• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NAND Flash Controller Device Driver
3  * Copyright © 2009-2010, Intel Corporation and its suppliers.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  */
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
27 
28 #include "denali.h"
29 
30 MODULE_LICENSE("GPL");
31 
32 /* We define a module parameter that allows the user to override
33  * the hardware and decide what timing mode should be used.
34  */
35 #define NAND_DEFAULT_TIMINGS	-1
36 
37 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
38 module_param(onfi_timing_mode, int, S_IRUGO);
39 MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
40 			" -1 indicates use default timings");
41 
42 #define DENALI_NAND_NAME    "denali-nand"
43 
44 /* We define a macro here that combines all interrupts this driver uses into
45  * a single constant value, for convenience. */
46 #define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
47 			INTR_STATUS__ECC_TRANSACTION_DONE | \
48 			INTR_STATUS__ECC_ERR | \
49 			INTR_STATUS__PROGRAM_FAIL | \
50 			INTR_STATUS__LOAD_COMP | \
51 			INTR_STATUS__PROGRAM_COMP | \
52 			INTR_STATUS__TIME_OUT | \
53 			INTR_STATUS__ERASE_FAIL | \
54 			INTR_STATUS__RST_COMP | \
55 			INTR_STATUS__ERASE_COMP)
56 
57 /* indicates whether or not the internal value for the flash bank is
58  * valid or not */
59 #define CHIP_SELECT_INVALID	-1
60 
61 #define SUPPORT_8BITECC		1
62 
63 /* This macro divides two integers and rounds fractional values up
64  * to the nearest integer value. */
65 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
66 
67 /* this macro allows us to convert from an MTD structure to our own
68  * device context (denali) structure.
69  */
70 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
71 
72 /* These constants are defined by the driver to enable common driver
73  * configuration options. */
74 #define SPARE_ACCESS		0x41
75 #define MAIN_ACCESS		0x42
76 #define MAIN_SPARE_ACCESS	0x43
77 
78 #define DENALI_READ	0
79 #define DENALI_WRITE	0x100
80 
81 /* types of device accesses. We can issue commands and get status */
82 #define COMMAND_CYCLE	0
83 #define ADDR_CYCLE	1
84 #define STATUS_CYCLE	2
85 
86 /* this is a helper macro that allows us to
87  * format the bank into the proper bits for the controller */
88 #define BANK(x) ((x) << 24)
89 
90 /* forward declarations */
91 static void clear_interrupts(struct denali_nand_info *denali);
92 static uint32_t wait_for_irq(struct denali_nand_info *denali,
93 							uint32_t irq_mask);
94 static void denali_irq_enable(struct denali_nand_info *denali,
95 							uint32_t int_mask);
96 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
97 
98 /* Certain operations for the denali NAND controller use
99  * an indexed mode to read/write data. The operation is
100  * performed by writing the address value of the command
101  * to the device memory followed by the data. This function
102  * abstracts this common operation.
103 */
index_addr(struct denali_nand_info * denali,uint32_t address,uint32_t data)104 static void index_addr(struct denali_nand_info *denali,
105 				uint32_t address, uint32_t data)
106 {
107 	iowrite32(address, denali->flash_mem);
108 	iowrite32(data, denali->flash_mem + 0x10);
109 }
110 
111 /* Perform an indexed read of the device */
index_addr_read_data(struct denali_nand_info * denali,uint32_t address,uint32_t * pdata)112 static void index_addr_read_data(struct denali_nand_info *denali,
113 				 uint32_t address, uint32_t *pdata)
114 {
115 	iowrite32(address, denali->flash_mem);
116 	*pdata = ioread32(denali->flash_mem + 0x10);
117 }
118 
119 /* We need to buffer some data for some of the NAND core routines.
