• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
r10bio_pool_alloc(gfp_t gfp_flags,void * data)107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
r10bio_pool_free(void * r10_bio,void * data)117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
r10buf_pool_free(void * __r10_bio,void * data)217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
free_r10bio(struct r10bio * r10_bio)256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
put_buf(struct r10bio * r10_bio)264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
reschedule_retry(struct r10bio * r10_bio)273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
raid_end_bio_io(struct r10bio * r10_bio)295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
update_head_pos(int slot,struct r10bio * r10_bio)325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
raid10_end_read_request(struct bio * bio,int error)361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		unsigned long flags;
396 		spin_lock_irqsave(&conf->device_lock, flags);
397 		if (!enough(conf, rdev->raid_disk))
398 			uptodate = 1;
399 		spin_unlock_irqrestore(&conf->device_lock, flags);
400 	}
401 	if (uptodate) {
402 		raid_end_bio_io(r10_bio);
403 		rdev_dec_pending(rdev, conf->mddev);
404 	} else {
405 		/*
406 		 * oops, read error - keep the refcount on the rdev
407 		 */
408 		char b[BDEVNAME_SIZE];
409 		printk_ratelimited(KERN_ERR
410 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
411 				   mdname(conf->mddev),
412 				   bdevname(rdev->bdev, b),
413 				   (unsigned long long)r10_bio->sector);
414 		set_bit(R10BIO_ReadError, &r10_bio->state);
415 		reschedule_retry(r10_bio);
416 	}
417 }
418 
close_write(struct r10bio * r10_bio)419 static void close_write(struct r10bio *r10_bio)
420 {
421 	/* clear the bitmap if all writes complete successfully */
422 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423 			r10_bio->sectors,
424 			!test_bit(R10BIO_Degraded, &r10_bio->state),
425 			0);
426 	md_write_end(r10_bio->mddev);
427 }
428 
one_write_done(struct r10bio * r10_bio)429 static void one_write_done(struct r10bio *r10_bio)
430 {
431 	if (atomic_dec_and_test(&r10_bio->remaining)) {
432 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 			reschedule_retry(r10_bio);
434 		else {
435 			close_write(r10_bio);
436 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 				reschedule_retry(r10_bio);
438 			else
439 				raid_end_bio_io(r10_bio);
440 		}
441 	}
442 }
443 
raid10_end_write_request(struct bio * bio,int error)444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447 	struct r10bio *r10_bio = bio->bi_private;
448 	int dev;
449 	int dec_rdev = 1;
450 	struct r10conf *conf = r10_bio->mddev->private;
451 	int slot, repl;
452 	struct md_rdev *rdev = NULL;
453 
454 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455 
456 	if (repl)
457 		rdev = conf->mirrors[dev].replacement;
458 	if (!rdev) {
459 		smp_rmb();
460 		repl = 0;
461 		rdev = conf->mirrors[dev].rdev;
462 	}
463 	/*
464 	 * this branch is our 'one mirror IO has finished' event handler:
465 	 */
466 	if (!uptodate) {
467 		if (repl)
468 			/* Never record new bad blocks to replacement,
469 			 * just fail it.
470 			 */
471 			md_error(rdev->mddev, rdev);
472 		else {
473 			set_bit(WriteErrorSeen,	&rdev->flags);
474 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 				set_bit(MD_RECOVERY_NEEDED,
476 					&rdev->mddev->recovery);
477 			set_bit(R10BIO_WriteError, &r10_bio->state);
478 			dec_rdev = 0;
479 		}
480 	} else {
481 		/*
482 		 * Set R10BIO_Uptodate in our master bio, so that
483 		 * we will return a good error code for to the higher
484 		 * levels even if IO on some other mirrored buffer fails.
485 		 *
486 		 * The 'master' represents the composite IO operation to
487 		 * user-side. So if something waits for IO, then it will
488 		 * wait for the 'master' bio.
489 		 */
490 		sector_t first_bad;
491 		int bad_sectors;
492 
493 		/*
494 		 * Do not set R10BIO_Uptodate if the current device is
495 		 * rebuilding or Faulty. This is because we cannot use
496 		 * such device for properly reading the data back (we could
497 		 * potentially use it, if the current write would have felt
498 		 * before rdev->recovery_offset, but for simplicity we don't
499 		 * check this here.
500 		 */
501 		if (test_bit(In_sync, &rdev->flags) &&
502 		    !test_bit(Faulty, &rdev->flags))
503 			set_bit(R10BIO_Uptodate, &r10_bio->state);
504 
505 		/* Maybe we can clear some bad blocks. */
506 		if (is_badblock(rdev,
507 				r10_bio->devs[slot].addr,
508 				r10_bio->sectors,
509 				&first_bad, &bad_sectors)) {
510 			bio_put(bio);
511 			if (repl)
512 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
513 			else
514 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
515 			dec_rdev = 0;
516 			set_bit(R10BIO_MadeGood, &r10_bio->state);
517 		}
518 	}
519 
520 	/*
521 	 *
522 	 * Let's see if all mirrored write operations have finished
523 	 * already.
524 	 */
525 	one_write_done(r10_bio);
526 	if (dec_rdev)
527 		rdev_dec_pending(rdev, conf->mddev);
528 }
529 
530 /*
531  * RAID10 layout manager
532  * As well as the chunksize and raid_disks count, there are two
533  * parameters: near_copies and far_copies.
534  * near_copies * far_copies must be <= raid_disks.
535  * Normally one of these will be 1.
536  * If both are 1, we get raid0.
537  * If near_copies == raid_disks, we get raid1.
538  *
539  * Chunks are laid out in raid0 style with near_copies copies of the
540  * first chunk, followed by near_copies copies of the next chunk and
541  * so on.
542  * If far_copies > 1, then after 1/far_copies of the array has been assigned
543  * as described above, we start again with a device offset of near_copies.
544  * So we effectively have another copy of the whole array further down all
545  * the drives, but with blocks on different drives.
546  * With this layout, and block is never stored twice on the one device.
547  *
548  * raid10_find_phys finds the sector offset of a given virtual sector
549  * on each device that it is on.
550  *
551  * raid10_find_virt does the reverse mapping, from a device and a
552  * sector offset to a virtual address
553  */
554 
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)555 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
556 {
557 	int n,f;
558 	sector_t sector;
559 	sector_t chunk;
560 	sector_t stripe;
561 	int dev;
562 	int slot = 0;
563 	int last_far_set_start, last_far_set_size;
564 
565 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
566 	last_far_set_start *= geo->far_set_size;
567 
568 	last_far_set_size = geo->far_set_size;
569 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
570 
571 	/* now calculate first sector/dev */
572 	chunk = r10bio->sector >> geo->chunk_shift;
573 	sector = r10bio->sector & geo->chunk_mask;
574 
575 	chunk *= geo->near_copies;
576 	stripe = chunk;
577 	dev = sector_div(stripe, geo->raid_disks);
578 	if (geo->far_offset)
579 		stripe *= geo->far_copies;
580 
581 	sector += stripe << geo->chunk_shift;
582 
583 	/* and calculate all the others */
584 	for (n = 0; n < geo->near_copies; n++) {
585 		int d = dev;
586 		int set;
587 		sector_t s = sector;
588 		r10bio->devs[slot].devnum = d;
589 		r10bio->devs[slot].addr = s;
590 		slot++;
591 
592 		for (f = 1; f < geo->far_copies; f++) {
593 			set = d / geo->far_set_size;
594 			d += geo->near_copies;
595 
596 			if ((geo->raid_disks % geo->far_set_size) &&
597 			    (d > last_far_set_start)) {
598 				d -= last_far_set_start;
599 				d %= last_far_set_size;
600 				d += last_far_set_start;
601 			} else {
602 				d %= geo->far_set_size;
603 				d += geo->far_set_size * set;
604 			}
605 			s += geo->stride;
606 			r10bio->devs[slot].devnum = d;
607 			r10bio->devs[slot].addr = s;
608 			slot++;
609 		}
610 		dev++;
611 		if (dev >= geo->raid_disks) {
612 			dev = 0;
613 			sector += (geo->chunk_mask + 1);
614 		}
615 	}
616 }
617 
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)618 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
619 {
620 	struct geom *geo = &conf->geo;
621 
622 	if (conf->reshape_progress != MaxSector &&
623 	    ((r10bio->sector >= conf->reshape_progress) !=
624 	     conf->mddev->reshape_backwards)) {
625 		set_bit(R10BIO_Previous, &r10bio->state);
626 		geo = &conf->prev;
627 	} else
628 		clear_bit(R10BIO_Previous, &r10bio->state);
629 
630 	__raid10_find_phys(geo, r10bio);
631 }
632 
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)633 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
634 {
635 	sector_t offset, chunk, vchunk;
636 	/* Never use conf->prev as this is only called during resync
637 	 * or recovery, so reshape isn't happening
638 	 */
639 	struct geom *geo = &conf->geo;
640 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
641 	int far_set_size = geo->far_set_size;
642 	int last_far_set_start;
643 
644 	if (geo->raid_disks % geo->far_set_size) {
645 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
646 		last_far_set_start *= geo->far_set_size;
647 
648 		if (dev >= last_far_set_start) {
649 			far_set_size = geo->far_set_size;
650 			far_set_size += (geo->raid_disks % geo->far_set_size);
651 			far_set_start = last_far_set_start;
652 		}
653 	}
654 
655 	offset = sector & geo->chunk_mask;
656 	if (geo->far_offset) {
657 		int fc;
658 		chunk = sector >> geo->chunk_shift;
659 		fc = sector_div(chunk, geo->far_copies);
660 		dev -= fc * geo->near_copies;
661 		if (dev < far_set_start)
662 			dev += far_set_size;
663 	} else {
664 		while (sector >= geo->stride) {
665 			sector -= geo->stride;
666 			if (dev < (geo->near_copies + far_set_start))
667 				dev += far_set_size - geo->near_copies;
668 			else
669 				dev -= geo->near_copies;
670 		}
671 		chunk = sector >> geo->chunk_shift;
672 	}
673 	vchunk = chunk * geo->raid_disks + dev;
674 	sector_div(vchunk, geo->near_copies);
675 	return (vchunk << geo->chunk_shift) + offset;
676 }
677 
678 /**
679  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
680  *	@q: request queue
681  *	@bvm: properties of new bio
682  *	@biovec: the request that could be merged to it.
683  *
684  *	Return amount of bytes we can accept at this offset
685  *	This requires checking for end-of-chunk if near_copies != raid_disks,
686  *	and for subordinate merge_bvec_fns if merge_check_needed.
687  */
raid10_mergeable_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)688 static int raid10_mergeable_bvec(struct request_queue *q,
689 				 struct bvec_merge_data *bvm,
690 				 struct bio_vec *biovec)
691 {
692 	struct mddev *mddev = q->queuedata;
693 	struct r10conf *conf = mddev->private;
694 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
695 	int max;
696 	unsigned int chunk_sectors;
697 	unsigned int bio_sectors = bvm->bi_size >> 9;
698 	struct geom *geo = &conf->geo;
699 
700 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
701 	if (conf->reshape_progress != MaxSector &&
702 	    ((sector >= conf->reshape_progress) !=
703 	     conf->mddev->reshape_backwards))
704 		geo = &conf->prev;
705 
706 	if (geo->near_copies < geo->raid_disks) {
707 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
708 					+ bio_sectors)) << 9;
709 		if (max < 0)
710 			/* bio_add cannot handle a negative return */
711 			max = 0;
712 		if (max <= biovec->bv_len && bio_sectors == 0)
713 			return biovec->bv_len;
714 	} else
715 		max = biovec->bv_len;
716 
717 	if (mddev->merge_check_needed) {
718 		struct {
719 			struct r10bio r10_bio;
720 			struct r10dev devs[conf->copies];
721 		} on_stack;
722 		struct r10bio *r10_bio = &on_stack.r10_bio;
723 		int s;
724 		if (conf->reshape_progress != MaxSector) {
725 			/* Cannot give any guidance during reshape */
726 			if (max <= biovec->bv_len && bio_sectors == 0)
727 				return biovec->bv_len;
728 			return 0;
729 		}
730 		r10_bio->sector = sector;
731 		raid10_find_phys(conf, r10_bio);
732 		rcu_read_lock();
733 		for (s = 0; s < conf->copies; s++) {
734 			int disk = r10_bio->devs[s].devnum;
735 			struct md_rdev *rdev = rcu_dereference(
736 				conf->mirrors[disk].rdev);
737 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 				struct request_queue *q =
739 					bdev_get_queue(rdev->bdev);
740 				if (q->merge_bvec_fn) {
741 					bvm->bi_sector = r10_bio->devs[s].addr
742 						+ rdev->data_offset;
743 					bvm->bi_bdev = rdev->bdev;
744 					max = min(max, q->merge_bvec_fn(
745 							  q, bvm, biovec));
746 				}
747 			}
748 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
749 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
750 				struct request_queue *q =
751 					bdev_get_queue(rdev->bdev);
752 				if (q->merge_bvec_fn) {
753 					bvm->bi_sector = r10_bio->devs[s].addr
754 						+ rdev->data_offset;
755 					bvm->bi_bdev = rdev->bdev;
756 					max = min(max, q->merge_bvec_fn(
757 							  q, bvm, biovec));
758 				}
759 			}
760 		}
761 		rcu_read_unlock();
762 	}
763 	return max;
764 }
765 
766 /*
767  * This routine returns the disk from which the requested read should
768  * be done. There is a per-array 'next expected sequential IO' sector
769  * number - if this matches on the next IO then we use the last disk.
770  * There is also a per-disk 'last know head position' sector that is
771  * maintained from IRQ contexts, both the normal and the resync IO
772  * completion handlers update this position correctly. If there is no
773  * perfect sequential match then we pick the disk whose head is closest.
774  *
775  * If there are 2 mirrors in the same 2 devices, performance degrades
776  * because position is mirror, not device based.
777  *
778  * The rdev for the device selected will have nr_pending incremented.
779  */
780 
781 /*
782  * FIXME: possibly should rethink readbalancing and do it differently
783  * depending on near_copies / far_copies geometry.
784  */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)785 static struct md_rdev *read_balance(struct r10conf *conf,
786 				    struct r10bio *r10_bio,
787 				    int *max_sectors)
788 {
789 	const sector_t this_sector = r10_bio->sector;
790 	int disk, slot;
791 	int sectors = r10_bio->sectors;
792 	int best_good_sectors;
793 	sector_t new_distance, best_dist;
794 	struct md_rdev *best_rdev, *rdev = NULL;
795 	int do_balance;
796 	int best_slot;
797 	struct geom *geo = &conf->geo;
798 
799 	raid10_find_phys(conf, r10_bio);
800 	rcu_read_lock();
801 retry:
802 	sectors = r10_bio->sectors;
803 	best_slot = -1;
804 	best_rdev = NULL;
805 	best_dist = MaxSector;
806 	best_good_sectors = 0;
807 	do_balance = 1;
808 	/*
809 	 * Check if we can balance. We can balance on the whole
810 	 * device if no resync is going on (recovery is ok), or below
811 	 * the resync window. We take the first readable disk when
812 	 * above the resync window.
813 	 */
814 	if (conf->mddev->recovery_cp < MaxSector
815 	    && (this_sector + sectors >= conf->next_resync))
816 		do_balance = 0;
817 
818 	for (slot = 0; slot < conf->copies ; slot++) {
819 		sector_t first_bad;
820 		int bad_sectors;
821 		sector_t dev_sector;
822 
823 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
824 			continue;
825 		disk = r10_bio->devs[slot].devnum;
826 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
827 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
828 		    test_bit(Unmerged, &rdev->flags) ||
829 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
830 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
831 		if (rdev == NULL ||
832 		    test_bit(Faulty, &rdev->flags) ||
833 		    test_bit(Unmerged, &rdev->flags))
834 			continue;
835 		if (!test_bit(In_sync, &rdev->flags) &&
836 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
837 			continue;
838 
839 		dev_sector = r10_bio->devs[slot].addr;
840 		if (is_badblock(rdev, dev_sector, sectors,
841 				&first_bad, &bad_sectors)) {
842 			if (best_dist < MaxSector)
843 				/* Already have a better slot */
844 				continue;
845 			if (first_bad <= dev_sector) {
846 				/* Cannot read here.  If this is the
847 				 * 'primary' device, then we must not read
848 				 * beyond 'bad_sectors' from another device.
849 				 */
850 				bad_sectors -= (dev_sector - first_bad);
851 				if (!do_balance && sectors > bad_sectors)
852 					sectors = bad_sectors;
853 				if (best_good_sectors > sectors)
854 					best_good_sectors = sectors;
855 			} else {
856 				sector_t good_sectors =
857 					first_bad - dev_sector;
858 				if (good_sectors > best_good_sectors) {
859 					best_good_sectors = good_sectors;
860 					best_slot = slot;
861 					best_rdev = rdev;
862 				}
863 				if (!do_balance)
864 					/* Must read from here */
865 					break;
866 			}
867 			continue;
868 		} else
869 			best_good_sectors = sectors;
870 
871 		if (!do_balance)
872 			break;
873 
874 		/* This optimisation is debatable, and completely destroys
875 		 * sequential read speed for 'far copies' arrays.  So only
876 		 * keep it for 'near' arrays, and review those later.
877 		 */
878 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
879 			break;
880 
881 		/* for far > 1 always use the lowest address */
882 		if (geo->far_copies > 1)
883 			new_distance = r10_bio->devs[slot].addr;
884 		else
885 			new_distance = abs(r10_bio->devs[slot].addr -
886 					   conf->mirrors[disk].head_position);
887 		if (new_distance < best_dist) {
888 			best_dist = new_distance;
889 			best_slot = slot;
890 			best_rdev = rdev;
891 		}
892 	}
893 	if (slot >= conf->copies) {
894 		slot = best_slot;
895 		rdev = best_rdev;
896 	}
897 
898 	if (slot >= 0) {
899 		atomic_inc(&rdev->nr_pending);
900 		if (test_bit(Faulty, &rdev->flags)) {
901 			/* Cannot risk returning a device that failed
902 			 * before we inc'ed nr_pending
903 			 */
904 			rdev_dec_pending(rdev, conf->mddev);
905 			goto retry;
906 		}
907 		r10_bio->read_slot = slot;
908 	} else
909 		rdev = NULL;
910 	rcu_read_unlock();
911 	*max_sectors = best_good_sectors;
912 
913 	return rdev;
914 }
915 
md_raid10_congested(struct mddev * mddev,int bits)916 int md_raid10_congested(struct mddev *mddev, int bits)
917 {
918 	struct r10conf *conf = mddev->private;
919 	int i, ret = 0;
920 
921 	if ((bits & (1 << BDI_async_congested)) &&
922 	    conf->pending_count >= max_queued_requests)
923 		return 1;
924 
925 	rcu_read_lock();
926 	for (i = 0;
927 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
928 		     && ret == 0;
929 	     i++) {
930 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
931 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
932 			struct request_queue *q = bdev_get_queue(rdev->bdev);
933 
934 			ret |= bdi_congested(&q->backing_dev_info, bits);
935 		}
936 	}
937 	rcu_read_unlock();
938 	return ret;
939 }
940 EXPORT_SYMBOL_GPL(md_raid10_congested);
941 
raid10_congested(void * data,int bits)942 static int raid10_congested(void *data, int bits)
943 {
944 	struct mddev *mddev = data;
945 
946 	return mddev_congested(mddev, bits) ||
947 		md_raid10_congested(mddev, bits);
948 }
949 
flush_pending_writes(struct r10conf * conf)950 static void flush_pending_writes(struct r10conf *conf)
951 {
952 	/* Any writes that have been queued but are awaiting
953 	 * bitmap updates get flushed here.
