1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22
23 #include <trace/events/block.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53 * For bio-based dm.
54 * One of these is allocated per bio.
55 */
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
63 };
64
65 /*
66 * For request-based dm.
67 * One of these is allocated per request.
68 */
69 struct dm_rq_target_io {
70 struct mapped_device *md;
71 struct dm_target *ti;
72 struct request *orig, clone;
73 int error;
74 union map_info info;
75 };
76
77 /*
78 * For request-based dm - the bio clones we allocate are embedded in these
79 * structs.
80 *
81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82 * the bioset is created - this means the bio has to come at the end of the
83 * struct.
84 */
85 struct dm_rq_clone_bio_info {
86 struct bio *orig;
87 struct dm_rq_target_io *tio;
88 struct bio clone;
89 };
90
dm_get_mapinfo(struct bio * bio)91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 if (bio && bio->bi_private)
94 return &((struct dm_target_io *)bio->bi_private)->info;
95 return NULL;
96 }
97
dm_get_rq_mapinfo(struct request * rq)98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 if (rq && rq->end_io_data)
101 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105
106 #define MINOR_ALLOCED ((void *)-1)
107
108 /*
109 * Bits for the md->flags field.
110 */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118
119 /*
120 * Work processed by per-device workqueue.
121 */
122 struct mapped_device {
123 struct rw_semaphore io_lock;
124 struct mutex suspend_lock;
125 rwlock_t map_lock;
126 atomic_t holders;
127 atomic_t open_count;
128
129 unsigned long flags;
130
131 struct request_queue *queue;
132 unsigned type;
133 /* Protect queue and type against concurrent access. */
134 struct mutex type_lock;
135
136 struct target_type *immutable_target_type;
137
138 struct gendisk *disk;
139 char name[16];
140
141 void *interface_ptr;
142
143 /*
144 * A list of ios that arrived while we were suspended.
145 */
146 atomic_t pending[2];
147 wait_queue_head_t wait;
148 struct work_struct work;
149 struct bio_list deferred;
150 spinlock_t deferred_lock;
151
152 /*
153 * Processing queue (flush)
154 */
155 struct workqueue_struct *wq;
156
157 /*
158 * The current mapping.
159 */
160 struct dm_table *map;
161
162 /*
163 * io objects are allocated from here.
164 */
165 mempool_t *io_pool;
166
167 struct bio_set *bs;
168
169 /*
170 * Event handling.
171 */
172 atomic_t event_nr;
173 wait_queue_head_t eventq;
174 atomic_t uevent_seq;
175 struct list_head uevent_list;
176 spinlock_t uevent_lock; /* Protect access to uevent_list */
177
178 /*
179 * freeze/thaw support require holding onto a super block
180 */
181 struct super_block *frozen_sb;
182 struct block_device *bdev;
183
184 /* forced geometry settings */
185 struct hd_geometry geometry;
186
187 /* kobject and completion */
188 struct dm_kobject_holder kobj_holder;
189
190 /* zero-length flush that will be cloned and submitted to targets */
191 struct bio flush_bio;
192 };
193
194 /*
195 * For mempools pre-allocation at the table loading time.
196 */
197 struct dm_md_mempools {
198 mempool_t *io_pool;
199 struct bio_set *bs;
200 };
201
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_rq_tio_cache;
205
local_init(void)206 static int __init local_init(void)
207 {
208 int r = -ENOMEM;
209
210 /* allocate a slab for the dm_ios */
211 _io_cache = KMEM_CACHE(dm_io, 0);
212 if (!_io_cache)
213 return r;
214
215 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
216 if (!_rq_tio_cache)
217 goto out_free_io_cache;
218
219 r = dm_uevent_init();
220 if (r)
221 goto out_free_rq_tio_cache;
222
223 _major = major;
224 r = register_blkdev(_major, _name);
225 if (r < 0)
226 goto out_uevent_exit;
227
228 if (!_major)
229 _major = r;
230
231 return 0;
232
233 out_uevent_exit:
234 dm_uevent_exit();
235 out_free_rq_tio_cache:
236 kmem_cache_destroy(_rq_tio_cache);
237 out_free_io_cache:
238 kmem_cache_destroy(_io_cache);
239
240 return r;
241 }
242
local_exit(void)243 static void local_exit(void)
244 {
245 kmem_cache_destroy(_rq_tio_cache);
246 kmem_cache_destroy(_io_cache);
247 unregister_blkdev(_major, _name);
248 dm_uevent_exit();
249
250 _major = 0;
251
252 DMINFO("cleaned up");
253 }
254
255 static int (*_inits[])(void) __initdata = {
256 local_init,
257 dm_target_init,
258 dm_linear_init,
259 dm_stripe_init,
260 dm_io_init,
261 dm_kcopyd_init,
262 dm_interface_init,
263 };
264
265 static void (*_exits[])(void) = {
266 local_exit,
267 dm_target_exit,
268 dm_linear_exit,
269 dm_stripe_exit,
270 dm_io_exit,
271 dm_kcopyd_exit,
272 dm_interface_exit,
273 };
274
dm_init(void)275 static int __init dm_init(void)
276 {
277 const int count = ARRAY_SIZE(_inits);
278
279 int r, i;
280
281 for (i = 0; i < count; i++) {
282 r = _inits[i]();
283 if (r)
284 goto bad;
285 }
286
287 return 0;
288
289 bad:
290 while (i--)
291 _exits[i]();
292
293 return r;
294 }
295
dm_exit(void)296 static void __exit dm_exit(void)
297 {
298 int i = ARRAY_SIZE(_exits);
299
300 while (i--)
301 _exits[i]();
302
303 /*
304 * Should be empty by this point.
305 */
306 idr_destroy(&_minor_idr);
307 }
308
309 /*
310 * Block device functions
311 */
dm_deleting_md(struct mapped_device * md)312 int dm_deleting_md(struct mapped_device *md)
313 {
314 return test_bit(DMF_DELETING, &md->flags);
315 }
316
dm_blk_open(struct block_device * bdev,fmode_t mode)317 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
318 {
319 struct mapped_device *md;
320
321 spin_lock(&_minor_lock);
322
323 md = bdev->bd_disk->private_data;
324 if (!md)
325 goto out;
326
327 if (test_bit(DMF_FREEING, &md->flags) ||
328 dm_deleting_md(md)) {
329 md = NULL;
330 goto out;
331 }
332
333 dm_get(md);
334 atomic_inc(&md->open_count);
335
336 out:
337 spin_unlock(&_minor_lock);
338
339 return md ? 0 : -ENXIO;
340 }
341
dm_blk_close(struct gendisk * disk,fmode_t mode)342 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
343 {
344 struct mapped_device *md = disk->private_data;
345
346 spin_lock(&_minor_lock);
347
348 atomic_dec(&md->open_count);
349 dm_put(md);
350
351 spin_unlock(&_minor_lock);
352 }
353
dm_open_count(struct mapped_device * md)354 int dm_open_count(struct mapped_device *md)
355 {
356 return atomic_read(&md->open_count);
357 }
358
359 /*
360 * Guarantees nothing is using the device before it's deleted.
361 */
dm_lock_for_deletion(struct mapped_device * md)362 int dm_lock_for_deletion(struct mapped_device *md)
363 {
364 int r = 0;
365
366 spin_lock(&_minor_lock);
367
368 if (dm_open_count(md))
369 r = -EBUSY;
370 else
371 set_bit(DMF_DELETING, &md->flags);
372
373 spin_unlock(&_minor_lock);
374
375 return r;
376 }
377
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)378 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
379 {
380 struct mapped_device *md = bdev->bd_disk->private_data;
381
382 return dm_get_geometry(md, geo);
383 }
384
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)385 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
386 unsigned int cmd, unsigned long arg)
387 {
388 struct mapped_device *md = bdev->bd_disk->private_data;
389 struct dm_table *map = dm_get_live_table(md);
390 struct dm_target *tgt;
391 int r = -ENOTTY;
392
393 if (!map || !dm_table_get_size(map))
394 goto out;
395
396 /* We only support devices that have a single target */
397 if (dm_table_get_num_targets(map) != 1)
398 goto out;
399
400 tgt = dm_table_get_target(map, 0);
401
402 if (dm_suspended_md(md)) {
403 r = -EAGAIN;
404 goto out;
405 }
406
407 if (tgt->type->ioctl)
408 r = tgt->type->ioctl(tgt, cmd, arg);
409
410 out:
411 dm_table_put(map);
412
413 return r;
414 }
415
alloc_io(struct mapped_device * md)416 static struct dm_io *alloc_io(struct mapped_device *md)
417 {
418 return mempool_alloc(md->io_pool, GFP_NOIO);
419 }
420
free_io(struct mapped_device * md,struct dm_io * io)421 static void free_io(struct mapped_device *md, struct dm_io *io)
422 {
423 mempool_free(io, md->io_pool);
424 }
425
free_tio(struct mapped_device * md,struct dm_target_io * tio)426 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
427 {
428 bio_put(&tio->clone);
429 }
430
alloc_rq_tio(struct mapped_device * md,gfp_t gfp_mask)431 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
432 gfp_t gfp_mask)
433 {
434 return mempool_alloc(md->io_pool, gfp_mask);
435 }
436
free_rq_tio(struct dm_rq_target_io * tio)437 static void free_rq_tio(struct dm_rq_target_io *tio)
438 {
439 mempool_free(tio, tio->md->io_pool);
440 }
441
md_in_flight(struct mapped_device * md)442 static int md_in_flight(struct mapped_device *md)
443 {
444 return atomic_read(&md->pending[READ]) +
445 atomic_read(&md->pending[WRITE]);
446 }
447
start_io_acct(struct dm_io * io)448 static void start_io_acct(struct dm_io *io)
449 {
450 struct mapped_device *md = io->md;
451 int cpu;
452 int rw = bio_data_dir(io->bio);
453
454 io->start_time = jiffies;
455
456 cpu = part_stat_lock();
457 part_round_stats(cpu, &dm_disk(md)->part0);
458 part_stat_unlock();
459 atomic_set(&dm_disk(md)->part0.in_flight[rw],
460 atomic_inc_return(&md->pending[rw]));
461 }
462
end_io_acct(struct dm_io * io)463 static void end_io_acct(struct dm_io *io)
464 {
465 struct mapped_device *md = io->md;
466 struct bio *bio = io->bio;
467 unsigned long duration = jiffies - io->start_time;
468 int pending, cpu;
469 int rw = bio_data_dir(bio);
470
471 cpu = part_stat_lock();
472 part_round_stats(cpu, &dm_disk(md)->part0);
473 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
474 part_stat_unlock();
475
476 /*
477 * After this is decremented the bio must not be touched if it is
478 * a flush.