120  * The operations manage buffering that data. */
reset_buf(struct denali_nand_info * denali)121 static void reset_buf(struct denali_nand_info *denali)
122 {
123 	denali->buf.head = denali->buf.tail = 0;
124 }
125 
write_byte_to_buf(struct denali_nand_info * denali,uint8_t byte)126 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
127 {
128 	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
129 	denali->buf.buf[denali->buf.tail++] = byte;
130 }
131 
132 /* reads the status of the device */
read_status(struct denali_nand_info * denali)133 static void read_status(struct denali_nand_info *denali)
134 {
135 	uint32_t cmd = 0x0;
136 
137 	/* initialize the data buffer to store status */
138 	reset_buf(denali);
139 
140 	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
141 	if (cmd)
142 		write_byte_to_buf(denali, NAND_STATUS_WP);
143 	else
144 		write_byte_to_buf(denali, 0);
145 }
146 
147 /* resets a specific device connected to the core */
reset_bank(struct denali_nand_info * denali)148 static void reset_bank(struct denali_nand_info *denali)
149 {
150 	uint32_t irq_status = 0;
151 	uint32_t irq_mask = INTR_STATUS__RST_COMP |
152 			    INTR_STATUS__TIME_OUT;
153 
154 	clear_interrupts(denali);
155 
156 	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
157 
158 	irq_status = wait_for_irq(denali, irq_mask);
159 
160 	if (irq_status & INTR_STATUS__TIME_OUT)
161 		dev_err(denali->dev, "reset bank failed.\n");
162 }
163 
164 /* Reset the flash controller */
denali_nand_reset(struct denali_nand_info * denali)165 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
166 {
167 	uint32_t i;
168 
169 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
170 		       __FILE__, __LINE__, __func__);
171 
172 	for (i = 0 ; i < denali->max_banks; i++)
173 		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
174 		denali->flash_reg + INTR_STATUS(i));
175 
176 	for (i = 0 ; i < denali->max_banks; i++) {
177 		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
178 		while (!(ioread32(denali->flash_reg +
179 				INTR_STATUS(i)) &
180 			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
181 			cpu_relax();
182 		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
183 			INTR_STATUS__TIME_OUT)
184 			dev_dbg(denali->dev,
185 			"NAND Reset operation timed out on bank %d\n", i);
186 	}
187 
188 	for (i = 0; i < denali->max_banks; i++)
189 		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
190 			denali->flash_reg + INTR_STATUS(i));
191 
192 	return PASS;
193 }
194 
195 /* this routine calculates the ONFI timing values for a given mode and
196  * programs the clocking register accordingly. The mode is determined by
197  * the get_onfi_nand_para routine.
198  */
nand_onfi_timing_set(struct denali_nand_info * denali,uint16_t mode)199 static void nand_onfi_timing_set(struct denali_nand_info *denali,
200 								uint16_t mode)
201 {
202 	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
203 	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
204 	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
205 	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
206 	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
207 	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
208 	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
209 	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
210 	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
211 	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
212 	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
213 	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
214 
215 	uint16_t TclsRising = 1;
216 	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
217 	uint16_t dv_window = 0;
218 	uint16_t en_lo, en_hi;
219 	uint16_t acc_clks;
220 	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
221 
222 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
223 		       __FILE__, __LINE__, __func__);
224 
225 	en_lo = CEIL_DIV(Trp[mode], CLK_X);
226 	en_hi = CEIL_DIV(Treh[mode], CLK_X);
227 #if ONFI_BLOOM_TIME
228 	if ((en_hi * CLK_X) < (Treh[mode] + 2))
229 		en_hi++;
230 #endif
231 
232 	if ((en_lo + en_hi) * CLK_X < Trc[mode])
233 		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
234 
235 	if ((en_lo + en_hi) < CLK_MULTI)
236 		en_lo += CLK_MULTI - en_lo - en_hi;
237 
238 	while (dv_window < 8) {
239 		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
240 
241 		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
242 
243 		data_invalid =
244 		    data_invalid_rhoh <
245 		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
246 
247 		dv_window = data_invalid - Trea[mode];
248 
249 		if (dv_window < 8)
250 			en_lo++;
251 	}
252 
253 	acc_clks = CEIL_DIV(Trea[mode], CLK_X);
254 
255 	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
256 		acc_clks++;
257 
258 	if ((data_invalid - acc_clks * CLK_X) < 2)
259 		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
260 			__FILE__, __LINE__);
261 
262 	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
263 	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
264 	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
265 	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
266 	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
267 	if (!TclsRising)
268 		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
269 	if (cs_cnt == 0)
270 		cs_cnt = 1;
271 
272 	if (Tcea[mode]) {
273 		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
274 			cs_cnt++;
275 	}
276 
277 #if MODE5_WORKAROUND
278 	if (mode == 5)
279 		acc_clks = 5;
280 #endif
281 