954 	 */
955 	spin_lock_irq(&conf->device_lock);
956 
957 	if (conf->pending_bio_list.head) {
958 		struct bio *bio;
959 		bio = bio_list_get(&conf->pending_bio_list);
960 		conf->pending_count = 0;
961 		spin_unlock_irq(&conf->device_lock);
962 		/* flush any pending bitmap writes to disk
963 		 * before proceeding w/ I/O */
964 		bitmap_unplug(conf->mddev->bitmap);
965 		wake_up(&conf->wait_barrier);
966 
967 		while (bio) { /* submit pending writes */
968 			struct bio *next = bio->bi_next;
969 			bio->bi_next = NULL;
970 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
971 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
972 				/* Just ignore it */
973 				bio_endio(bio, 0);
974 			else
975 				generic_make_request(bio);
976 			bio = next;
977 		}
978 	} else
979 		spin_unlock_irq(&conf->device_lock);
980 }
981 
982 /* Barriers....
983  * Sometimes we need to suspend IO while we do something else,
984  * either some resync/recovery, or reconfigure the array.
985  * To do this we raise a 'barrier'.
986  * The 'barrier' is a counter that can be raised multiple times
987  * to count how many activities are happening which preclude
988  * normal IO.
989  * We can only raise the barrier if there is no pending IO.
990  * i.e. if nr_pending == 0.
991  * We choose only to raise the barrier if no-one is waiting for the
992  * barrier to go down.  This means that as soon as an IO request
993  * is ready, no other operations which require a barrier will start
994  * until the IO request has had a chance.
995  *
996  * So: regular IO calls 'wait_barrier'.  When that returns there
997  *    is no backgroup IO happening,  It must arrange to call
998  *    allow_barrier when it has finished its IO.
999  * backgroup IO calls must call raise_barrier.  Once that returns
1000  *    there is no normal IO happeing.  It must arrange to call
1001  *    lower_barrier when the particular background IO completes.
1002  */
1003 
raise_barrier(struct r10conf * conf,int force)1004 static void raise_barrier(struct r10conf *conf, int force)
1005 {
1006 	BUG_ON(force && !conf->barrier);
1007 	spin_lock_irq(&conf->resync_lock);
1008 
1009 	/* Wait until no block IO is waiting (unless 'force') */
1010 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1011 			    conf->resync_lock);
1012 
1013 	/* block any new IO from starting */
1014 	conf->barrier++;
1015 
1016 	/* Now wait for all pending IO to complete */
1017 	wait_event_lock_irq(conf->wait_barrier,
1018 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1019 			    conf->resync_lock);
1020 
1021 	spin_unlock_irq(&conf->resync_lock);
1022 }
1023 
lower_barrier(struct r10conf * conf)1024 static void lower_barrier(struct r10conf *conf)
1025 {
1026 	unsigned long flags;
1027 	spin_lock_irqsave(&conf->resync_lock, flags);
1028 	conf->barrier--;
1029 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1030 	wake_up(&conf->wait_barrier);
1031 }
1032 
wait_barrier(struct r10conf * conf)1033 static void wait_barrier(struct r10conf *conf)
1034 {
1035 	spin_lock_irq(&conf->resync_lock);
1036 	if (conf->barrier) {
1037 		conf->nr_waiting++;
1038 		/* Wait for the barrier to drop.
1039 		 * However if there are already pending
1040 		 * requests (preventing the barrier from
1041 		 * rising completely), and the
1042 		 * pre-process bio queue isn't empty,
1043 		 * then don't wait, as we need to empty
1044 		 * that queue to get the nr_pending
1045 		 * count down.
1046 		 */
1047 		wait_event_lock_irq(conf->wait_barrier,
1048 				    !conf->barrier ||
1049 				    (conf->nr_pending &&
1050 				     current->bio_list &&
1051 				     !bio_list_empty(current->bio_list)),
1052 				    conf->resync_lock);
1053 		conf->nr_waiting--;
1054 	}
1055 	conf->nr_pending++;
1056 	spin_unlock_irq(&conf->resync_lock);
1057 }
1058 
allow_barrier(struct r10conf * conf)1059 static void allow_barrier(struct r10conf *conf)
1060 {
1061 	unsigned long flags;
1062 	spin_lock_irqsave(&conf->resync_lock, flags);
1063 	conf->nr_pending--;
1064 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1065 	wake_up(&conf->wait_barrier);
1066 }
1067 
freeze_array(struct r10conf * conf,int extra)1068 static void freeze_array(struct r10conf *conf, int extra)
1069 {
1070 	/* stop syncio and normal IO and wait for everything to
1071 	 * go quiet.
1072 	 * We increment barrier and nr_waiting, and then
1073 	 * wait until nr_pending match nr_queued+extra
1074 	 * This is called in the context of one normal IO request
1075 	 * that has failed. Thus any sync request that might be pending
1076 	 * will be blocked by nr_pending, and we need to wait for
1077 	 * pending IO requests to complete or be queued for re-try.
1078 	 * Thus the number queued (nr_queued) plus this request (extra)
1079 	 * must match the number of pending IOs (nr_pending) before
1080 	 * we continue.
1081 	 */
1082 	spin_lock_irq(&conf->resync_lock);
1083 	conf->barrier++;
1084 	conf->nr_waiting++;
1085 	wait_event_lock_irq_cmd(conf->wait_barrier,
1086 				conf->nr_pending == conf->nr_queued+extra,
1087 				conf->resync_lock,
1088 				flush_pending_writes(conf));
1089 
1090 	spin_unlock_irq(&conf->resync_lock);
1091 }
1092 
unfreeze_array(struct r10conf * conf)1093 static void unfreeze_array(struct r10conf *conf)
1094 {
1095 	/* reverse the effect of the freeze */
1096 	spin_lock_irq(&conf->resync_lock);
1097 	conf->barrier--;
1098 	conf->nr_waiting--;
1099 	wake_up(&conf->wait_barrier);
1100 	spin_unlock_irq(&conf->resync_lock);
1101 }
1102 
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1103 static sector_t choose_data_offset(struct r10bio *r10_bio,
1104 				   struct md_rdev *rdev)
1105 {
1106 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1107 	    test_bit(R10BIO_Previous, &r10_bio->state))
1108 		return rdev->data_offset;
1109 	else
1110 		return rdev->new_data_offset;
1111 }
1112 
1113 struct raid10_plug_cb {
1114 	struct blk_plug_cb	cb;
1115 	struct bio_list		pending;
1116 	int			pending_cnt;
1117 };
1118 
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1119 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1120 {
1121 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1122 						   cb);
1123 	struct mddev *mddev = plug->cb.data;
1124 	struct r10conf *conf = mddev->private;
1125 	struct bio *bio;
1126 
1127 	if (from_schedule || current->bio_list) {
1128 		spin_lock_irq(&conf->device_lock);
1129 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1130 		conf->pending_count += plug->pending_cnt;
1131 		spin_unlock_irq(&conf->device_lock);
1132 		wake_up(&conf->wait_barrier);
1133 		md_wakeup_thread(mddev->thread);
1134 		kfree(plug);
1135 		return;
1136 	}
1137 
1138 	/* we aren't scheduling, so we can do the write-out directly. */
1139 	bio = bio_list_get(&plug->pending);
1140 	bitmap_unplug(mddev->bitmap);
1141 	wake_up(&conf->wait_barrier);
1142 
1143 	while (bio) { /* submit pending writes */
1144 		struct bio *next = bio->bi_next;
1145 		bio->bi_next = NULL;
1146 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1147 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1148 			/* Just ignore it */
1149 			bio_endio(bio, 0);
1150 		else
1151 			generic_make_request(bio);
1152 		bio = next;
1153 	}
1154 	kfree(plug);
1155 }
1156 
make_request(struct mddev * mddev,struct bio * bio)1157 static void make_request(struct mddev *mddev, struct bio * bio)
1158 {
1159 	struct r10conf *conf = mddev->private;
1160 	struct r10bio *r10_bio;
1161 	struct bio *read_bio;
1162 	int i;
1163 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1164 	int chunk_sects = chunk_mask + 1;
1165 	const int rw = bio_data_dir(bio);
1166 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1167 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1168 	const unsigned long do_discard = (bio->bi_rw
1169 					  & (REQ_DISCARD | REQ_SECURE));
1170 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1171 	unsigned long flags;
1172 	struct md_rdev *blocked_rdev;
1173 	struct blk_plug_cb *cb;
1174 	struct raid10_plug_cb *plug = NULL;
1175 	int sectors_handled;
1176 	int max_sectors;
1177 	int sectors;
1178 
1179 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1180 		md_flush_request(mddev, bio);
1181 		return;
1182 	}
1183 
1184 	/* If this request crosses a chunk boundary, we need to
1185 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1186 	 */
1187 	if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1188 		     > chunk_sects
1189 		     && (conf->geo.near_copies < conf->geo.raid_disks
1190 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1191 		struct bio_pair *bp;
1192 		/* Sanity check -- queue functions should prevent this happening */
1193 		if (bio_segments(bio) > 1)
1194 			goto bad_map;
1195 		/* This is a one page bio that upper layers
1196 		 * refuse to split for us, so we need to split it.
1197 		 */
1198 		bp = bio_split(bio,
1199 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1200 
1201 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1202 		 * If the first succeeds but the second blocks due to the resync
1203 		 * thread raising the barrier, we will deadlock because the
1204 		 * IO to the underlying device will be queued in generic_make_request
1205 		 * and will never complete, so will never reduce nr_pending.
1206 		 * So increment nr_waiting here so no new raise_barriers will
1207 		 * succeed, and so the second wait_barrier cannot block.
1208 		 */
1209 		spin_lock_irq(&conf->resync_lock);
1210 		conf->nr_waiting++;
1211 		spin_unlock_irq(&conf->resync_lock);
1212 
1213 		make_request(mddev, &bp->bio1);
1214 		make_request(mddev, &bp->bio2);
1215 
1216 		spin_lock_irq(&conf->resync_lock);
1217 		conf->nr_waiting--;
1218 		wake_up(&conf->wait_barrier);
1219 		spin_unlock_irq(&conf->resync_lock);
1220 
1221 		bio_pair_release(bp);
1222 		return;
1223 	bad_map:
1224 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1225 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1226 		       (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1227 
1228 		bio_io_error(bio);
1229 		return;
1230 	}
1231 
1232 	md_write_start(mddev, bio);
1233 
1234 	/*
1235 	 * Register the new request and wait if the reconstruction
1236 	 * thread has put up a bar for new requests.
1237 	 * Continue immediately if no resync is active currently.
1238 	 */
1239 	wait_barrier(conf);
1240 
1241 	sectors = bio_sectors(bio);
1242 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1243 	    bio->bi_sector < conf->reshape_progress &&
1244 	    bio->bi_sector + sectors > conf->reshape_progress) {
1245 		/* IO spans the reshape position.  Need to wait for
1246 		 * reshape to pass
1247 		 */
1248 		allow_barrier(conf);
1249 		wait_event(conf->wait_barrier,
1250 			   conf->reshape_progress <= bio->bi_sector ||
1251 			   conf->reshape_progress >= bio->bi_sector + sectors);
1252 		wait_barrier(conf);
1253 	}
1254 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1255 	    bio_data_dir(bio) == WRITE &&
1256 	    (mddev->reshape_backwards
1257 	     ? (bio->bi_sector < conf->reshape_safe &&
1258 		bio->bi_sector + sectors > conf->reshape_progress)
1259 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1260 		bio->bi_sector < conf->reshape_progress))) {
1261 		/* Need to update reshape_position in metadata */
1262 		mddev->reshape_position = conf->reshape_progress;
1263 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1264 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1265 		md_wakeup_thread(mddev->thread);
1266 		wait_event(mddev->sb_wait,
1267 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1268 
1269 		conf->reshape_safe = mddev->reshape_position;
1270 	}
1271 
1272 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1273 
1274 	r10_bio->master_bio = bio;
1275 	r10_bio->sectors = sectors;
1276 
1277 	r10_bio->mddev = mddev;
1278 	r10_bio->sector = bio->bi_sector;
1279 	r10_bio->state = 0;
1280 
1281 	/* We might need to issue multiple reads to different
1282 	 * devices if there are bad blocks around, so we keep
1283 	 * track of the number of reads in bio->bi_phys_segments.
1284 	 * If this is 0, there is only one r10_bio and no locking
1285 	 * will be needed when the request completes.  If it is
1286 	 * non-zero, then it is the number of not-completed requests.
1287 	 */
1288 	bio->bi_phys_segments = 0;
1289 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1290 
1291 	if (rw == READ) {
1292 		/*
1293 		 * read balancing logic:
1294 		 */
1295 		struct md_rdev *rdev;
1296 		int slot;
1297 
1298 read_again:
1299 		rdev = read_balance(conf, r10_bio, &max_sectors);
1300 		if (!rdev) {
1301 			raid_end_bio_io(r10_bio);
1302 			return;
1303 		}
1304 		slot = r10_bio->read_slot;
1305 
1306 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1307 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1308 			    max_sectors);
1309 
1310 		r10_bio->devs[slot].bio = read_bio;
1311 		r10_bio->devs[slot].rdev = rdev;
1312 
1313 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1314 			choose_data_offset(r10_bio, rdev);
1315 		read_bio->bi_bdev = rdev->bdev;
1316 		read_bio->bi_end_io = raid10_end_read_request;
1317 		read_bio->bi_rw = READ | do_sync;
1318 		read_bio->bi_private = r10_bio;
1319 
1320 		if (max_sectors < r10_bio->sectors) {
1321 			/* Could not read all from this device, so we will
1322 			 * need another r10_bio.
1323 			 */
1324 			sectors_handled = (r10_bio->sectors + max_sectors
1325 					   - bio->bi_sector);
1326 			r10_bio->sectors = max_sectors;
1327 			spin_lock_irq(&conf->device_lock);
1328 			if (bio->bi_phys_segments == 0)
1329 				bio->bi_phys_segments = 2;
1330 			else
1331 				bio->bi_phys_segments++;
1332 			spin_unlock(&conf->device_lock);
1333 			/* Cannot call generic_make_request directly
1334 			 * as that will be queued in __generic_make_request
1335 			 * and subsequent mempool_alloc might block
1336 			 * waiting for it.  so hand bio over to raid10d.
1337 			 */
1338 			reschedule_retry(r10_bio);
1339 
1340 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1341 
1342 			r10_bio->master_bio = bio;
1343 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1344 			r10_bio->state = 0;
1345 			r10_bio->mddev = mddev;
1346 			r10_bio->sector = bio->bi_sector + sectors_handled;
1347 			goto read_again;
1348 		} else
1349 			generic_make_request(read_bio);
1350 		return;
1351 	}
1352 
1353 	/*
1354 	 * WRITE:
1355 	 */
1356 	if (conf->pending_count >= max_queued_requests) {
1357 		md_wakeup_thread(mddev->thread);
1358 		wait_event(conf->wait_barrier,
1359 			   conf->pending_count < max_queued_requests);
1360 	}
1361 	/* first select target devices under rcu_lock and
1362 	 * inc refcount on their rdev.  Record them by setting
1363 	 * bios[x] to bio
1364 	 * If there are known/acknowledged bad blocks on any device
1365 	 * on which we have seen a write error, we want to avoid
1366 	 * writing to those blocks.  This potentially requires several
1367 	 * writes to write around the bad blocks.  Each set of writes
1368 	 * gets its own r10_bio with a set of bios attached.  The number
1369 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1370 	 * the read case.
1371 	 */
1372 
1373 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1374 	raid10_find_phys(conf, r10_bio);
1375 retry_write:
1376 	blocked_rdev = NULL;
1377 	rcu_read_lock();
1378 	max_sectors = r10_bio->sectors;
1379 
1380 	for (i = 0;  i < conf->copies; i++) {
1381 		int d = r10_bio->devs[i].devnum;
1382 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1383 		struct md_rdev *rrdev = rcu_dereference(
1384 			conf->mirrors[d].replacement);
1385 		if (rdev == rrdev)
1386 			rrdev = NULL;
1387 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1388 			atomic_inc(&rdev->nr_pending);
1389 			blocked_rdev = rdev;
1390 			break;
1391 		}
1392 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1393 			atomic_inc(&rrdev->nr_pending);
1394 			blocked_rdev = rrdev;
1395 			break;
1396 		}
1397 		if (rdev && (test_bit(Faulty, &rdev->flags)
1398 			     || test_bit(Unmerged, &rdev->flags)))
1399 			rdev = NULL;
1400 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1401 			      || test_bit(Unmerged, &rrdev->flags)))
1402 			rrdev = NULL;
1403 
1404 		r10_bio->devs[i].bio = NULL;
1405 		r10_bio->devs[i].repl_bio = NULL;
1406 
1407 		if (!rdev && !rrdev) {
1408 			set_bit(R10BIO_Degraded, &r10_bio->state);
1409 			continue;
1410 		}
1411 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1412 			sector_t first_bad;
1413 			sector_t dev_sector = r10_bio->devs[i].addr;
1414 			int bad_sectors;
1415 			int is_bad;
1416 
1417 			is_bad = is_badblock(rdev, dev_sector,
1418 					     max_sectors,
1419 					     &first_bad, &bad_sectors);
1420 			if (is_bad < 0) {
1421 				/* Mustn't write here until the bad block
1422 				 * is acknowledged
1423 				 */
1424 				atomic_inc(&rdev->nr_pending);
1425 				set_bit(BlockedBadBlocks, &rdev->flags);
1426 				blocked_rdev = rdev;
1427 				break;
1428 			}
1429 			if (is_bad && first_bad <= dev_sector) {
1430 				/* Cannot write here at all */
1431 				bad_sectors -= (dev_sector - first_bad);
1432 				if (bad_sectors < max_sectors)
1433 					/* Mustn't write more than bad_sectors
1434 					 * to other devices yet
1435 					 */
1436 					max_sectors = bad_sectors;
1437 				/* We don't set R10BIO_Degraded as that
1438 				 * only applies if the disk is missing,
1439 				 * so it might be re-added, and we want to
1440 				 * know to recover this chunk.
1441 				 * In this case the device is here, and the
1442 				 * fact that this chunk is not in-sync is
1443 				 * recorded in the bad block log.
