key);
1504 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1505 			return DM_MAPIO_SUBMITTED;
1506 
1507 		build_data_key(tc->td, result.block, &key);
1508 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1509 			cell_defer_no_holder_no_free(tc, &cell1);
1510 			return DM_MAPIO_SUBMITTED;
1511 		}
1512 
1513 		inc_all_io_entry(tc->pool, bio);
1514 		cell_defer_no_holder_no_free(tc, &cell2);
1515 		cell_defer_no_holder_no_free(tc, &cell1);
1516 
1517 		remap(tc, bio, result.block);
1518 		return DM_MAPIO_REMAPPED;
1519 
1520 	case -ENODATA:
1521 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1522 			/*
1523 			 * This block isn't provisioned, and we have no way
1524 			 * of doing so.  Just error it.
1525 			 */
1526 			bio_io_error(bio);
1527 			return DM_MAPIO_SUBMITTED;
1528 		}
1529 		/* fall through */
1530 
1531 	case -EWOULDBLOCK:
1532 		/*
1533 		 * In future, the failed dm_thin_find_block above could
1534 		 * provide the hint to load the metadata into cache.
1535 		 */
1536 		thin_defer_bio(tc, bio);
1537 		return DM_MAPIO_SUBMITTED;
1538 
1539 	default:
1540 		/*
1541 		 * Must always call bio_io_error on failure.
1542 		 * dm_thin_find_block can fail with -EINVAL if the
1543 		 * pool is switched to fail-io mode.
1544 		 */
1545 		bio_io_error(bio);
1546 		return DM_MAPIO_SUBMITTED;
1547 	}
1548 }
1549 
pool_is_congested(struct dm_target_callbacks * cb,int bdi_bits)1550 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1551 {
1552 	int r;
1553 	unsigned long flags;
1554 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1555 
1556 	spin_lock_irqsave(&pt->pool->lock, flags);
1557 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1558 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1559 
1560 	if (!r) {
1561 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1562 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1563 	}
1564 
1565 	return r;
1566 }
1567 
__requeue_bios(struct pool * pool)1568 static void __requeue_bios(struct pool *pool)
1569 {
1570 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1571 	bio_list_init(&pool->retry_on_resume_list);
1572 }
1573 
1574 /*----------------------------------------------------------------
1575  * Binding of control targets to a pool object
1576  *--------------------------------------------------------------*/
data_dev_supports_discard(struct pool_c * pt)1577 static bool data_dev_supports_discard(struct pool_c *pt)
1578 {
1579 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1580 
1581 	return q && blk_queue_discard(q);
1582 }
1583 
is_factor(sector_t block_size,uint32_t n)1584 static bool is_factor(sector_t block_size, uint32_t n)
1585 {
1586 	return !sector_div(block_size, n);
1587 }
1588 
1589 /*
1590  * If discard_passdown was enabled verify that the data device
1591  * supports discards.  Disable discard_passdown if not.
1592  */
disable_passdown_if_not_supported(struct pool_c * pt)1593 static void disable_passdown_if_not_supported(struct pool_c *pt)
1594 {
1595 	struct pool *pool = pt->pool;
1596 	struct block_device *data_bdev = pt->data_dev->bdev;
1597 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1598 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1599 	const char *reason = NULL;
1600 	char buf[BDEVNAME_SIZE];
1601 
1602 	if (!pt->adjusted_pf.discard_passdown)
1603 		return;
1604 
1605 	if (!data_dev_supports_discard(pt))
1606 		reason = "discard unsupported";
1607 
1608 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1609 		reason = "max discard sectors smaller than a block";
1610 
1611 	else if (data_limits->discard_granularity > block_size)
1612 		reason = "discard granularity larger than a block";
1613 
1614 	else if (!is_factor(block_size, data_limits->discard_granularity))
1615 		reason = "discard granularity not a factor of block size";
1616 
1617 	if (reason) {
1618 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1619 		pt->adjusted_pf.discard_passdown = false;
1620 	}
1621 }
1622 
bind_control_target(struct pool * pool,struct dm_target * ti)1623 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1624 {
1625 	struct pool_c *pt = ti->private;
1626 
1627 	/*
1628 	 * We want to make sure that degraded pools are never upgraded.
1629 	 */
1630 	enum pool_mode old_mode = pool->pf.mode;
1631 	enum pool_mode new_mode = pt->adjusted_pf.mode;
1632 
1633 	if (old_mode > new_mode)
1634 		new_mode = old_mode;
1635 
1636 	pool->ti = ti;
1637 	pool->low_water_blocks = pt->low_water_blocks;
1638 	pool->pf = pt->adjusted_pf;
1639 
1640 	set_pool_mode(pool, new_mode);
1641 
1642 	return 0;
1643 }
1644 
unbind_control_target(struct pool * pool,struct dm_target * ti)1645 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1646 {
1647 	if (pool->ti == ti)
1648 		pool->ti = NULL;
1649 }
1650 
1651 /*----------------------------------------------------------------
1652  * Pool creation
1653  *--------------------------------------------------------------*/
1654 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)1655 static void pool_features_init(struct pool_features *pf)
1656 {
1657 	pf->mode = PM_WRITE;
1658 	pf->zero_new_blocks = true;
1659 	pf->discard_enabled = true;
1660 	pf->discard_passdown = true;
1661 }
1662 
__pool_destroy(struct pool * pool)1663 static void __pool_destroy(struct pool *pool)
1664 {
1665 	__pool_table_remove(pool);
1666 
1667 	if (dm_pool_metadata_close(pool->pmd) < 0)
1668 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1669 
1670 	dm_bio_prison_destroy(pool->prison);
1671 	dm_kcopyd_client_destroy(pool->copier);
1672 
1673 	if (pool->wq)
1674 		destroy_workqueue(pool->wq);
1675 
1676 	if (pool->next_mapping)
1677 		mempool_free(pool->next_mapping, pool->mapping_pool);
1678 	mempool_destroy(pool->mapping_pool);
1679 	dm_deferred_set_destroy(pool->shared_read_ds);
1680 	dm_deferred_set_destroy(pool->all_io_ds);
1681 	kfree(pool);
1682 }
1683 
1684 static struct kmem_cache *_new_mapping_cache;
1685 
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,int read_only,char ** error)1686 static struct pool *pool_create(struct mapped_device *pool_md,