282 	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
283 	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
284 		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
285 		acc_clks = 6;
286 
287 	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
288 	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
289 	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
290 	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
291 	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
292 	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
293 	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
294 	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
295 }
296 
297 /* queries the NAND device to see what ONFI modes it supports. */
get_onfi_nand_para(struct denali_nand_info * denali)298 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
299 {
300 	int i;
301 	/* we needn't to do a reset here because driver has already
302 	 * reset all the banks before
303 	 * */
304 	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
305 		ONFI_TIMING_MODE__VALUE))
306 		return FAIL;
307 
308 	for (i = 5; i > 0; i--) {
309 		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
310 			(0x01 << i))
311 			break;
312 	}
313 
314 	nand_onfi_timing_set(denali, i);
315 
316 	/* By now, all the ONFI devices we know support the page cache */
317 	/* rw feature. So here we enable the pipeline_rw_ahead feature */
318 	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
319 	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
320 
321 	return PASS;
322 }
323 
get_samsung_nand_para(struct denali_nand_info * denali,uint8_t device_id)324 static void get_samsung_nand_para(struct denali_nand_info *denali,
325 							uint8_t device_id)
326 {
327 	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
328 		/* Set timing register values according to datasheet */
329 		iowrite32(5, denali->flash_reg + ACC_CLKS);
330 		iowrite32(20, denali->flash_reg + RE_2_WE);
331 		iowrite32(12, denali->flash_reg + WE_2_RE);
332 		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
333 		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
334 		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
335 		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
336 	}
337 }
338 
get_toshiba_nand_para(struct denali_nand_info * denali)339 static void get_toshiba_nand_para(struct denali_nand_info *denali)
340 {
341 	uint32_t tmp;
342 
343 	/* Workaround to fix a controller bug which reports a wrong */
344 	/* spare area size for some kind of Toshiba NAND device */
345 	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
346 		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
347 		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
348 		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
349 			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
350 		iowrite32(tmp,
351 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
352 #if SUPPORT_15BITECC
353 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
354 #elif SUPPORT_8BITECC
355 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
356 #endif
357 	}
358 }
359 
get_hynix_nand_para(struct denali_nand_info * denali,uint8_t device_id)360 static void get_hynix_nand_para(struct denali_nand_info *denali,
361 							uint8_t device_id)
362 {
363 	uint32_t main_size, spare_size;
364 
365 	switch (device_id) {
366 	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
367 	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
368 		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
369 		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
370 		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
371 		main_size = 4096 *
372 			ioread32(denali->flash_reg + DEVICES_CONNECTED);
373 		spare_size = 224 *
374 			ioread32(denali->flash_reg + DEVICES_CONNECTED);
375 		iowrite32(main_size,
376 				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
377 		iowrite32(spare_size,
378 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
379 		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
380 #if SUPPORT_15BITECC
381 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
382 #elif SUPPORT_8BITECC
383 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
384 #endif
385 		break;
386 	default:
387 		dev_warn(denali->dev,
388 			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
389 			"Will use default parameter values instead.\n",
390 			device_id);
391 	}
392 }
393 
394 /* determines how many NAND chips are connected to the controller. Note for
395  * Intel CE4100 devices we don't support more than one device.
396  */
find_valid_banks(struct denali_nand_info * denali)397 static void find_valid_banks(struct denali_nand_info *denali)
398 {
399 	uint32_t id[denali->max_banks];
400 	int i;
401 
402 	denali->total_used_banks = 1;
403 	for (i = 0; i < denali->max_banks; i++) {
404 		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
405 		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
406 		index_addr_read_data(denali,
407 				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
408 
409 		dev_dbg(denali->dev,
410 			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
411 
412 		if (i == 0) {
413 			if (!(id[i] & 0x0ff))
414 				break; /* WTF? */
415 		} else {
416 			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
417 				denali->total_used_banks++;
418 			else
419 				break;
420 		}
421 	}
422 
423 	if (denali->platform == INTEL_CE4100) {
424 		/* Platform limitations of the CE4100 device limit
425 		 * users to a single chip solution for NAND.
426 		 * Multichip support is not enabled.