1444 				 */
1445 				continue;
1446 			}
1447 			if (is_bad) {
1448 				int good_sectors = first_bad - dev_sector;
1449 				if (good_sectors < max_sectors)
1450 					max_sectors = good_sectors;
1451 			}
1452 		}
1453 		if (rdev) {
1454 			r10_bio->devs[i].bio = bio;
1455 			atomic_inc(&rdev->nr_pending);
1456 		}
1457 		if (rrdev) {
1458 			r10_bio->devs[i].repl_bio = bio;
1459 			atomic_inc(&rrdev->nr_pending);
1460 		}
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	if (unlikely(blocked_rdev)) {
1465 		/* Have to wait for this device to get unblocked, then retry */
1466 		int j;
1467 		int d;
1468 
1469 		for (j = 0; j < i; j++) {
1470 			if (r10_bio->devs[j].bio) {
1471 				d = r10_bio->devs[j].devnum;
1472 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1473 			}
1474 			if (r10_bio->devs[j].repl_bio) {
1475 				struct md_rdev *rdev;
1476 				d = r10_bio->devs[j].devnum;
1477 				rdev = conf->mirrors[d].replacement;
1478 				if (!rdev) {
1479 					/* Race with remove_disk */
1480 					smp_mb();
1481 					rdev = conf->mirrors[d].rdev;
1482 				}
1483 				rdev_dec_pending(rdev, mddev);
1484 			}
1485 		}
1486 		allow_barrier(conf);
1487 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1488 		wait_barrier(conf);
1489 		goto retry_write;
1490 	}
1491 
1492 	if (max_sectors < r10_bio->sectors) {
1493 		/* We are splitting this into multiple parts, so
1494 		 * we need to prepare for allocating another r10_bio.
1495 		 */
1496 		r10_bio->sectors = max_sectors;
1497 		spin_lock_irq(&conf->device_lock);
1498 		if (bio->bi_phys_segments == 0)
1499 			bio->bi_phys_segments = 2;
1500 		else
1501 			bio->bi_phys_segments++;
1502 		spin_unlock_irq(&conf->device_lock);
1503 	}
1504 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1505 
1506 	atomic_set(&r10_bio->remaining, 1);
1507 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1508 
1509 	for (i = 0; i < conf->copies; i++) {
1510 		struct bio *mbio;
1511 		int d = r10_bio->devs[i].devnum;
1512 		if (r10_bio->devs[i].bio) {
1513 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1514 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1515 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1516 				    max_sectors);
1517 			r10_bio->devs[i].bio = mbio;
1518 
1519 			mbio->bi_sector	= (r10_bio->devs[i].addr+
1520 					   choose_data_offset(r10_bio,
1521 							      rdev));
1522 			mbio->bi_bdev = rdev->bdev;
1523 			mbio->bi_end_io	= raid10_end_write_request;
1524 			mbio->bi_rw =
1525 				WRITE | do_sync | do_fua | do_discard | do_same;
1526 			mbio->bi_private = r10_bio;
1527 
1528 			atomic_inc(&r10_bio->remaining);
1529 
1530 			cb = blk_check_plugged(raid10_unplug, mddev,
1531 					       sizeof(*plug));
1532 			if (cb)
1533 				plug = container_of(cb, struct raid10_plug_cb,
1534 						    cb);
1535 			else
1536 				plug = NULL;
1537 			spin_lock_irqsave(&conf->device_lock, flags);
1538 			if (plug) {
1539 				bio_list_add(&plug->pending, mbio);
1540 				plug->pending_cnt++;
1541 			} else {
1542 				bio_list_add(&conf->pending_bio_list, mbio);
1543 				conf->pending_count++;
1544 			}
1545 			spin_unlock_irqrestore(&conf->device_lock, flags);
1546 			if (!plug)
1547 				md_wakeup_thread(mddev->thread);
1548 		}
1549 
1550 		if (r10_bio->devs[i].repl_bio) {
1551 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1552 			if (rdev == NULL) {
1553 				/* Replacement just got moved to main 'rdev' */
1554 				smp_mb();
1555 				rdev = conf->mirrors[d].rdev;
1556 			}
1557 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1558 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1559 				    max_sectors);
1560 			r10_bio->devs[i].repl_bio = mbio;
1561 
1562 			mbio->bi_sector	= (r10_bio->devs[i].addr +
1563 					   choose_data_offset(
1564 						   r10_bio, rdev));
1565 			mbio->bi_bdev = rdev->bdev;
1566 			mbio->bi_end_io	= raid10_end_write_request;
1567 			mbio->bi_rw =
1568 				WRITE | do_sync | do_fua | do_discard | do_same;
1569 			mbio->bi_private = r10_bio;
1570 
1571 			atomic_inc(&r10_bio->remaining);
1572 			spin_lock_irqsave(&conf->device_lock, flags);
1573 			bio_list_add(&conf->pending_bio_list, mbio);
1574 			conf->pending_count++;
1575 			spin_unlock_irqrestore(&conf->device_lock, flags);
1576 			if (!mddev_check_plugged(mddev))
1577 				md_wakeup_thread(mddev->thread);
1578 		}
1579 	}
1580 
1581 	/* Don't remove the bias on 'remaining' (one_write_done) until
1582 	 * after checking if we need to go around again.
1583 	 */
1584 
1585 	if (sectors_handled < bio_sectors(bio)) {
1586 		one_write_done(r10_bio);
1587 		/* We need another r10_bio.  It has already been counted
1588 		 * in bio->bi_phys_segments.
1589 		 */
1590 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1591 
1592 		r10_bio->master_bio = bio;
1593 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1594 
1595 		r10_bio->mddev = mddev;
1596 		r10_bio->sector = bio->bi_sector + sectors_handled;
1597 		r10_bio->state = 0;
1598 		goto retry_write;
1599 	}
1600 	one_write_done(r10_bio);
1601 
1602 	/* In case raid10d snuck in to freeze_array */
1603 	wake_up(&conf->wait_barrier);
1604 }
1605 
status(struct seq_file * seq,struct mddev * mddev)1606 static void status(struct seq_file *seq, struct mddev *mddev)
1607 {
1608 	struct r10conf *conf = mddev->private;
1609 	int i;
1610 
1611 	if (conf->geo.near_copies < conf->geo.raid_disks)
1612 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1613 	if (conf->geo.near_copies > 1)
1614 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1615 	if (conf->geo.far_copies > 1) {
1616 		if (conf->geo.far_offset)
1617 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1618 		else
1619 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1620 	}
1621 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1622 					conf->geo.raid_disks - mddev->degraded);
1623 	for (i = 0; i < conf->geo.raid_disks; i++)
1624 		seq_printf(seq, "%s",
1625 			      conf->mirrors[i].rdev &&
1626 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1627 	seq_printf(seq, "]");
1628 }
1629 
1630 /* check if there are enough drives for
1631  * every block to appear on atleast one.
1632  * Don't consider the device numbered 'ignore'
1633  * as we might be about to remove it.
1634  */
_enough(struct r10conf * conf,struct geom * geo,int ignore)1635 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1636 {
1637 	int first = 0;
1638 
1639 	do {
1640 		int n = conf->copies;
1641 		int cnt = 0;
1642 		int this = first;
1643 		while (n--) {
1644 			if (conf->mirrors[this].rdev &&
1645 			    this != ignore)
1646 				cnt++;
1647 			this = (this+1) % geo->raid_disks;
1648 		}
1649 		if (cnt == 0)
1650 			return 0;
1651 		first = (first + geo->near_copies) % geo->raid_disks;
1652 	} while (first != 0);
1653 	return 1;
1654 }
1655 
enough(struct r10conf * conf,int ignore)1656 static int enough(struct r10conf *conf, int ignore)
1657 {
1658 	return _enough(conf, &conf->geo, ignore) &&
1659 		_enough(conf, &conf->prev, ignore);
1660 }
1661 
error(struct mddev * mddev,struct md_rdev * rdev)1662 static void error(struct mddev *mddev, struct md_rdev *rdev)
1663 {
1664 	char b[BDEVNAME_SIZE];
1665 	struct r10conf *conf = mddev->private;
1666 
1667 	/*
1668 	 * If it is not operational, then we have already marked it as dead
1669 	 * else if it is the last working disks, ignore the error, let the
1670 	 * next level up know.
1671 	 * else mark the drive as failed
1672 	 */
1673 	if (test_bit(In_sync, &rdev->flags)
1674 	    && !enough(conf, rdev->raid_disk))
1675 		/*
1676 		 * Don't fail the drive, just return an IO error.
1677 		 */
1678 		return;
1679 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1680 		unsigned long flags;
1681 		spin_lock_irqsave(&conf->device_lock, flags);
1682 		mddev->degraded++;
1683 		spin_unlock_irqrestore(&conf->device_lock, flags);
1684 		/*
1685 		 * if recovery is running, make sure it aborts.
1686 		 */
1687 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1688 	}
1689 	set_bit(Blocked, &rdev->flags);
1690 	set_bit(Faulty, &rdev->flags);
1691 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1692 	printk(KERN_ALERT
1693 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1694 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1695 	       mdname(mddev), bdevname(rdev->bdev, b),
1696 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1697 }
1698 
print_conf(struct r10conf * conf)1699 static void print_conf(struct r10conf *conf)
1700 {
1701 	int i;
1702 	struct raid10_info *tmp;
1703 
1704 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1705 	if (!conf) {
1706 		printk(KERN_DEBUG "(!conf)\n");
1707 		return;
1708 	}
1709 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1710 		conf->geo.raid_disks);
1711 
1712 	for (i = 0; i < conf->geo.raid_disks; i++) {
1713 		char b[BDEVNAME_SIZE];
1714 		tmp = conf->mirrors + i;
1715 		if (tmp->rdev)
1716 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1717 				i, !test_bit(In_sync, &tmp->rdev->flags),
1718 			        !test_bit(Faulty, &tmp->rdev->flags),
1719 				bdevname(tmp->rdev->bdev,b));
1720 	}
1721 }
1722 
close_sync(struct r10conf * conf)1723 static void close_sync(struct r10conf *conf)
1724 {
1725 	wait_barrier(conf);
1726 	allow_barrier(conf);
1727 
1728 	mempool_destroy(conf->r10buf_pool);
1729 	conf->r10buf_pool = NULL;
1730 }
1731 
raid10_spare_active(struct mddev * mddev)1732 static int raid10_spare_active(struct mddev *mddev)
1733 {
1734 	int i;
1735 	struct r10conf *conf = mddev->private;
1736 	struct raid10_info *tmp;
1737 	int count = 0;
1738 	unsigned long flags;
1739 
1740 	/*
1741 	 * Find all non-in_sync disks within the RAID10 configuration
1742 	 * and mark them in_sync
1743 	 */
1744 	for (i = 0; i < conf->geo.raid_disks; i++) {
1745 		tmp = conf->mirrors + i;
1746 		if (tmp->replacement
1747 		    && tmp->replacement->recovery_offset == MaxSector
1748 		    && !test_bit(Faulty, &tmp->replacement->flags)
1749 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1750 			/* Replacement has just become active */
1751 			if (!tmp->rdev
1752 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1753 				count++;
1754 			if (tmp->rdev) {
1755 				/* Replaced device not technically faulty,
1756 				 * but we need to be sure it gets removed
1757 				 * and never re-added.
1758 				 */
1759 				set_bit(Faulty, &tmp->rdev->flags);
1760 				sysfs_notify_dirent_safe(
1761 					tmp->rdev->sysfs_state);
1762 			}
1763 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1764 		} else if (tmp->rdev
1765 			   && !test_bit(Faulty, &tmp->rdev->flags)
1766 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1767 			count++;
1768 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1769 		}
1770 	}
1771 	spin_lock_irqsave(&conf->device_lock, flags);
1772 	mddev->degraded -= count;
1773 	spin_unlock_irqrestore(&conf->device_lock, flags);
1774 
1775 	print_conf(conf);
1776 	return count;
1777 }
1778 
1779 
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)1780 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1781 {
1782 	struct r10conf *conf = mddev->private;
1783 	int err = -EEXIST;
1784 	int mirror;
1785 	int first = 0;
1786 	int last = conf->geo.raid_disks - 1;
1787 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1788 
1789 	if (mddev->recovery_cp < MaxSector)
1790 		/* only hot-add to in-sync arrays, as recovery is
1791 		 * very different from resync
1792 		 */
1793 		return -EBUSY;
1794 	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1795 		return -EINVAL;
1796 
1797 	if (rdev->raid_disk >= 0)
1798 		first = last = rdev->raid_disk;
1799 
1800 	if (q->merge_bvec_fn) {
1801 		set_bit(Unmerged, &rdev->flags);
1802 		mddev->merge_check_needed = 1;
1803 	}
1804 
1805 	if (rdev->saved_raid_disk >= first &&
1806 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807 		mirror = rdev->saved_raid_disk;
1808 	else
1809 		mirror = first;
1810 	for ( ; mirror <= last ; mirror++) {
1811 		struct raid10_info *p = &conf->mirrors[mirror];
1812 		if (p->recovery_disabled == mddev->recovery_disabled)
1813 			continue;
1814 		if (p->rdev) {
1815 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1816 			    p->replacement != NULL)
1817 				continue;
1818 			clear_bit(In_sync, &rdev->flags);
1819 			set_bit(Replacement, &rdev->flags);
1820 			rdev->raid_disk = mirror;
1821 			err = 0;
1822 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1823 					  rdev->data_offset << 9);
1824 			conf->fullsync = 1;
1825 			rcu_assign_pointer(p->replacement, rdev);
1826 			break;
1827 		}
1828 
1829 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1830 				  rdev->data_offset << 9);
1831 
1832 		p->head_position = 0;
1833 		p->recovery_disabled = mddev->recovery_disabled - 1;
1834 		rdev->raid_disk = mirror;
1835 		err = 0;
1836 		if (rdev->saved_raid_disk != mirror)
1837 			conf->fullsync = 1;
1838 		rcu_assign_pointer(p->rdev, rdev);
1839 		break;
1840 	}
1841 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1842 		/* Some requests might not have seen this new
1843 		 * merge_bvec_fn.  We must wait for them to complete
1844 		 * before merging the device fully.
1845 		 * First we make sure any code which has tested
1846 		 * our function has submitted the request, then
1847 		 * we wait for all outstanding requests to complete.
1848 		 */
1849 		synchronize_sched();
1850 		freeze_array(conf, 0);
1851 		unfreeze_array(conf);
1852 		clear_bit(Unmerged, &rdev->flags);
1853 	}
1854 	md_integrity_add_rdev(rdev, mddev);
1855 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1856 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1857 
1858 	print_conf(conf);
1859 	return err;
1860 }
1861 
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1862 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1863 {
1864 	struct r10conf *conf = mddev->private;
1865 	int err = 0;
1866 	int number = rdev->raid_disk;
1867 	struct md_rdev **rdevp;
1868 	struct raid10_info *p = conf->mirrors + number;
1869 
1870 	print_conf(conf);
1871 	if (rdev == p->rdev)
1872 		rdevp = &p->rdev;
1873 	else if (rdev == p->replacement)
1874 		rdevp = &p->replacement;
1875 	else
1876 		return 0;
1877 
1878 	if (test_bit(In_sync, &rdev->flags) ||
1879 	    atomic_read(&rdev->nr_pending)) {
1880 		err = -EBUSY;
1881 		goto abort;
1882 	}
1883 	/* Only remove faulty devices if recovery
1884 	 * is not possible.
1885 	 */
1886 	if (!test_bit(Faulty, &rdev->flags) &&
1887 	    mddev->recovery_disabled != p->recovery_disabled &&
1888 	    (!p->replacement || p->replacement == rdev) &&
1889 	    number < conf->geo.raid_disks &&
1890 	    enough(conf, -1)) {
1891 		err = -EBUSY;
1892 		goto abort;
1893 	}
1894 	*rdevp = NULL;
1895 	synchronize_rcu();
1896 	if (atomic_read(&rdev->nr_pending)) {
1897 		/* lost the race, try later */
1898 		err = -EBUSY;
1899 		*rdevp = rdev;
1900 		goto abort;
1901 	} else if (p->replacement) {
1902 		/* We must have just cleared 'rdev' */
1903 		p->rdev = p->replacement;
1904 		clear_bit(Replacement, &p->replacement->flags);
1905 		smp_mb(); /* Make sure other CPUs may see both as identical
1906 			   * but will never see neither -- if they are careful.
1907 			   */
1908 		p->replacement = NULL;
1909 		clear_bit(WantReplacement, &rdev->flags);
1910 	} else
1911 		/* We might have just remove the Replacement as faulty
1912 		 * Clear the flag just in case
1913 		 */
1914 		clear_bit(WantReplacement, &rdev->flags);
1915 
1916 	err = md_integrity_register(mddev);
1917 
1918 abort:
1919 
1920 	print_conf(conf);
1921 	return err;
1922 }
1923 
1924 
end_sync_read(struct bio * bio,int error)1925 static void end_sync_read(struct bio *bio, int error)
1926 {
1927 	struct r10bio *r10_bio = bio->bi_private;
1928 	struct r10conf *conf = r10_bio->mddev->private;
1929 	int d;
1930 
1931 	if (bio == r10_bio->master_bio) {
1932 		/* this is a reshape read */
1933 		d = r10_bio->read_slot; /* really the read dev */
1934 	} else
1935 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1936 
1937 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1938 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1939 	else
1940 		/* The write handler will notice the lack of
1941 		 * R10BIO_Uptodate and record any errors etc
1942 		 */
1943 		atomic_add(r10_bio->sectors,
1944 			   &conf->mirrors[d].rdev->corrected_errors);
1945 
1946 	/* for reconstruct, we always reschedule after a read.
1947 	 * for resync, only after all reads
1948 	 */
1949 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1950 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1951 	    atomic_dec_and_test(&r10_bio->remaining)) {
1952 		/* we have read all the blocks,
1953 		 * do the comparison in process context in raid10d
1954 		 */
1955 		reschedule_retry(r10_bio);
1956 	}
1957 }
1958 
end_sync_request(struct r10bio * r10_bio)1959 static void end_sync_request(struct r10bio *r10_bio)
1960 {
1961 	struct mddev *mddev = r10_bio->mddev;
1962 
1963 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1964 		if (r10_bio->master_bio == NULL) {
1965 			/* the primary of several recovery bios */
1966 			sector_t s = r10_bio->sectors;
1967 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1968 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1969 				reschedule_retry(r10_bio);
1970 			else
1971 				put_buf(r10_bio);
1972 			md_done_sync(mddev, s, 1);
1973 			break;
1974 		} else {
1975 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1976 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1978 				reschedule_retry(r10_bio);
1979 			else
1980 				put_buf(r10_bio);
1981 			r10_bio = r10_bio2;
1982 		}
1983 	}
1984 }
1985 
end_sync_write(struct bio * bio,int error)1986 static void end_sync_write(struct bio *bio, int error)
1987 {
1988 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1989 	struct r10bio *r10_bio = bio->bi_private;
1990 	struct mddev *mddev = r10_bio->mddev;
1991 	struct r10conf *conf = mddev->private;
1992 	int d;
1993 	sector_t first_bad;
1994 	int bad_sectors;
1995 	int slot;
1996 	int repl;
1997 	struct md_rdev *rdev = NULL;
1998 
1999 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2000 	if (repl)
2001 		rdev = conf->mirrors[d].replacement;
2002 	else
2003 		rdev = conf->mirrors[d].rdev;
2004 
2005 	if (!uptodate) {
2006 		if (repl)
2007 			md_error(mddev, rdev);
2008 		else {
2009 			set_bit(WriteErrorSeen, &rdev->flags);
2010 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2011 				set_bit(MD_RECOVERY_NEEDED,
2012 					&rdev->mddev->recovery);
2013 			set_bit(R10BIO_WriteError, &r10_bio->state);
2014 		}
2015 	} else if (is_badblock(rdev,
2016 			     r10_bio->devs[slot].addr,
2017 			     r10_bio->sectors,
2018 			     &first_bad, &bad_sectors))
2019 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2020 
2021 	rdev_dec_pending(rdev, mddev);
2022 
2023 	end_sync_request(r10_bio);
2024 }
2025 
2026 /*
2027  * Note: sync and recover and handled very differently for raid10
2028  * This code is for resync.
