• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 Google, Inc.
3  *
4  * Author: Sami Tolvanen <samitolvanen@google.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  */
11 
12 #include "dm-verity-fec.h"
13 #include <linux/sysfs.h>
14 
15 #define DM_MSG_PREFIX	"verity-fec"
16 
17 /*
18  * If error correction has been configured, returns true.
19  */
verity_fec_is_enabled(struct dm_verity * v)20 bool verity_fec_is_enabled(struct dm_verity *v)
21 {
22 	return v->fec && v->fec->dev;
23 }
24 
25 /*
26  * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
27  * length fields.
28  */
fec_io(struct dm_verity_io * io)29 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
30 {
31 	return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
32 }
33 
34 /*
35  * Return an interleaved offset for a byte in RS block.
36  */
fec_interleave(struct dm_verity * v,u64 offset)37 static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
38 {
39 	u32 mod;
40 
41 	mod = do_div(offset, v->fec->rsn);
42 	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
43 }
44 
45 /*
46  * Decode an RS block using Reed-Solomon.
47  */
fec_decode_rs8(struct dm_verity * v,struct dm_verity_fec_io * fio,u8 * data,u8 * fec,int neras)48 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
49 			  u8 *data, u8 *fec, int neras)
50 {
51 	int i;
52 	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
53 
54 	for (i = 0; i < v->fec->roots; i++)
55 		par[i] = fec[i];
56 
57 	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
58 			  fio->erasures, 0, NULL);
59 }
60 
61 /*
62  * Read error-correcting codes for the requested RS block. Returns a pointer
63  * to the data block. Caller is responsible for releasing buf.
64  */
fec_read_parity(struct dm_verity * v,u64 rsb,int index,unsigned * offset,struct dm_buffer ** buf)65 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
66 			   unsigned *offset, struct dm_buffer **buf)
67 {
68 	u64 position, block;
69 	u8 *res;
70 
71 	position = (index + rsb) * v->fec->roots;
72 	block = position >> v->data_dev_block_bits;
73 	*offset = (unsigned)(position - (block << v->data_dev_block_bits));
74 
75 	res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
76 	if (unlikely(IS_ERR(res))) {
77 		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
78 		      v->data_dev->name, (unsigned long long)rsb,
79 		      (unsigned long long)(v->fec->start + block),
80 		      PTR_ERR(res));
81 		*buf = NULL;
82 	}
83 
84 	return res;
85 }
86 
87 /* Loop over each preallocated buffer slot. */
88 #define fec_for_each_prealloc_buffer(__i) \
89 	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
90 
91 /* Loop over each extra buffer slot. */
92 #define fec_for_each_extra_buffer(io, __i) \
93 	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
94 
95 /* Loop over each allocated buffer. */
96 #define fec_for_each_buffer(io, __i) \
97 	for (__i = 0; __i < (io)->nbufs; __i++)
98 
99 /* Loop over each RS block in each allocated buffer. */
100 #define fec_for_each_buffer_rs_block(io, __i, __j) \
101 	fec_for_each_buffer(io, __i) \
102 		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
103 
104 /*
105  * Return a pointer to the current RS block when called inside
106  * fec_for_each_buffer_rs_block.
107  */
fec_buffer_rs_block(struct dm_verity * v,struct dm_verity_fec_io * fio,unsigned i,unsigned j)108 static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
109 				      struct dm_verity_fec_io *fio,
110 				      unsigned i, unsigned j)
111 {
112 	return &fio->bufs[i][j * v->fec->rsn];
113 }
114 
115 /*
116  * Return an index to the current RS block when called inside
117  * fec_for_each_buffer_rs_block.
118  */
fec_buffer_rs_index(unsigned i,unsigned j)119 static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
120 {
121 	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
122 }
123 
124 /*
125  * Decode all RS blocks from buffers and copy corrected bytes into fio->output
126  * starting from block_offset.