427 		 */
428 		if (denali->total_used_banks != 1) {
429 			dev_err(denali->dev,
430 					"Sorry, Intel CE4100 only supports "
431 					"a single NAND device.\n");
432 			BUG();
433 		}
434 	}
435 	dev_dbg(denali->dev,
436 		"denali->total_used_banks: %d\n", denali->total_used_banks);
437 }
438 
439 /*
440  * Use the configuration feature register to determine the maximum number of
441  * banks that the hardware supports.
442  */
detect_max_banks(struct denali_nand_info * denali)443 static void detect_max_banks(struct denali_nand_info *denali)
444 {
445 	uint32_t features = ioread32(denali->flash_reg + FEATURES);
446 
447 	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
448 }
449 
detect_partition_feature(struct denali_nand_info * denali)450 static void detect_partition_feature(struct denali_nand_info *denali)
451 {
452 	/* For MRST platform, denali->fwblks represent the
453 	 * number of blocks firmware is taken,
454 	 * FW is in protect partition and MTD driver has no
455 	 * permission to access it. So let driver know how many
456 	 * blocks it can't touch.
457 	 * */
458 	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
459 		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
460 			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
461 			denali->fwblks =
462 			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
463 			      MIN_MAX_BANK__MIN_VALUE) *
464 			     denali->blksperchip)
465 			    +
466 			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
467 			    MIN_BLK_ADDR__VALUE);
468 		} else
469 			denali->fwblks = SPECTRA_START_BLOCK;
470 	} else
471 		denali->fwblks = SPECTRA_START_BLOCK;
472 }
473 
denali_nand_timing_set(struct denali_nand_info * denali)474 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
475 {
476 	uint16_t status = PASS;
477 	uint32_t id_bytes[5], addr;
478 	uint8_t i, maf_id, device_id;
479 
480 	dev_dbg(denali->dev,
481 			"%s, Line %d, Function: %s\n",
482 			__FILE__, __LINE__, __func__);
483 
484 	/* Use read id method to get device ID and other
485 	 * params. For some NAND chips, controller can't
486 	 * report the correct device ID by reading from
487 	 * DEVICE_ID register
488 	 * */
489 	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
490 	index_addr(denali, (uint32_t)addr | 0, 0x90);
491 	index_addr(denali, (uint32_t)addr | 1, 0);
492 	for (i = 0; i < 5; i++)
493 		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
494 	maf_id = id_bytes[0];
495 	device_id = id_bytes[1];
496 
497 	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
498 		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
499 		if (FAIL == get_onfi_nand_para(denali))
500 			return FAIL;
501 	} else if (maf_id == 0xEC) { /* Samsung NAND */
502 		get_samsung_nand_para(denali, device_id);
503 	} else if (maf_id == 0x98) { /* Toshiba NAND */
504 		get_toshiba_nand_para(denali);
505 	} else if (maf_id == 0xAD) { /* Hynix NAND */
506 		get_hynix_nand_para(denali, device_id);
507 	}
508 
509 	dev_info(denali->dev,
510 			"Dump timing register values:"
511 			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
512 			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
513 			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
514 			ioread32(denali->flash_reg + ACC_CLKS),
515 			ioread32(denali->flash_reg + RE_2_WE),
516 			ioread32(denali->flash_reg + RE_2_RE),
517 			ioread32(denali->flash_reg + WE_2_RE),
518 			ioread32(denali->flash_reg + ADDR_2_DATA),
519 			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
520 			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
521 			ioread32(denali->flash_reg + CS_SETUP_CNT));
522 
523 	find_valid_banks(denali);
524 
525 	detect_partition_feature(denali);
526 
527 	/* If the user specified to override the default timings
528 	 * with a specific ONFI mode, we apply those changes here.