2029  * For resync, we read through virtual addresses and read all blocks.
2030  * If there is any error, we schedule a write.  The lowest numbered
2031  * drive is authoritative.
2032  * However requests come for physical address, so we need to map.
2033  * For every physical address there are raid_disks/copies virtual addresses,
2034  * which is always are least one, but is not necessarly an integer.
2035  * This means that a physical address can span multiple chunks, so we may
2036  * have to submit multiple io requests for a single sync request.
2037  */
2038 /*
2039  * We check if all blocks are in-sync and only write to blocks that
2040  * aren't in sync
2041  */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)2042 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2043 {
2044 	struct r10conf *conf = mddev->private;
2045 	int i, first;
2046 	struct bio *tbio, *fbio;
2047 	int vcnt;
2048 
2049 	atomic_set(&r10_bio->remaining, 1);
2050 
2051 	/* find the first device with a block */
2052 	for (i=0; i<conf->copies; i++)
2053 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2054 			break;
2055 
2056 	if (i == conf->copies)
2057 		goto done;
2058 
2059 	first = i;
2060 	fbio = r10_bio->devs[i].bio;
2061 
2062 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2063 	/* now find blocks with errors */
2064 	for (i=0 ; i < conf->copies ; i++) {
2065 		int  j, d;
2066 
2067 		tbio = r10_bio->devs[i].bio;
2068 
2069 		if (tbio->bi_end_io != end_sync_read)
2070 			continue;
2071 		if (i == first)
2072 			continue;
2073 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2074 			/* We know that the bi_io_vec layout is the same for
2075 			 * both 'first' and 'i', so we just compare them.
2076 			 * All vec entries are PAGE_SIZE;
2077 			 */
2078 			for (j = 0; j < vcnt; j++)
2079 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2080 					   page_address(tbio->bi_io_vec[j].bv_page),
2081 					   fbio->bi_io_vec[j].bv_len))
2082 					break;
2083 			if (j == vcnt)
2084 				continue;
2085 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2086 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2087 				/* Don't fix anything. */
2088 				continue;
2089 		}
2090 		/* Ok, we need to write this bio, either to correct an
2091 		 * inconsistency or to correct an unreadable block.
2092 		 * First we need to fixup bv_offset, bv_len and
2093 		 * bi_vecs, as the read request might have corrupted these
2094 		 */
2095 		bio_reset(tbio);
2096 
2097 		tbio->bi_vcnt = vcnt;
2098 		tbio->bi_size = r10_bio->sectors << 9;
2099 		tbio->bi_rw = WRITE;
2100 		tbio->bi_private = r10_bio;
2101 		tbio->bi_sector = r10_bio->devs[i].addr;
2102 
2103 		for (j=0; j < vcnt ; j++) {
2104 			tbio->bi_io_vec[j].bv_offset = 0;
2105 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2106 
2107 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2108 			       page_address(fbio->bi_io_vec[j].bv_page),
2109 			       PAGE_SIZE);
2110 		}
2111 		tbio->bi_end_io = end_sync_write;
2112 
2113 		d = r10_bio->devs[i].devnum;
2114 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2115 		atomic_inc(&r10_bio->remaining);
2116 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2117 
2118 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2119 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2120 		generic_make_request(tbio);
2121 	}
2122 
2123 	/* Now write out to any replacement devices
2124 	 * that are active
2125 	 */
2126 	for (i = 0; i < conf->copies; i++) {
2127 		int j, d;
2128 
2129 		tbio = r10_bio->devs[i].repl_bio;
2130 		if (!tbio || !tbio->bi_end_io)
2131 			continue;
2132 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2133 		    && r10_bio->devs[i].bio != fbio)
2134 			for (j = 0; j < vcnt; j++)
2135 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2136 				       page_address(fbio->bi_io_vec[j].bv_page),
2137 				       PAGE_SIZE);
2138 		d = r10_bio->devs[i].devnum;
2139 		atomic_inc(&r10_bio->remaining);
2140 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2141 			     bio_sectors(tbio));
2142 		generic_make_request(tbio);
2143 	}
2144 
2145 done:
2146 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2147 		md_done_sync(mddev, r10_bio->sectors, 1);
2148 		put_buf(r10_bio);
2149 	}
2150 }
2151 
2152 /*
2153  * Now for the recovery code.
2154  * Recovery happens across physical sectors.
2155  * We recover all non-is_sync drives by finding the virtual address of
2156  * each, and then choose a working drive that also has that virt address.
2157  * There is a separate r10_bio for each non-in_sync drive.
2158  * Only the first two slots are in use. The first for reading,
2159  * The second for writing.
2160  *
2161  */
fix_recovery_read_error(struct r10bio * r10_bio)2162 static void fix_recovery_read_error(struct r10bio *r10_bio)
2163 {
2164 	/* We got a read error during recovery.
2165 	 * We repeat the read in smaller page-sized sections.
2166 	 * If a read succeeds, write it to the new device or record
2167 	 * a bad block if we cannot.
2168 	 * If a read fails, record a bad block on both old and
2169 	 * new devices.
2170 	 */
2171 	struct mddev *mddev = r10_bio->mddev;
2172 	struct r10conf *conf = mddev->private;
2173 	struct bio *bio = r10_bio->devs[0].bio;
2174 	sector_t sect = 0;
2175 	int sectors = r10_bio->sectors;
2176 	int idx = 0;
2177 	int dr = r10_bio->devs[0].devnum;
2178 	int dw = r10_bio->devs[1].devnum;
2179 
2180 	while (sectors) {
2181 		int s = sectors;
2182 		struct md_rdev *rdev;
2183 		sector_t addr;
2184 		int ok;
2185 
2186 		if (s > (PAGE_SIZE>>9))
2187 			s = PAGE_SIZE >> 9;
2188 
2189 		rdev = conf->mirrors[dr].rdev;
2190 		addr = r10_bio->devs[0].addr + sect,
2191 		ok = sync_page_io(rdev,
2192 				  addr,
2193 				  s << 9,
2194 				  bio->bi_io_vec[idx].bv_page,
2195 				  READ, false);
2196 		if (ok) {
2197 			rdev = conf->mirrors[dw].rdev;
2198 			addr = r10_bio->devs[1].addr + sect;
2199 			ok = sync_page_io(rdev,
2200 					  addr,
2201 					  s << 9,
2202 					  bio->bi_io_vec[idx].bv_page,
2203 					  WRITE, false);
2204 			if (!ok) {
2205 				set_bit(WriteErrorSeen, &rdev->flags);
2206 				if (!test_and_set_bit(WantReplacement,
2207 						      &rdev->flags))
2208 					set_bit(MD_RECOVERY_NEEDED,
2209 						&rdev->mddev->recovery);
2210 			}
2211 		}
2212 		if (!ok) {
2213 			/* We don't worry if we cannot set a bad block -
2214 			 * it really is bad so there is no loss in not
2215 			 * recording it yet
2216 			 */
2217 			rdev_set_badblocks(rdev, addr, s, 0);
2218 
2219 			if (rdev != conf->mirrors[dw].rdev) {
2220 				/* need bad block on destination too */
2221 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2222 				addr = r10_bio->devs[1].addr + sect;
2223 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2224 				if (!ok) {
2225 					/* just abort the recovery */
2226 					printk(KERN_NOTICE
2227 					       "md/raid10:%s: recovery aborted"
2228 					       " due to read error\n",
2229 					       mdname(mddev));
2230 
2231 					conf->mirrors[dw].recovery_disabled
2232 						= mddev->recovery_disabled;
2233 					set_bit(MD_RECOVERY_INTR,
2234 						&mddev->recovery);
2235 					break;
2236 				}
2237 			}
2238 		}
2239 
2240 		sectors -= s;
2241 		sect += s;
2242 		idx++;
2243 	}
2244 }
2245 
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2246 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2247 {
2248 	struct r10conf *conf = mddev->private;
2249 	int d;
2250 	struct bio *wbio, *wbio2;
2251 
2252 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2253 		fix_recovery_read_error(r10_bio);
2254 		end_sync_request(r10_bio);
2255 		return;
2256 	}
2257 
2258 	/*
2259 	 * share the pages with the first bio
2260 	 * and submit the write request
2261 	 */
2262 	d = r10_bio->devs[1].devnum;
2263 	wbio = r10_bio->devs[1].bio;
2264 	wbio2 = r10_bio->devs[1].repl_bio;
2265 	if (wbio->bi_end_io) {
2266 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2267 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2268 		generic_make_request(wbio);
2269 	}
2270 	if (wbio2 && wbio2->bi_end_io) {
2271 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2272 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2273 			     bio_sectors(wbio2));
2274 		generic_make_request(wbio2);
2275 	}
2276 }
2277 
2278 
2279 /*
2280  * Used by fix_read_error() to decay the per rdev read_errors.
2281  * We halve the read error count for every hour that has elapsed
2282  * since the last recorded read error.
2283  *
2284  */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)2285 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2286 {
2287 	struct timespec cur_time_mon;
2288 	unsigned long hours_since_last;
2289 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2290 
2291 	ktime_get_ts(&cur_time_mon);
2292 
2293 	if (rdev->last_read_error.tv_sec == 0 &&
2294 	    rdev->last_read_error.tv_nsec == 0) {
2295 		/* first time we've seen a read error */
2296 		rdev->last_read_error = cur_time_mon;
2297 		return;
2298 	}
2299 
2300 	hours_since_last = (cur_time_mon.tv_sec -
2301 			    rdev->last_read_error.tv_sec) / 3600;
2302 
2303 	rdev->last_read_error = cur_time_mon;
2304 
2305 	/*
2306 	 * if hours_since_last is > the number of bits in read_errors
2307 	 * just set read errors to 0. We do this to avoid
2308 	 * overflowing the shift of read_errors by hours_since_last.
2309 	 */
2310 	if (hours_since_last >= 8 * sizeof(read_errors))
2311 		atomic_set(&rdev->read_errors, 0);
2312 	else
2313 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2314 }
2315 
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)2316 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2317 			    int sectors, struct page *page, int rw)
2318 {
2319 	sector_t first_bad;
2320 	int bad_sectors;
2321 
2322 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2323 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2324 		return -1;
2325 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2326 		/* success */
2327 		return 1;
2328 	if (rw == WRITE) {
2329 		set_bit(WriteErrorSeen, &rdev->flags);
2330 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2331 			set_bit(MD_RECOVERY_NEEDED,
2332 				&rdev->mddev->recovery);
2333 	}
2334 	/* need to record an error - either for the block or the device */
2335 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2336 		md_error(rdev->mddev, rdev);
2337 	return 0;
2338 }
2339 
2340 /*
2341  * This is a kernel thread which:
2342  *
2343  *	1.	Retries failed read operations on working mirrors.
2344  *	2.	Updates the raid superblock when problems encounter.
2345  *	3.	Performs writes following reads for array synchronising.
2346  */
2347 
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2348 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2349 {
2350 	int sect = 0; /* Offset from r10_bio->sector */
2351 	int sectors = r10_bio->sectors;
2352 	struct md_rdev*rdev;
2353 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2354 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2355 
2356 	/* still own a reference to this rdev, so it cannot
2357 	 * have been cleared recently.
2358 	 */
2359 	rdev = conf->mirrors[d].rdev;
2360 
2361 	if (test_bit(Faulty, &rdev->flags))
2362 		/* drive has already been failed, just ignore any
2363 		   more fix_read_error() attempts */
2364 		return;
2365 
2366 	check_decay_read_errors(mddev, rdev);
2367 	atomic_inc(&rdev->read_errors);
2368 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2369 		char b[BDEVNAME_SIZE];
2370 		bdevname(rdev->bdev, b);
2371 
2372 		printk(KERN_NOTICE
2373 		       "md/raid10:%s: %s: Raid device exceeded "
2374 		       "read_error threshold [cur %d:max %d]\n",
2375 		       mdname(mddev), b,
2376 		       atomic_read(&rdev->read_errors), max_read_errors);
2377 		printk(KERN_NOTICE
2378 		       "md/raid10:%s: %s: Failing raid device\n",
2379 		       mdname(mddev), b);
2380 		md_error(mddev, conf->mirrors[d].rdev);
2381 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2382 		return;
2383 	}
2384 
2385 	while(sectors) {
2386 		int s = sectors;
2387 		int sl = r10_bio->read_slot;
2388 		int success = 0;
2389 		int start;
2390 
2391 		if (s > (PAGE_SIZE>>9))
2392 			s = PAGE_SIZE >> 9;
2393 
2394 		rcu_read_lock();
2395 		do {
2396 			sector_t first_bad;
2397 			int bad_sectors;
2398 
2399 			d = r10_bio->devs[sl].devnum;
2400 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2401 			if (rdev &&
2402 			    !test_bit(Unmerged, &rdev->flags) &&
2403 			    test_bit(In_sync, &rdev->flags) &&
2404 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2405 					&first_bad, &bad_sectors) == 0) {
2406 				atomic_inc(&rdev->nr_pending);
2407 				rcu_read_unlock();
2408 				success = sync_page_io(rdev,
2409 						       r10_bio->devs[sl].addr +
2410 						       sect,
2411 						       s<<9,
2412 						       conf->tmppage, READ, false);
2413 				rdev_dec_pending(rdev, mddev);
2414 				rcu_read_lock();
2415 				if (success)
2416 					break;
2417 			}
2418 			sl++;
2419 			if (sl == conf->copies)
2420 				sl = 0;
2421 		} while (!success && sl != r10_bio->read_slot);
2422 		rcu_read_unlock();
2423 
2424 		if (!success) {
2425 			/* Cannot read from anywhere, just mark the block
2426 			 * as bad on the first device to discourage future
2427 			 * reads.
2428 			 */
2429 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2430 			rdev = conf->mirrors[dn].rdev;
2431 
2432 			if (!rdev_set_badblocks(
2433 				    rdev,
2434 				    r10_bio->devs[r10_bio->read_slot].addr
2435 				    + sect,
2436 				    s, 0)) {
2437 				md_error(mddev, rdev);
2438 				r10_bio->devs[r10_bio->read_slot].bio
2439 					= IO_BLOCKED;
2440 			}
2441 			break;
2442 		}
2443 
2444 		start = sl;
2445 		/* write it back and re-read */
2446 		rcu_read_lock();
2447 		while (sl != r10_bio->read_slot) {
2448 			char b[BDEVNAME_SIZE];
2449 
2450 			if (sl==0)
2451 				sl = conf->copies;
2452 			sl--;
2453 			d = r10_bio->devs[sl].devnum;
2454 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2455 			if (!rdev ||
2456 			    test_bit(Unmerged, &rdev->flags) ||
2457 			    !test_bit(In_sync, &rdev->flags))
2458 				continue;
2459 
2460 			atomic_inc(&rdev->nr_pending);
2461 			rcu_read_unlock();
2462 			if (r10_sync_page_io(rdev,
2463 					     r10_bio->devs[sl].addr +
2464 					     sect,
2465 					     s, conf->tmppage, WRITE)
2466 			    == 0) {
2467 				/* Well, this device is dead */
2468 				printk(KERN_NOTICE
2469 				       "md/raid10:%s: read correction "
2470 				       "write failed"
2471 				       " (%d sectors at %llu on %s)\n",
2472 				       mdname(mddev), s,
2473 				       (unsigned long long)(
2474 					       sect +
2475 					       choose_data_offset(r10_bio,
2476 								  rdev)),
2477 				       bdevname(rdev->bdev, b));
2478 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2479 				       "drive\n",
2480 				       mdname(mddev),
2481 				       bdevname(rdev->bdev, b));
2482 			}
2483 			rdev_dec_pending(rdev, mddev);
2484 			rcu_read_lock();
2485 		}
2486 		sl = start;
2487 		while (sl != r10_bio->read_slot) {
2488 			char b[BDEVNAME_SIZE];
2489 
2490 			if (sl==0)
2491 				sl = conf->copies;
2492 			sl--;
2493 			d = r10_bio->devs[sl].devnum;
2494 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2495 			if (!rdev ||
2496 			    !test_bit(In_sync, &rdev->flags))
2497 				continue;
2498 
2499 			atomic_inc(&rdev->nr_pending);
2500 			rcu_read_unlock();
2501 			switch (r10_sync_page_io(rdev,
2502 					     r10_bio->devs[sl].addr +
2503 					     sect,
2504 					     s, conf->tmppage,
2505 						 READ)) {
2506 			case 0:
2507 				/* Well, this device is dead */
2508 				printk(KERN_NOTICE
2509 				       "md/raid10:%s: unable to read back "
2510 				       "corrected sectors"
2511 				       " (%d sectors at %llu on %s)\n",
2512 				       mdname(mddev), s,
2513 				       (unsigned long long)(
2514 					       sect +
2515 					       choose_data_offset(r10_bio, rdev)),
2516 				       bdevname(rdev->bdev, b));
2517 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2518 				       "drive\n",
2519 				       mdname(mddev),
2520 				       bdevname(rdev->bdev, b));
2521 				break;
2522 			case 1:
2523 				printk(KERN_INFO
2524 				       "md/raid10:%s: read error corrected"
2525 				       " (%d sectors at %llu on %s)\n",
2526 				       mdname(mddev), s,
2527 				       (unsigned long long)(
2528 					       sect +
2529 					       choose_data_offset(r10_bio, rdev)),
2530 				       bdevname(rdev->bdev, b));
2531 				atomic_add(s, &rdev->corrected_errors);
2532 			}
2533 
2534 			rdev_dec_pending(rdev, mddev);
2535 			rcu_read_lock();
2536 		}
2537 		rcu_read_unlock();
2538 
2539 		sectors -= s;
2540 		sect += s;
2541 	}
2542 }
2543 
narrow_write_error(struct r10bio * r10_bio,int i)2544 static int narrow_write_error(struct r10bio *r10_bio, int i)
2545 {
2546 	struct bio *bio = r10_bio->master_bio;
2547 	struct mddev *mddev = r10_bio->mddev;
2548 	struct r10conf *conf = mddev->private;
2549 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2550 	/* bio has the data to be written to slot 'i' where
2551 	 * we just recently had a write error.
2552 	 * We repeatedly clone the bio and trim down to one block,
2553 	 * then try the write.  Where the write fails we record
2554 	 * a bad block.
2555 	 * It is conceivable that the bio doesn't exactly align with
2556 	 * blocks.  We must handle this.
2557 	 *
2558 	 * We currently own a reference to the rdev.