127  */
fec_decode_bufs(struct dm_verity * v,struct dm_verity_fec_io * fio,u64 rsb,int byte_index,unsigned block_offset,int neras)128 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
129 			   u64 rsb, int byte_index, unsigned block_offset,
130 			   int neras)
131 {
132 	int r, corrected = 0, res;
133 	struct dm_buffer *buf;
134 	unsigned n, i, offset;
135 	u8 *par, *block;
136 
137 	par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
138 	if (IS_ERR(par))
139 		return PTR_ERR(par);
140 
141 	/*
142 	 * Decode the RS blocks we have in bufs. Each RS block results in
143 	 * one corrected target byte and consumes fec->roots parity bytes.
144 	 */
145 	fec_for_each_buffer_rs_block(fio, n, i) {
146 		block = fec_buffer_rs_block(v, fio, n, i);
147 		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
148 		if (res < 0) {
149 			dm_bufio_release(buf);
150 
151 			r = res;
152 			goto error;
153 		}
154 
155 		corrected += res;
156 		fio->output[block_offset] = block[byte_index];
157 
158 		block_offset++;
159 		if (block_offset >= 1 << v->data_dev_block_bits)
160 			goto done;
161 
162 		/* read the next block when we run out of parity bytes */
163 		offset += v->fec->roots;
164 		if (offset >= 1 << v->data_dev_block_bits) {
165 			dm_bufio_release(buf);
166 
167 			par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
168 			if (unlikely(IS_ERR(par)))
169 				return PTR_ERR(par);
170 		}
171 	}
172 done:
173 	r = corrected;
174 error:
175 	if (r < 0 && neras)
176 		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
177 			    v->data_dev->name, (unsigned long long)rsb, r);
178 	else if (r > 0) {
179 		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
180 			     v->data_dev->name, (unsigned long long)rsb, r);
181 		atomic_add_unless(&v->fec->corrected, 1, INT_MAX);
182 	}
183 
184 	return r;
185 }
186 
187 /*
188  * Locate data block erasures using verity hashes.
189  */
fec_is_erasure(struct dm_verity * v,struct dm_verity_io * io,u8 * want_digest,u8 * data)190 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
191 			  u8 *want_digest, u8 *data)
192 {
193 	if (unlikely(verity_hash(v, verity_io_hash_desc(v, io),
194 				 data, 1 << v->data_dev_block_bits,
195 				 verity_io_real_digest(v, io))))
196 		return 0;
197 
198 	return memcmp(verity_io_real_digest(v, io), want_digest,
199 		      v->digest_size) != 0;
200 }
201 
202 /*
203  * Read data blocks that are part of the RS block and deinterleave as much as
204  * fits into buffers. Check for erasure locations if @neras is non-NULL.
205  */
fec_read_bufs(struct dm_verity * v,struct dm_verity_io * io,u64 rsb,u64 target,unsigned block_offset,int * neras)206 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
207 			 u64 rsb, u64 target, unsigned block_offset,
208 			 int *neras)
209 {
210 	bool is_zero;
211 	int i, j, target_index = -1;
212 	struct dm_buffer *buf;
213 	struct dm_bufio_client *bufio;
214 	struct dm_verity_fec_io *fio = fec_io(io);
215 	u64 block, ileaved;
216 	u8 *bbuf, *rs_block;
217 	u8 want_digest[v->digest_size];
218 	unsigned n, k;
219 
220 	if (neras)
221 		*neras = 0;
222 
223 	/*
224 	 * read each of the rsn data blocks that are part of the RS block, and
225 	 * interleave contents to available bufs
226 	 */
227 	for (i = 0; i < v->fec->rsn; i++) {
228 		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
229 
230 		/*
231 		 * target is the data block we want to correct, target_index is
232 		 * the index of this block within the rsn RS blocks
233 		 */
234 		if (ileaved == target)
235 			target_index = i;
236 
237 		block = ileaved >> v->data_dev_block_bits;
238 		bufio = v->fec->data_bufio;
239 
240 		if (block >= v->data_blocks) {
241 			block -= v->data_blocks;