479 */
480 pending = atomic_dec_return(&md->pending[rw]);
481 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
482 pending += atomic_read(&md->pending[rw^0x1]);
483
484 /* nudge anyone waiting on suspend queue */
485 if (!pending)
486 wake_up(&md->wait);
487 }
488
489 /*
490 * Add the bio to the list of deferred io.
491 */
queue_io(struct mapped_device * md,struct bio * bio)492 static void queue_io(struct mapped_device *md, struct bio *bio)
493 {
494 unsigned long flags;
495
496 spin_lock_irqsave(&md->deferred_lock, flags);
497 bio_list_add(&md->deferred, bio);
498 spin_unlock_irqrestore(&md->deferred_lock, flags);
499 queue_work(md->wq, &md->work);
500 }
501
502 /*
503 * Everyone (including functions in this file), should use this
504 * function to access the md->map field, and make sure they call
505 * dm_table_put() when finished.
506 */
dm_get_live_table(struct mapped_device * md)507 struct dm_table *dm_get_live_table(struct mapped_device *md)
508 {
509 struct dm_table *t;
510 unsigned long flags;
511
512 read_lock_irqsave(&md->map_lock, flags);
513 t = md->map;
514 if (t)
515 dm_table_get(t);
516 read_unlock_irqrestore(&md->map_lock, flags);
517
518 return t;
519 }
520
521 /*
522 * Get the geometry associated with a dm device
523 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)524 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
525 {
526 *geo = md->geometry;
527
528 return 0;
529 }
530
531 /*
532 * Set the geometry of a device.
533 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)534 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
535 {
536 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
537
538 if (geo->start > sz) {
539 DMWARN("Start sector is beyond the geometry limits.");
540 return -EINVAL;
541 }
542
543 md->geometry = *geo;
544
545 return 0;
546 }
547
548 /*-----------------------------------------------------------------
549 * CRUD START:
550 * A more elegant soln is in the works that uses the queue
551 * merge fn, unfortunately there are a couple of changes to
552 * the block layer that I want to make for this. So in the
553 * interests of getting something for people to use I give
554 * you this clearly demarcated crap.
555 *---------------------------------------------------------------*/
556
__noflush_suspending(struct mapped_device * md)557 static int __noflush_suspending(struct mapped_device *md)
558 {
559 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
560 }
561
562 /*
563 * Decrements the number of outstanding ios that a bio has been
564 * cloned into, completing the original io if necc.
565 */
dec_pending(struct dm_io * io,int error)566 static void dec_pending(struct dm_io *io, int error)
567 {
568 unsigned long flags;
569 int io_error;
570 struct bio *bio;
571 struct mapped_device *md = io->md;
572
573 /* Push-back supersedes any I/O errors */
574 if (unlikely(error)) {
575 spin_lock_irqsave(&io->endio_lock, flags);
576 if (!(io->error > 0 && __noflush_suspending(md)))
577 io->error = error;
578 spin_unlock_irqrestore(&io->endio_lock, flags);
579 }
580
581 if (atomic_dec_and_test(&io->io_count)) {
582 if (io->error == DM_ENDIO_REQUEUE) {
583 /*
584 * Target requested pushing back the I/O.
585 */
586 spin_lock_irqsave(&md->deferred_lock, flags);
587 if (__noflush_suspending(md))
588 bio_list_add_head(&md->deferred, io->bio);
589 else
590 /* noflush suspend was interrupted. */
591 io->error = -EIO;
592 spin_unlock_irqrestore(&md->deferred_lock, flags);
593 }
594
595 io_error = io->error;
596 bio = io->bio;
597 end_io_acct(io);
598 free_io(md, io);
599
600 if (io_error == DM_ENDIO_REQUEUE)
601 return;
602
603 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
604 /*
605 * Preflush done for flush with data, reissue
606 * without REQ_FLUSH.
607 */
608 bio->bi_rw &= ~REQ_FLUSH;
609 queue_io(md, bio);
610 } else {
611 /* done with normal IO or empty flush */
612 trace_block_bio_complete(md->queue, bio, io_error);
613 bio_endio(bio, io_error);
614 }
615 }
616 }
617
clone_endio(struct bio * bio,int error)618 static void clone_endio(struct bio *bio, int error)
619 {
620 int r = 0;
621 struct dm_target_io *tio = bio->bi_private;
622 struct dm_io *io = tio->io;
623 struct mapped_device *md = tio->io->md;
624 dm_endio_fn endio = tio->ti->type->end_io;
625
626 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
627 error = -EIO;
628
629 if (endio) {
630 r = endio(tio->ti, bio, error);
631 if (r < 0 || r == DM_ENDIO_REQUEUE)
632 /*
633 * error and requeue request are handled
634 * in dec_pending().
635 */
636 error = r;
637 else if (r == DM_ENDIO_INCOMPLETE)
638 /* The target will handle the io */
639 return;
640 else if (r) {
641 DMWARN("unimplemented target endio return value: %d", r);
642 BUG();
643 }
644 }
645
646 free_tio(md, tio);
647 dec_pending(io, error);
648 }
649
650 /*
651 * Partial completion handling for request-based dm
652 */
end_clone_bio(struct bio * clone,int error)653 static void end_clone_bio(struct bio *clone, int error)
654 {
655 struct dm_rq_clone_bio_info *info = clone->bi_private;
656 struct dm_rq_target_io *tio = info->tio;
657 struct bio *bio = info->orig;
658 unsigned int nr_bytes = info->orig->bi_size;
659
660 bio_put(clone);
661
662 if (tio->error)
663 /*
664 * An error has already been detected on the request.
665 * Once error occurred, just let clone->end_io() handle
666 * the remainder.
667 */
668 return;
669 else if (error) {
670 /*
671 * Don't notice the error to the upper layer yet.
672 * The error handling decision is made by the target driver,
673 * when the request is completed.
674 */
675 tio->error = error;
676 return;
677 }
678
679 /*
680 * I/O for the bio successfully completed.
681 * Notice the data completion to the upper layer.
682 */
683
684 /*
685 * bios are processed from the head of the list.
686 * So the completing bio should always be rq->bio.
687 * If it's not, something wrong is happening.
688 */
689 if (tio->orig->bio != bio)
690 DMERR("bio completion is going in the middle of the request");
691
692 /*
693 * Update the original request.
694 * Do not use blk_end_request() here, because it may complete
695 * the original request before the clone, and break the ordering.
696 */
697 blk_update_request(tio->orig, 0, nr_bytes);
698 }
699
700 /*
701 * Don't touch any member of the md after calling this function because
702 * the md may be freed in dm_put() at the end of this function.
703 * Or do dm_get() before calling this function and dm_put() later.
704 */
rq_completed(struct mapped_device * md,int rw,int run_queue)705 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
706 {
707 atomic_dec(&md->pending[rw]);
708
709 /* nudge anyone waiting on suspend queue */
710 if (!md_in_flight(md))
711 wake_up(&md->wait);
712
713 /*
714 * Run this off this callpath, as drivers could invoke end_io while
715 * inside their request_fn (and holding the queue lock). Calling
716 * back into ->request_fn() could deadlock attempting to grab the
717 * queue lock again.
718 */
719 if (run_queue)
720 blk_run_queue_async(md->queue);
721
722 /*
723 * dm_put() must be at the end of this function. See the comment above
724 */
725 dm_put(md);
726 }
727
free_rq_clone(struct request * clone)728 static void free_rq_clone(struct request *clone)
729 {
730 struct dm_rq_target_io *tio = clone->end_io_data;
731
732 blk_rq_unprep_clone(clone);
733 free_rq_tio(tio);
734 }
735
736 /*
737 * Complete the clone and the original request.
738 * Must be called without queue lock.
739 */
dm_end_request(struct request * clone,int error)740 static void dm_end_request(struct request *clone, int error)
741 {
742 int rw = rq_data_dir(clone);
743 struct dm_rq_target_io *tio = clone->end_io_data;
744 struct mapped_device *md = tio->md;
745 struct request *rq = tio->orig;
746
747 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
748 rq->errors = clone->errors;
749 rq->resid_len = clone->resid_len;
750
751 if (rq->sense)
752 /*
753 * We are using the sense buffer of the original
754 * request.
755 * So setting the length of the sense data is enough.
756 */
757 rq->sense_len = clone->sense_len;
758 }
759
760 free_rq_clone(clone);
761 blk_end_request_all(rq, error);
762 rq_completed(md, rw, true);
763 }
764
dm_unprep_request(struct request * rq)765 static void dm_unprep_request(struct request *rq)
766 {
767 struct request *clone = rq->special;
768
769 rq->special = NULL;
770 rq->cmd_flags &= ~REQ_DONTPREP;
771
772 free_rq_clone(clone);
773 }
774
775 /*
776 * Requeue the original request of a clone.