2559 	 */
2560 
2561 	int block_sectors;
2562 	sector_t sector;
2563 	int sectors;
2564 	int sect_to_write = r10_bio->sectors;
2565 	int ok = 1;
2566 
2567 	if (rdev->badblocks.shift < 0)
2568 		return 0;
2569 
2570 	block_sectors = 1 << rdev->badblocks.shift;
2571 	sector = r10_bio->sector;
2572 	sectors = ((r10_bio->sector + block_sectors)
2573 		   & ~(sector_t)(block_sectors - 1))
2574 		- sector;
2575 
2576 	while (sect_to_write) {
2577 		struct bio *wbio;
2578 		if (sectors > sect_to_write)
2579 			sectors = sect_to_write;
2580 		/* Write at 'sector' for 'sectors' */
2581 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2582 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2583 		wbio->bi_sector = (r10_bio->devs[i].addr+
2584 				   choose_data_offset(r10_bio, rdev) +
2585 				   (sector - r10_bio->sector));
2586 		wbio->bi_bdev = rdev->bdev;
2587 		if (submit_bio_wait(WRITE, wbio) == 0)
2588 			/* Failure! */
2589 			ok = rdev_set_badblocks(rdev, sector,
2590 						sectors, 0)
2591 				&& ok;
2592 
2593 		bio_put(wbio);
2594 		sect_to_write -= sectors;
2595 		sector += sectors;
2596 		sectors = block_sectors;
2597 	}
2598 	return ok;
2599 }
2600 
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2601 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2602 {
2603 	int slot = r10_bio->read_slot;
2604 	struct bio *bio;
2605 	struct r10conf *conf = mddev->private;
2606 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2607 	char b[BDEVNAME_SIZE];
2608 	unsigned long do_sync;
2609 	int max_sectors;
2610 
2611 	/* we got a read error. Maybe the drive is bad.  Maybe just
2612 	 * the block and we can fix it.
2613 	 * We freeze all other IO, and try reading the block from
2614 	 * other devices.  When we find one, we re-write
2615 	 * and check it that fixes the read error.
2616 	 * This is all done synchronously while the array is
2617 	 * frozen.
2618 	 */
2619 	bio = r10_bio->devs[slot].bio;
2620 	bdevname(bio->bi_bdev, b);
2621 	bio_put(bio);
2622 	r10_bio->devs[slot].bio = NULL;
2623 
2624 	if (mddev->ro == 0) {
2625 		freeze_array(conf, 1);
2626 		fix_read_error(conf, mddev, r10_bio);
2627 		unfreeze_array(conf);
2628 	} else
2629 		r10_bio->devs[slot].bio = IO_BLOCKED;
2630 
2631 	rdev_dec_pending(rdev, mddev);
2632 
2633 read_more:
2634 	rdev = read_balance(conf, r10_bio, &max_sectors);
2635 	if (rdev == NULL) {
2636 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2637 		       " read error for block %llu\n",
2638 		       mdname(mddev), b,
2639 		       (unsigned long long)r10_bio->sector);
2640 		raid_end_bio_io(r10_bio);
2641 		return;
2642 	}
2643 
2644 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2645 	slot = r10_bio->read_slot;
2646 	printk_ratelimited(
2647 		KERN_ERR
2648 		"md/raid10:%s: %s: redirecting "
2649 		"sector %llu to another mirror\n",
2650 		mdname(mddev),
2651 		bdevname(rdev->bdev, b),
2652 		(unsigned long long)r10_bio->sector);
2653 	bio = bio_clone_mddev(r10_bio->master_bio,
2654 			      GFP_NOIO, mddev);
2655 	md_trim_bio(bio,
2656 		    r10_bio->sector - bio->bi_sector,
2657 		    max_sectors);
2658 	r10_bio->devs[slot].bio = bio;
2659 	r10_bio->devs[slot].rdev = rdev;
2660 	bio->bi_sector = r10_bio->devs[slot].addr
2661 		+ choose_data_offset(r10_bio, rdev);
2662 	bio->bi_bdev = rdev->bdev;
2663 	bio->bi_rw = READ | do_sync;
2664 	bio->bi_private = r10_bio;
2665 	bio->bi_end_io = raid10_end_read_request;
2666 	if (max_sectors < r10_bio->sectors) {
2667 		/* Drat - have to split this up more */
2668 		struct bio *mbio = r10_bio->master_bio;
2669 		int sectors_handled =
2670 			r10_bio->sector + max_sectors
2671 			- mbio->bi_sector;
2672 		r10_bio->sectors = max_sectors;
2673 		spin_lock_irq(&conf->device_lock);
2674 		if (mbio->bi_phys_segments == 0)
2675 			mbio->bi_phys_segments = 2;
2676 		else
2677 			mbio->bi_phys_segments++;
2678 		spin_unlock_irq(&conf->device_lock);
2679 		generic_make_request(bio);
2680 
2681 		r10_bio = mempool_alloc(conf->r10bio_pool,
2682 					GFP_NOIO);
2683 		r10_bio->master_bio = mbio;
2684 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2685 		r10_bio->state = 0;
2686 		set_bit(R10BIO_ReadError,
2687 			&r10_bio->state);
2688 		r10_bio->mddev = mddev;
2689 		r10_bio->sector = mbio->bi_sector
2690 			+ sectors_handled;
2691 
2692 		goto read_more;
2693 	} else
2694 		generic_make_request(bio);
2695 }
2696 
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2697 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2698 {
2699 	/* Some sort of write request has finished and it
2700 	 * succeeded in writing where we thought there was a
2701 	 * bad block.  So forget the bad block.
2702 	 * Or possibly if failed and we need to record
2703 	 * a bad block.
2704 	 */
2705 	int m;
2706 	struct md_rdev *rdev;
2707 
2708 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2709 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2710 		for (m = 0; m < conf->copies; m++) {
2711 			int dev = r10_bio->devs[m].devnum;
2712 			rdev = conf->mirrors[dev].rdev;
2713 			if (r10_bio->devs[m].bio == NULL)
2714 				continue;
2715 			if (test_bit(BIO_UPTODATE,
2716 				     &r10_bio->devs[m].bio->bi_flags)) {
2717 				rdev_clear_badblocks(
2718 					rdev,
2719 					r10_bio->devs[m].addr,
2720 					r10_bio->sectors, 0);
2721 			} else {
2722 				if (!rdev_set_badblocks(
2723 					    rdev,
2724 					    r10_bio->devs[m].addr,
2725 					    r10_bio->sectors, 0))
2726 					md_error(conf->mddev, rdev);
2727 			}
2728 			rdev = conf->mirrors[dev].replacement;
2729 			if (r10_bio->devs[m].repl_bio == NULL)
2730 				continue;
2731 			if (test_bit(BIO_UPTODATE,
2732 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2733 				rdev_clear_badblocks(
2734 					rdev,
2735 					r10_bio->devs[m].addr,
2736 					r10_bio->sectors, 0);
2737 			} else {
2738 				if (!rdev_set_badblocks(
2739 					    rdev,
2740 					    r10_bio->devs[m].addr,
2741 					    r10_bio->sectors, 0))
2742 					md_error(conf->mddev, rdev);
2743 			}
2744 		}
2745 		put_buf(r10_bio);
2746 	} else {
2747 		for (m = 0; m < conf->copies; m++) {
2748 			int dev = r10_bio->devs[m].devnum;
2749 			struct bio *bio = r10_bio->devs[m].bio;
2750 			rdev = conf->mirrors[dev].rdev;
2751 			if (bio == IO_MADE_GOOD) {
2752 				rdev_clear_badblocks(
2753 					rdev,
2754 					r10_bio->devs[m].addr,
2755 					r10_bio->sectors, 0);
2756 				rdev_dec_pending(rdev, conf->mddev);
2757 			} else if (bio != NULL &&
2758 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2759 				if (!narrow_write_error(r10_bio, m)) {
2760 					md_error(conf->mddev, rdev);
2761 					set_bit(R10BIO_Degraded,
2762 						&r10_bio->state);
2763 				}
2764 				rdev_dec_pending(rdev, conf->mddev);
2765 			}
2766 			bio = r10_bio->devs[m].repl_bio;
2767 			rdev = conf->mirrors[dev].replacement;
2768 			if (rdev && bio == IO_MADE_GOOD) {
2769 				rdev_clear_badblocks(
2770 					rdev,
2771 					r10_bio->devs[m].addr,
2772 					r10_bio->sectors, 0);
2773 				rdev_dec_pending(rdev, conf->mddev);
2774 			}
2775 		}
2776 		if (test_bit(R10BIO_WriteError,
2777 			     &r10_bio->state))
2778 			close_write(r10_bio);
2779 		raid_end_bio_io(r10_bio);
2780 	}
2781 }
2782 
raid10d(struct md_thread * thread)2783 static void raid10d(struct md_thread *thread)
2784 {
2785 	struct mddev *mddev = thread->mddev;
2786 	struct r10bio *r10_bio;
2787 	unsigned long flags;
2788 	struct r10conf *conf = mddev->private;
2789 	struct list_head *head = &conf->retry_list;
2790 	struct blk_plug plug;
2791 
2792 	md_check_recovery(mddev);
2793 
2794 	blk_start_plug(&plug);
2795 	for (;;) {
2796 
2797 		flush_pending_writes(conf);
2798 
2799 		spin_lock_irqsave(&conf->device_lock, flags);
2800 		if (list_empty(head)) {
2801 			spin_unlock_irqrestore(&conf->device_lock, flags);
2802 			break;
2803 		}
2804 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2805 		list_del(head->prev);
2806 		conf->nr_queued--;
2807 		spin_unlock_irqrestore(&conf->device_lock, flags);
2808 
2809 		mddev = r10_bio->mddev;
2810 		conf = mddev->private;
2811 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2812 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2813 			handle_write_completed(conf, r10_bio);
2814 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2815 			reshape_request_write(mddev, r10_bio);
2816 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2817 			sync_request_write(mddev, r10_bio);
2818 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2819 			recovery_request_write(mddev, r10_bio);
2820 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2821 			handle_read_error(mddev, r10_bio);
2822 		else {
2823 			/* just a partial read to be scheduled from a
2824 			 * separate context
2825 			 */
2826 			int slot = r10_bio->read_slot;
2827 			generic_make_request(r10_bio->devs[slot].bio);
2828 		}
2829 
2830 		cond_resched();
2831 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2832 			md_check_recovery(mddev);
2833 	}
2834 	blk_finish_plug(&plug);
2835 }
2836 
2837 
init_resync(struct r10conf * conf)2838 static int init_resync(struct r10conf *conf)
2839 {
2840 	int buffs;
2841 	int i;
2842 
2843 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2844 	BUG_ON(conf->r10buf_pool);
2845 	conf->have_replacement = 0;
2846 	for (i = 0; i < conf->geo.raid_disks; i++)
2847 		if (conf->mirrors[i].replacement)
2848 			conf->have_replacement = 1;
2849 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2850 	if (!conf->r10buf_pool)
2851 		return -ENOMEM;
2852 	conf->next_resync = 0;
2853 	return 0;
2854 }
2855 
2856 /*
2857  * perform a "sync" on one "block"
2858  *
2859  * We need to make sure that no normal I/O request - particularly write
2860  * requests - conflict with active sync requests.
2861  *
2862  * This is achieved by tracking pending requests and a 'barrier' concept
2863  * that can be installed to exclude normal IO requests.
2864  *
2865  * Resync and recovery are handled very differently.
2866  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2867  *
2868  * For resync, we iterate over virtual addresses, read all copies,
2869  * and update if there are differences.  If only one copy is live,
2870  * skip it.
2871  * For recovery, we iterate over physical addresses, read a good
2872  * value for each non-in_sync drive, and over-write.
2873  *
2874  * So, for recovery we may have several outstanding complex requests for a
2875  * given address, one for each out-of-sync device.  We model this by allocating
2876  * a number of r10_bio structures, one for each out-of-sync device.
2877  * As we setup these structures, we collect all bio's together into a list
2878  * which we then process collectively to add pages, and then process again
2879  * to pass to generic_make_request.
2880  *
2881  * The r10_bio structures are linked using a borrowed master_bio pointer.
2882  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2883  * has its remaining count decremented to 0, the whole complex operation
2884  * is complete.
2885  *
2886  */
2887 
sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped,int go_faster)2888 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2889 			     int *skipped, int go_faster)
2890 {
2891 	struct r10conf *conf = mddev->private;
2892 	struct r10bio *r10_bio;
2893 	struct bio *biolist = NULL, *bio;
2894 	sector_t max_sector, nr_sectors;
2895 	int i;
2896 	int max_sync;
2897 	sector_t sync_blocks;
2898 	sector_t sectors_skipped = 0;
2899 	int chunks_skipped = 0;
2900 	sector_t chunk_mask = conf->geo.chunk_mask;
2901 
2902 	if (!conf->r10buf_pool)
2903 		if (init_resync(conf))
2904 			return 0;
2905 
2906 	/*
2907 	 * Allow skipping a full rebuild for incremental assembly
2908 	 * of a clean array, like RAID1 does.
2909 	 */
2910 	if (mddev->bitmap == NULL &&
2911 	    mddev->recovery_cp == MaxSector &&
2912 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2913 	    conf->fullsync == 0) {
2914 		*skipped = 1;
2915 		max_sector = mddev->dev_sectors;
2916 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2917 		    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2918 			max_sector = mddev->resync_max_sectors;
2919 		return max_sector - sector_nr;
2920 	}
2921 
2922  skipped:
2923 	max_sector = mddev->dev_sectors;
2924 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2925 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2926 		max_sector = mddev->resync_max_sectors;
2927 	if (sector_nr >= max_sector) {
2928 		/* If we aborted, we need to abort the
2929 		 * sync on the 'current' bitmap chucks (there can
2930 		 * be several when recovering multiple devices).
2931 		 * as we may have started syncing it but not finished.
2932 		 * We can find the current address in
2933 		 * mddev->curr_resync, but for recovery,
2934 		 * we need to convert that to several
2935 		 * virtual addresses.
2936 		 */
2937 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2938 			end_reshape(conf);
2939 			return 0;
2940 		}
2941 
2942 		if (mddev->curr_resync < max_sector) { /* aborted */
2943 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2944 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2945 						&sync_blocks, 1);
2946 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2947 				sector_t sect =
2948 					raid10_find_virt(conf, mddev->curr_resync, i);
2949 				bitmap_end_sync(mddev->bitmap, sect,
2950 						&sync_blocks, 1);
2951 			}
2952 		} else {
2953 			/* completed sync */
2954 			if ((!mddev->bitmap || conf->fullsync)
2955 			    && conf->have_replacement
2956 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2957 				/* Completed a full sync so the replacements
2958 				 * are now fully recovered.
2959 				 */
2960 				for (i = 0; i < conf->geo.raid_disks; i++)
2961 					if (conf->mirrors[i].replacement)
2962 						conf->mirrors[i].replacement
2963 							->recovery_offset
2964 							= MaxSector;
2965 			}
2966 			conf->fullsync = 0;
2967 		}
2968 		bitmap_close_sync(mddev->bitmap);
2969 		close_sync(conf);
2970 		*skipped = 1;
2971 		return sectors_skipped;
2972 	}
2973 
2974 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2975 		return reshape_request(mddev, sector_nr, skipped);
2976 
2977 	if (chunks_skipped >= conf->geo.raid_disks) {
2978 		/* if there has been nothing to do on any drive,
2979 		 * then there is nothing to do at all..
2980 		 */
2981 		*skipped = 1;
2982 		return (max_sector - sector_nr) + sectors_skipped;
2983 	}
2984 
2985 	if (max_sector > mddev->resync_max)
2986 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2987 
2988 	/* make sure whole request will fit in a chunk - if chunks
2989 	 * are meaningful
2990 	 */
2991 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2992 	    max_sector > (sector_nr | chunk_mask))
2993 		max_sector = (sector_nr | chunk_mask) + 1;
2994 	/*
2995 	 * If there is non-resync activity waiting for us then
2996 	 * put in a delay to throttle resync.
2997 	 */
2998 	if (!go_faster && conf->nr_waiting)
2999 		msleep_interruptible(1000);
3000 
3001 	/* Again, very different code for resync and recovery.
3002 	 * Both must result in an r10bio with a list of bios that
3003 	 * have bi_end_io, bi_sector, bi_bdev set,
3004 	 * and bi_private set to the r10bio.
3005 	 * For recovery, we may actually create several r10bios
3006 	 * with 2 bios in each, that correspond to the bios in the main one.
3007 	 * In this case, the subordinate r10bios link back through a
3008 	 * borrowed master_bio pointer, and the counter in the master
3009 	 * includes a ref from each subordinate.
3010 	 */
3011 	/* First, we decide what to do and set ->bi_end_io
3012 	 * To end_sync_read if we want to read, and
3013 	 * end_sync_write if we will want to write.
3014 	 */
3015 
3016 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3017 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3018 		/* recovery... the complicated one */
3019 		int j;
3020 		r10_bio = NULL;
3021 
3022 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3023 			int still_degraded;
3024 			struct r10bio *rb2;
3025 			sector_t sect;
3026 			int must_sync;
3027 			int any_working;
3028 			struct raid10_info *mirror = &conf->mirrors[i];
3029 
3030 			if ((mirror->rdev == NULL ||
3031 			     test_bit(In_sync, &mirror->rdev->flags))
3032 			    &&
3033 			    (mirror->replacement == NULL ||
3034 			     test_bit(Faulty,
3035 				      &mirror->replacement->flags)))
3036 				continue;
3037 
3038 			still_degraded = 0;
3039 			/* want to reconstruct this device */
3040 			rb2 = r10_bio;
3041 			sect = raid10_find_virt(conf, sector_nr, i);
3042 			if (sect >= mddev->resync_max_sectors) {
3043 				/* last stripe is not complete - don't
3044 				 * try to recover this sector.