1687 				struct block_device *metadata_dev,
1688 				unsigned long block_size,
1689 				int read_only, char **error)
1690 {
1691 	int r;
1692 	void *err_p;
1693 	struct pool *pool;
1694 	struct dm_pool_metadata *pmd;
1695 	bool format_device = read_only ? false : true;
1696 
1697 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1698 	if (IS_ERR(pmd)) {
1699 		*error = "Error creating metadata object";
1700 		return (struct pool *)pmd;
1701 	}
1702 
1703 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1704 	if (!pool) {
1705 		*error = "Error allocating memory for pool";
1706 		err_p = ERR_PTR(-ENOMEM);
1707 		goto bad_pool;
1708 	}
1709 
1710 	pool->pmd = pmd;
1711 	pool->sectors_per_block = block_size;
1712 	if (block_size & (block_size - 1))
1713 		pool->sectors_per_block_shift = -1;
1714 	else
1715 		pool->sectors_per_block_shift = __ffs(block_size);
1716 	pool->low_water_blocks = 0;
1717 	pool_features_init(&pool->pf);
1718 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
1719 	if (!pool->prison) {
1720 		*error = "Error creating pool's bio prison";
1721 		err_p = ERR_PTR(-ENOMEM);
1722 		goto bad_prison;
1723 	}
1724 
1725 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1726 	if (IS_ERR(pool->copier)) {
1727 		r = PTR_ERR(pool->copier);
1728 		*error = "Error creating pool's kcopyd client";
1729 		err_p = ERR_PTR(r);
1730 		goto bad_kcopyd_client;
1731 	}
1732 
1733 	/*
1734 	 * Create singlethreaded workqueue that will service all devices
1735 	 * that use this metadata.
1736 	 */
1737 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1738 	if (!pool->wq) {
1739 		*error = "Error creating pool's workqueue";
1740 		err_p = ERR_PTR(-ENOMEM);
1741 		goto bad_wq;
1742 	}
1743 
1744 	INIT_WORK(&pool->worker, do_worker);
1745 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1746 	spin_lock_init(&pool->lock);
1747 	bio_list_init(&pool->deferred_bios);
1748 	bio_list_init(&pool->deferred_flush_bios);
1749 	INIT_LIST_HEAD(&pool->prepared_mappings);
1750 	INIT_LIST_HEAD(&pool->prepared_discards);
1751 	pool->low_water_triggered = 0;
1752 	pool->no_free_space = 0;
1753 	bio_list_init(&pool->retry_on_resume_list);
1754 
1755 	pool->shared_read_ds = dm_deferred_set_create();
1756 	if (!pool->shared_read_ds) {
1757 		*error = "Error creating pool's shared read deferred set";
1758 		err_p = ERR_PTR(-ENOMEM);
1759 		goto bad_shared_read_ds;
1760 	}
1761 
1762 	pool->all_io_ds = dm_deferred_set_create();
1763 	if (!pool->all_io_ds) {
1764 		*error = "Error creating pool's all io deferred set";
1765 		err_p = ERR_PTR(-ENOMEM);
1766 		goto bad_all_io_ds;
1767 	}
1768 
1769 	pool->next_mapping = NULL;
1770 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1771 						      _new_mapping_cache);
1772 	if (!pool->mapping_pool) {
1773 		*error = "Error creating pool's mapping mempool";
1774 		err_p = ERR_PTR(-ENOMEM);
1775 		goto bad_mapping_pool;
1776 	}
1777 
1778 	pool->ref_count = 1;
1779 	pool->last_commit_jiffies = jiffies;
1780 	pool->pool_md = pool_md;
1781 	pool->md_dev = metadata_dev;
1782 	__pool_table_insert(pool);
1783 
1784 	return pool;
1785 
1786 bad_mapping_pool:
1787 	dm_deferred_set_destroy(pool->all_io_ds);
1788 bad_all_io_ds:
1789 	dm_deferred_set_destroy(pool->shared_read_ds);
1790 bad_shared_read_ds:
1791 	destroy_workqueue(pool->wq);
1792 bad_wq:
1793 	dm_kcopyd_client_destroy(pool->copier);
1794 bad_kcopyd_client:
1795 	dm_bio_prison_destroy(pool->prison);
1796 bad_prison:
1797 	kfree(pool);
1798 bad_pool:
1799 	if (dm_pool_metadata_close(pmd))
1800 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1801 
1802 	return err_p;
1803 }
1804 
__pool_inc(struct pool * pool)1805 static void __pool_inc(struct pool *pool)
1806 {
1807 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1808 	pool->ref_count++;
1809 }
1810 
__pool_dec(struct pool * pool)1811 static void __pool_dec(struct pool *pool)
1812 {
1813 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1814 	BUG_ON(!pool->ref_count);
1815 	if (!--pool->ref_count)
1816 		__pool_destroy(pool);
1817 }
1818 
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,int read_only,char ** error,int * created)1819 static struct pool *__pool_find(struct mapped_device *pool_md,
1820 				struct block_device *metadata_dev,
1821 				unsigned long block_size, int read_only,
1822 				char **error, int *created)
1823 {
1824 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1825 
1826 	if (pool) {
1827 		if (pool->pool_md != pool_md) {
1828 			*error = "metadata device already in use by a pool";
1829 			return ERR_PTR(-EBUSY);
1830 		}
1831 		__pool_inc(pool);
1832 
1833 	} else {
1834 		pool = __pool_table_lookup(pool_md);
1835 		if (pool) {
1836 			if (pool->md_dev != metadata_dev) {
1837 				*error = "different pool cannot replace a pool";
1838 				return ERR_PTR(-EINVAL);
1839 			}
1840 			__pool_inc(pool);
1841 
1842 		} else {
1843 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1844 			*created = 1;
1845 		}
1846 	}
1847 
1848 	return pool;
1849 }
1850 
1851 /*----------------------------------------------------------------
1852  * Pool target methods
1853  *--------------------------------------------------------------*/
pool_dtr(struct dm_target * ti)1854 static void pool_dtr(struct dm_target *ti)
1855 {
1856 	struct pool_c *pt = ti->private;
1857 
1858 	mutex_lock(&dm_thin_pool_table.mutex);
1859 
1860 	unbind_control_target(pt->pool, ti);
1861 	__pool_dec(pt->pool);
1862 	dm_put_device(ti, pt->metadata_dev);
1863 	dm_put_device(ti, pt->data_dev);
1864 	kfree(pt);
1865 
1866 	mutex_unlock(&dm_thin_pool_table.mutex);
1867 }
1868 
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)1869 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1870 			       struct dm_target *ti)
1871 {
1872 	int r;
1873 	unsigned argc;
1874 	const char *arg_name;
1875 
1876 	static struct dm_arg _args[] = {
1877 		{0, 3, "Invalid number of pool feature arguments"},
1878 	};
1879 
1880 	/*
1881 	 * No feature arguments supplied.