242 
243 			/*
244 			 * blocks outside the area were assumed to contain
245 			 * zeros when encoding data was generated
246 			 */
247 			if (unlikely(block >= v->fec->hash_blocks))
248 				continue;
249 
250 			block += v->hash_start;
251 			bufio = v->bufio;
252 		}
253 
254 		bbuf = dm_bufio_read(bufio, block, &buf);
255 
256 		if (unlikely(IS_ERR(bbuf))) {
257 			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
258 				     v->data_dev->name,
259 				     (unsigned long long)rsb,
260 				     (unsigned long long)block, PTR_ERR(bbuf));
261 
262 			/* assume the block is corrupted */
263 			if (neras && *neras <= v->fec->roots)
264 				fio->erasures[(*neras)++] = i;
265 
266 			continue;
267 		}
268 
269 		/* locate erasures if the block is on the data device */
270 		if (bufio == v->fec->data_bufio &&
271 		    verity_hash_for_block(v, io, block, want_digest,
272 					  &is_zero) == 0) {
273 			/* skip known zero blocks entirely */
274 			if (is_zero)
275 				continue;
276 
277 			/*
278 			 * skip if we have already found the theoretical
279 			 * maximum number (i.e. fec->roots) of erasures
280 			 */
281 			if (neras && *neras <= v->fec->roots &&
282 			    fec_is_erasure(v, io, want_digest, bbuf))
283 				fio->erasures[(*neras)++] = i;
284 		}
285 
286 		/*
287 		 * deinterleave and copy the bytes that fit into bufs,
288 		 * starting from block_offset
289 		 */
290 		fec_for_each_buffer_rs_block(fio, n, j) {
291 			k = fec_buffer_rs_index(n, j) + block_offset;
292 
293 			if (k >= 1 << v->data_dev_block_bits)
294 				goto done;
295 
296 			rs_block = fec_buffer_rs_block(v, fio, n, j);
297 			rs_block[i] = bbuf[k];
298 		}
299 done:
300 		dm_bufio_release(buf);
301 	}
302 
303 	return target_index;
304 }
305 
306 /*
307  * Allocate RS control structure and FEC buffers from preallocated mempools,
308  * and attempt to allocate as many extra buffers as available.
309  */
fec_alloc_bufs(struct dm_verity * v,struct dm_verity_fec_io * fio)310 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
311 {
312 	unsigned n;
313 
314 	if (!fio->rs) {
315 		fio->rs = mempool_alloc(v->fec->rs_pool, 0);
316 		if (unlikely(!fio->rs)) {
317 			DMERR("failed to allocate RS");
318 			return -ENOMEM;
319 		}
320 	}
321 
322 	fec_for_each_prealloc_buffer(n) {
323 		if (fio->bufs[n])
324 			continue;
325 
326 		fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOIO);
327 		if (unlikely(!fio->bufs[n])) {
328 			DMERR("failed to allocate FEC buffer");
329 			return -ENOMEM;
330 		}
331 	}
332 
333 	/* try to allocate the maximum number of buffers */
334 	fec_for_each_extra_buffer(fio, n) {
335 		if (fio->bufs[n])
336 			continue;
337 
338 		fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOIO);
339 		/* we can manage with even one buffer if necessary */
340 		if (unlikely(!fio->bufs[n]))
341 			break;
342 	}
343 	fio->nbufs = n;
344 
345 	if (!fio->output) {
346 		fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
347 
348 		if (!fio->output) {
349 			DMERR("failed to allocate FEC page");
350 			return -ENOMEM;
351 		}
352 	}
353 
354 	return 0;
355 }
356 
357 /*
358  * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
359  * zeroed before deinterleaving.
360  */
fec_init_bufs(struct dm_verity * v,struct dm_verity_fec_io * fio)361 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
362 {
363 	unsigned n;
364 
365 	fec_for_each_buffer(fio, n)
366 		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
367 
368 	memset(fio->erasures, 0, sizeof(fio->erasures));
369 }
370 
371 /*
372  * Decode all RS blocks in a single data block and return the target block
373  * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
374  * hashes to locate erasures.