3045 				 */
3046 				continue;
3047 			}
3048 			/* Unless we are doing a full sync, or a replacement
3049 			 * we only need to recover the block if it is set in
3050 			 * the bitmap
3051 			 */
3052 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3053 						      &sync_blocks, 1);
3054 			if (sync_blocks < max_sync)
3055 				max_sync = sync_blocks;
3056 			if (!must_sync &&
3057 			    mirror->replacement == NULL &&
3058 			    !conf->fullsync) {
3059 				/* yep, skip the sync_blocks here, but don't assume
3060 				 * that there will never be anything to do here
3061 				 */
3062 				chunks_skipped = -1;
3063 				continue;
3064 			}
3065 
3066 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3067 			raise_barrier(conf, rb2 != NULL);
3068 			atomic_set(&r10_bio->remaining, 0);
3069 
3070 			r10_bio->master_bio = (struct bio*)rb2;
3071 			if (rb2)
3072 				atomic_inc(&rb2->remaining);
3073 			r10_bio->mddev = mddev;
3074 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3075 			r10_bio->sector = sect;
3076 
3077 			raid10_find_phys(conf, r10_bio);
3078 
3079 			/* Need to check if the array will still be
3080 			 * degraded
3081 			 */
3082 			for (j = 0; j < conf->geo.raid_disks; j++)
3083 				if (conf->mirrors[j].rdev == NULL ||
3084 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3085 					still_degraded = 1;
3086 					break;
3087 				}
3088 
3089 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3090 						      &sync_blocks, still_degraded);
3091 
3092 			any_working = 0;
3093 			for (j=0; j<conf->copies;j++) {
3094 				int k;
3095 				int d = r10_bio->devs[j].devnum;
3096 				sector_t from_addr, to_addr;
3097 				struct md_rdev *rdev;
3098 				sector_t sector, first_bad;
3099 				int bad_sectors;
3100 				if (!conf->mirrors[d].rdev ||
3101 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3102 					continue;
3103 				/* This is where we read from */
3104 				any_working = 1;
3105 				rdev = conf->mirrors[d].rdev;
3106 				sector = r10_bio->devs[j].addr;
3107 
3108 				if (is_badblock(rdev, sector, max_sync,
3109 						&first_bad, &bad_sectors)) {
3110 					if (first_bad > sector)
3111 						max_sync = first_bad - sector;
3112 					else {
3113 						bad_sectors -= (sector
3114 								- first_bad);
3115 						if (max_sync > bad_sectors)
3116 							max_sync = bad_sectors;
3117 						continue;
3118 					}
3119 				}
3120 				bio = r10_bio->devs[0].bio;
3121 				bio_reset(bio);
3122 				bio->bi_next = biolist;
3123 				biolist = bio;
3124 				bio->bi_private = r10_bio;
3125 				bio->bi_end_io = end_sync_read;
3126 				bio->bi_rw = READ;
3127 				from_addr = r10_bio->devs[j].addr;
3128 				bio->bi_sector = from_addr + rdev->data_offset;
3129 				bio->bi_bdev = rdev->bdev;
3130 				atomic_inc(&rdev->nr_pending);
3131 				/* and we write to 'i' (if not in_sync) */
3132 
3133 				for (k=0; k<conf->copies; k++)
3134 					if (r10_bio->devs[k].devnum == i)
3135 						break;
3136 				BUG_ON(k == conf->copies);
3137 				to_addr = r10_bio->devs[k].addr;
3138 				r10_bio->devs[0].devnum = d;
3139 				r10_bio->devs[0].addr = from_addr;
3140 				r10_bio->devs[1].devnum = i;
3141 				r10_bio->devs[1].addr = to_addr;
3142 
3143 				rdev = mirror->rdev;
3144 				if (!test_bit(In_sync, &rdev->flags)) {
3145 					bio = r10_bio->devs[1].bio;
3146 					bio_reset(bio);
3147 					bio->bi_next = biolist;
3148 					biolist = bio;
3149 					bio->bi_private = r10_bio;
3150 					bio->bi_end_io = end_sync_write;
3151 					bio->bi_rw = WRITE;
3152 					bio->bi_sector = to_addr
3153 						+ rdev->data_offset;
3154 					bio->bi_bdev = rdev->bdev;
3155 					atomic_inc(&r10_bio->remaining);
3156 				} else
3157 					r10_bio->devs[1].bio->bi_end_io = NULL;
3158 
3159 				/* and maybe write to replacement */
3160 				bio = r10_bio->devs[1].repl_bio;
3161 				if (bio)
3162 					bio->bi_end_io = NULL;
3163 				rdev = mirror->replacement;
3164 				/* Note: if rdev != NULL, then bio
3165 				 * cannot be NULL as r10buf_pool_alloc will
3166 				 * have allocated it.
3167 				 * So the second test here is pointless.
3168 				 * But it keeps semantic-checkers happy, and
3169 				 * this comment keeps human reviewers
3170 				 * happy.
3171 				 */
3172 				if (rdev == NULL || bio == NULL ||
3173 				    test_bit(Faulty, &rdev->flags))
3174 					break;
3175 				bio_reset(bio);
3176 				bio->bi_next = biolist;
3177 				biolist = bio;
3178 				bio->bi_private = r10_bio;
3179 				bio->bi_end_io = end_sync_write;
3180 				bio->bi_rw = WRITE;
3181 				bio->bi_sector = to_addr + rdev->data_offset;
3182 				bio->bi_bdev = rdev->bdev;
3183 				atomic_inc(&r10_bio->remaining);
3184 				break;
3185 			}
3186 			if (j == conf->copies) {
3187 				/* Cannot recover, so abort the recovery or
3188 				 * record a bad block */
3189 				put_buf(r10_bio);
3190 				if (rb2)
3191 					atomic_dec(&rb2->remaining);
3192 				r10_bio = rb2;
3193 				if (any_working) {
3194 					/* problem is that there are bad blocks
3195 					 * on other device(s)
3196 					 */
3197 					int k;
3198 					for (k = 0; k < conf->copies; k++)
3199 						if (r10_bio->devs[k].devnum == i)
3200 							break;
3201 					if (!test_bit(In_sync,
3202 						      &mirror->rdev->flags)
3203 					    && !rdev_set_badblocks(
3204 						    mirror->rdev,
3205 						    r10_bio->devs[k].addr,
3206 						    max_sync, 0))
3207 						any_working = 0;
3208 					if (mirror->replacement &&
3209 					    !rdev_set_badblocks(
3210 						    mirror->replacement,
3211 						    r10_bio->devs[k].addr,
3212 						    max_sync, 0))
3213 						any_working = 0;
3214 				}
3215 				if (!any_working)  {
3216 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3217 							      &mddev->recovery))
3218 						printk(KERN_INFO "md/raid10:%s: insufficient "
3219 						       "working devices for recovery.\n",
3220 						       mdname(mddev));
3221 					mirror->recovery_disabled
3222 						= mddev->recovery_disabled;
3223 				}
3224 				break;
3225 			}
3226 		}
3227 		if (biolist == NULL) {
3228 			while (r10_bio) {
3229 				struct r10bio *rb2 = r10_bio;
3230 				r10_bio = (struct r10bio*) rb2->master_bio;
3231 				rb2->master_bio = NULL;
3232 				put_buf(rb2);
3233 			}
3234 			goto giveup;
3235 		}
3236 	} else {
3237 		/* resync. Schedule a read for every block at this virt offset */
3238 		int count = 0;
3239 
3240 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3241 
3242 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3243 				       &sync_blocks, mddev->degraded) &&
3244 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3245 						 &mddev->recovery)) {
3246 			/* We can skip this block */
3247 			*skipped = 1;
3248 			return sync_blocks + sectors_skipped;
3249 		}
3250 		if (sync_blocks < max_sync)
3251 			max_sync = sync_blocks;
3252 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3253 
3254 		r10_bio->mddev = mddev;
3255 		atomic_set(&r10_bio->remaining, 0);
3256 		raise_barrier(conf, 0);
3257 		conf->next_resync = sector_nr;
3258 
3259 		r10_bio->master_bio = NULL;
3260 		r10_bio->sector = sector_nr;
3261 		set_bit(R10BIO_IsSync, &r10_bio->state);
3262 		raid10_find_phys(conf, r10_bio);
3263 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3264 
3265 		for (i = 0; i < conf->copies; i++) {
3266 			int d = r10_bio->devs[i].devnum;
3267 			sector_t first_bad, sector;
3268 			int bad_sectors;
3269 
3270 			if (r10_bio->devs[i].repl_bio)
3271 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3272 
3273 			bio = r10_bio->devs[i].bio;
3274 			bio_reset(bio);
3275 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3276 			if (conf->mirrors[d].rdev == NULL ||
3277 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3278 				continue;
3279 			sector = r10_bio->devs[i].addr;
3280 			if (is_badblock(conf->mirrors[d].rdev,
3281 					sector, max_sync,
3282 					&first_bad, &bad_sectors)) {
3283 				if (first_bad > sector)
3284 					max_sync = first_bad - sector;
3285 				else {
3286 					bad_sectors -= (sector - first_bad);
3287 					if (max_sync > bad_sectors)
3288 						max_sync = bad_sectors;
3289 					continue;
3290 				}
3291 			}
3292 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3293 			atomic_inc(&r10_bio->remaining);
3294 			bio->bi_next = biolist;
3295 			biolist = bio;
3296 			bio->bi_private = r10_bio;
3297 			bio->bi_end_io = end_sync_read;
3298 			bio->bi_rw = READ;
3299 			bio->bi_sector = sector +
3300 				conf->mirrors[d].rdev->data_offset;
3301 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3302 			count++;
3303 
3304 			if (conf->mirrors[d].replacement == NULL ||
3305 			    test_bit(Faulty,
3306 				     &conf->mirrors[d].replacement->flags))
3307 				continue;
3308 
3309 			/* Need to set up for writing to the replacement */
3310 			bio = r10_bio->devs[i].repl_bio;
3311 			bio_reset(bio);
3312 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3313 
3314 			sector = r10_bio->devs[i].addr;
3315 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3316 			bio->bi_next = biolist;
3317 			biolist = bio;
3318 			bio->bi_private = r10_bio;
3319 			bio->bi_end_io = end_sync_write;
3320 			bio->bi_rw = WRITE;
3321 			bio->bi_sector = sector +
3322 				conf->mirrors[d].replacement->data_offset;
3323 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3324 			count++;
3325 		}
3326 
3327 		if (count < 2) {
3328 			for (i=0; i<conf->copies; i++) {
3329 				int d = r10_bio->devs[i].devnum;
3330 				if (r10_bio->devs[i].bio->bi_end_io)
3331 					rdev_dec_pending(conf->mirrors[d].rdev,
3332 							 mddev);
3333 				if (r10_bio->devs[i].repl_bio &&
3334 				    r10_bio->devs[i].repl_bio->bi_end_io)
3335 					rdev_dec_pending(
3336 						conf->mirrors[d].replacement,
3337 						mddev);
3338 			}
3339 			put_buf(r10_bio);
3340 			biolist = NULL;
3341 			goto giveup;
3342 		}
3343 	}
3344 
3345 	nr_sectors = 0;
3346 	if (sector_nr + max_sync < max_sector)
3347 		max_sector = sector_nr + max_sync;
3348 	do {
3349 		struct page *page;
3350 		int len = PAGE_SIZE;
3351 		if (sector_nr + (len>>9) > max_sector)
3352 			len = (max_sector - sector_nr) << 9;
3353 		if (len == 0)
3354 			break;
3355 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3356 			struct bio *bio2;
3357 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3358 			if (bio_add_page(bio, page, len, 0))
3359 				continue;
3360 
3361 			/* stop here */
3362 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3363 			for (bio2 = biolist;
3364 			     bio2 && bio2 != bio;
3365 			     bio2 = bio2->bi_next) {
3366 				/* remove last page from this bio */
3367 				bio2->bi_vcnt--;
3368 				bio2->bi_size -= len;
3369 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3370 			}
3371 			goto bio_full;
3372 		}
3373 		nr_sectors += len>>9;
3374 		sector_nr += len>>9;
3375 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3376  bio_full:
3377 	r10_bio->sectors = nr_sectors;
3378 
3379 	while (biolist) {
3380 		bio = biolist;
3381 		biolist = biolist->bi_next;
3382 
3383 		bio->bi_next = NULL;
3384 		r10_bio = bio->bi_private;
3385 		r10_bio->sectors = nr_sectors;
3386 
3387 		if (bio->bi_end_io == end_sync_read) {
3388 			md_sync_acct(bio->bi_bdev, nr_sectors);
3389 			generic_make_request(bio);
3390 		}
3391 	}
3392 
3393 	if (sectors_skipped)
3394 		/* pretend they weren't skipped, it makes
3395 		 * no important difference in this case
3396 		 */
3397 		md_done_sync(mddev, sectors_skipped, 1);
3398 
3399 	return sectors_skipped + nr_sectors;
3400  giveup:
3401 	/* There is nowhere to write, so all non-sync
3402 	 * drives must be failed or in resync, all drives
3403 	 * have a bad block, so try the next chunk...
3404 	 */
3405 	if (sector_nr + max_sync < max_sector)
3406 		max_sector = sector_nr + max_sync;
3407 
3408 	sectors_skipped += (max_sector - sector_nr);
3409 	chunks_skipped ++;
3410 	sector_nr = max_sector;
3411 	goto skipped;
3412 }
3413 
3414 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3415 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3416 {
3417 	sector_t size;
3418 	struct r10conf *conf = mddev->private;
3419 
3420 	if (!raid_disks)
3421 		raid_disks = min(conf->geo.raid_disks,
3422 				 conf->prev.raid_disks);
3423 	if (!sectors)
3424 		sectors = conf->dev_sectors;
3425 
3426 	size = sectors >> conf->geo.chunk_shift;
3427 	sector_div(size, conf->geo.far_copies);
3428 	size = size * raid_disks;
3429 	sector_div(size, conf->geo.near_copies);
3430 
3431 	return size << conf->geo.chunk_shift;
3432 }
3433 
calc_sectors(struct r10conf * conf,sector_t size)3434 static void calc_sectors(struct r10conf *conf, sector_t size)
3435 {
3436 	/* Calculate the number of sectors-per-device that will
3437 	 * actually be used, and set conf->dev_sectors and
3438 	 * conf->stride
3439 	 */
3440 
3441 	size = size >> conf->geo.chunk_shift;
3442 	sector_div(size, conf->geo.far_copies);
3443 	size = size * conf->geo.raid_disks;
3444 	sector_div(size, conf->geo.near_copies);
3445 	/* 'size' is now the number of chunks in the array */
3446 	/* calculate "used chunks per device" */
3447 	size = size * conf->copies;
3448 
3449 	/* We need to round up when dividing by raid_disks to
3450 	 * get the stride size.
3451 	 */
3452 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3453 
3454 	conf->dev_sectors = size << conf->geo.chunk_shift;
3455 
3456 	if (conf->geo.far_offset)
3457 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3458 	else {
3459 		sector_div(size, conf->geo.far_copies);
3460 		conf->geo.stride = size << conf->geo.chunk_shift;
3461 	}
3462 }
3463 
3464 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3465 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3466 {
3467 	int nc, fc, fo;
3468 	int layout, chunk, disks;
3469 	switch (new) {
3470 	case geo_old:
3471 		layout = mddev->layout;
3472 		chunk = mddev->chunk_sectors;
3473 		disks = mddev->raid_disks - mddev->delta_disks;
3474 		break;
3475 	case geo_new:
3476 		layout = mddev->new_layout;
3477 		chunk = mddev->new_chunk_sectors;
3478 		disks = mddev->raid_disks;
3479 		break;
3480 	default: /* avoid 'may be unused' warnings */
3481 	case geo_start: /* new when starting reshape - raid_disks not
3482 			 * updated yet. */
3483 		layout = mddev->new_layout;
3484 		chunk = mddev->new_chunk_sectors;
3485 		disks = mddev->raid_disks + mddev->delta_disks;
3486 		break;
3487 	}
3488 	if (layout >> 18)
3489 		return -1;
3490 	if (chunk < (PAGE_SIZE >> 9) ||
3491 	    !is_power_of_2(chunk))
3492 		return -2;
3493 	nc = layout & 255;
3494 	fc = (layout >> 8) & 255;
3495 	fo = layout & (1<<16);
3496 	geo->raid_disks = disks;
3497 	geo->near_copies = nc;
3498 	geo->far_copies = fc;
3499 	geo->far_offset = fo;
3500 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3501 	geo->chunk_mask = chunk - 1;
3502 	geo->chunk_shift = ffz(~chunk);
3503 	return nc*fc;
3504 }
3505 
setup_conf(struct mddev * mddev)3506 static struct r10conf *setup_conf(struct mddev *mddev)
3507 {
3508 	struct r10conf *conf = NULL;
3509 	int err = -EINVAL;
3510 	struct geom geo;
3511 	int copies;
3512 
3513 	copies = setup_geo(&geo, mddev, geo_new);
3514 
3515 	if (copies == -2) {
3516 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3517 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3518 		       mdname(mddev), PAGE_SIZE);
3519 		goto out;
3520 	}
3521 
3522 	if (copies < 2 || copies > mddev->raid_disks) {
3523 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3524 		       mdname(mddev), mddev->new_layout);
3525 		goto out;
3526 	}
3527 
3528 	err = -ENOMEM;
3529 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3530 	if (!conf)
3531 		goto out;
3532 
3533 	/* FIXME calc properly */
3534 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3535 							    max(0,mddev->delta_disks)),
3536 				GFP_KERNEL);
3537 	if (!conf->mirrors)
3538 		goto out;
3539 
3540 	conf->tmppage = alloc_page(GFP_KERNEL);
3541 	if (!conf->tmppage)
3542 		goto out;
3543 
3544 	conf->geo = geo;
3545 	conf->copies = copies;
3546 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3547 					   r10bio_pool_free, conf);
3548 	if (!conf->r10bio_pool)
3549 		goto out;
3550 
3551 	calc_sectors(conf, mddev->dev_sectors);
3552 	if (mddev->reshape_position == MaxSector) {
3553 		conf->prev = conf->geo;
3554 		conf->reshape_progress = MaxSector;
3555 	} else {
3556 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3557 			err = -EINVAL;
3558 			goto out;
3559 		}
3560 		conf->reshape_progress = mddev->reshape_position;
3561 		if (conf->prev.far_offset)
3562 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3563 		else
3564 			/* far_copies must be 1 */
3565 			conf->prev.stride = conf->dev_sectors;
3566 	}
3567 	spin_lock_init(&conf->device_lock);
3568 	INIT_LIST_HEAD(&conf->retry_list);
3569 
3570 	spin_lock_init(&conf->resync_lock);
3571 	init_waitqueue_head(&conf->wait_barrier);
3572 
3573 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3574 	if (!conf->thread)
3575 		goto out;
3576 
3577 	conf->mddev = mddev;
3578 	return conf;
3579 
3580  out:
3581 	if (err == -ENOMEM)
3582 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3583 		       mdname(mddev));
3584 	if (conf) {
3585 		if (conf->r10bio_pool)
3586 			mempool_destroy(conf->r10bio_pool);
3587 		kfree(conf->mirrors);
3588 		safe_put_page(conf->tmppage);
3589 		kfree(conf);
3590 	}
3591 	return ERR_PTR(err);
3592 }
3593 
run(struct mddev * mddev)3594 static int run(struct mddev *mddev)
3595 {
3596 	struct r10conf *conf;
3597 	int i, disk_idx, chunk_size;
3598 	struct raid10_info *disk;
3599 	struct md_rdev *rdev;
3600 	sector_t size;
3601 	sector_t min_offset_diff = 0;
3602 	int first = 1;
3603 	bool discard_supported = false;
3604 
3605 	if (mddev->private == NULL) {
3606 		conf = setup_conf(mddev);
3607 		if (IS_ERR(conf))
3608 			return PTR_ERR(conf);
3609 		mddev->private = conf;
3610 	}
3611 	conf = mddev->private;
3612 	if (!conf)
3613 		goto out;
3614 
3615 	mddev->thread = conf->thread;
3616 	conf->thread = NULL;
3617 
3618 	chunk_size = mddev->chunk_sectors << 9;
3619 	if (mddev->queue) {
3620 		blk_queue_max_discard_sectors(mddev->queue,
3621 					      mddev->chunk_sectors);
3622 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3623 		blk_queue_io_min(mddev->queue, chunk_size);
3624 		if (conf->geo.raid_disks % conf->geo.near_copies)
3625 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3626 		else
3627 			blk_queue_io_opt(mddev->queue, chunk_size *
3628 					 (conf->geo.raid_disks / conf->geo.near_copies));
3629 	}
3630 
3631 	rdev_for_each(rdev, mddev) {
3632 		long long diff;
3633 		struct request_queue *q;
3634 
3635 		disk_idx = rdev->raid_disk;
3636 		if (disk_idx < 0)
3637 			continue;
3638 		if (disk_idx >= conf->geo.raid_disks &&
3639 		    disk_idx >= conf->prev.raid_disks)
3640 			continue;
3641 		disk = conf->mirrors + disk_idx;
3642 
3643 		if (test_bit(Replacement, &rdev->flags)) {
3644 			if (disk->replacement)
3645 				goto out_free_conf;
3646 			disk->replacement = rdev;
3647 		} else {
3648 			if (disk->rdev)
3649 				goto out_free_conf;
3650 			disk->rdev = rdev;
3651 		}
3652 		q = bdev_get_queue(rdev->bdev);
3653 		if (q->merge_bvec_fn)
3654 			mddev->merge_check_needed = 1;
3655 		diff = (rdev->new_data_offset - rdev->data_offset);
3656 		if (!mddev->reshape_backwards)
3657 			diff = -diff;
3658 		if (diff < 0)
3659 			diff = 0;
3660 		if (first || diff < min_offset_diff)
3661 			min_offset_diff = diff;
3662 
3663 		if (mddev->gendisk)
3664 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3665 					  rdev->data_offset << 9);
3666 
3667 		disk->head_position = 0;
3668 
3669 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3670 			discard_supported = true;
3671 	}
3672 
3673 	if (mddev->queue) {
3674 		if (discard_supported)
3675 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3676 						mddev->queue);
3677 		else
3678 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3679 						  mddev->queue);
3680 	}
3681 	/* need to check that every block has at least one working mirror */
3682 	if (!enough(conf, -1)) {
3683 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3684 		       mdname(mddev));
3685 		goto out_free_conf;
3686 	}
3687 
3688 	if (conf->reshape_progress != MaxSector) {
3689 		/* must ensure that shape change is supported */
3690 		if (conf->geo.far_copies != 1 &&
3691 		    conf->geo.far_offset == 0)
3692 			goto out_free_conf;
3693 		if (conf->prev.far_copies != 1 &&
3694 		    conf->geo.far_offset == 0)
3695 			goto out_free_conf;
3696 	}
3697 
3698 	mddev->degraded = 0;
3699 	for (i = 0;
3700 	     i < conf->geo.raid_disks
3701 		     || i < conf->prev.raid_disks;
3702 	     i++) {
3703 
3704 		disk = conf->mirrors + i;
3705 
3706 		if (!disk->rdev && disk->replacement) {
3707 			/* The replacement is all we have - use it */
3708 			disk->rdev = disk->replacement;
3709 			disk->replacement = NULL;
3710 			clear_bit(Replacement, &disk->rdev->flags);
3711 		}
3712 
3713 		if (!disk->rdev ||
3714 		    !test_bit(In_sync, &disk->rdev->flags)) {
3715 			disk->head_position = 0;
3716 			mddev->degraded++;
3717 			if (disk->rdev)
3718 				conf->fullsync = 1;
3719 		}
3720 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3721 	}
3722 
3723 	if (mddev->recovery_cp != MaxSector)
3724 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3725 		       " -- starting background reconstruction\n",
3726 		       mdname(mddev));
3727 	printk(KERN_INFO
3728 		"md/raid10:%s: active with %d out of %d devices\n",
3729 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3730 		conf->geo.raid_disks);
3731 	/*
3732 	 * Ok, everything is just fine now
3733 	 */
3734 	mddev->dev_sectors = conf->dev_sectors;
3735 	size = raid10_size(mddev, 0, 0);
3736 	md_set_array_sectors(mddev, size);
3737 	mddev->resync_max_sectors = size;
3738 
3739 	if (mddev->queue) {
3740 		int stripe = conf->geo.raid_disks *
3741 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3742 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3743 		mddev->queue->backing_dev_info.congested_data = mddev;
3744 
3745 		/* Calculate max read-ahead size.