1882 	 */
1883 	if (!as->argc)
1884 		return 0;
1885 
1886 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1887 	if (r)
1888 		return -EINVAL;
1889 
1890 	while (argc && !r) {
1891 		arg_name = dm_shift_arg(as);
1892 		argc--;
1893 
1894 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
1895 			pf->zero_new_blocks = false;
1896 
1897 		else if (!strcasecmp(arg_name, "ignore_discard"))
1898 			pf->discard_enabled = false;
1899 
1900 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
1901 			pf->discard_passdown = false;
1902 
1903 		else if (!strcasecmp(arg_name, "read_only"))
1904 			pf->mode = PM_READ_ONLY;
1905 
1906 		else {
1907 			ti->error = "Unrecognised pool feature requested";
1908 			r = -EINVAL;
1909 			break;
1910 		}
1911 	}
1912 
1913 	return r;
1914 }
1915 
metadata_low_callback(void * context)1916 static void metadata_low_callback(void *context)
1917 {
1918 	struct pool *pool = context;
1919 
1920 	DMWARN("%s: reached low water mark for metadata device: sending event.",
1921 	       dm_device_name(pool->pool_md));
1922 
1923 	dm_table_event(pool->ti->table);
1924 }
1925 
get_metadata_dev_size(struct block_device * bdev)1926 static sector_t get_metadata_dev_size(struct block_device *bdev)
1927 {
1928 	sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1929 	char buffer[BDEVNAME_SIZE];
1930 
1931 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1932 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1933 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1934 		metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1935 	}
1936 
1937 	return metadata_dev_size;
1938 }
1939 
get_metadata_dev_size_in_blocks(struct block_device * bdev)1940 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1941 {
1942 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1943 
1944 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1945 
1946 	return metadata_dev_size;
1947 }
1948 
1949 /*
1950  * When a metadata threshold is crossed a dm event is triggered, and
1951  * userland should respond by growing the metadata device.  We could let
1952  * userland set the threshold, like we do with the data threshold, but I'm
1953  * not sure they know enough to do this well.
1954  */
calc_metadata_threshold(struct pool_c * pt)1955 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1956 {
1957 	/*
1958 	 * 4M is ample for all ops with the possible exception of thin
1959 	 * device deletion which is harmless if it fails (just retry the
1960 	 * delete after you've grown the device).
1961 	 */
1962 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1963 	return min((dm_block_t)1024ULL /* 4M */, quarter);
1964 }
1965 
1966 /*
1967  * thin-pool <metadata dev> <data dev>
1968  *	     <data block size (sectors)>
1969  *	     <low water mark (blocks)>
1970  *	     [<#feature args> [<arg>]*]
1971  *
1972  * Optional feature arguments are:
1973  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1974  *	     ignore_discard: disable discard
1975  *	     no_discard_passdown: don't pass discards down to the data device
1976  */
pool_ctr(struct dm_target * ti,unsigned argc,char ** argv)1977 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1978 {
1979 	int r, pool_created = 0;
1980 	struct pool_c *pt;
1981 	struct pool *pool;
1982 	struct pool_features pf;
1983 	struct dm_arg_set as;
1984 	struct dm_dev *data_dev;
1985 	unsigned long block_size;
1986 	dm_block_t low_water_blocks;
1987 	struct dm_dev *metadata_dev;
1988 	fmode_t metadata_mode;
1989 
1990 	/*
1991 	 * FIXME Remove validation from scope of lock.
1992 	 */
1993 	mutex_lock(&dm_thin_pool_table.mutex);
1994 
1995 	if (argc < 4) {
1996 		ti->error = "Invalid argument count";
1997 		r = -EINVAL;
1998 		goto out_unlock;
1999 	}
2000 
2001 	as.argc = argc;
2002 	as.argv = argv;
2003 
2004 	/*
2005 	 * Set default pool features.
2006 	 */
2007 	pool_features_init(&pf);
2008 
2009 	dm_consume_args(&as, 4);
2010 	r = parse_pool_features(&as, &pf, ti);
2011 	if (r)
2012 		goto out_unlock;
2013 
2014 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2015 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2016 	if (r) {
2017 		ti->error = "Error opening metadata block device";
2018 		goto out_unlock;
2019 	}
2020 
2021 	/*
2022 	 * Run for the side-effect of possibly issuing a warning if the
2023 	 * device is too big.