375  */
fec_decode_rsb(struct dm_verity * v,struct dm_verity_io * io,struct dm_verity_fec_io * fio,u64 rsb,u64 offset,bool use_erasures)376 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
377 			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
378 			  bool use_erasures)
379 {
380 	int r, neras = 0;
381 	unsigned pos;
382 
383 	r = fec_alloc_bufs(v, fio);
384 	if (unlikely(r < 0))
385 		return r;
386 
387 	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
388 		fec_init_bufs(v, fio);
389 
390 		r = fec_read_bufs(v, io, rsb, offset, pos,
391 				  use_erasures ? &neras : NULL);
392 		if (unlikely(r < 0))
393 			return r;
394 
395 		r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
396 		if (r < 0)
397 			return r;
398 
399 		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
400 	}
401 
402 	/* Always re-validate the corrected block against the expected hash */
403 	r = verity_hash(v, verity_io_hash_desc(v, io), fio->output,
404 			1 << v->data_dev_block_bits,
405 			verity_io_real_digest(v, io));
406 	if (unlikely(r < 0))
407 		return r;
408 
409 	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
410 		   v->digest_size)) {
411 		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
412 			    v->data_dev->name, (unsigned long long)rsb, neras);
413 		return -EILSEQ;
414 	}
415 
416 	return 0;
417 }
418 
fec_bv_copy(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)419 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
420 		       size_t len)
421 {
422 	struct dm_verity_fec_io *fio = fec_io(io);
423 
424 	memcpy(data, &fio->output[fio->output_pos], len);
425 	fio->output_pos += len;
426 
427 	return 0;
428 }
429 
430 /*
431  * Correct errors in a block. Copies corrected block to dest if non-NULL,
432  * otherwise to io->io_vec starting from provided vector and offset.
433  */
verity_fec_decode(struct dm_verity * v,struct dm_verity_io * io,enum verity_block_type type,sector_t block,u8 * dest,unsigned bv_vector,unsigned bv_offset)434 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
435 		      enum verity_block_type type, sector_t block, u8 *dest,
436 		      unsigned bv_vector, unsigned bv_offset)
437 {
438 	int r;
439 	struct dm_verity_fec_io *fio = fec_io(io);
440 	u64 offset, res, rsb;
441 
442 	if (!verity_fec_is_enabled(v))
443 		return -EOPNOTSUPP;
444 
445 	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
446 		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
447 		return -EIO;
448 	}
449 
450 	fio->level++;
451 
452 	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
453 		block += v->data_blocks;
454 
455 	/*
456 	 * For RS(M, N), the continuous FEC data is divided into blocks of N
457 	 * bytes. Since block size may not be divisible by N, the last block
458 	 * is zero padded when decoding.
459 	 *
460 	 * Each byte of the block is covered by a different RS(M, N) code,
461 	 * and each code is interleaved over N blocks to make it less likely
462 	 * that bursty corruption will leave us in unrecoverable state.
463 	 */
464 
465 	offset = block << v->data_dev_block_bits;
466 
467 	res = offset;
468 	do_div(res, v->fec->rounds << v->data_dev_block_bits);
469 
470 	/*
471 	 * The base RS block we can feed to the interleaver to find out all
472 	 * blocks required for decoding.
473 	 */
474 	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
475 
476 	/*
477 	 * Locating erasures is slow, so attempt to recover the block without
478 	 * them first. Do a second attempt with erasures if the corruption is
479 	 * bad enough.
480 	 */
481 	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
482 	if (r < 0) {
483 		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
484 		if (r < 0)
485 			goto done;
486 	}
487 
488 	if (dest)
489 		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
490 	else {
491 		fio->output_pos = 0;
492 		r = verity_for_bv_block(v, io, &bv_vector, &bv_offset,
493 					fec_bv_copy);
494 	}
495 
496 done:
497 	fio->level--;
498 	return r;
499 }
500 
501 /*
502  * Clean up per-bio data.