3746 		 * We need to readahead at least twice a whole stripe....
3747 		 * maybe...
3748 		 */
3749 		stripe /= conf->geo.near_copies;
3750 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3751 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3752 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3753 	}
3754 
3755 
3756 	if (md_integrity_register(mddev))
3757 		goto out_free_conf;
3758 
3759 	if (conf->reshape_progress != MaxSector) {
3760 		unsigned long before_length, after_length;
3761 
3762 		before_length = ((1 << conf->prev.chunk_shift) *
3763 				 conf->prev.far_copies);
3764 		after_length = ((1 << conf->geo.chunk_shift) *
3765 				conf->geo.far_copies);
3766 
3767 		if (max(before_length, after_length) > min_offset_diff) {
3768 			/* This cannot work */
3769 			printk("md/raid10: offset difference not enough to continue reshape\n");
3770 			goto out_free_conf;
3771 		}
3772 		conf->offset_diff = min_offset_diff;
3773 
3774 		conf->reshape_safe = conf->reshape_progress;
3775 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3776 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3777 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3778 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3779 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3780 							"reshape");
3781 	}
3782 
3783 	return 0;
3784 
3785 out_free_conf:
3786 	md_unregister_thread(&mddev->thread);
3787 	if (conf->r10bio_pool)
3788 		mempool_destroy(conf->r10bio_pool);
3789 	safe_put_page(conf->tmppage);
3790 	kfree(conf->mirrors);
3791 	kfree(conf);
3792 	mddev->private = NULL;
3793 out:
3794 	return -EIO;
3795 }
3796 
stop(struct mddev * mddev)3797 static int stop(struct mddev *mddev)
3798 {
3799 	struct r10conf *conf = mddev->private;
3800 
3801 	raise_barrier(conf, 0);
3802 	lower_barrier(conf);
3803 
3804 	md_unregister_thread(&mddev->thread);
3805 	if (mddev->queue)
3806 		/* the unplug fn references 'conf'*/
3807 		blk_sync_queue(mddev->queue);
3808 
3809 	if (conf->r10bio_pool)
3810 		mempool_destroy(conf->r10bio_pool);
3811 	safe_put_page(conf->tmppage);
3812 	kfree(conf->mirrors);
3813 	kfree(conf);
3814 	mddev->private = NULL;
3815 	return 0;
3816 }
3817 
raid10_quiesce(struct mddev * mddev,int state)3818 static void raid10_quiesce(struct mddev *mddev, int state)
3819 {
3820 	struct r10conf *conf = mddev->private;
3821 
3822 	switch(state) {
3823 	case 1:
3824 		raise_barrier(conf, 0);
3825 		break;
3826 	case 0:
3827 		lower_barrier(conf);
3828 		break;
3829 	}
3830 }
3831 
raid10_resize(struct mddev * mddev,sector_t sectors)3832 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3833 {
3834 	/* Resize of 'far' arrays is not supported.
3835 	 * For 'near' and 'offset' arrays we can set the
3836 	 * number of sectors used to be an appropriate multiple
3837 	 * of the chunk size.
3838 	 * For 'offset', this is far_copies*chunksize.
3839 	 * For 'near' the multiplier is the LCM of
3840 	 * near_copies and raid_disks.
3841 	 * So if far_copies > 1 && !far_offset, fail.
3842 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3843 	 * multiply by chunk_size.  Then round to this number.
3844 	 * This is mostly done by raid10_size()
3845 	 */
3846 	struct r10conf *conf = mddev->private;
3847 	sector_t oldsize, size;
3848 
3849 	if (mddev->reshape_position != MaxSector)
3850 		return -EBUSY;
3851 
3852 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3853 		return -EINVAL;
3854 
3855 	oldsize = raid10_size(mddev, 0, 0);
3856 	size = raid10_size(mddev, sectors, 0);
3857 	if (mddev->external_size &&
3858 	    mddev->array_sectors > size)
3859 		return -EINVAL;
3860 	if (mddev->bitmap) {
3861 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3862 		if (ret)
3863 			return ret;
3864 	}
3865 	md_set_array_sectors(mddev, size);
3866 	set_capacity(mddev->gendisk, mddev->array_sectors);
3867 	revalidate_disk(mddev->gendisk);
3868 	if (sectors > mddev->dev_sectors &&
3869 	    mddev->recovery_cp > oldsize) {
3870 		mddev->recovery_cp = oldsize;
3871 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3872 	}
3873 	calc_sectors(conf, sectors);
3874 	mddev->dev_sectors = conf->dev_sectors;
3875 	mddev->resync_max_sectors = size;
3876 	return 0;
3877 }
3878 
raid10_takeover_raid0(struct mddev * mddev)3879 static void *raid10_takeover_raid0(struct mddev *mddev)
3880 {
3881 	struct md_rdev *rdev;
3882 	struct r10conf *conf;
3883 
3884 	if (mddev->degraded > 0) {
3885 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3886 		       mdname(mddev));
3887 		return ERR_PTR(-EINVAL);
3888 	}
3889 
3890 	/* Set new parameters */
3891 	mddev->new_level = 10;
3892 	/* new layout: far_copies = 1, near_copies = 2 */
3893 	mddev->new_layout = (1<<8) + 2;
3894 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3895 	mddev->delta_disks = mddev->raid_disks;
3896 	mddev->raid_disks *= 2;
3897 	/* make sure it will be not marked as dirty */
3898 	mddev->recovery_cp = MaxSector;
3899 
3900 	conf = setup_conf(mddev);
3901 	if (!IS_ERR(conf)) {
3902 		rdev_for_each(rdev, mddev)
3903 			if (rdev->raid_disk >= 0)
3904 				rdev->new_raid_disk = rdev->raid_disk * 2;
3905 		conf->barrier = 1;
3906 	}
3907 
3908 	return conf;
3909 }
3910 
raid10_takeover(struct mddev * mddev)3911 static void *raid10_takeover(struct mddev *mddev)
3912 {
3913 	struct r0conf *raid0_conf;
3914 
3915 	/* raid10 can take over:
3916 	 *  raid0 - providing it has only two drives
3917 	 */
3918 	if (mddev->level == 0) {
3919 		/* for raid0 takeover only one zone is supported */
3920 		raid0_conf = mddev->private;
3921 		if (raid0_conf->nr_strip_zones > 1) {
3922 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3923 			       " with more than one zone.\n",
3924 			       mdname(mddev));
3925 			return ERR_PTR(-EINVAL);
3926 		}
3927 		return raid10_takeover_raid0(mddev);
3928 	}
3929 	return ERR_PTR(-EINVAL);
3930 }
3931 
raid10_check_reshape(struct mddev * mddev)3932 static int raid10_check_reshape(struct mddev *mddev)
3933 {
3934 	/* Called when there is a request to change
3935 	 * - layout (to ->new_layout)
3936 	 * - chunk size (to ->new_chunk_sectors)
3937 	 * - raid_disks (by delta_disks)
3938 	 * or when trying to restart a reshape that was ongoing.
3939 	 *
3940 	 * We need to validate the request and possibly allocate
3941 	 * space if that might be an issue later.
3942 	 *
3943 	 * Currently we reject any reshape of a 'far' mode array,
3944 	 * allow chunk size to change if new is generally acceptable,
3945 	 * allow raid_disks to increase, and allow
3946 	 * a switch between 'near' mode and 'offset' mode.
3947 	 */
3948 	struct r10conf *conf = mddev->private;
3949 	struct geom geo;
3950 
3951 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3952 		return -EINVAL;
3953 
3954 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3955 		/* mustn't change number of copies */
3956 		return -EINVAL;
3957 	if (geo.far_copies > 1 && !geo.far_offset)
3958 		/* Cannot switch to 'far' mode */
3959 		return -EINVAL;
3960 
3961 	if (mddev->array_sectors & geo.chunk_mask)
3962 			/* not factor of array size */
3963 			return -EINVAL;
3964 
3965 	if (!enough(conf, -1))
3966 		return -EINVAL;
3967 
3968 	kfree(conf->mirrors_new);
3969 	conf->mirrors_new = NULL;
3970 	if (mddev->delta_disks > 0) {
3971 		/* allocate new 'mirrors' list */
3972 		conf->mirrors_new = kzalloc(
3973 			sizeof(struct raid10_info)
3974 			*(mddev->raid_disks +
3975 			  mddev->delta_disks),
3976 			GFP_KERNEL);
3977 		if (!conf->mirrors_new)
3978 			return -ENOMEM;
3979 	}
3980 	return 0;
3981 }
3982 
3983 /*
3984  * Need to check if array has failed when deciding whether to:
3985  *  - start an array
3986  *  - remove non-faulty devices
3987  *  - add a spare
3988  *  - allow a reshape
3989  * This determination is simple when no reshape is happening.
3990  * However if there is a reshape, we need to carefully check
3991  * both the before and after sections.
3992  * This is because some failed devices may only affect one
3993  * of the two sections, and some non-in_sync devices may
3994  * be insync in the section most affected by failed devices.
3995  */
calc_degraded(struct r10conf * conf)3996 static int calc_degraded(struct r10conf *conf)
3997 {
3998 	int degraded, degraded2;
3999 	int i;
4000 
4001 	rcu_read_lock();
4002 	degraded = 0;
4003 	/* 'prev' section first */
4004 	for (i = 0; i < conf->prev.raid_disks; i++) {
4005 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4006 		if (!rdev || test_bit(Faulty, &rdev->flags))
4007 			degraded++;
4008 		else if (!test_bit(In_sync, &rdev->flags))
4009 			/* When we can reduce the number of devices in
4010 			 * an array, this might not contribute to
4011 			 * 'degraded'.  It does now.
4012 			 */
4013 			degraded++;
4014 	}
4015 	rcu_read_unlock();
4016 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4017 		return degraded;
4018 	rcu_read_lock();
4019 	degraded2 = 0;
4020 	for (i = 0; i < conf->geo.raid_disks; i++) {
4021 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4022 		if (!rdev || test_bit(Faulty, &rdev->flags))
4023 			degraded2++;
4024 		else if (!test_bit(In_sync, &rdev->flags)) {
4025 			/* If reshape is increasing the number of devices,
4026 			 * this section has already been recovered, so
4027 			 * it doesn't contribute to degraded.
4028 			 * else it does.
4029 			 */
4030 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4031 				degraded2++;
4032 		}
4033 	}
4034 	rcu_read_unlock();
4035 	if (degraded2 > degraded)
4036 		return degraded2;
4037 	return degraded;
4038 }
4039 
raid10_start_reshape(struct mddev * mddev)4040 static int raid10_start_reshape(struct mddev *mddev)
4041 {
4042 	/* A 'reshape' has been requested. This commits
4043 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4044 	 * This also checks if there are enough spares and adds them
4045 	 * to the array.
4046 	 * We currently require enough spares to make the final
4047 	 * array non-degraded.  We also require that the difference
4048 	 * between old and new data_offset - on each device - is
4049 	 * enough that we never risk over-writing.
4050 	 */
4051 
4052 	unsigned long before_length, after_length;
4053 	sector_t min_offset_diff = 0;
4054 	int first = 1;
4055 	struct geom new;
4056 	struct r10conf *conf = mddev->private;
4057 	struct md_rdev *rdev;
4058 	int spares = 0;
4059 	int ret;
4060 
4061 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4062 		return -EBUSY;
4063 
4064 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4065 		return -EINVAL;
4066 
4067 	before_length = ((1 << conf->prev.chunk_shift) *
4068 			 conf->prev.far_copies);
4069 	after_length = ((1 << conf->geo.chunk_shift) *
4070 			conf->geo.far_copies);
4071 
4072 	rdev_for_each(rdev, mddev) {
4073 		if (!test_bit(In_sync, &rdev->flags)
4074 		    && !test_bit(Faulty, &rdev->flags))
4075 			spares++;
4076 		if (rdev->raid_disk >= 0) {
4077 			long long diff = (rdev->new_data_offset
4078 					  - rdev->data_offset);
4079 			if (!mddev->reshape_backwards)
4080 				diff = -diff;
4081 			if (diff < 0)
4082 				diff = 0;
4083 			if (first || diff < min_offset_diff)
4084 				min_offset_diff = diff;
4085 		}
4086 	}
4087 
4088 	if (max(before_length, after_length) > min_offset_diff)
4089 		return -EINVAL;
4090 
4091 	if (spares < mddev->delta_disks)
4092 		return -EINVAL;
4093 
4094 	conf->offset_diff = min_offset_diff;
4095 	spin_lock_irq(&conf->device_lock);
4096 	if (conf->mirrors_new) {
4097 		memcpy(conf->mirrors_new, conf->mirrors,
4098 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4099 		smp_mb();
4100 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4101 		conf->mirrors_old = conf->mirrors;
4102 		conf->mirrors = conf->mirrors_new;
4103 		conf->mirrors_new = NULL;
4104 	}
4105 	setup_geo(&conf->geo, mddev, geo_start);
4106 	smp_mb();
4107 	if (mddev->reshape_backwards) {
4108 		sector_t size = raid10_size(mddev, 0, 0);
4109 		if (size < mddev->array_sectors) {
4110 			spin_unlock_irq(&conf->device_lock);
4111 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4112 			       mdname(mddev));
4113 			return -EINVAL;
4114 		}
4115 		mddev->resync_max_sectors = size;
4116 		conf->reshape_progress = size;
4117 	} else
4118 		conf->reshape_progress = 0;
4119 	spin_unlock_irq(&conf->device_lock);
4120 
4121 	if (mddev->delta_disks && mddev->bitmap) {
4122 		ret = bitmap_resize(mddev->bitmap,
4123 				    raid10_size(mddev, 0,
4124 						conf->geo.raid_disks),
4125 				    0, 0);
4126 		if (ret)
4127 			goto abort;
4128 	}
4129 	if (mddev->delta_disks > 0) {
4130 		rdev_for_each(rdev, mddev)
4131 			if (rdev->raid_disk < 0 &&
4132 			    !test_bit(Faulty, &rdev->flags)) {
4133 				if (raid10_add_disk(mddev, rdev) == 0) {
4134 					if (rdev->raid_disk >=
4135 					    conf->prev.raid_disks)
4136 						set_bit(In_sync, &rdev->flags);
4137 					else
4138 						rdev->recovery_offset = 0;
4139 
4140 					if (sysfs_link_rdev(mddev, rdev))
4141 						/* Failure here  is OK */;
4142 				}
4143 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4144 				   && !test_bit(Faulty, &rdev->flags)) {
4145 				/* This is a spare that was manually added */
4146 				set_bit(In_sync, &rdev->flags);
4147 			}
4148 	}
4149 	/* When a reshape changes the number of devices,
4150 	 * ->degraded is measured against the larger of the
4151 	 * pre and  post numbers.
4152 	 */
4153 	spin_lock_irq(&conf->device_lock);
4154 	mddev->degraded = calc_degraded(conf);
4155 	spin_unlock_irq(&conf->device_lock);
4156 	mddev->raid_disks = conf->geo.raid_disks;
4157 	mddev->reshape_position = conf->reshape_progress;
4158 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4159 
4160 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4161 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4162 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4163 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4164 
4165 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4166 						"reshape");
4167 	if (!mddev->sync_thread) {
4168 		ret = -EAGAIN;
4169 		goto abort;
4170 	}
4171 	conf->reshape_checkpoint = jiffies;
4172 	md_wakeup_thread(mddev->sync_thread);
4173 	md_new_event(mddev);
4174 	return 0;
4175 
4176 abort:
4177 	mddev->recovery = 0;
4178 	spin_lock_irq(&conf->device_lock);
4179 	conf->geo = conf->prev;
4180 	mddev->raid_disks = conf->geo.raid_disks;
4181 	rdev_for_each(rdev, mddev)
4182 		rdev->new_data_offset = rdev->data_offset;
4183 	smp_wmb();
4184 	conf->reshape_progress = MaxSector;
4185 	mddev->reshape_position = MaxSector;
4186 	spin_unlock_irq(&conf->device_lock);
4187 	return ret;
4188 }
4189 
4190 /* Calculate the last device-address that could contain
4191  * any block from the chunk that includes the array-address 's'
4192  * and report the next address.