777 */
dm_requeue_unmapped_request(struct request * clone)778 void dm_requeue_unmapped_request(struct request *clone)
779 {
780 int rw = rq_data_dir(clone);
781 struct dm_rq_target_io *tio = clone->end_io_data;
782 struct mapped_device *md = tio->md;
783 struct request *rq = tio->orig;
784 struct request_queue *q = rq->q;
785 unsigned long flags;
786
787 dm_unprep_request(rq);
788
789 spin_lock_irqsave(q->queue_lock, flags);
790 blk_requeue_request(q, rq);
791 spin_unlock_irqrestore(q->queue_lock, flags);
792
793 rq_completed(md, rw, 0);
794 }
795 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
796
__stop_queue(struct request_queue * q)797 static void __stop_queue(struct request_queue *q)
798 {
799 blk_stop_queue(q);
800 }
801
stop_queue(struct request_queue * q)802 static void stop_queue(struct request_queue *q)
803 {
804 unsigned long flags;
805
806 spin_lock_irqsave(q->queue_lock, flags);
807 __stop_queue(q);
808 spin_unlock_irqrestore(q->queue_lock, flags);
809 }
810
__start_queue(struct request_queue * q)811 static void __start_queue(struct request_queue *q)
812 {
813 if (blk_queue_stopped(q))
814 blk_start_queue(q);
815 }
816
start_queue(struct request_queue * q)817 static void start_queue(struct request_queue *q)
818 {
819 unsigned long flags;
820
821 spin_lock_irqsave(q->queue_lock, flags);
822 __start_queue(q);
823 spin_unlock_irqrestore(q->queue_lock, flags);
824 }
825
dm_done(struct request * clone,int error,bool mapped)826 static void dm_done(struct request *clone, int error, bool mapped)
827 {
828 int r = error;
829 struct dm_rq_target_io *tio = clone->end_io_data;
830 dm_request_endio_fn rq_end_io = NULL;
831
832 if (tio->ti) {
833 rq_end_io = tio->ti->type->rq_end_io;
834
835 if (mapped && rq_end_io)
836 r = rq_end_io(tio->ti, clone, error, &tio->info);
837 }
838
839 if (r <= 0)
840 /* The target wants to complete the I/O */
841 dm_end_request(clone, r);
842 else if (r == DM_ENDIO_INCOMPLETE)
843 /* The target will handle the I/O */
844 return;
845 else if (r == DM_ENDIO_REQUEUE)
846 /* The target wants to requeue the I/O */
847 dm_requeue_unmapped_request(clone);
848 else {
849 DMWARN("unimplemented target endio return value: %d", r);
850 BUG();
851 }
852 }
853
854 /*
855 * Request completion handler for request-based dm
856 */
dm_softirq_done(struct request * rq)857 static void dm_softirq_done(struct request *rq)
858 {
859 bool mapped = true;
860 struct request *clone = rq->completion_data;
861 struct dm_rq_target_io *tio = clone->end_io_data;
862
863 if (rq->cmd_flags & REQ_FAILED)
864 mapped = false;
865
866 dm_done(clone, tio->error, mapped);
867 }
868
869 /*
870 * Complete the clone and the original request with the error status
871 * through softirq context.
872 */
dm_complete_request(struct request * clone,int error)873 static void dm_complete_request(struct request *clone, int error)
874 {
875 struct dm_rq_target_io *tio = clone->end_io_data;
876 struct request *rq = tio->orig;
877
878 tio->error = error;
879 rq->completion_data = clone;
880 blk_complete_request(rq);
881 }
882
883 /*
884 * Complete the not-mapped clone and the original request with the error status
885 * through softirq context.
886 * Target's rq_end_io() function isn't called.
887 * This may be used when the target's map_rq() function fails.
888 */
dm_kill_unmapped_request(struct request * clone,int error)889 void dm_kill_unmapped_request(struct request *clone, int error)
890 {
891 struct dm_rq_target_io *tio = clone->end_io_data;
892 struct request *rq = tio->orig;
893
894 rq->cmd_flags |= REQ_FAILED;
895 dm_complete_request(clone, error);
896 }
897 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
898
899 /*
900 * Called with the queue lock held
901 */
end_clone_request(struct request * clone,int error)902 static void end_clone_request(struct request *clone, int error)
903 {
904 /*
905 * For just cleaning up the information of the queue in which
906 * the clone was dispatched.
907 * The clone is *NOT* freed actually here because it is alloced from
908 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
909 */
910 __blk_put_request(clone->q, clone);
911
912 /*
913 * Actual request completion is done in a softirq context which doesn't
914 * hold the queue lock. Otherwise, deadlock could occur because:
915 * - another request may be submitted by the upper level driver
916 * of the stacking during the completion
917 * - the submission which requires queue lock may be done
918 * against this queue
919 */
920 dm_complete_request(clone, error);
921 }
922
923 /*
924 * Return maximum size of I/O possible at the supplied sector up to the current
925 * target boundary.
926 */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)927 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
928 {
929 sector_t target_offset = dm_target_offset(ti, sector);
930
931 return ti->len - target_offset;
932 }
933
max_io_len(sector_t sector,struct dm_target * ti)934 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
935 {
936 sector_t len = max_io_len_target_boundary(sector, ti);
937 sector_t offset, max_len;
938
939 /*
940 * Does the target need to split even further?
941 */
942 if (ti->max_io_len) {
943 offset = dm_target_offset(ti, sector);
944 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
945 max_len = sector_div(offset, ti->max_io_len);
946 else
947 max_len = offset & (ti->max_io_len - 1);
948 max_len = ti->max_io_len - max_len;
949
950 if (len > max_len)
951 len = max_len;
952 }
953
954 return len;
955 }
956
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)957 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
958 {
959 if (len > UINT_MAX) {
960 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
961 (unsigned long long)len, UINT_MAX);
962 ti->error = "Maximum size of target IO is too large";
963 return -EINVAL;
964 }
965
966 ti->max_io_len = (uint32_t) len;
967
968 return 0;
969 }
970 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
971
__map_bio(struct dm_target_io * tio)972 static void __map_bio(struct dm_target_io *tio)
973 {
974 int r;
975 sector_t sector;
976 struct mapped_device *md;
977 struct bio *clone = &tio->clone;
978 struct dm_target *ti = tio->ti;
979
980 clone->bi_end_io = clone_endio;
981 clone->bi_private = tio;
982
983 /*
984 * Map the clone. If r == 0 we don't need to do
985 * anything, the target has assumed ownership of
986 * this io.
987 */
988 atomic_inc(&tio->io->io_count);
989 sector = clone->bi_sector;
990 r = ti->type->map(ti, clone);
991 if (r == DM_MAPIO_REMAPPED) {
992 /* the bio has been remapped so dispatch it */
993
994 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
995 tio->io->bio->bi_bdev->bd_dev, sector);
996
997 generic_make_request(clone);
998 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
999 /* error the io and bail out, or requeue it if needed */
1000 md = tio->io->md;
1001 dec_pending(tio->io, r);
1002 free_tio(md, tio);
1003 } else if (r) {
1004 DMWARN("unimplemented target map return value: %d", r);
1005 BUG();
1006 }
1007 }
1008
1009 struct clone_info {
1010 struct mapped_device *md;
1011 struct dm_table *map;
1012 struct bio *bio;
1013 struct dm_io *io;
1014 sector_t sector;
1015 sector_t sector_count;
1016 unsigned short idx;
1017 };
1018
bio_setup_sector(struct bio * bio,sector_t sector,sector_t len)1019 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1020 {
1021 bio->bi_sector = sector;
1022 bio->bi_size = to_bytes(len);
1023 }
1024
bio_setup_bv(struct bio * bio,unsigned short idx,unsigned short bv_count)1025 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1026 {
1027 bio->bi_idx = idx;
1028 bio->bi_vcnt = idx + bv_count;
1029 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1030 }
1031
clone_bio_integrity(struct bio * bio,struct bio * clone,unsigned short idx,unsigned len,unsigned offset,unsigned trim)1032 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1033 unsigned short idx, unsigned len, unsigned offset,
1034 unsigned trim)
1035 {
1036 if (!bio_integrity(bio))
1037 return;
1038
1039 bio_integrity_clone(clone, bio, GFP_NOIO);
1040
1041 if (trim)
1042 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1043 }
1044
1045 /*
1046 * Creates a little bio that just does part of a bvec.
1047 */
clone_split_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned short idx,unsigned offset,unsigned len)1048 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1049 sector_t sector, unsigned short idx,
1050 unsigned offset, unsigned len)
1051 {
1052 struct bio *clone = &tio->clone;
1053 struct bio_vec *bv = bio->bi_io_vec + idx;
1054
1055 *clone->bi_io_vec = *bv;
1056
1057 bio_setup_sector(clone, sector, len);
1058
1059 clone->bi_bdev = bio->bi_bdev;
1060 clone->bi_rw = bio->bi_rw;
1061 clone->bi_vcnt = 1;
1062 clone->bi_io_vec->bv_offset = offset;
1063 clone->bi_io_vec->bv_len = clone->bi_size;
1064 clone->bi_flags |= 1 << BIO_CLONED;
1065
1066 clone_bio_integrity(bio, clone, idx, len, offset, 1);
1067 }
1068
1069 /*
1070 * Creates a bio that consists of range of complete bvecs.
1071 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned short idx,unsigned short bv_count,unsigned len)1072 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1073 sector_t sector, unsigned short idx,
1074 unsigned short bv_count, unsigned len)
1075 {
1076 struct bio *clone = &tio->clone;
1077 unsigned trim = 0;
1078
1079 __bio_clone(clone, bio);
1080 bio_setup_sector(clone, sector, len);
1081 bio_setup_bv(clone, idx, bv_count);
1082
1083 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1084 trim = 1;
1085 clone_bio_integrity(bio, clone, idx, len, 0, trim);
1086 }
1087
alloc_tio(struct clone_info * ci,struct dm_target * ti,int nr_iovecs,unsigned target_bio_nr)1088 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1089 struct dm_target *ti, int nr_iovecs,
1090 unsigned target_bio_nr)
1091 {
1092 struct dm_target_io *tio;
1093 struct bio *clone;
1094
1095 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1096 tio = container_of(clone, struct dm_target_io, clone);
1097
1098 tio->io = ci->io;
1099 tio->ti = ti;
1100 memset(&tio->info, 0, sizeof(tio->info));
1101 tio->target_bio_nr = target_bio_nr;
1102
1103 return tio;
1104 }
1105
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,sector_t len)1106 static void __clone_and_map_simple_bio(struct clone_info *ci,
1107 struct dm_target *ti,
1108 unsigned target_bio_nr, sector_t len)
1109 {
1110 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1111 struct bio *clone = &tio->clone;
1112
1113 /*
1114 * Discard requests require the bio's inline iovecs be initialized.
1115 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1116 * and discard, so no need for concern about wasted bvec allocations.
1117 */
1118 __bio_clone(clone, ci->bio);
1119 if (len)
1120 bio_setup_sector(clone, ci->sector, len);
1121
1122 __map_bio(tio);
1123 }
1124
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,sector_t len)1125 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1126 unsigned num_bios, sector_t len)
1127 {
1128 unsigned target_bio_nr;
1129
1130 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1131 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1132 }
1133
__send_empty_flush(struct clone_info * ci)1134 static int __send_empty_flush(struct clone_info *ci)
1135 {
1136 unsigned target_nr = 0;
1137 struct dm_target *ti;
1138
1139 BUG_ON(bio_has_data(ci->bio));
1140 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1141 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1142
1143 return 0;
1144 }
1145
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,int nr_iovecs,unsigned short idx,unsigned short bv_count,unsigned offset,unsigned len,unsigned split_bvec)1146 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1147 sector_t sector, int nr_iovecs,
1148 unsigned short idx, unsigned short bv_count,
1149 unsigned offset, unsigned len,
1150 unsigned split_bvec)
1151 {
1152 struct bio *bio = ci->bio;
1153 struct dm_target_io *tio;
1154 unsigned target_bio_nr;
1155 unsigned num_target_bios = 1;
1156
1157 /*
1158 * Does the target want to receive duplicate copies of the bio?