529 	 */
530 	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
531 		nand_onfi_timing_set(denali, onfi_timing_mode);
532 
533 	return status;
534 }
535 
denali_set_intr_modes(struct denali_nand_info * denali,uint16_t INT_ENABLE)536 static void denali_set_intr_modes(struct denali_nand_info *denali,
537 					uint16_t INT_ENABLE)
538 {
539 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
540 		       __FILE__, __LINE__, __func__);
541 
542 	if (INT_ENABLE)
543 		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
544 	else
545 		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
546 }
547 
548 /* validation function to verify that the controlling software is making
549  * a valid request
550  */
is_flash_bank_valid(int flash_bank)551 static inline bool is_flash_bank_valid(int flash_bank)
552 {
553 	return (flash_bank >= 0 && flash_bank < 4);
554 }
555 
denali_irq_init(struct denali_nand_info * denali)556 static void denali_irq_init(struct denali_nand_info *denali)
557 {
558 	uint32_t int_mask = 0;
559 	int i;
560 
561 	/* Disable global interrupts */
562 	denali_set_intr_modes(denali, false);
563 
564 	int_mask = DENALI_IRQ_ALL;
565 
566 	/* Clear all status bits */
567 	for (i = 0; i < denali->max_banks; ++i)
568 		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
569 
570 	denali_irq_enable(denali, int_mask);
571 }
572 
denali_irq_cleanup(int irqnum,struct denali_nand_info * denali)573 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
574 {
575 	denali_set_intr_modes(denali, false);
576 	free_irq(irqnum, denali);
577 }
578 
denali_irq_enable(struct denali_nand_info * denali,uint32_t int_mask)579 static void denali_irq_enable(struct denali_nand_info *denali,
580 							uint32_t int_mask)
581 {
582 	int i;
583 
584 	for (i = 0; i < denali->max_banks; ++i)
585 		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
586 }
587 
588 /* This function only returns when an interrupt that this driver cares about
589  * occurs. This is to reduce the overhead of servicing interrupts
590  */
denali_irq_detected(struct denali_nand_info * denali)591 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
592 {
593 	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
594 }
595 
596 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
clear_interrupt(struct denali_nand_info * denali,uint32_t irq_mask)597 static inline void clear_interrupt(struct denali_nand_info *denali,
598 							uint32_t irq_mask)
599 {
600 	uint32_t intr_status_reg = 0;
601 
602 	intr_status_reg = INTR_STATUS(denali->flash_bank);
603 
604 	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
605 }
606 
clear_interrupts(struct denali_nand_info * denali)607 static void clear_interrupts(struct denali_nand_info *denali)
608 {
609 	uint32_t status = 0x0;
610 	spin_lock_irq(&denali->irq_lock);
611 
612 	status = read_interrupt_status(denali);
613 	clear_interrupt(denali, status);
614 
615 	denali->irq_status = 0x0;
616 	spin_unlock_irq(&denali->irq_lock);
617 }
618 
read_interrupt_status(struct denali_nand_info * denali)619 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
620 {
621 	uint32_t intr_status_reg = 0;
622 
623 	intr_status_reg = INTR_STATUS(denali->flash_bank);
624 
625 	return ioread32(denali->flash_reg + intr_status_reg);
626 }
627 
628 /* This is the interrupt service routine. It handles all interrupts
629  * sent to this device. Note that on CE4100, this is a shared
630  * interrupt.
631  */
denali_isr(int irq,void * dev_id)632 static irqreturn_t denali_isr(int irq, void *dev_id)
633 {
634 	struct denali_nand_info *denali = dev_id;
635 	uint32_t irq_status = 0x0;
636 	irqreturn_t result = IRQ_NONE;
637 
638 	spin_lock(&denali->irq_lock);
639 
640 	/* check to see if a valid NAND chip has
641 	 * been selected.