2024 	 */
2025 	(void) get_metadata_dev_size(metadata_dev->bdev);
2026 
2027 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2028 	if (r) {
2029 		ti->error = "Error getting data device";
2030 		goto out_metadata;
2031 	}
2032 
2033 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2034 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2035 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2036 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2037 		ti->error = "Invalid block size";
2038 		r = -EINVAL;
2039 		goto out;
2040 	}
2041 
2042 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2043 		ti->error = "Invalid low water mark";
2044 		r = -EINVAL;
2045 		goto out;
2046 	}
2047 
2048 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2049 	if (!pt) {
2050 		r = -ENOMEM;
2051 		goto out;
2052 	}
2053 
2054 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2055 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2056 	if (IS_ERR(pool)) {
2057 		r = PTR_ERR(pool);
2058 		goto out_free_pt;
2059 	}
2060 
2061 	/*
2062 	 * 'pool_created' reflects whether this is the first table load.
2063 	 * Top level discard support is not allowed to be changed after
2064 	 * initial load.  This would require a pool reload to trigger thin
2065 	 * device changes.
2066 	 */
2067 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2068 		ti->error = "Discard support cannot be disabled once enabled";
2069 		r = -EINVAL;
2070 		goto out_flags_changed;
2071 	}
2072 
2073 	pt->pool = pool;
2074 	pt->ti = ti;
2075 	pt->metadata_dev = metadata_dev;
2076 	pt->data_dev = data_dev;
2077 	pt->low_water_blocks = low_water_blocks;
2078 	pt->adjusted_pf = pt->requested_pf = pf;
2079 	ti->num_flush_bios = 1;
2080 
2081 	/*
2082 	 * Only need to enable discards if the pool should pass
2083 	 * them down to the data device.  The thin device's discard
2084 	 * processing will cause mappings to be removed from the btree.
2085 	 */
2086 	if (pf.discard_enabled && pf.discard_passdown) {
2087 		ti->num_discard_bios = 1;
2088 
2089 		/*
2090 		 * Setting 'discards_supported' circumvents the normal
2091 		 * stacking of discard limits (this keeps the pool and
2092 		 * thin devices' discard limits consistent).
2093 		 */
2094 		ti->discards_supported = true;
2095 		ti->discard_zeroes_data_unsupported = true;
2096 	}
2097 	ti->private = pt;
2098 
2099 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2100 						calc_metadata_threshold(pt),
2101 						metadata_low_callback,
2102 						pool);
2103 	if (r)
2104 		goto out_free_pt;
2105 
2106 	pt->callbacks.congested_fn = pool_is_congested;
2107 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2108 
2109 	mutex_unlock(&dm_thin_pool_table.mutex);
2110 
2111 	return 0;
2112 
2113 out_flags_changed:
2114 	__pool_dec(pool);
2115 out_free_pt:
2116 	kfree(pt);
2117 out:
2118 	dm_put_device(ti, data_dev);
2119 out_metadata:
2120 	dm_put_device(ti, metadata_dev);
2121 out_unlock:
2122 	mutex_unlock(&dm_thin_pool_table.mutex);
2123 
2124 	return r;
2125 }
2126 
pool_map(struct dm_target * ti,struct bio * bio)2127 static int pool_map(struct dm_target *ti, struct bio *bio)
2128 {
2129 	int r;
2130 	struct pool_c *pt = ti->private;
2131 	struct pool *pool = pt->pool;
2132 	unsigned long flags;
2133 
2134 	/*
2135 	 * As this is a singleton target, ti->begin is always zero.
2136 	 */
2137 	spin_lock_irqsave(&pool->lock, flags);
2138 	bio->bi_bdev = pt->data_dev->bdev;
2139 	r = DM_MAPIO_REMAPPED;
2140 	spin_unlock_irqrestore(&pool->lock, flags);
2141 
2142 	return r;
2143 }
2144 
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)2145 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2146 {
2147 	int r;
2148 	struct pool_c *pt = ti->private;
2149 	struct pool *pool = pt->pool;
2150 	sector_t data_size = ti->len;
2151 	dm_block_t sb_data_size;
2152 
2153 	*need_commit = false;
2154 
2155 	(void) sector_div(data_size, pool->sectors_per_block);
2156 
2157 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2158 	if (r) {
2159 		DMERR("failed to retrieve data device size");
2160 		return r;
2161 	}
2162 
2163 	if (data_size < sb_data_size) {
2164 		DMERR("pool target (%llu blocks) too small: expected %llu",
2165 		      (unsigned long long)data_size, sb_data_size);
2166 		return -EINVAL;
2167 
2168 	} else if (data_size > sb_data_size) {
2169 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2170 		if (r) {
2171 			DMERR("failed to resize data device");
2172 			set_pool_mode(pool, PM_READ_ONLY);
2173 			return r;
2174 		}
2175 
2176 		*need_commit = true;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)2182 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2183 {
2184 	int r;
2185 	struct pool_c *pt = ti->private;
2186 	struct pool *pool = pt->pool;
2187 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2188 
2189 	*need_commit = false;
2190 
2191 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2192 
2193 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2194 	if (r) {
2195 		DMERR("failed to retrieve data device size");
2196 		return r;
2197 	}
2198 
2199 	if (metadata_dev_size < sb_metadata_dev_size) {
2200 		DMERR("metadata device (%llu blocks) too small: expected %llu",
2201 		      metadata_dev_size, sb_metadata_dev_size);
2202 		return -EINVAL;
2203 
2204 	} else if (metadata_dev_size > sb_metadata_dev_size) {
2205 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2206 		if (r) {
2207 			DMERR("failed to resize metadata device");
2208 			return r;
2209 		}
2210 
2211 		*need_commit = true;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 /*
2218  * Retrieves the number of blocks of the data device from
2219  * the superblock and compares it to the actual device size,
2220  * thus resizing the data device in case it has grown.
2221  *
2222  * This both copes with opening preallocated data devices in the ctr
2223  * being followed by a resume
2224  * -and-
2225  * calling the resume method individually after userspace has
2226  * grown the data device in reaction to a table event.
2227  */
pool_preresume(struct dm_target * ti)2228 static int pool_preresume(struct dm_target *ti)
2229 {
2230 	int r;
2231 	bool need_commit1, need_commit2;
2232 	struct pool_c *pt = ti->private;
2233 	struct pool *pool = pt->pool;
2234 
2235 	/*
2236 	 * Take control of the pool object.