1159 */
1160 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1161 num_target_bios = ti->num_write_bios(ti, bio);
1162
1163 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1164 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1165 if (split_bvec)
1166 clone_split_bio(tio, bio, sector, idx, offset, len);
1167 else
1168 clone_bio(tio, bio, sector, idx, bv_count, len);
1169 __map_bio(tio);
1170 }
1171 }
1172
1173 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1174
get_num_discard_bios(struct dm_target * ti)1175 static unsigned get_num_discard_bios(struct dm_target *ti)
1176 {
1177 return ti->num_discard_bios;
1178 }
1179
get_num_write_same_bios(struct dm_target * ti)1180 static unsigned get_num_write_same_bios(struct dm_target *ti)
1181 {
1182 return ti->num_write_same_bios;
1183 }
1184
1185 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1186
is_split_required_for_discard(struct dm_target * ti)1187 static bool is_split_required_for_discard(struct dm_target *ti)
1188 {
1189 return ti->split_discard_bios;
1190 }
1191
__send_changing_extent_only(struct clone_info * ci,get_num_bios_fn get_num_bios,is_split_required_fn is_split_required)1192 static int __send_changing_extent_only(struct clone_info *ci,
1193 get_num_bios_fn get_num_bios,
1194 is_split_required_fn is_split_required)
1195 {
1196 struct dm_target *ti;
1197 sector_t len;
1198 unsigned num_bios;
1199
1200 do {
1201 ti = dm_table_find_target(ci->map, ci->sector);
1202 if (!dm_target_is_valid(ti))
1203 return -EIO;
1204
1205 /*
1206 * Even though the device advertised support for this type of
1207 * request, that does not mean every target supports it, and
1208 * reconfiguration might also have changed that since the
1209 * check was performed.
1210 */
1211 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1212 if (!num_bios)
1213 return -EOPNOTSUPP;
1214
1215 if (is_split_required && !is_split_required(ti))
1216 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1217 else
1218 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1219
1220 __send_duplicate_bios(ci, ti, num_bios, len);
1221
1222 ci->sector += len;
1223 } while (ci->sector_count -= len);
1224
1225 return 0;
1226 }
1227
__send_discard(struct clone_info * ci)1228 static int __send_discard(struct clone_info *ci)
1229 {
1230 return __send_changing_extent_only(ci, get_num_discard_bios,
1231 is_split_required_for_discard);
1232 }
1233
__send_write_same(struct clone_info * ci)1234 static int __send_write_same(struct clone_info *ci)
1235 {
1236 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1237 }
1238
1239 /*
1240 * Find maximum number of sectors / bvecs we can process with a single bio.
1241 */
__len_within_target(struct clone_info * ci,sector_t max,int * idx)1242 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1243 {
1244 struct bio *bio = ci->bio;
1245 sector_t bv_len, total_len = 0;
1246
1247 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1248 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1249
1250 if (bv_len > max)
1251 break;
1252
1253 max -= bv_len;
1254 total_len += bv_len;
1255 }
1256
1257 return total_len;
1258 }
1259
__split_bvec_across_targets(struct clone_info * ci,struct dm_target * ti,sector_t max)1260 static int __split_bvec_across_targets(struct clone_info *ci,
1261 struct dm_target *ti, sector_t max)
1262 {
1263 struct bio *bio = ci->bio;
1264 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1265 sector_t remaining = to_sector(bv->bv_len);
1266 unsigned offset = 0;
1267 sector_t len;
1268
1269 do {
1270 if (offset) {
1271 ti = dm_table_find_target(ci->map, ci->sector);
1272 if (!dm_target_is_valid(ti))
1273 return -EIO;
1274
1275 max = max_io_len(ci->sector, ti);
1276 }
1277
1278 len = min(remaining, max);
1279
1280 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1281 bv->bv_offset + offset, len, 1);
1282
1283 ci->sector += len;
1284 ci->sector_count -= len;
1285 offset += to_bytes(len);
1286 } while (remaining -= len);
1287
1288 ci->idx++;
1289
1290 return 0;
1291 }
1292
1293 /*
1294 * Select the correct strategy for processing a non-flush bio.
1295 */
__split_and_process_non_flush(struct clone_info * ci)1296 static int __split_and_process_non_flush(struct clone_info *ci)
1297 {
1298 struct bio *bio = ci->bio;
1299 struct dm_target *ti;
1300 sector_t len, max;
1301 int idx;
1302
1303 if (unlikely(bio->bi_rw & REQ_DISCARD))
1304 return __send_discard(ci);
1305 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1306 return __send_write_same(ci);
1307
1308 ti = dm_table_find_target(ci->map, ci->sector);
1309 if (!dm_target_is_valid(ti))
1310 return -EIO;
1311
1312 max = max_io_len(ci->sector, ti);
1313
1314 /*
1315 * Optimise for the simple case where we can do all of
1316 * the remaining io with a single clone.
1317 */
1318 if (ci->sector_count <= max) {
1319 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1320 ci->idx, bio->bi_vcnt - ci->idx, 0,
1321 ci->sector_count, 0);
1322 ci->sector_count = 0;
1323 return 0;
1324 }
1325
1326 /*
1327 * There are some bvecs that don't span targets.
1328 * Do as many of these as possible.
1329 */
1330 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1331 len = __len_within_target(ci, max, &idx);
1332
1333 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1334 ci->idx, idx - ci->idx, 0, len, 0);
1335
1336 ci->sector += len;
1337 ci->sector_count -= len;
1338 ci->idx = idx;
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * Handle a bvec that must be split between two or more targets.
1345 */
1346 return __split_bvec_across_targets(ci, ti, max);
1347 }
1348
1349 /*
1350 * Entry point to split a bio into clones and submit them to the targets.
1351 */
__split_and_process_bio(struct mapped_device * md,struct bio * bio)1352 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1353 {
1354 struct clone_info ci;
1355 int error = 0;
1356
1357 ci.map = dm_get_live_table(md);
1358 if (unlikely(!ci.map)) {
1359 bio_io_error(bio);
1360 return;
1361 }
1362
1363 ci.md = md;
1364 ci.io = alloc_io(md);
1365 ci.io->error = 0;
1366 atomic_set(&ci.io->io_count, 1);
1367 ci.io->bio = bio;
1368 ci.io->md = md;
1369 spin_lock_init(&ci.io->endio_lock);
1370 ci.sector = bio->bi_sector;
1371 ci.idx = bio->bi_idx;
1372
1373 start_io_acct(ci.io);
1374
1375 if (bio->bi_rw & REQ_FLUSH) {
1376 ci.bio = &ci.md->flush_bio;
1377 ci.sector_count = 0;
1378 error = __send_empty_flush(&ci);
1379 /* dec_pending submits any data associated with flush */
1380 } else {
1381 ci.bio = bio;
1382 ci.sector_count = bio_sectors(bio);
1383 while (ci.sector_count && !error)
1384 error = __split_and_process_non_flush(&ci);
1385 }
1386
1387 /* drop the extra reference count */
1388 dec_pending(ci.io, error);
1389 dm_table_put(ci.map);
1390 }
1391 /*-----------------------------------------------------------------
1392 * CRUD END
1393 *---------------------------------------------------------------*/
1394
dm_merge_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)1395 static int dm_merge_bvec(struct request_queue *q,
1396 struct bvec_merge_data *bvm,
1397 struct bio_vec *biovec)
1398 {
1399 struct mapped_device *md = q->queuedata;
1400 struct dm_table *map = dm_get_live_table(md);
1401 struct dm_target *ti;
1402 sector_t max_sectors;
1403 int max_size = 0;
1404
1405 if (unlikely(!map))
1406 goto out;
1407
1408 ti = dm_table_find_target(map, bvm->bi_sector);
1409 if (!dm_target_is_valid(ti))
1410 goto out_table;
1411
1412 /*
1413 * Find maximum amount of I/O that won't need splitting
1414 */
1415 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1416 (sector_t) BIO_MAX_SECTORS);
1417 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1418 if (max_size < 0)
1419 max_size = 0;
1420
1421 /*
1422 * merge_bvec_fn() returns number of bytes
1423 * it can accept at this offset
1424 * max is precomputed maximal io size
1425 */
1426 if (max_size && ti->type->merge)
1427 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1428 /*
1429 * If the target doesn't support merge method and some of the devices
1430 * provided their merge_bvec method (we know this by looking at
1431 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1432 * entries. So always set max_size to 0, and the code below allows
1433 * just one page.
1434 */
1435 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1436
1437 max_size = 0;
1438
1439 out_table:
1440 dm_table_put(map);
1441
1442 out:
1443 /*
1444 * Always allow an entire first page
1445 */
1446 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1447 max_size = biovec->bv_len;
1448
1449 return max_size;
1450 }
1451
1452 /*
1453 * The request function that just remaps the bio built up by
1454 * dm_merge_bvec.