642 	 */
643 	if (is_flash_bank_valid(denali->flash_bank)) {
644 		/* check to see if controller generated
645 		 * the interrupt, since this is a shared interrupt */
646 		irq_status = denali_irq_detected(denali);
647 		if (irq_status != 0) {
648 			/* handle interrupt */
649 			/* first acknowledge it */
650 			clear_interrupt(denali, irq_status);
651 			/* store the status in the device context for someone
652 			   to read */
653 			denali->irq_status |= irq_status;
654 			/* notify anyone who cares that it happened */
655 			complete(&denali->complete);
656 			/* tell the OS that we've handled this */
657 			result = IRQ_HANDLED;
658 		}
659 	}
660 	spin_unlock(&denali->irq_lock);
661 	return result;
662 }
663 #define BANK(x) ((x) << 24)
664 
wait_for_irq(struct denali_nand_info * denali,uint32_t irq_mask)665 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
666 {
667 	unsigned long comp_res = 0;
668 	uint32_t intr_status = 0;
669 	bool retry = false;
670 	unsigned long timeout = msecs_to_jiffies(1000);
671 
672 	do {
673 		comp_res =
674 			wait_for_completion_timeout(&denali->complete, timeout);
675 		spin_lock_irq(&denali->irq_lock);
676 		intr_status = denali->irq_status;
677 
678 		if (intr_status & irq_mask) {
679 			denali->irq_status &= ~irq_mask;
680 			spin_unlock_irq(&denali->irq_lock);
681 			/* our interrupt was detected */
682 			break;
683 		} else {
684 			/* these are not the interrupts you are looking for -
685 			 * need to wait again */
686 			spin_unlock_irq(&denali->irq_lock);
687 			retry = true;
688 		}
689 	} while (comp_res != 0);
690 
691 	if (comp_res == 0) {
692 		/* timeout */
693 		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
694 				intr_status, irq_mask);
695 
696 		intr_status = 0;
697 	}
698 	return intr_status;
699 }
700 
701 /* This helper function setups the registers for ECC and whether or not
702  * the spare area will be transferred. */
setup_ecc_for_xfer(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare)703 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
704 				bool transfer_spare)
705 {
706 	int ecc_en_flag = 0, transfer_spare_flag = 0;
707 
708 	/* set ECC, transfer spare bits if needed */
709 	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
710 	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
711 
712 	/* Enable spare area/ECC per user's request. */
713 	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
714 	iowrite32(transfer_spare_flag,
715 			denali->flash_reg + TRANSFER_SPARE_REG);
716 }
717 
718 /* sends a pipeline command operation to the controller. See the Denali NAND
719  * controller's user guide for more information (section 4.2.3.6).
720  */
denali_send_pipeline_cmd(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare,int access_type,int op)721 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
722 							bool ecc_en,
723 							bool transfer_spare,
724 							int access_type,
725 							int op)
726 {
727 	int status = PASS;
728 	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
729 		 irq_mask = 0;
730 
731 	if (op == DENALI_READ)
732 		irq_mask = INTR_STATUS__LOAD_COMP;
733 	else if (op == DENALI_WRITE)
734 		irq_mask = 0;
735 	else
736 		BUG();
737 
738 	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
739 
740 	/* clear interrupts */
741 	clear_interrupts(denali);
742 
743 	addr = BANK(denali->flash_bank) | denali->page;
744 
745 	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
746 		cmd = MODE_01 | addr;
747 		iowrite32(cmd, denali->flash_mem);
748 	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
749 		/* read spare area */
750 		cmd = MODE_10 | addr;
751 		index_addr(denali, (uint32_t)cmd, access_type);
752 
753 		cmd = MODE_01 | addr;
754 		iowrite32(cmd, denali->flash_mem);
755 	} else if (op == DENALI_READ) {
756 		/* setup page read request for access type */
757 		cmd = MODE_10 | addr;
758 		index_addr(denali, (uint32_t)cmd, access_type);
759 
760 		/* page 33 of the NAND controller spec indicates we should not
761 		   use the pipeline commands in Spare area only mode. So we
762 		   don't.
763 		 */
764 		if (access_type == SPARE_ACCESS) {
765 			cmd = MODE_01 | addr;
766 			iowrite32(cmd, denali->flash_mem);
767 		} else {
768 			index_addr(denali, (uint32_t)cmd,
769 					0x2000 | op | page_count);
770 
771 			/* wait for command to be accepted
772 			 * can always use status0 bit as the
773 			 * mask is identical for each
774 			 * bank. */
775 			irq_status = wait_for_irq(denali, irq_mask);
776 
777 			if (irq_status == 0) {
778 				dev_err(denali->dev,
779 						"cmd, page, addr on timeout "
780 						"(0x%x, 0x%x, 0x%x)\n",
781 						cmd, denali->page, addr);
782 				status = FAIL;
783 			} else {
784 				cmd = MODE_01 | addr;
785 				iowrite32(cmd, denali->flash_mem);
786 			}
787 		}
788 	}
789 	return status;
790 }
791 
792 /* helper function that simply writes a buffer to the flash */
write_data_to_flash_mem(struct denali_nand_info * denali,const uint8_t * buf,int len)793 static int write_data_to_flash_mem(struct denali_nand_info *denali,
794 							const uint8_t *buf,
795 							int len)
796 {
797 	uint32_t i = 0, *buf32;
798 
799 	/* verify that the len is a multiple of 4. see comment in
800 	 * read_data_from_flash_mem() */
801 	BUG_ON((len % 4) != 0);
802 
803 	/* write the data to the flash memory */
804 	buf32 = (uint32_t *)buf;
805 	for (i = 0; i < len / 4; i++)
806 		iowrite32(*buf32++, denali->flash_mem + 0x10);
807 	return i*4; /* intent is to return the number of bytes read */
808 }
809 
810 /* helper function that simply reads a buffer from the flash */
read_data_from_flash_mem(struct denali_nand_info * denali,uint8_t * buf,int len)811 static int read_data_from_flash_mem(struct denali_nand_info *denali,
812 								uint8_t *buf,
813 								int len)
814 {
815 	uint32_t i = 0, *buf32;
816 
817 	/* we assume that len will be a multiple of 4, if not
818 	 * it would be nice to know about it ASAP rather than
819 	 * have random failures...