2237 	 */
2238 	r = bind_control_target(pool, ti);
2239 	if (r)
2240 		return r;
2241 
2242 	r = maybe_resize_data_dev(ti, &need_commit1);
2243 	if (r)
2244 		return r;
2245 
2246 	r = maybe_resize_metadata_dev(ti, &need_commit2);
2247 	if (r)
2248 		return r;
2249 
2250 	if (need_commit1 || need_commit2)
2251 		(void) commit_or_fallback(pool);
2252 
2253 	return 0;
2254 }
2255 
pool_resume(struct dm_target * ti)2256 static void pool_resume(struct dm_target *ti)
2257 {
2258 	struct pool_c *pt = ti->private;
2259 	struct pool *pool = pt->pool;
2260 	unsigned long flags;
2261 
2262 	spin_lock_irqsave(&pool->lock, flags);
2263 	pool->low_water_triggered = 0;
2264 	pool->no_free_space = 0;
2265 	__requeue_bios(pool);
2266 	spin_unlock_irqrestore(&pool->lock, flags);
2267 
2268 	do_waker(&pool->waker.work);
2269 }
2270 
pool_postsuspend(struct dm_target * ti)2271 static void pool_postsuspend(struct dm_target *ti)
2272 {
2273 	struct pool_c *pt = ti->private;
2274 	struct pool *pool = pt->pool;
2275 
2276 	cancel_delayed_work(&pool->waker);
2277 	flush_workqueue(pool->wq);
2278 	(void) commit_or_fallback(pool);
2279 }
2280 
check_arg_count(unsigned argc,unsigned args_required)2281 static int check_arg_count(unsigned argc, unsigned args_required)
2282 {
2283 	if (argc != args_required) {
2284 		DMWARN("Message received with %u arguments instead of %u.",
2285 		       argc, args_required);
2286 		return -EINVAL;
2287 	}
2288 
2289 	return 0;
2290 }
2291 
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)2292 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2293 {
2294 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2295 	    *dev_id <= MAX_DEV_ID)
2296 		return 0;
2297 
2298 	if (warning)
2299 		DMWARN("Message received with invalid device id: %s", arg);
2300 
2301 	return -EINVAL;
2302 }
2303 
process_create_thin_mesg(unsigned argc,char ** argv,struct pool * pool)2304 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2305 {
2306 	dm_thin_id dev_id;
2307 	int r;
2308 
2309 	r = check_arg_count(argc, 2);
2310 	if (r)
2311 		return r;
2312 
2313 	r = read_dev_id(argv[1], &dev_id, 1);
2314 	if (r)
2315 		return r;
2316 
2317 	r = dm_pool_create_thin(pool->pmd, dev_id);
2318 	if (r) {
2319 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2320 		       argv[1]);
2321 		return r;
2322 	}
2323 
2324 	return 0;
2325 }
2326 
process_create_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2327 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2328 {
2329 	dm_thin_id dev_id;
2330 	dm_thin_id origin_dev_id;
2331 	int r;
2332 
2333 	r = check_arg_count(argc, 3);
2334 	if (r)
2335 		return r;
2336 
2337 	r = read_dev_id(argv[1], &dev_id, 1);
2338 	if (r)
2339 		return r;
2340 
2341 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2342 	if (r)
2343 		return r;
2344 
2345 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2346 	if (r) {
2347 		DMWARN("Creation of new snapshot %s of device %s failed.",
2348 		       argv[1], argv[2]);
2349 		return r;
2350 	}
2351 
2352 	return 0;
2353 }
2354 
process_delete_mesg(unsigned argc,char ** argv,struct pool * pool)2355 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2356 {
2357 	dm_thin_id dev_id;
2358 	int r;
2359 
2360 	r = check_arg_count(argc, 2);
2361 	if (r)
2362 		return r;
2363 
2364 	r = read_dev_id(argv[1], &dev_id, 1);
2365 	if (r)
2366 		return r;
2367 
2368 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2369 	if (r)
2370 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2371 
2372 	return r;
2373 }
2374 
process_set_transaction_id_mesg(unsigned argc,char ** argv,struct pool * pool)2375 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2376 {
2377 	dm_thin_id old_id, new_id;
2378 	int r;
2379 
2380 	r = check_arg_count(argc, 3);
2381 	if (r)
2382 		return r;
2383 
2384 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2385 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2386 		return -EINVAL;
2387 	}
2388 
2389 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2390 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2391 		return -EINVAL;
2392 	}
2393 
2394 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2395 	if (r) {
2396 		DMWARN("Failed to change transaction id from %s to %s.",
2397 		       argv[1], argv[2]);
2398 		return r;
2399 	}
2400 
2401 	return 0;
2402 }
2403 
process_reserve_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2404 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2405 {
2406 	int r;
2407 
2408 	r = check_arg_count(argc, 1);
2409 	if (r)
2410 		return r;
2411 
2412 	(void) commit_or_fallback(pool);
2413 
2414 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2415 	if (r)
2416 		DMWARN("reserve_metadata_snap message failed.");
2417 
2418 	return r;
2419 }
2420 
process_release_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2421 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2422 {
2423 	int r;
2424 
2425 	r = check_arg_count(argc, 1);
2426 	if (r)
2427 		return r;
2428 
2429 	r = dm_pool_release_metadata_snap(pool->pmd);
2430 	if (r)
2431 		DMWARN("release_metadata_snap message failed.");
2432 
2433 	return r;
2434 }
2435 
2436 /*
2437  * Messages supported:
2438  *   create_thin	<dev_id>
2439  *   create_snap	<dev_id> <origin_id>
2440  *   delete		<dev_id>
2441  *   trim		<dev_id> <new_size_in_sectors>
2442  *   set_transaction_id <current_trans_id> <new_trans_id>
2443  *   reserve_metadata_snap
2444  *   release_metadata_snap
2445  */
pool_message(struct dm_target * ti,unsigned argc,char ** argv)2446 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2447 {
2448 	int r = -EINVAL;
2449 	struct pool_c *pt = ti->private;
2450 	struct pool *pool = pt->pool;
2451 
2452 	if (!strcasecmp(argv[0], "create_thin"))
2453 		r = process_create_thin_mesg(argc, argv, pool);