1455 */
_dm_request(struct request_queue * q,struct bio * bio)1456 static void _dm_request(struct request_queue *q, struct bio *bio)
1457 {
1458 int rw = bio_data_dir(bio);
1459 struct mapped_device *md = q->queuedata;
1460 int cpu;
1461
1462 down_read(&md->io_lock);
1463
1464 cpu = part_stat_lock();
1465 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1466 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1467 part_stat_unlock();
1468
1469 /* if we're suspended, we have to queue this io for later */
1470 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1471 up_read(&md->io_lock);
1472
1473 if (bio_rw(bio) != READA)
1474 queue_io(md, bio);
1475 else
1476 bio_io_error(bio);
1477 return;
1478 }
1479
1480 __split_and_process_bio(md, bio);
1481 up_read(&md->io_lock);
1482 return;
1483 }
1484
dm_request_based(struct mapped_device * md)1485 static int dm_request_based(struct mapped_device *md)
1486 {
1487 return blk_queue_stackable(md->queue);
1488 }
1489
dm_request(struct request_queue * q,struct bio * bio)1490 static void dm_request(struct request_queue *q, struct bio *bio)
1491 {
1492 struct mapped_device *md = q->queuedata;
1493
1494 if (dm_request_based(md))
1495 blk_queue_bio(q, bio);
1496 else
1497 _dm_request(q, bio);
1498 }
1499
dm_dispatch_request(struct request * rq)1500 void dm_dispatch_request(struct request *rq)
1501 {
1502 int r;
1503
1504 if (blk_queue_io_stat(rq->q))
1505 rq->cmd_flags |= REQ_IO_STAT;
1506
1507 rq->start_time = jiffies;
1508 r = blk_insert_cloned_request(rq->q, rq);
1509 if (r)
1510 dm_complete_request(rq, r);
1511 }
1512 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1513
dm_rq_bio_constructor(struct bio * bio,struct bio * bio_orig,void * data)1514 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1515 void *data)
1516 {
1517 struct dm_rq_target_io *tio = data;
1518 struct dm_rq_clone_bio_info *info =
1519 container_of(bio, struct dm_rq_clone_bio_info, clone);
1520
1521 info->orig = bio_orig;
1522 info->tio = tio;
1523 bio->bi_end_io = end_clone_bio;
1524 bio->bi_private = info;
1525
1526 return 0;
1527 }
1528
setup_clone(struct request * clone,struct request * rq,struct dm_rq_target_io * tio)1529 static int setup_clone(struct request *clone, struct request *rq,
1530 struct dm_rq_target_io *tio)
1531 {
1532 int r;
1533
1534 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1535 dm_rq_bio_constructor, tio);
1536 if (r)
1537 return r;
1538
1539 clone->cmd = rq->cmd;
1540 clone->cmd_len = rq->cmd_len;
1541 clone->sense = rq->sense;
1542 clone->buffer = rq->buffer;
1543 clone->end_io = end_clone_request;
1544 clone->end_io_data = tio;
1545
1546 return 0;
1547 }
1548
clone_rq(struct request * rq,struct mapped_device * md,gfp_t gfp_mask)1549 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1550 gfp_t gfp_mask)
1551 {
1552 struct request *clone;
1553 struct dm_rq_target_io *tio;
1554
1555 tio = alloc_rq_tio(md, gfp_mask);
1556 if (!tio)
1557 return NULL;
1558
1559 tio->md = md;
1560 tio->ti = NULL;
1561 tio->orig = rq;
1562 tio->error = 0;
1563 memset(&tio->info, 0, sizeof(tio->info));
1564
1565 clone = &tio->clone;
1566 if (setup_clone(clone, rq, tio)) {
1567 /* -ENOMEM */
1568 free_rq_tio(tio);
1569 return NULL;
1570 }
1571
1572 return clone;
1573 }
1574
1575 /*
1576 * Called with the queue lock held.
1577 */
dm_prep_fn(struct request_queue * q,struct request * rq)1578 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1579 {
1580 struct mapped_device *md = q->queuedata;
1581 struct request *clone;
1582
1583 if (unlikely(rq->special)) {
1584 DMWARN("Already has something in rq->special.");
1585 return BLKPREP_KILL;
1586 }
1587
1588 clone = clone_rq(rq, md, GFP_ATOMIC);
1589 if (!clone)
1590 return BLKPREP_DEFER;
1591
1592 rq->special = clone;
1593 rq->cmd_flags |= REQ_DONTPREP;
1594
1595 return BLKPREP_OK;
1596 }
1597
1598 /*
1599 * Returns:
1600 * 0 : the request has been processed (not requeued)
1601 * !0 : the request has been requeued
1602 */
map_request(struct dm_target * ti,struct request * clone,struct mapped_device * md)1603 static int map_request(struct dm_target *ti, struct request *clone,
1604 struct mapped_device *md)
1605 {
1606 int r, requeued = 0;
1607 struct dm_rq_target_io *tio = clone->end_io_data;
1608
1609 tio->ti = ti;
1610 r = ti->type->map_rq(ti, clone, &tio->info);
1611 switch (r) {
1612 case DM_MAPIO_SUBMITTED:
1613 /* The target has taken the I/O to submit by itself later */
1614 break;
1615 case DM_MAPIO_REMAPPED:
1616 /* The target has remapped the I/O so dispatch it */
1617 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1618 blk_rq_pos(tio->orig));
1619 dm_dispatch_request(clone);
1620 break;
1621 case DM_MAPIO_REQUEUE:
1622 /* The target wants to requeue the I/O */
1623 dm_requeue_unmapped_request(clone);
1624 requeued = 1;
1625 break;
1626 default:
1627 if (r > 0) {
1628 DMWARN("unimplemented target map return value: %d", r);
1629 BUG();
1630 }
1631
1632 /* The target wants to complete the I/O */
1633 dm_kill_unmapped_request(clone, r);
1634 break;
1635 }
1636
1637 return requeued;
1638 }
1639
dm_start_request(struct mapped_device * md,struct request * orig)1640 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1641 {
1642 struct request *clone;
1643
1644 blk_start_request(orig);
1645 clone = orig->special;
1646 atomic_inc(&md->pending[rq_data_dir(clone)]);
1647
1648 /*
1649 * Hold the md reference here for the in-flight I/O.
1650 * We can't rely on the reference count by device opener,
1651 * because the device may be closed during the request completion
1652 * when all bios are completed.
1653 * See the comment in rq_completed() too.
1654 */
1655 dm_get(md);
1656
1657 return clone;
1658 }
1659
1660 /*
1661 * q->request_fn for request-based dm.
1662 * Called with the queue lock held.
1663 */
dm_request_fn(struct request_queue * q)1664 static void dm_request_fn(struct request_queue *q)
1665 {
1666 struct mapped_device *md = q->queuedata;
1667 struct dm_table *map = dm_get_live_table(md);
1668 struct dm_target *ti;
1669 struct request *rq, *clone;
1670 sector_t pos;
1671
1672 /*
1673 * For suspend, check blk_queue_stopped() and increment
1674 * ->pending within a single queue_lock not to increment the
1675 * number of in-flight I/Os after the queue is stopped in
1676 * dm_suspend().
1677 */
1678 while (!blk_queue_stopped(q)) {
1679 rq = blk_peek_request(q);
1680 if (!rq)
1681 goto delay_and_out;
1682
1683 /* always use block 0 to find the target for flushes for now */
1684 pos = 0;
1685 if (!(rq->cmd_flags & REQ_FLUSH))
1686 pos = blk_rq_pos(rq);
1687
1688 ti = dm_table_find_target(map, pos);
1689 if (!dm_target_is_valid(ti)) {
1690 /*
1691 * Must perform setup, that dm_done() requires,
1692 * before calling dm_kill_unmapped_request
1693 */
1694 DMERR_LIMIT("request attempted access beyond the end of device");
1695 clone = dm_start_request(md, rq);
1696 dm_kill_unmapped_request(clone, -EIO);
1697 continue;
1698 }
1699
1700 if (ti->type->busy && ti->type->busy(ti))
1701 goto delay_and_out;
1702
1703 clone = dm_start_request(md, rq);
1704
1705 spin_unlock(q->queue_lock);
1706 if (map_request(ti, clone, md))
1707 goto requeued;
1708
1709 BUG_ON(!irqs_disabled());
1710 spin_lock(q->queue_lock);
1711 }
1712
1713 goto out;
1714
1715 requeued:
1716 BUG_ON(!irqs_disabled());
1717 spin_lock(q->queue_lock);
1718
1719 delay_and_out:
1720 blk_delay_queue(q, HZ / 10);
1721 out:
1722 dm_table_put(map);
1723 }
1724
dm_underlying_device_busy(struct request_queue * q)1725 int dm_underlying_device_busy(struct request_queue *q)
1726 {
1727 return blk_lld_busy(q);
1728 }
1729 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1730
dm_lld_busy(struct request_queue * q)1731 static int dm_lld_busy(struct request_queue *q)
1732 {
1733 int r;
1734 struct mapped_device *md = q->queuedata;
1735 struct dm_table *map = dm_get_live_table(md);
1736
1737 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1738 r = 1;
1739 else
1740 r = dm_table_any_busy_target(map);
1741
1742 dm_table_put(map);
1743
1744 return r;
1745 }
1746
dm_any_congested(void * congested_data,int bdi_bits)1747 static int dm_any_congested(void *congested_data, int bdi_bits)
1748 {
1749 int r = bdi_bits;
1750 struct mapped_device *md = congested_data;
1751 struct dm_table *map;
1752
1753 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1754 map = dm_get_live_table(md);
1755 if (map) {
1756 /*
1757 * Request-based dm cares about only own queue for
1758 * the query about congestion status of request_queue
1759 */
1760 if (dm_request_based(md))
1761 r = md->queue->backing_dev_info.state &
1762 bdi_bits;
1763 else
1764 r = dm_table_any_congested(map, bdi_bits);
1765
1766 dm_table_put(map);
1767 }
1768 }
1769
1770 return r;
1771 }
1772
1773 /*-----------------------------------------------------------------
1774 * An IDR is used to keep track of allocated minor numbers.
1775 *---------------------------------------------------------------*/
free_minor(int minor)1776 static void free_minor(int minor)
1777 {
1778 spin_lock(&_minor_lock);
1779 idr_remove(&_minor_idr, minor);
1780 spin_unlock(&_minor_lock);
1781 }
1782
1783 /*
1784 * See if the device with a specific minor # is free.
1785 */
specific_minor(int minor)1786 static int specific_minor(int minor)
1787 {
1788 int r;
1789
1790 if (minor >= (1 << MINORBITS))
1791 return -EINVAL;
1792
1793 idr_preload(GFP_KERNEL);
1794 spin_lock(&_minor_lock);
1795
1796 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1797
1798 spin_unlock(&_minor_lock);
1799 idr_preload_end();
1800 if (r < 0)
1801 return r == -ENOSPC ? -EBUSY : r;
1802 return 0;
1803 }
1804
next_free_minor(int * minor)1805 static int next_free_minor(int *minor)
1806 {
1807 int r;
1808
1809 idr_preload(GFP_KERNEL);
1810 spin_lock(&_minor_lock);
1811
1812 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1813
1814 spin_unlock(&_minor_lock);
1815 idr_preload_end();
1816 if (r < 0)
1817 return r;
1818 *minor = r;
1819 return 0;
1820 }
1821
1822 static const struct block_device_operations dm_blk_dops;
1823
1824 static void dm_wq_work(struct work_struct *work);
1825
dm_init_md_queue(struct mapped_device * md)1826 static void dm_init_md_queue(struct mapped_device *md)
1827 {
1828 /*
1829 * Request-based dm devices cannot be stacked on top of bio-based dm
1830 * devices. The type of this dm device has not been decided yet.