4193  * i.e. the address returned will be chunk-aligned and after
4194  * any data that is in the chunk containing 's'.
4195  */
last_dev_address(sector_t s,struct geom * geo)4196 static sector_t last_dev_address(sector_t s, struct geom *geo)
4197 {
4198 	s = (s | geo->chunk_mask) + 1;
4199 	s >>= geo->chunk_shift;
4200 	s *= geo->near_copies;
4201 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4202 	s *= geo->far_copies;
4203 	s <<= geo->chunk_shift;
4204 	return s;
4205 }
4206 
4207 /* Calculate the first device-address that could contain
4208  * any block from the chunk that includes the array-address 's'.
4209  * This too will be the start of a chunk
4210  */
first_dev_address(sector_t s,struct geom * geo)4211 static sector_t first_dev_address(sector_t s, struct geom *geo)
4212 {
4213 	s >>= geo->chunk_shift;
4214 	s *= geo->near_copies;
4215 	sector_div(s, geo->raid_disks);
4216 	s *= geo->far_copies;
4217 	s <<= geo->chunk_shift;
4218 	return s;
4219 }
4220 
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4221 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4222 				int *skipped)
4223 {
4224 	/* We simply copy at most one chunk (smallest of old and new)
4225 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4226 	 * or we hit a bad block or something.
4227 	 * This might mean we pause for normal IO in the middle of
4228 	 * a chunk, but that is not a problem was mddev->reshape_position
4229 	 * can record any location.
4230 	 *
4231 	 * If we will want to write to a location that isn't
4232 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4233 	 * we need to flush all reshape requests and update the metadata.
4234 	 *
4235 	 * When reshaping forwards (e.g. to more devices), we interpret
4236 	 * 'safe' as the earliest block which might not have been copied
4237 	 * down yet.  We divide this by previous stripe size and multiply
4238 	 * by previous stripe length to get lowest device offset that we
4239 	 * cannot write to yet.
4240 	 * We interpret 'sector_nr' as an address that we want to write to.
4241 	 * From this we use last_device_address() to find where we might
4242 	 * write to, and first_device_address on the  'safe' position.
4243 	 * If this 'next' write position is after the 'safe' position,
4244 	 * we must update the metadata to increase the 'safe' position.
4245 	 *
4246 	 * When reshaping backwards, we round in the opposite direction
4247 	 * and perform the reverse test:  next write position must not be
4248 	 * less than current safe position.
4249 	 *
4250 	 * In all this the minimum difference in data offsets
4251 	 * (conf->offset_diff - always positive) allows a bit of slack,
4252 	 * so next can be after 'safe', but not by more than offset_disk
4253 	 *
4254 	 * We need to prepare all the bios here before we start any IO
4255 	 * to ensure the size we choose is acceptable to all devices.
4256 	 * The means one for each copy for write-out and an extra one for
4257 	 * read-in.
4258 	 * We store the read-in bio in ->master_bio and the others in
4259 	 * ->devs[x].bio and ->devs[x].repl_bio.
4260 	 */
4261 	struct r10conf *conf = mddev->private;
4262 	struct r10bio *r10_bio;
4263 	sector_t next, safe, last;
4264 	int max_sectors;
4265 	int nr_sectors;
4266 	int s;
4267 	struct md_rdev *rdev;
4268 	int need_flush = 0;
4269 	struct bio *blist;
4270 	struct bio *bio, *read_bio;
4271 	int sectors_done = 0;
4272 
4273 	if (sector_nr == 0) {
4274 		/* If restarting in the middle, skip the initial sectors */
4275 		if (mddev->reshape_backwards &&
4276 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4277 			sector_nr = (raid10_size(mddev, 0, 0)
4278 				     - conf->reshape_progress);
4279 		} else if (!mddev->reshape_backwards &&
4280 			   conf->reshape_progress > 0)
4281 			sector_nr = conf->reshape_progress;
4282 		if (sector_nr) {
4283 			mddev->curr_resync_completed = sector_nr;
4284 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4285 			*skipped = 1;
4286 			return sector_nr;
4287 		}
4288 	}
4289 
4290 	/* We don't use sector_nr to track where we are up to
4291 	 * as that doesn't work well for ->reshape_backwards.
4292 	 * So just use ->reshape_progress.
4293 	 */
4294 	if (mddev->reshape_backwards) {
4295 		/* 'next' is the earliest device address that we might
4296 		 * write to for this chunk in the new layout
4297 		 */
4298 		next = first_dev_address(conf->reshape_progress - 1,
4299 					 &conf->geo);
4300 
4301 		/* 'safe' is the last device address that we might read from
4302 		 * in the old layout after a restart
4303 		 */
4304 		safe = last_dev_address(conf->reshape_safe - 1,
4305 					&conf->prev);
4306 
4307 		if (next + conf->offset_diff < safe)
4308 			need_flush = 1;
4309 
4310 		last = conf->reshape_progress - 1;
4311 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4312 					       & conf->prev.chunk_mask);
4313 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4314 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4315 	} else {
4316 		/* 'next' is after the last device address that we
4317 		 * might write to for this chunk in the new layout
4318 		 */
4319 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4320 
4321 		/* 'safe' is the earliest device address that we might
4322 		 * read from in the old layout after a restart
4323 		 */
4324 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4325 
4326 		/* Need to update metadata if 'next' might be beyond 'safe'
4327 		 * as that would possibly corrupt data
4328 		 */
4329 		if (next > safe + conf->offset_diff)
4330 			need_flush = 1;
4331 
4332 		sector_nr = conf->reshape_progress;
4333 		last  = sector_nr | (conf->geo.chunk_mask
4334 				     & conf->prev.chunk_mask);
4335 
4336 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4337 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4338 	}
4339 
4340 	if (need_flush ||
4341 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4342 		/* Need to update reshape_position in metadata */
4343 		wait_barrier(conf);
4344 		mddev->reshape_position = conf->reshape_progress;
4345 		if (mddev->reshape_backwards)
4346 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4347 				- conf->reshape_progress;
4348 		else
4349 			mddev->curr_resync_completed = conf->reshape_progress;
4350 		conf->reshape_checkpoint = jiffies;
4351 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4352 		md_wakeup_thread(mddev->thread);
4353 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4354 			   kthread_should_stop());
4355 		conf->reshape_safe = mddev->reshape_position;
4356 		allow_barrier(conf);
4357 	}
4358 
4359 read_more:
4360 	/* Now schedule reads for blocks from sector_nr to last */
4361 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4362 	raise_barrier(conf, sectors_done != 0);
4363 	atomic_set(&r10_bio->remaining, 0);
4364 	r10_bio->mddev = mddev;
4365 	r10_bio->sector = sector_nr;
4366 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4367 	r10_bio->sectors = last - sector_nr + 1;
4368 	rdev = read_balance(conf, r10_bio, &max_sectors);
4369 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4370 
4371 	if (!rdev) {
4372 		/* Cannot read from here, so need to record bad blocks
4373 		 * on all the target devices.
4374 		 */
4375 		// FIXME
4376 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4377 		return sectors_done;
4378 	}
4379 
4380 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4381 
4382 	read_bio->bi_bdev = rdev->bdev;
4383 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4384 			       + rdev->data_offset);
4385 	read_bio->bi_private = r10_bio;
4386 	read_bio->bi_end_io = end_sync_read;
4387 	read_bio->bi_rw = READ;
4388 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4389 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4390 	read_bio->bi_vcnt = 0;
4391 	read_bio->bi_size = 0;
4392 	r10_bio->master_bio = read_bio;
4393 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4394 
4395 	/* Now find the locations in the new layout */
4396 	__raid10_find_phys(&conf->geo, r10_bio);
4397 
4398 	blist = read_bio;
4399 	read_bio->bi_next = NULL;
4400 
4401 	for (s = 0; s < conf->copies*2; s++) {
4402 		struct bio *b;
4403 		int d = r10_bio->devs[s/2].devnum;
4404 		struct md_rdev *rdev2;
4405 		if (s&1) {
4406 			rdev2 = conf->mirrors[d].replacement;
4407 			b = r10_bio->devs[s/2].repl_bio;
4408 		} else {
4409 			rdev2 = conf->mirrors[d].rdev;
4410 			b = r10_bio->devs[s/2].bio;
4411 		}
4412 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4413 			continue;
4414 
4415 		bio_reset(b);
4416 		b->bi_bdev = rdev2->bdev;
4417 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4418 		b->bi_private = r10_bio;
4419 		b->bi_end_io = end_reshape_write;
4420 		b->bi_rw = WRITE;
4421 		b->bi_next = blist;
4422 		blist = b;
4423 	}
4424 
4425 	/* Now add as many pages as possible to all of these bios. */
4426 
4427 	nr_sectors = 0;
4428 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4429 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4430 		int len = (max_sectors - s) << 9;
4431 		if (len > PAGE_SIZE)
4432 			len = PAGE_SIZE;
4433 		for (bio = blist; bio ; bio = bio->bi_next) {
4434 			struct bio *bio2;
4435 			if (bio_add_page(bio, page, len, 0))
4436 				continue;
4437 
4438 			/* Didn't fit, must stop */
4439 			for (bio2 = blist;
4440 			     bio2 && bio2 != bio;
4441 			     bio2 = bio2->bi_next) {
4442 				/* Remove last page from this bio */
4443 				bio2->bi_vcnt--;
4444 				bio2->bi_size -= len;
4445 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4446 			}
4447 			goto bio_full;
4448 		}
4449 		sector_nr += len >> 9;
4450 		nr_sectors += len >> 9;
4451 	}
4452 bio_full:
4453 	r10_bio->sectors = nr_sectors;
4454 
4455 	/* Now submit the read */
4456 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4457 	atomic_inc(&r10_bio->remaining);
4458 	read_bio->bi_next = NULL;
4459 	generic_make_request(read_bio);
4460 	sector_nr += nr_sectors;
4461 	sectors_done += nr_sectors;
4462 	if (sector_nr <= last)
4463 		goto read_more;
4464 
4465 	/* Now that we have done the whole section we can
4466 	 * update reshape_progress
4467 	 */
4468 	if (mddev->reshape_backwards)
4469 		conf->reshape_progress -= sectors_done;
4470 	else
4471 		conf->reshape_progress += sectors_done;
4472 
4473 	return sectors_done;
4474 }
4475 
4476 static void end_reshape_request(struct r10bio *r10_bio);
4477 static int handle_reshape_read_error(struct mddev *mddev,
4478 				     struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)4479 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4480 {
4481 	/* Reshape read completed.  Hopefully we have a block
4482 	 * to write out.
4483 	 * If we got a read error then we do sync 1-page reads from
4484 	 * elsewhere until we find the data - or give up.
4485 	 */
4486 	struct r10conf *conf = mddev->private;
4487 	int s;
4488 
4489 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4490 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4491 			/* Reshape has been aborted */
4492 			md_done_sync(mddev, r10_bio->sectors, 0);
4493 			return;
4494 		}
4495 
4496 	/* We definitely have the data in the pages, schedule the
4497 	 * writes.
4498 	 */
4499 	atomic_set(&r10_bio->remaining, 1);
4500 	for (s = 0; s < conf->copies*2; s++) {
4501 		struct bio *b;
4502 		int d = r10_bio->devs[s/2].devnum;
4503 		struct md_rdev *rdev;
4504 		if (s&1) {
4505 			rdev = conf->mirrors[d].replacement;
4506 			b = r10_bio->devs[s/2].repl_bio;
4507 		} else {
4508 			rdev = conf->mirrors[d].rdev;
4509 			b = r10_bio->devs[s/2].bio;
4510 		}
4511 		if (!rdev || test_bit(Faulty, &rdev->flags))
4512 			continue;
4513 		atomic_inc(&rdev->nr_pending);
4514 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4515 		atomic_inc(&r10_bio->remaining);
4516 		b->bi_next = NULL;
4517 		generic_make_request(b);
4518 	}
4519 	end_reshape_request(r10_bio);
4520 }
4521 
end_reshape(struct r10conf * conf)4522 static void end_reshape(struct r10conf *conf)
4523 {
4524 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4525 		return;
4526 
4527 	spin_lock_irq(&conf->device_lock);
4528 	conf->prev = conf->geo;
4529 	md_finish_reshape(conf->mddev);
4530 	smp_wmb();
4531 	conf->reshape_progress = MaxSector;
4532 	spin_unlock_irq(&conf->device_lock);
4533 
4534 	/* read-ahead size must cover two whole stripes, which is
4535 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4536 	 */
4537 	if (conf->mddev->queue) {
4538 		int stripe = conf->geo.raid_disks *
4539 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4540 		stripe /= conf->geo.near_copies;
4541 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4542 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4543 	}
4544 	conf->fullsync = 0;
4545 }
4546 
4547 
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)4548 static int handle_reshape_read_error(struct mddev *mddev,
4549 				     struct r10bio *r10_bio)
4550 {
4551 	/* Use sync reads to get the blocks from somewhere else */
4552 	int sectors = r10_bio->sectors;
4553 	struct r10conf *conf = mddev->private;
4554 	struct {
4555 		struct r10bio r10_bio;
4556 		struct r10dev devs[conf->copies];
4557 	} on_stack;
4558 	struct r10bio *r10b = &on_stack.r10_bio;
4559 	int slot = 0;
4560 	int idx = 0;
4561 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4562 
4563 	r10b->sector = r10_bio->sector;
4564 	__raid10_find_phys(&conf->prev, r10b);
4565 
4566 	while (sectors) {
4567 		int s = sectors;
4568 		int success = 0;
4569 		int first_slot = slot;
4570 
4571 		if (s > (PAGE_SIZE >> 9))
4572 			s = PAGE_SIZE >> 9;
4573 
4574 		while (!success) {
4575 			int d = r10b->devs[slot].devnum;
4576 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4577 			sector_t addr;
4578 			if (rdev == NULL ||
4579 			    test_bit(Faulty, &rdev->flags) ||
4580 			    !test_bit(In_sync, &rdev->flags))
4581 				goto failed;
4582 
4583 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4584 			success = sync_page_io(rdev,
4585 					       addr,
4586 					       s << 9,
4587 					       bvec[idx].bv_page,
4588 					       READ, false);
4589 			if (success)
4590 				break;
4591 		failed:
4592 			slot++;
4593 			if (slot >= conf->copies)
4594 				slot = 0;
4595 			if (slot == first_slot)
4596 				break;
4597 		}
4598 		if (!success) {
4599 			/* couldn't read this block, must give up */
4600 			set_bit(MD_RECOVERY_INTR,
4601 				&mddev->recovery);
4602 			return -EIO;
4603 		}
4604 		sectors -= s;
4605 		idx++;
4606 	}
4607 	return 0;
4608 }
4609 
end_reshape_write(struct bio * bio,int error)4610 static void end_reshape_write(struct bio *bio, int error)
4611 {
4612 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4613 	struct r10bio *r10_bio = bio->bi_private;
4614 	struct mddev *mddev = r10_bio->mddev;
4615 	struct r10conf *conf = mddev->private;
4616 	int d;
4617 	int slot;
4618 	int repl;
4619 	struct md_rdev *rdev = NULL;
4620 
4621 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4622 	if (repl)
4623 		rdev = conf->mirrors[d].replacement;
4624 	if (!rdev) {
4625 		smp_mb();
4626 		rdev = conf->mirrors[d].rdev;
4627 	}
4628 
4629 	if (!uptodate) {
4630 		/* FIXME should record badblock */
4631 		md_error(mddev, rdev);
4632 	}
4633 
4634 	rdev_dec_pending(rdev, mddev);
4635 	end_reshape_request(r10_bio);
4636 }
4637 
end_reshape_request(struct r10bio * r10_bio)4638 static void end_reshape_request(struct r10bio *r10_bio)
4639 {
4640 	if (!atomic_dec_and_test(&r10_bio->remaining))
4641 		return;
4642 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4643 	bio_put(r10_bio->master_bio);
4644 	put_buf(r10_bio);
4645 }
4646 
raid10_finish_reshape(struct mddev * mddev)4647 static void raid10_finish_reshape(struct mddev *mddev)
4648 {
4649 	struct r10conf *conf = mddev->private;
4650 
4651 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4652 		return;
4653 
4654 	if (mddev->delta_disks > 0) {
4655 		sector_t size = raid10_size(mddev, 0, 0);
4656 		md_set_array_sectors(mddev, size);
4657 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4658 			mddev->recovery_cp = mddev->resync_max_sectors;
4659 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4660 		}
4661 		mddev->resync_max_sectors = size;
4662 		set_capacity(mddev->gendisk, mddev->array_sectors);
4663 		revalidate_disk(mddev->gendisk);
4664 	} else {
4665 		int d;
4666 		for (d = conf->geo.raid_disks ;
4667 		     d < conf->geo.raid_disks - mddev->delta_disks;
4668 		     d++) {
4669 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4670 			if (rdev)
4671 				clear_bit(In_sync, &rdev->flags);
4672 			rdev = conf->mirrors[d].replacement;
4673 			if (rdev)
4674 				clear_bit(In_sync, &rdev->flags);
4675 		}
4676 	}
4677 	mddev->layout = mddev->new_layout;
4678 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4679 	mddev->reshape_position = MaxSector;
4680 	mddev->delta_disks = 0;
4681 	mddev->reshape_backwards = 0;
4682 }
4683 
4684 static struct md_personality raid10_personality =
4685 {
4686 	.name		= "raid10",
4687 	.level		= 10,
4688 	.owner		= THIS_MODULE,
4689 	.make_request	= make_request,
4690 	.run		= run,
4691 	.stop		= stop,
4692 	.status		= status,
4693 	.error_handler	= error,
4694 	.hot_add_disk	= raid10_add_disk,
4695 	.hot_remove_disk= raid10_remove_disk,
4696 	.spare_active	= raid10_spare_active,
4697 	.sync_request	= sync_request,
4698 	.quiesce	= raid10_quiesce,
4699 	.size		= raid10_size,
4700 	.resize		= raid10_resize,
4701 	.takeover	= raid10_takeover,
4702 	.check_reshape	= raid10_check_reshape,
4703 	.start_reshape	= raid10_start_reshape,
4704 	.finish_reshape	= raid10_finish_reshape,
4705 };
4706 
raid_init(void)4707 static int __init raid_init(void)
4708 {
4709 	return register_md_personality(&raid10_personality);
4710 }
4711 
raid_exit(void)4712 static void raid_exit(void)
4713 {
4714 	unregister_md_personality(&raid10_personality);
4715 }
4716 
4717 module_init(raid_init);
4718 module_exit(raid_exit);
4719 MODULE_LICENSE("GPL");
4720 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4721 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4722 MODULE_ALIAS("md-raid10");
4723 MODULE_ALIAS("md-level-10");
4724 
4725 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4726