503  */
verity_fec_finish_io(struct dm_verity_io * io,int error)504 void verity_fec_finish_io(struct dm_verity_io *io, int error)
505 {
506 	unsigned n;
507 	struct dm_verity_fec *f = io->v->fec;
508 	struct dm_verity_fec_io *fio = fec_io(io);
509 	struct bio *bio = dm_bio_from_per_bio_data(io,
510 					io->v->ti->per_bio_data_size);
511 
512 	if (!verity_fec_is_enabled(io->v))
513 		return;
514 
515 	if (fio->rs)
516 		mempool_free(fio->rs, f->rs_pool);
517 
518 	fec_for_each_prealloc_buffer(n)
519 		if (fio->bufs[n])
520 			mempool_free(fio->bufs[n], f->prealloc_pool);
521 
522 	fec_for_each_extra_buffer(fio, n)
523 		if (fio->bufs[n])
524 			mempool_free(fio->bufs[n], f->extra_pool);
525 
526 	if (fio->output)
527 		mempool_free(fio->output, f->output_pool);
528 
529 	if (!error && !test_bit(BIO_UPTODATE, &bio->bi_flags))
530 		set_bit(BIO_UPTODATE, &bio->bi_flags);
531 }
532 
533 /*
534  * Initialize per-bio data.
535  */
verity_fec_init_io(struct dm_verity_io * io)536 void verity_fec_init_io(struct dm_verity_io *io)
537 {
538 	struct dm_verity_fec_io *fio = fec_io(io);
539 
540 	if (!verity_fec_is_enabled(io->v))
541 		return;
542 
543 	fio->rs = NULL;
544 	memset(fio->bufs, 0, sizeof(fio->bufs));
545 	fio->nbufs = 0;
546 	fio->output = NULL;
547 	fio->level = 0;
548 }
549 
550 /*
551  * Append feature arguments and values to the status table.
552  */
verity_fec_status_table(struct dm_verity * v,unsigned sz,char * result,unsigned maxlen)553 unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
554 				 char *result, unsigned maxlen)
555 {
556 	if (!verity_fec_is_enabled(v))
557 		return sz;
558 
559 	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
560 	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
561 	       DM_VERITY_OPT_FEC_START " %llu "
562 	       DM_VERITY_OPT_FEC_ROOTS " %d",
563 	       v->fec->dev->name,
564 	       (unsigned long long)v->fec->blocks,
565 	       (unsigned long long)v->fec->start,
566 	       v->fec->roots);
567 
568 	return sz;
569 }
570 
verity_fec_dtr(struct dm_verity * v)571 void verity_fec_dtr(struct dm_verity *v)
572 {
573 	struct dm_verity_fec *f = v->fec;
574 	struct kobject *kobj = &f->kobj_holder.kobj;
575 
576 	if (!verity_fec_is_enabled(v))
577 		goto out;
578 
579 	if (f->rs_pool)
580 		mempool_destroy(f->rs_pool);
581 	if (f->prealloc_pool)
582 		mempool_destroy(f->prealloc_pool);
583 	if (f->extra_pool)
584 		mempool_destroy(f->extra_pool);
585 	if (f->cache)
586 		kmem_cache_destroy(f->cache);
587 
588 	if (f->data_bufio)
589 		dm_bufio_client_destroy(f->data_bufio);
590 	if (f->bufio)
591 		dm_bufio_client_destroy(f->bufio);
592 
593 	if (f->dev)
594 		dm_put_device(v->ti, f->dev);
595 
596 	if (kobj->state_initialized) {
597 		kobject_put(kobj);
598 		wait_for_completion(dm_get_completion_from_kobject(kobj));
599 	}
600 
601 out:
602 	kfree(f);
603 	v->fec = NULL;
604 }
605 
fec_rs_alloc(gfp_t gfp_mask,void * pool_data)606 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
607 {
608 	struct dm_verity *v = (struct dm_verity *)pool_data;
609 
610 	return init_rs(8, 0x11d, 0, 1, v->fec->roots);
611 }
612 
fec_rs_free(void * element,void * pool_data)613 static void fec_rs_free(void *element, void *pool_data)
614 {
615 	struct rs_control *rs = (struct rs_control *)element;
616 
617 	if (rs)
618 		free_rs(rs);
619 }
620 
verity_is_fec_opt_arg(const char * arg_name)621 bool verity_is_fec_opt_arg(const char *arg_name)
622 {
623 	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
624 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
625 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
626 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
627 }
628 
verity_fec_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,unsigned * argc,const char * arg_name)629 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
630 			      unsigned *argc, const char *arg_name)
631 {
632 	int r;
633 	struct dm_target *ti = v->ti;
634 	const char *arg_value;