1831 * The type is decided at the first table loading time.
1832 * To prevent problematic device stacking, clear the queue flag
1833 * for request stacking support until then.
1834 *
1835 * This queue is new, so no concurrency on the queue_flags.
1836 */
1837 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1838
1839 md->queue->queuedata = md;
1840 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1841 md->queue->backing_dev_info.congested_data = md;
1842 blk_queue_make_request(md->queue, dm_request);
1843 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1844 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1845 }
1846
1847 /*
1848 * Allocate and initialise a blank device with a given minor.
1849 */
alloc_dev(int minor)1850 static struct mapped_device *alloc_dev(int minor)
1851 {
1852 int r;
1853 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1854 void *old_md;
1855
1856 if (!md) {
1857 DMWARN("unable to allocate device, out of memory.");
1858 return NULL;
1859 }
1860
1861 if (!try_module_get(THIS_MODULE))
1862 goto bad_module_get;
1863
1864 /* get a minor number for the dev */
1865 if (minor == DM_ANY_MINOR)
1866 r = next_free_minor(&minor);
1867 else
1868 r = specific_minor(minor);
1869 if (r < 0)
1870 goto bad_minor;
1871
1872 md->type = DM_TYPE_NONE;
1873 init_rwsem(&md->io_lock);
1874 mutex_init(&md->suspend_lock);
1875 mutex_init(&md->type_lock);
1876 spin_lock_init(&md->deferred_lock);
1877 rwlock_init(&md->map_lock);
1878 atomic_set(&md->holders, 1);
1879 atomic_set(&md->open_count, 0);
1880 atomic_set(&md->event_nr, 0);
1881 atomic_set(&md->uevent_seq, 0);
1882 INIT_LIST_HEAD(&md->uevent_list);
1883 spin_lock_init(&md->uevent_lock);
1884
1885 md->queue = blk_alloc_queue(GFP_KERNEL);
1886 if (!md->queue)
1887 goto bad_queue;
1888
1889 dm_init_md_queue(md);
1890
1891 md->disk = alloc_disk(1);
1892 if (!md->disk)
1893 goto bad_disk;
1894
1895 atomic_set(&md->pending[0], 0);
1896 atomic_set(&md->pending[1], 0);
1897 init_waitqueue_head(&md->wait);
1898 INIT_WORK(&md->work, dm_wq_work);
1899 init_waitqueue_head(&md->eventq);
1900 init_completion(&md->kobj_holder.completion);
1901
1902 md->disk->major = _major;
1903 md->disk->first_minor = minor;
1904 md->disk->fops = &dm_blk_dops;
1905 md->disk->queue = md->queue;
1906 md->disk->private_data = md;
1907 sprintf(md->disk->disk_name, "dm-%d", minor);
1908 add_disk(md->disk);
1909 format_dev_t(md->name, MKDEV(_major, minor));
1910
1911 md->wq = alloc_workqueue("kdmflush",
1912 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1913 if (!md->wq)
1914 goto bad_thread;
1915
1916 md->bdev = bdget_disk(md->disk, 0);
1917 if (!md->bdev)
1918 goto bad_bdev;
1919
1920 bio_init(&md->flush_bio);
1921 md->flush_bio.bi_bdev = md->bdev;
1922 md->flush_bio.bi_rw = WRITE_FLUSH;
1923
1924 /* Populate the mapping, nobody knows we exist yet */
1925 spin_lock(&_minor_lock);
1926 old_md = idr_replace(&_minor_idr, md, minor);
1927 spin_unlock(&_minor_lock);
1928
1929 BUG_ON(old_md != MINOR_ALLOCED);
1930
1931 return md;
1932
1933 bad_bdev:
1934 destroy_workqueue(md->wq);
1935 bad_thread:
1936 del_gendisk(md->disk);
1937 put_disk(md->disk);
1938 bad_disk:
1939 blk_cleanup_queue(md->queue);
1940 bad_queue:
1941 free_minor(minor);
1942 bad_minor:
1943 module_put(THIS_MODULE);
1944 bad_module_get:
1945 kfree(md);
1946 return NULL;
1947 }
1948
1949 static void unlock_fs(struct mapped_device *md);
1950
free_dev(struct mapped_device * md)1951 static void free_dev(struct mapped_device *md)
1952 {
1953 int minor = MINOR(disk_devt(md->disk));
1954
1955 unlock_fs(md);
1956 bdput(md->bdev);
1957 destroy_workqueue(md->wq);
1958 if (md->io_pool)
1959 mempool_destroy(md->io_pool);
1960 if (md->bs)
1961 bioset_free(md->bs);
1962 blk_integrity_unregister(md->disk);
1963 del_gendisk(md->disk);
1964 free_minor(minor);
1965
1966 spin_lock(&_minor_lock);
1967 md->disk->private_data = NULL;
1968 spin_unlock(&_minor_lock);
1969
1970 put_disk(md->disk);
1971 blk_cleanup_queue(md->queue);
1972 module_put(THIS_MODULE);
1973 kfree(md);
1974 }
1975
__bind_mempools(struct mapped_device * md,struct dm_table * t)1976 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1977 {
1978 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1979
1980 if (md->io_pool && md->bs) {
1981 /* The md already has necessary mempools. */
1982 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1983 /*
1984 * Reload bioset because front_pad may have changed
1985 * because a different table was loaded.
1986 */
1987 bioset_free(md->bs);
1988 md->bs = p->bs;
1989 p->bs = NULL;
1990 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
1991 /*
1992 * There's no need to reload with request-based dm
1993 * because the size of front_pad doesn't change.
1994 * Note for future: If you are to reload bioset,
1995 * prep-ed requests in the queue may refer
1996 * to bio from the old bioset, so you must walk
1997 * through the queue to unprep.
1998 */
1999 }
2000 goto out;
2001 }
2002
2003 BUG_ON(!p || md->io_pool || md->bs);
2004
2005 md->io_pool = p->io_pool;
2006 p->io_pool = NULL;
2007 md->bs = p->bs;
2008 p->bs = NULL;
2009
2010 out:
2011 /* mempool bind completed, now no need any mempools in the table */
2012 dm_table_free_md_mempools(t);
2013 }
2014
2015 /*
2016 * Bind a table to the device.
2017 */
event_callback(void * context)2018 static void event_callback(void *context)
2019 {
2020 unsigned long flags;
2021 LIST_HEAD(uevents);
2022 struct mapped_device *md = (struct mapped_device *) context;
2023
2024 spin_lock_irqsave(&md->uevent_lock, flags);
2025 list_splice_init(&md->uevent_list, &uevents);
2026 spin_unlock_irqrestore(&md->uevent_lock, flags);
2027
2028 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2029
2030 atomic_inc(&md->event_nr);
2031 wake_up(&md->eventq);
2032 }
2033
2034 /*
2035 * Protected by md->suspend_lock obtained by dm_swap_table().
2036 */
__set_size(struct mapped_device * md,sector_t size)2037 static void __set_size(struct mapped_device *md, sector_t size)
2038 {
2039 set_capacity(md->disk, size);
2040
2041 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2042 }
2043
2044 /*
2045 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2046 *
2047 * If this function returns 0, then the device is either a non-dm
2048 * device without a merge_bvec_fn, or it is a dm device that is
2049 * able to split any bios it receives that are too big.
2050 */
dm_queue_merge_is_compulsory(struct request_queue * q)2051 int dm_queue_merge_is_compulsory(struct request_queue *q)
2052 {
2053 struct mapped_device *dev_md;
2054
2055 if (!q->merge_bvec_fn)
2056 return 0;
2057
2058 if (q->make_request_fn == dm_request) {
2059 dev_md = q->queuedata;
2060 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2061 return 0;
2062 }
2063
2064 return 1;
2065 }
2066
dm_device_merge_is_compulsory(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2067 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2068 struct dm_dev *dev, sector_t start,
2069 sector_t len, void *data)
2070 {
2071 struct block_device *bdev = dev->bdev;
2072 struct request_queue *q = bdev_get_queue(bdev);
2073
2074 return dm_queue_merge_is_compulsory(q);
2075 }
2076
2077 /*
2078 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2079 * on the properties of the underlying devices.
2080 */
dm_table_merge_is_optional(struct dm_table * table)2081 static int dm_table_merge_is_optional(struct dm_table *table)
2082 {
2083 unsigned i = 0;
2084 struct dm_target *ti;
2085
2086 while (i < dm_table_get_num_targets(table)) {
2087 ti = dm_table_get_target(table, i++);
2088
2089 if (ti->type->iterate_devices &&
2090 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2091 return 0;
2092 }
2093
2094 return 1;
2095 }
2096
2097 /*
2098 * Returns old map, which caller must destroy.
2099 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2100 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2101 struct queue_limits *limits)
2102 {
2103 struct dm_table *old_map;
2104 struct request_queue *q = md->queue;
2105 sector_t size;
2106 unsigned long flags;
2107 int merge_is_optional;
2108
2109 size = dm_table_get_size(t);
2110
2111 /*
2112 * Wipe any geometry if the size of the table changed.
2113 */
2114 if (size != get_capacity(md->disk))
2115 memset(&md->geometry, 0, sizeof(md->geometry));
2116
2117 __set_size(md, size);
2118
2119 dm_table_event_callback(t, event_callback, md);
2120
2121 /*
2122 * The queue hasn't been stopped yet, if the old table type wasn't
2123 * for request-based during suspension. So stop it to prevent
2124 * I/O mapping before resume.
2125 * This must be done before setting the queue restrictions,
2126 * because request-based dm may be run just after the setting.
2127 */
2128 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2129 stop_queue(q);
2130
2131 __bind_mempools(md, t);
2132
2133 merge_is_optional = dm_table_merge_is_optional(t);
2134
2135 write_lock_irqsave(&md->map_lock, flags);
2136 old_map = md->map;
2137 md->map = t;
2138 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2139
2140 dm_table_set_restrictions(t, q, limits);
2141 if (merge_is_optional)
2142 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2143 else
2144 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2145 write_unlock_irqrestore(&md->map_lock, flags);
2146
2147 return old_map;
2148 }
2149
2150 /*
2151 * Returns unbound table for the caller to free.