2454 
2455 	else if (!strcasecmp(argv[0], "create_snap"))
2456 		r = process_create_snap_mesg(argc, argv, pool);
2457 
2458 	else if (!strcasecmp(argv[0], "delete"))
2459 		r = process_delete_mesg(argc, argv, pool);
2460 
2461 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2462 		r = process_set_transaction_id_mesg(argc, argv, pool);
2463 
2464 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2465 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2466 
2467 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2468 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2469 
2470 	else
2471 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2472 
2473 	if (!r)
2474 		(void) commit_or_fallback(pool);
2475 
2476 	return r;
2477 }
2478 
emit_flags(struct pool_features * pf,char * result,unsigned sz,unsigned maxlen)2479 static void emit_flags(struct pool_features *pf, char *result,
2480 		       unsigned sz, unsigned maxlen)
2481 {
2482 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2483 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2484 	DMEMIT("%u ", count);
2485 
2486 	if (!pf->zero_new_blocks)
2487 		DMEMIT("skip_block_zeroing ");
2488 
2489 	if (!pf->discard_enabled)
2490 		DMEMIT("ignore_discard ");
2491 
2492 	if (!pf->discard_passdown)
2493 		DMEMIT("no_discard_passdown ");
2494 
2495 	if (pf->mode == PM_READ_ONLY)
2496 		DMEMIT("read_only ");
2497 }
2498 
2499 /*
2500  * Status line is:
2501  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2502  *    <used data sectors>/<total data sectors> <held metadata root>
2503  */
pool_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)2504 static void pool_status(struct dm_target *ti, status_type_t type,
2505 			unsigned status_flags, char *result, unsigned maxlen)
2506 {
2507 	int r;
2508 	unsigned sz = 0;
2509 	uint64_t transaction_id;
2510 	dm_block_t nr_free_blocks_data;
2511 	dm_block_t nr_free_blocks_metadata;
2512 	dm_block_t nr_blocks_data;
2513 	dm_block_t nr_blocks_metadata;
2514 	dm_block_t held_root;
2515 	char buf[BDEVNAME_SIZE];
2516 	char buf2[BDEVNAME_SIZE];
2517 	struct pool_c *pt = ti->private;
2518 	struct pool *pool = pt->pool;
2519 
2520 	switch (type) {
2521 	case STATUSTYPE_INFO:
2522 		if (get_pool_mode(pool) == PM_FAIL) {
2523 			DMEMIT("Fail");
2524 			break;
2525 		}
2526 
2527 		/* Commit to ensure statistics aren't out-of-date */
2528 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2529 			(void) commit_or_fallback(pool);
2530 
2531 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2532 		if (r) {
2533 			DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2534 			goto err;
2535 		}
2536 
2537 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2538 		if (r) {
2539 			DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2540 			goto err;
2541 		}
2542 
2543 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2544 		if (r) {
2545 			DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2546 			goto err;
2547 		}
2548 
2549 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2550 		if (r) {
2551 			DMERR("dm_pool_get_free_block_count returned %d", r);
2552 			goto err;
2553 		}
2554 
2555 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2556 		if (r) {
2557 			DMERR("dm_pool_get_data_dev_size returned %d", r);
2558 			goto err;
2559 		}
2560 
2561 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2562 		if (r) {
2563 			DMERR("dm_pool_get_metadata_snap returned %d", r);
2564 			goto err;
2565 		}
2566 
2567 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2568 		       (unsigned long long)transaction_id,
2569 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2570 		       (unsigned long long)nr_blocks_metadata,
2571 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2572 		       (unsigned long long)nr_blocks_data);
2573 
2574 		if (held_root)
2575 			DMEMIT("%llu ", held_root);
2576 		else
2577 			DMEMIT("- ");
2578 
2579 		if (pool->pf.mode == PM_READ_ONLY)
2580 			DMEMIT("ro ");
2581 		else
2582 			DMEMIT("rw ");
2583 
2584 		if (!pool->pf.discard_enabled)
2585 			DMEMIT("ignore_discard");
2586 		else if (pool->pf.discard_passdown)
2587 			DMEMIT("discard_passdown");
2588 		else
2589 			DMEMIT("no_discard_passdown");
2590 
2591 		break;
2592 
2593 	case STATUSTYPE_TABLE:
2594 		DMEMIT("%s %s %lu %llu ",
2595 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2596 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2597 		       (unsigned long)pool->sectors_per_block,
2598 		       (unsigned long long)pt->low_water_blocks);
2599 		emit_flags(&pt->requested_pf, result, sz, maxlen);
2600 		break;
2601 	}
2602 	return;
2603 
2604 err:
2605 	DMEMIT("Error");
2606 }
2607 
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2608 static int pool_iterate_devices(struct dm_target *ti,
2609 				iterate_devices_callout_fn fn, void *data)
2610 {
2611 	struct pool_c *pt = ti->private;
2612 
2613 	return fn(ti, pt->data_dev, 0, ti->len, data);
2614 }
2615 
pool_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)2616 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2617 		      struct bio_vec *biovec, int max_size)
2618 {
2619 	struct pool_c *pt = ti->private;
2620 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2621 
2622 	if (!q->merge_bvec_fn)
2623 		return max_size;
2624 
2625 	bvm->bi_bdev = pt->data_dev->bdev;
2626 
2627 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2628 }
2629 
set_discard_limits(struct pool_c * pt,struct queue_limits * limits)2630 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2631 {
2632 	struct pool *pool = pt->pool;
2633 	struct queue_limits *data_limits;
2634 
2635 	limits->max_discard_sectors = pool->sectors_per_block;
2636 
2637 	/*
2638 	 * discard_granularity is just a hint, and not enforced.