635 	unsigned long long num_ll;
636 	unsigned char num_c;
637 	char dummy;
638 
639 	if (!*argc) {
640 		ti->error = "FEC feature arguments require a value";
641 		return -EINVAL;
642 	}
643 
644 	arg_value = dm_shift_arg(as);
645 	(*argc)--;
646 
647 	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
648 		r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
649 		if (r) {
650 			ti->error = "FEC device lookup failed";
651 			return r;
652 		}
653 
654 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
655 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
656 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
657 		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
658 			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
659 			return -EINVAL;
660 		}
661 		v->fec->blocks = num_ll;
662 
663 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
664 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
665 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
666 		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
667 			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
668 			return -EINVAL;
669 		}
670 		v->fec->start = num_ll;
671 
672 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
673 		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
674 		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
675 		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
676 			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
677 			return -EINVAL;
678 		}
679 		v->fec->roots = num_c;
680 
681 	} else {
682 		ti->error = "Unrecognized verity FEC feature request";
683 		return -EINVAL;
684 	}
685 
686 	return 0;
687 }
688 
corrected_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)689 static ssize_t corrected_show(struct kobject *kobj, struct kobj_attribute *attr,
690 			      char *buf)
691 {
692 	struct dm_verity_fec *f = container_of(kobj, struct dm_verity_fec,
693 					       kobj_holder.kobj);
694 
695 	return sprintf(buf, "%d\n", atomic_read(&f->corrected));
696 }
697 
698 static struct kobj_attribute attr_corrected = __ATTR_RO(corrected);
699 
700 static struct attribute *fec_attrs[] = {
701 	&attr_corrected.attr,
702 	NULL
703 };
704 
705 static struct kobj_type fec_ktype = {
706 	.sysfs_ops = &kobj_sysfs_ops,
707 	.default_attrs = fec_attrs,
708 	.release = dm_kobject_release
709 };
710 
711 /*
712  * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
713  */
verity_fec_ctr_alloc(struct dm_verity * v)714 int verity_fec_ctr_alloc(struct dm_verity *v)
715 {
716 	struct dm_verity_fec *f;
717 
718 	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
719 	if (!f) {
720 		v->ti->error = "Cannot allocate FEC structure";
721 		return -ENOMEM;
722 	}
723 	v->fec = f;
724 
725 	return 0;
726 }
727 
728 /*
729  * Validate arguments and preallocate memory. Must be called after arguments
730  * have been parsed using verity_fec_parse_opt_args.
731  */
verity_fec_ctr(struct dm_verity * v)732 int verity_fec_ctr(struct dm_verity *v)
733 {
734 	int r;
735 	struct dm_verity_fec *f = v->fec;
736 	struct dm_target *ti = v->ti;
737 	struct mapped_device *md = dm_table_get_md(ti->table);
738 	u64 hash_blocks;
739 
740 	if (!verity_fec_is_enabled(v)) {
741 		verity_fec_dtr(v);
742 		return 0;
743 	}
744 
745 	/* Create a kobject and sysfs attributes */
746 	init_completion(&f->kobj_holder.completion);
747 
748 	r = kobject_init_and_add(&f->kobj_holder.kobj, &fec_ktype,
749 				 &disk_to_dev(dm_disk(md))->kobj, "%s", "fec");
750 	if (r) {
751 		ti->error = "Cannot create kobject";
752 		return r;
753 	}
754 
755 	/*
756 	 * FEC is computed over data blocks, possible metadata, and
757 	 * hash blocks. In other words, FEC covers total of fec_blocks
758 	 * blocks consisting of the following:
759 	 *
760 	 *  data blocks | hash blocks | metadata (optional)
761 	 *
762 	 * We allow metadata after hash blocks to support a use case
763 	 * where all data is stored on the same device and FEC covers
764 	 * the entire area.