2152 */
__unbind(struct mapped_device * md)2153 static struct dm_table *__unbind(struct mapped_device *md)
2154 {
2155 struct dm_table *map = md->map;
2156 unsigned long flags;
2157
2158 if (!map)
2159 return NULL;
2160
2161 dm_table_event_callback(map, NULL, NULL);
2162 write_lock_irqsave(&md->map_lock, flags);
2163 md->map = NULL;
2164 write_unlock_irqrestore(&md->map_lock, flags);
2165
2166 return map;
2167 }
2168
2169 /*
2170 * Constructor for a new device.
2171 */
dm_create(int minor,struct mapped_device ** result)2172 int dm_create(int minor, struct mapped_device **result)
2173 {
2174 struct mapped_device *md;
2175
2176 md = alloc_dev(minor);
2177 if (!md)
2178 return -ENXIO;
2179
2180 dm_sysfs_init(md);
2181
2182 *result = md;
2183 return 0;
2184 }
2185
2186 /*
2187 * Functions to manage md->type.
2188 * All are required to hold md->type_lock.
2189 */
dm_lock_md_type(struct mapped_device * md)2190 void dm_lock_md_type(struct mapped_device *md)
2191 {
2192 mutex_lock(&md->type_lock);
2193 }
2194
dm_unlock_md_type(struct mapped_device * md)2195 void dm_unlock_md_type(struct mapped_device *md)
2196 {
2197 mutex_unlock(&md->type_lock);
2198 }
2199
dm_set_md_type(struct mapped_device * md,unsigned type)2200 void dm_set_md_type(struct mapped_device *md, unsigned type)
2201 {
2202 md->type = type;
2203 }
2204
dm_get_md_type(struct mapped_device * md)2205 unsigned dm_get_md_type(struct mapped_device *md)
2206 {
2207 return md->type;
2208 }
2209
dm_get_immutable_target_type(struct mapped_device * md)2210 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2211 {
2212 return md->immutable_target_type;
2213 }
2214
2215 /*
2216 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2217 */
dm_init_request_based_queue(struct mapped_device * md)2218 static int dm_init_request_based_queue(struct mapped_device *md)
2219 {
2220 struct request_queue *q = NULL;
2221
2222 if (md->queue->elevator)
2223 return 1;
2224
2225 /* Fully initialize the queue */
2226 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2227 if (!q)
2228 return 0;
2229
2230 md->queue = q;
2231 dm_init_md_queue(md);
2232 blk_queue_softirq_done(md->queue, dm_softirq_done);
2233 blk_queue_prep_rq(md->queue, dm_prep_fn);
2234 blk_queue_lld_busy(md->queue, dm_lld_busy);
2235
2236 elv_register_queue(md->queue);
2237
2238 return 1;
2239 }
2240
2241 /*
2242 * Setup the DM device's queue based on md's type
2243 */
dm_setup_md_queue(struct mapped_device * md)2244 int dm_setup_md_queue(struct mapped_device *md)
2245 {
2246 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2247 !dm_init_request_based_queue(md)) {
2248 DMWARN("Cannot initialize queue for request-based mapped device");
2249 return -EINVAL;
2250 }
2251
2252 return 0;
2253 }
2254
dm_find_md(dev_t dev)2255 static struct mapped_device *dm_find_md(dev_t dev)
2256 {
2257 struct mapped_device *md;
2258 unsigned minor = MINOR(dev);
2259
2260 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2261 return NULL;
2262
2263 spin_lock(&_minor_lock);
2264
2265 md = idr_find(&_minor_idr, minor);
2266 if (md && (md == MINOR_ALLOCED ||
2267 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2268 dm_deleting_md(md) ||
2269 test_bit(DMF_FREEING, &md->flags))) {
2270 md = NULL;
2271 goto out;
2272 }
2273
2274 out:
2275 spin_unlock(&_minor_lock);
2276
2277 return md;
2278 }
2279
dm_get_md(dev_t dev)2280 struct mapped_device *dm_get_md(dev_t dev)
2281 {
2282 struct mapped_device *md = dm_find_md(dev);
2283
2284 if (md)
2285 dm_get(md);
2286
2287 return md;
2288 }
2289 EXPORT_SYMBOL_GPL(dm_get_md);
2290
dm_get_mdptr(struct mapped_device * md)2291 void *dm_get_mdptr(struct mapped_device *md)
2292 {
2293 return md->interface_ptr;
2294 }
2295
dm_set_mdptr(struct mapped_device * md,void * ptr)2296 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2297 {
2298 md->interface_ptr = ptr;
2299 }
2300
dm_get(struct mapped_device * md)2301 void dm_get(struct mapped_device *md)
2302 {
2303 atomic_inc(&md->holders);
2304 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2305 }
2306
dm_device_name(struct mapped_device * md)2307 const char *dm_device_name(struct mapped_device *md)
2308 {
2309 return md->name;
2310 }
2311 EXPORT_SYMBOL_GPL(dm_device_name);
2312
__dm_destroy(struct mapped_device * md,bool wait)2313 static void __dm_destroy(struct mapped_device *md, bool wait)
2314 {
2315 struct dm_table *map;
2316
2317 might_sleep();
2318
2319 spin_lock(&_minor_lock);
2320 map = dm_get_live_table(md);
2321 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2322 set_bit(DMF_FREEING, &md->flags);
2323 spin_unlock(&_minor_lock);
2324
2325 if (!dm_suspended_md(md)) {
2326 dm_table_presuspend_targets(map);
2327 dm_table_postsuspend_targets(map);
2328 }
2329
2330 /*
2331 * Rare, but there may be I/O requests still going to complete,
2332 * for example. Wait for all references to disappear.
2333 * No one should increment the reference count of the mapped_device,
2334 * after the mapped_device state becomes DMF_FREEING.
2335 */
2336 if (wait)
2337 while (atomic_read(&md->holders))
2338 msleep(1);
2339 else if (atomic_read(&md->holders))
2340 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2341 dm_device_name(md), atomic_read(&md->holders));
2342
2343 dm_sysfs_exit(md);
2344 dm_table_put(map);
2345 dm_table_destroy(__unbind(md));
2346 free_dev(md);
2347 }
2348
dm_destroy(struct mapped_device * md)2349 void dm_destroy(struct mapped_device *md)
2350 {
2351 __dm_destroy(md, true);
2352 }
2353
dm_destroy_immediate(struct mapped_device * md)2354 void dm_destroy_immediate(struct mapped_device *md)
2355 {
2356 __dm_destroy(md, false);
2357 }
2358
dm_put(struct mapped_device * md)2359 void dm_put(struct mapped_device *md)
2360 {
2361 atomic_dec(&md->holders);
2362 }
2363 EXPORT_SYMBOL_GPL(dm_put);
2364
dm_wait_for_completion(struct mapped_device * md,int interruptible)2365 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2366 {
2367 int r = 0;
2368 DECLARE_WAITQUEUE(wait, current);
2369
2370 add_wait_queue(&md->wait, &wait);
2371
2372 while (1) {
2373 set_current_state(interruptible);
2374
2375 if (!md_in_flight(md))
2376 break;
2377
2378 if (interruptible == TASK_INTERRUPTIBLE &&
2379 signal_pending(current)) {
2380 r = -EINTR;
2381 break;
2382 }
2383
2384 io_schedule();
2385 }
2386 set_current_state(TASK_RUNNING);
2387
2388 remove_wait_queue(&md->wait, &wait);
2389
2390 return r;
2391 }
2392
2393 /*
2394 * Process the deferred bios
2395 */
dm_wq_work(struct work_struct * work)2396 static void dm_wq_work(struct work_struct *work)
2397 {
2398 struct mapped_device *md = container_of(work, struct mapped_device,
2399 work);
2400 struct bio *c;
2401
2402 down_read(&md->io_lock);
2403
2404 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2405 spin_lock_irq(&md->deferred_lock);
2406 c = bio_list_pop(&md->deferred);
2407 spin_unlock_irq(&md->deferred_lock);
2408
2409 if (!c)
2410 break;
2411
2412 up_read(&md->io_lock);
2413
2414 if (dm_request_based(md))
2415 generic_make_request(c);
2416 else
2417 __split_and_process_bio(md, c);
2418
2419 down_read(&md->io_lock);
2420 }
2421
2422 up_read(&md->io_lock);
2423 }
2424
dm_queue_flush(struct mapped_device * md)2425 static void dm_queue_flush(struct mapped_device *md)
2426 {
2427 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2428 smp_mb__after_clear_bit();
2429 queue_work(md->wq, &md->work);
2430 }
2431
2432 /*
2433 * Swap in a new table, returning the old one for the caller to destroy.
2434 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2435 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2436 {
2437 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2438 struct queue_limits limits;
2439 int r;
2440
2441 mutex_lock(&md->suspend_lock);
2442
2443 /* device must be suspended */
2444 if (!dm_suspended_md(md))
2445 goto out;
2446
2447 /*
2448 * If the new table has no data devices, retain the existing limits.
2449 * This helps multipath with queue_if_no_path if all paths disappear,
2450 * then new I/O is queued based on these limits, and then some paths
2451 * reappear.
2452 */
2453 if (dm_table_has_no_data_devices(table)) {
2454 live_map = dm_get_live_table(md);
2455 if (live_map)
2456 limits = md->queue->limits;
2457 dm_table_put(live_map);
2458 }
2459
2460 if (!live_map) {
2461 r = dm_calculate_queue_limits(table, &limits);
2462 if (r) {
2463 map = ERR_PTR(r);
2464 goto out;
2465 }
2466 }
2467
2468 map = __bind(md, table, &limits);
2469
2470 out:
2471 mutex_unlock(&md->suspend_lock);
2472 return map;
2473 }
2474
2475 /*
2476 * Functions to lock and unlock any filesystem running on the
2477 * device.