2639 	 */
2640 	if (pt->adjusted_pf.discard_passdown) {
2641 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2642 		limits->discard_granularity = data_limits->discard_granularity;
2643 	} else
2644 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2645 }
2646 
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)2647 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2648 {
2649 	struct pool_c *pt = ti->private;
2650 	struct pool *pool = pt->pool;
2651 
2652 	blk_limits_io_min(limits, 0);
2653 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2654 
2655 	/*
2656 	 * pt->adjusted_pf is a staging area for the actual features to use.
2657 	 * They get transferred to the live pool in bind_control_target()
2658 	 * called from pool_preresume().
2659 	 */
2660 	if (!pt->adjusted_pf.discard_enabled)
2661 		return;
2662 
2663 	disable_passdown_if_not_supported(pt);
2664 
2665 	set_discard_limits(pt, limits);
2666 }
2667 
2668 static struct target_type pool_target = {
2669 	.name = "thin-pool",
2670 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2671 		    DM_TARGET_IMMUTABLE,
2672 	.version = {1, 8, 0},
2673 	.module = THIS_MODULE,
2674 	.ctr = pool_ctr,
2675 	.dtr = pool_dtr,
2676 	.map = pool_map,
2677 	.postsuspend = pool_postsuspend,
2678 	.preresume = pool_preresume,
2679 	.resume = pool_resume,
2680 	.message = pool_message,
2681 	.status = pool_status,
2682 	.merge = pool_merge,
2683 	.iterate_devices = pool_iterate_devices,
2684 	.io_hints = pool_io_hints,
2685 };
2686 
2687 /*----------------------------------------------------------------
2688  * Thin target methods
2689  *--------------------------------------------------------------*/
thin_dtr(struct dm_target * ti)2690 static void thin_dtr(struct dm_target *ti)
2691 {
2692 	struct thin_c *tc = ti->private;
2693 
2694 	mutex_lock(&dm_thin_pool_table.mutex);
2695 
2696 	__pool_dec(tc->pool);
2697 	dm_pool_close_thin_device(tc->td);
2698 	dm_put_device(ti, tc->pool_dev);
2699 	if (tc->origin_dev)
2700 		dm_put_device(ti, tc->origin_dev);
2701 	kfree(tc);
2702 
2703 	mutex_unlock(&dm_thin_pool_table.mutex);
2704 }
2705 
2706 /*
2707  * Thin target parameters:
2708  *
2709  * <pool_dev> <dev_id> [origin_dev]
2710  *
2711  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2712  * dev_id: the internal device identifier
2713  * origin_dev: a device external to the pool that should act as the origin
2714  *
2715  * If the pool device has discards disabled, they get disabled for the thin
2716  * device as well.
2717  */
thin_ctr(struct dm_target * ti,unsigned argc,char ** argv)2718 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2719 {
2720 	int r;
2721 	struct thin_c *tc;
2722 	struct dm_dev *pool_dev, *origin_dev;
2723 	struct mapped_device *pool_md;
2724 
2725 	mutex_lock(&dm_thin_pool_table.mutex);
2726 
2727 	if (argc != 2 && argc != 3) {
2728 		ti->error = "Invalid argument count";
2729 		r = -EINVAL;
2730 		goto out_unlock;
2731 	}
2732 
2733 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2734 	if (!tc) {
2735 		ti->error = "Out of memory";
2736 		r = -ENOMEM;
2737 		goto out_unlock;
2738 	}
2739 
2740 	if (argc == 3) {
2741 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2742 		if (r) {
2743 			ti->error = "Error opening origin device";
2744 			goto bad_origin_dev;
2745 		}
2746 		tc->origin_dev = origin_dev;
2747 	}
2748 
2749 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2750 	if (r) {
2751 		ti->error = "Error opening pool device";
2752 		goto bad_pool_dev;
2753 	}
2754 	tc->pool_dev = pool_dev;
2755 
2756 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2757 		ti->error = "Invalid device id";
2758 		r = -EINVAL;
2759 		goto bad_common;
2760 	}
2761 
2762 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2763 	if (!pool_md) {
2764 		ti->error = "Couldn't get pool mapped device";
2765 		r = -EINVAL;
2766 		goto bad_common;
2767 	}
2768 
2769 	tc->pool = __pool_table_lookup(pool_md);
2770 	if (!tc->pool) {
2771 		ti->error = "Couldn't find pool object";
2772 		r = -EINVAL;
2773 		goto bad_pool_lookup;
2774 	}
2775 	__pool_inc(tc->pool);
2776 
2777 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2778 		ti->error = "Couldn't open thin device, Pool is in fail mode";
2779 		goto bad_thin_open;
2780 	}
2781 
2782 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2783 	if (r) {
2784 		ti->error = "Couldn't open thin internal device";
2785 		goto bad_thin_open;
2786 	}
2787 
2788 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2789 	if (r)
2790 		goto bad_thin_open;
2791 
2792 	ti->num_flush_bios = 1;
2793 	ti->flush_supported = true;
2794 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2795 
2796 	/* In case the pool supports discards, pass them on. */
2797 	if (tc->pool->pf.discard_enabled) {
2798 		ti->discards_supported = true;
2799 		ti->num_discard_bios = 1;
2800 		ti->discard_zeroes_data_unsupported = true;
2801 		/* Discard bios must be split on a block boundary */
2802 		ti->split_discard_bios = true;
2803 	}
2804 
2805 	dm_put(pool_md);
2806 
2807 	mutex_unlock(&dm_thin_pool_table.mutex);
2808 
2809 	return 0;
2810 
2811 bad_thin_open:
2812 	__pool_dec(tc->pool);
2813 bad_pool_lookup:
2814 	dm_put(pool_md);
2815 bad_common:
2816 	dm_put_device(ti, tc->pool_dev);
2817 bad_pool_dev:
2818 	if (tc->origin_dev)
2819 		dm_put_device(ti, tc->origin_dev);
2820 bad_origin_dev:
2821 	kfree(tc);
2822 out_unlock:
2823 	mutex_unlock(&dm_thin_pool_table.mutex);
2824 
2825 	return r;
2826 }
2827 
thin_map(struct dm_target * ti,struct bio * bio)2828 static int thin_map(struct dm_target *ti, struct bio *bio)
2829 {
2830 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2831 
2832 	return thin_bio_map(ti, bio);
2833 }
2834 
thin_endio(struct dm_target * ti,struct bio * bio,int err)2835 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2836 {
2837 	unsigned long flags;
2838 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2839 	struct list_head work;
2840 	struct dm_thin_new_mapping *m, *tmp;
2841 	struct pool *pool = h->tc->pool;
2842 
2843 	if (h->shared_read_entry) {
2844 		INIT_LIST_HEAD(&work);
2845 		dm_deferred_entry_dec(h->shared_read_entry, &work);
2846 
2847 		spin_lock_irqsave(&pool->lock, flags);
2848 		list_for_each_entry_safe(m, tmp, &work, list) {
2849 			list_del(&m->list);
2850 			m->quiesced = 1;
2851 			__maybe_add_mapping(m);
2852 		}
2853 		spin_unlock_irqrestore(&pool->lock, flags);
2854 	}
2855 
2856 	if (h->all_io_entry) {
2857 		INIT_LIST_HEAD(&work);
2858 		dm_deferred_entry_dec(h->all_io_entry, &work);
2859 		if (!list_empty(&work)) {
2860 			spin_lock_irqsave(&pool->lock, flags);
2861 			list_for_each_entry_safe(m, tmp, &work, list)
2862 				list_add(&m->list, &pool->prepared_discards);
2863 			spin_unlock_irqrestore(&pool->lock, flags);
2864 			wake_worker(pool);
2865 		}
2866 	}
2867 
2868 	return 0;
2869 }
2870 
thin_postsuspend(struct dm_target * ti)2871 static void thin_postsuspend(struct dm_target *ti)
2872 {
2873 	if (dm_noflush_suspending(ti))
2874 		requeue_io((struct thin_c *)ti->private);
2875 }
2876 
2877 /*
2878  * <nr mapped sectors> <highest mapped sector>
2879  */
thin_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)2880 static void thin_status(struct dm_target *ti, status_type_t type,
2881 			unsigned status_flags, char *result, unsigned maxlen)
2882 {
2883 	int r;
2884 	ssize_t sz = 0;
2885 	dm_block_t mapped, highest;
2886 	char buf[BDEVNAME_SIZE];
2887 	struct thin_c *tc = ti->private;
2888 
2889 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2890 		DMEMIT("Fail");
2891 		return;
2892 	}
2893 
2894 	if (!tc->td)
2895 		DMEMIT("-");
2896 	else {
2897 		switch (type) {
2898 		case STATUSTYPE_INFO:
2899 			r = dm_thin_get_mapped_count(tc->td, &mapped);
2900 			if (r) {
2901 				DMERR("dm_thin_get_mapped_count returned %d", r);
2902 				goto err;
2903 			}
2904 
2905 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2906 			if (r < 0) {
2907 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2908 				goto err;
2909 			}
2910 
2911 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2912 			if (r)
2913 				DMEMIT("%llu", ((highest + 1) *
2914 						tc->pool->sectors_per_block) - 1);
2915 			else
2916 				DMEMIT("-");
2917 			break;
2918 
2919 		case STATUSTYPE_TABLE:
2920 			DMEMIT("%s %lu",
2921 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2922 			       (unsigned long) tc->dev_id);
2923 			if (tc->origin_dev)
2924 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2925 			break;
2926 		}
2927 	}
2928 
2929 	return;
2930 
2931 err:
2932 	DMEMIT("Error");
2933 }
2934 
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2935 static int thin_iterate_devices(struct dm_target *ti,
2936 				iterate_devices_callout_fn fn, void *data)
2937 {
2938 	sector_t blocks;
2939 	struct thin_c *tc = ti->private;
2940 	struct pool *pool = tc->pool;
2941 
2942 	/*
2943 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2944 	 * we follow a more convoluted path through to the pool's target.
2945 	 */
2946 	if (!pool->ti)
2947 		return 0;	/* nothing is bound */
2948 
2949 	blocks = pool->ti->len;
2950 	(void) sector_div(blocks, pool->sectors_per_block);
2951 	if (blocks)
2952 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2953 
2954 	return 0;
2955 }
2956 
2957 static struct target_type thin_target = {
2958 	.name = "thin",
2959 	.version = {1, 8, 0},
2960 	.module	= THIS_MODULE,
2961 	.ctr = thin_ctr,
2962 	.dtr = thin_dtr,
2963 	.map = thin_map,
2964 	.end_io = thin_endio,
2965 	.postsuspend = thin_postsuspend,
2966 	.status = thin_status,
2967 	.iterate_devices = thin_iterate_devices,
2968 };
2969 
2970 /*----------------------------------------------------------------*/
2971 
dm_thin_init(void)2972 static int __init dm_thin_init(void)
2973 {
2974 	int r;
2975 
2976 	pool_table_init();
2977 
2978 	r = dm_register_target(&thin_target);
2979 	if (r)
2980 		return r;
2981 
2982 	r = dm_register_target(&pool_target);
2983 	if (r)
2984 		goto bad_pool_target;
2985 
2986 	r = -ENOMEM;
2987 
2988 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2989 	if (!_new_mapping_cache)
2990 		goto bad_new_mapping_cache;
2991 
2992 	return 0;
2993 
2994 bad_new_mapping_cache:
2995 	dm_unregister_target(&pool_target);
2996 bad_pool_target:
2997 	dm_unregister_target(&thin_target);
2998 
2999 	return r;
3000 }
3001 
dm_thin_exit(void)3002 static void dm_thin_exit(void)
3003 {
3004 	dm_unregister_target(&thin_target);
3005 	dm_unregister_target(&pool_target);
3006 
3007 	kmem_cache_destroy(_new_mapping_cache);
3008 }
3009 
3010 module_init(dm_thin_init);
3011 module_exit(dm_thin_exit);
3012 
3013 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3014 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3015 MODULE_LICENSE("GPL");
3016