765 	 *
766 	 * If metadata is included, we require it to be available on the
767 	 * hash device after the hash blocks.
768 	 */
769 
770 	hash_blocks = v->hash_blocks - v->hash_start;
771 
772 	/*
773 	 * Require matching block sizes for data and hash devices for
774 	 * simplicity.
775 	 */
776 	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
777 		ti->error = "Block sizes must match to use FEC";
778 		return -EINVAL;
779 	}
780 
781 	if (!f->roots) {
782 		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
783 		return -EINVAL;
784 	}
785 	f->rsn = DM_VERITY_FEC_RSM - f->roots;
786 
787 	if (!f->blocks) {
788 		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
789 		return -EINVAL;
790 	}
791 
792 	f->rounds = f->blocks;
793 	if (sector_div(f->rounds, f->rsn))
794 		f->rounds++;
795 
796 	/*
797 	 * Due to optional metadata, f->blocks can be larger than
798 	 * data_blocks and hash_blocks combined.
799 	 */
800 	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
801 		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
802 		return -EINVAL;
803 	}
804 
805 	/*
806 	 * Metadata is accessed through the hash device, so we require
807 	 * it to be large enough.
808 	 */
809 	f->hash_blocks = f->blocks - v->data_blocks;
810 	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
811 		ti->error = "Hash device is too small for "
812 			DM_VERITY_OPT_FEC_BLOCKS;
813 		return -E2BIG;
814 	}
815 
816 	f->bufio = dm_bufio_client_create(f->dev->bdev,
817 					  1 << v->data_dev_block_bits,
818 					  1, 0, NULL, NULL);
819 	if (IS_ERR(f->bufio)) {
820 		ti->error = "Cannot initialize FEC bufio client";
821 		return PTR_ERR(f->bufio);
822 	}
823 
824 	if (dm_bufio_get_device_size(f->bufio) <
825 	    ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
826 		ti->error = "FEC device is too small";
827 		return -E2BIG;
828 	}
829 
830 	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
831 					       1 << v->data_dev_block_bits,
832 					       1, 0, NULL, NULL);
833 	if (IS_ERR(f->data_bufio)) {
834 		ti->error = "Cannot initialize FEC data bufio client";
835 		return PTR_ERR(f->data_bufio);
836 	}
837 
838 	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
839 		ti->error = "Data device is too small";
840 		return -E2BIG;
841 	}
842 
843 	/* Preallocate an rs_control structure for each worker thread */
844 	f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
845 				    fec_rs_free, (void *) v);
846 	if (!f->rs_pool) {
847 		ti->error = "Cannot allocate RS pool";
848 		return -ENOMEM;
849 	}
850 
851 	f->cache = kmem_cache_create("dm_verity_fec_buffers",
852 				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
853 				     0, 0, NULL);
854 	if (!f->cache) {
855 		ti->error = "Cannot create FEC buffer cache";
856 		return -ENOMEM;
857 	}
858 
859 	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
860 	f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
861 						    DM_VERITY_FEC_BUF_PREALLOC,
862 						    f->cache);
863 	if (!f->prealloc_pool) {
864 		ti->error = "Cannot allocate FEC buffer prealloc pool";
865 		return -ENOMEM;
866 	}
867 
868 	f->extra_pool = mempool_create_slab_pool(0, f->cache);
869 	if (!f->extra_pool) {
870 		ti->error = "Cannot allocate FEC buffer extra pool";
871 		return -ENOMEM;
872 	}
873 
874 	/* Preallocate an output buffer for each thread */
875 	f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
876 						     1 << v->data_dev_block_bits);
877 	if (!f->output_pool) {
878 		ti->error = "Cannot allocate FEC output pool";
879 		return -ENOMEM;
880 	}
881 
882 	/* Reserve space for our per-bio data */
883 	ti->per_bio_data_size += sizeof(struct dm_verity_fec_io);
884 
885 	return 0;
886 }
887