2478 */
lock_fs(struct mapped_device * md)2479 static int lock_fs(struct mapped_device *md)
2480 {
2481 int r;
2482
2483 WARN_ON(md->frozen_sb);
2484
2485 md->frozen_sb = freeze_bdev(md->bdev);
2486 if (IS_ERR(md->frozen_sb)) {
2487 r = PTR_ERR(md->frozen_sb);
2488 md->frozen_sb = NULL;
2489 return r;
2490 }
2491
2492 set_bit(DMF_FROZEN, &md->flags);
2493
2494 return 0;
2495 }
2496
unlock_fs(struct mapped_device * md)2497 static void unlock_fs(struct mapped_device *md)
2498 {
2499 if (!test_bit(DMF_FROZEN, &md->flags))
2500 return;
2501
2502 thaw_bdev(md->bdev, md->frozen_sb);
2503 md->frozen_sb = NULL;
2504 clear_bit(DMF_FROZEN, &md->flags);
2505 }
2506
2507 /*
2508 * We need to be able to change a mapping table under a mounted
2509 * filesystem. For example we might want to move some data in
2510 * the background. Before the table can be swapped with
2511 * dm_bind_table, dm_suspend must be called to flush any in
2512 * flight bios and ensure that any further io gets deferred.
2513 */
2514 /*
2515 * Suspend mechanism in request-based dm.
2516 *
2517 * 1. Flush all I/Os by lock_fs() if needed.
2518 * 2. Stop dispatching any I/O by stopping the request_queue.
2519 * 3. Wait for all in-flight I/Os to be completed or requeued.
2520 *
2521 * To abort suspend, start the request_queue.
2522 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2523 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2524 {
2525 struct dm_table *map = NULL;
2526 int r = 0;
2527 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2528 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2529
2530 mutex_lock(&md->suspend_lock);
2531
2532 if (dm_suspended_md(md)) {
2533 r = -EINVAL;
2534 goto out_unlock;
2535 }
2536
2537 map = dm_get_live_table(md);
2538
2539 /*
2540 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2541 * This flag is cleared before dm_suspend returns.
2542 */
2543 if (noflush)
2544 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2545
2546 /* This does not get reverted if there's an error later. */
2547 dm_table_presuspend_targets(map);
2548
2549 /*
2550 * Flush I/O to the device.
2551 * Any I/O submitted after lock_fs() may not be flushed.
2552 * noflush takes precedence over do_lockfs.
2553 * (lock_fs() flushes I/Os and waits for them to complete.)
2554 */
2555 if (!noflush && do_lockfs) {
2556 r = lock_fs(md);
2557 if (r)
2558 goto out;
2559 }
2560
2561 /*
2562 * Here we must make sure that no processes are submitting requests
2563 * to target drivers i.e. no one may be executing
2564 * __split_and_process_bio. This is called from dm_request and
2565 * dm_wq_work.
2566 *
2567 * To get all processes out of __split_and_process_bio in dm_request,
2568 * we take the write lock. To prevent any process from reentering
2569 * __split_and_process_bio from dm_request and quiesce the thread
2570 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2571 * flush_workqueue(md->wq).
2572 */
2573 down_write(&md->io_lock);
2574 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2575 up_write(&md->io_lock);
2576
2577 /*
2578 * Stop md->queue before flushing md->wq in case request-based
2579 * dm defers requests to md->wq from md->queue.
2580 */
2581 if (dm_request_based(md))
2582 stop_queue(md->queue);
2583
2584 flush_workqueue(md->wq);
2585
2586 /*
2587 * At this point no more requests are entering target request routines.
2588 * We call dm_wait_for_completion to wait for all existing requests
2589 * to finish.
2590 */
2591 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2592
2593 down_write(&md->io_lock);
2594 if (noflush)
2595 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2596 up_write(&md->io_lock);
2597
2598 /* were we interrupted ? */
2599 if (r < 0) {
2600 dm_queue_flush(md);
2601
2602 if (dm_request_based(md))
2603 start_queue(md->queue);
2604
2605 unlock_fs(md);
2606 goto out; /* pushback list is already flushed, so skip flush */
2607 }
2608
2609 /*
2610 * If dm_wait_for_completion returned 0, the device is completely
2611 * quiescent now. There is no request-processing activity. All new
2612 * requests are being added to md->deferred list.
2613 */
2614
2615 set_bit(DMF_SUSPENDED, &md->flags);
2616
2617 dm_table_postsuspend_targets(map);
2618
2619 out:
2620 dm_table_put(map);
2621
2622 out_unlock:
2623 mutex_unlock(&md->suspend_lock);
2624 return r;
2625 }
2626
dm_resume(struct mapped_device * md)2627 int dm_resume(struct mapped_device *md)
2628 {
2629 int r = -EINVAL;
2630 struct dm_table *map = NULL;
2631
2632 mutex_lock(&md->suspend_lock);
2633 if (!dm_suspended_md(md))
2634 goto out;
2635
2636 map = dm_get_live_table(md);
2637 if (!map || !dm_table_get_size(map))
2638 goto out;
2639
2640 r = dm_table_resume_targets(map);
2641 if (r)
2642 goto out;
2643
2644 dm_queue_flush(md);
2645
2646 /*
2647 * Flushing deferred I/Os must be done after targets are resumed
2648 * so that mapping of targets can work correctly.
2649 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650 */
2651 if (dm_request_based(md))
2652 start_queue(md->queue);
2653
2654 unlock_fs(md);
2655
2656 clear_bit(DMF_SUSPENDED, &md->flags);
2657
2658 r = 0;
2659 out:
2660 dm_table_put(map);
2661 mutex_unlock(&md->suspend_lock);
2662
2663 return r;
2664 }
2665
2666 /*-----------------------------------------------------------------
2667 * Event notification.
2668 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2669 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2670 unsigned cookie)
2671 {
2672 char udev_cookie[DM_COOKIE_LENGTH];
2673 char *envp[] = { udev_cookie, NULL };
2674
2675 if (!cookie)
2676 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2677 else {
2678 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2679 DM_COOKIE_ENV_VAR_NAME, cookie);
2680 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2681 action, envp);
2682 }
2683 }
2684
dm_next_uevent_seq(struct mapped_device * md)2685 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2686 {
2687 return atomic_add_return(1, &md->uevent_seq);
2688 }
2689
dm_get_event_nr(struct mapped_device * md)2690 uint32_t dm_get_event_nr(struct mapped_device *md)
2691 {
2692 return atomic_read(&md->event_nr);
2693 }
2694
dm_wait_event(struct mapped_device * md,int event_nr)2695 int dm_wait_event(struct mapped_device *md, int event_nr)
2696 {
2697 return wait_event_interruptible(md->eventq,
2698 (event_nr != atomic_read(&md->event_nr)));
2699 }
2700
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2701 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2702 {
2703 unsigned long flags;
2704
2705 spin_lock_irqsave(&md->uevent_lock, flags);
2706 list_add(elist, &md->uevent_list);
2707 spin_unlock_irqrestore(&md->uevent_lock, flags);
2708 }
2709
2710 /*
2711 * The gendisk is only valid as long as you have a reference
2712 * count on 'md'.
2713 */
dm_disk(struct mapped_device * md)2714 struct gendisk *dm_disk(struct mapped_device *md)
2715 {
2716 return md->disk;
2717 }
2718
dm_kobject(struct mapped_device * md)2719 struct kobject *dm_kobject(struct mapped_device *md)
2720 {
2721 return &md->kobj_holder.kobj;
2722 }
2723
dm_get_from_kobject(struct kobject * kobj)2724 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2725 {
2726 struct mapped_device *md;
2727
2728 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2729
2730 if (test_bit(DMF_FREEING, &md->flags) ||
2731 dm_deleting_md(md))
2732 return NULL;
2733
2734 dm_get(md);
2735 return md;
2736 }
2737
dm_suspended_md(struct mapped_device * md)2738 int dm_suspended_md(struct mapped_device *md)
2739 {
2740 return test_bit(DMF_SUSPENDED, &md->flags);
2741 }
2742
dm_suspended(struct dm_target * ti)2743 int dm_suspended(struct dm_target *ti)
2744 {
2745 return dm_suspended_md(dm_table_get_md(ti->table));
2746 }
2747 EXPORT_SYMBOL_GPL(dm_suspended);
2748
dm_noflush_suspending(struct dm_target * ti)2749 int dm_noflush_suspending(struct dm_target *ti)
2750 {
2751 return __noflush_suspending(dm_table_get_md(ti->table));
2752 }
2753 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2754
dm_alloc_md_mempools(unsigned type,unsigned integrity,unsigned per_bio_data_size)2755 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2756 {
2757 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2758 struct kmem_cache *cachep;
2759 unsigned int pool_size;
2760 unsigned int front_pad;
2761
2762 if (!pools)
2763 return NULL;
2764
2765 if (type == DM_TYPE_BIO_BASED) {
2766 cachep = _io_cache;
2767 pool_size = 16;
2768 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2769 } else if (type == DM_TYPE_REQUEST_BASED) {
2770 cachep = _rq_tio_cache;
2771 pool_size = MIN_IOS;
2772 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2773 /* per_bio_data_size is not used. See __bind_mempools(). */
2774 WARN_ON(per_bio_data_size != 0);
2775 } else
2776 goto out;
2777
2778 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep);
2779 if (!pools->io_pool)
2780 goto out;
2781
2782 pools->bs = bioset_create(pool_size, front_pad);
2783 if (!pools->bs)
2784 goto out;
2785
2786 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2787 goto out;
2788
2789 return pools;
2790
2791 out:
2792 dm_free_md_mempools(pools);
2793
2794 return NULL;
2795 }
2796
dm_free_md_mempools(struct dm_md_mempools * pools)2797 void dm_free_md_mempools(struct dm_md_mempools *pools)
2798 {
2799 if (!pools)
2800 return;
2801
2802 if (pools->io_pool)
2803 mempool_destroy(pools->io_pool);
2804
2805 if (pools->bs)
2806 bioset_free(pools->bs);
2807
2808 kfree(pools);
2809 }
2810
2811 static const struct block_device_operations dm_blk_dops = {
2812 .open = dm_blk_open,
2813 .release = dm_blk_close,
2814 .ioctl = dm_blk_ioctl,
2815 .getgeo = dm_blk_getgeo,
2816 .owner = THIS_MODULE
2817 };
2818
2819 EXPORT_SYMBOL(dm_get_mapinfo);
2820
2821 /*
2822 * module hooks
2823 */
2824 module_init(dm_init);
2825 module_exit(dm_exit);
2826
2827 module_param(major, uint, 0);
2828 MODULE_PARM_DESC(major, "The major number of the device mapper");
2829 MODULE_DESCRIPTION(DM_NAME " driver");
2830 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2831 MODULE_LICENSE("GPL");
2832