820 	 * This assumption is based on the fact that this
821 	 * function is designed to be used to read flash pages,
822 	 * which are typically multiples of 4...
823 	 */
824 
825 	BUG_ON((len % 4) != 0);
826 
827 	/* transfer the data from the flash */
828 	buf32 = (uint32_t *)buf;
829 	for (i = 0; i < len / 4; i++)
830 		*buf32++ = ioread32(denali->flash_mem + 0x10);
831 	return i*4; /* intent is to return the number of bytes read */
832 }
833 
834 /* writes OOB data to the device */
write_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)835 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
836 {
837 	struct denali_nand_info *denali = mtd_to_denali(mtd);
838 	uint32_t irq_status = 0;
839 	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
840 						INTR_STATUS__PROGRAM_FAIL;
841 	int status = 0;
842 
843 	denali->page = page;
844 
845 	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
846 							DENALI_WRITE) == PASS) {
847 		write_data_to_flash_mem(denali, buf, mtd->oobsize);
848 
849 		/* wait for operation to complete */
850 		irq_status = wait_for_irq(denali, irq_mask);
851 
852 		if (irq_status == 0) {
853 			dev_err(denali->dev, "OOB write failed\n");
854 			status = -EIO;
855 		}
856 	} else {
857 		dev_err(denali->dev, "unable to send pipeline command\n");
858 		status = -EIO;
859 	}
860 	return status;
861 }
862 
863 /* reads OOB data from the device */
read_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)864 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
865 {
866 	struct denali_nand_info *denali = mtd_to_denali(mtd);
867 	uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
868 			 irq_status = 0, addr = 0x0, cmd = 0x0;
869 
870 	denali->page = page;
871 
872 	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
873 							DENALI_READ) == PASS) {
874 		read_data_from_flash_mem(denali, buf, mtd->oobsize);
875 
876 		/* wait for command to be accepted
877 		 * can always use status0 bit as the mask is identical for each
878 		 * bank. */
879 		irq_status = wait_for_irq(denali, irq_mask);
880 
881 		if (irq_status == 0)
882 			dev_err(denali->dev, "page on OOB timeout %d\n",
883 					denali->page);
884 
885 		/* We set the device back to MAIN_ACCESS here as I observed
886 		 * instability with the controller if you do a block erase
887 		 * and the last transaction was a SPARE_ACCESS. Block erase
888 		 * is reliable (according to the MTD test infrastructure)
889 		 * if you are in MAIN_ACCESS.
890 		 */
891 		addr = BANK(denali->flash_bank) | denali->page;
892 		cmd = MODE_10 | addr;
893 		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
894 	}
895 }
896 
897 /* this function examines buffers to see if they contain data that
898  * indicate that the buffer is part of an erased region of flash.
899  */
is_erased(uint8_t * buf,int len)900 bool is_erased(uint8_t *buf, int len)
901 {
902 	int i = 0;
903 	for (i = 0; i < len; i++)
904 		if (buf[i] != 0xFF)
905 			return false;
906 	return true;
907 }
908 #define ECC_SECTOR_SIZE 512
909 
910 #define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
911 #define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
912 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
913 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
914 #define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
915 #define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
916 
handle_ecc(struct denali_nand_info * denali,uint8_t * buf,uint32_t irq_status,unsigned int * max_bitflips)917 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
918 		       uint32_t irq_status, unsigned int *max_bitflips)
919 {
920 	bool check_erased_page = false;
921 	unsigned int bitflips = 0;
922 
923 	if (irq_status & INTR_STATUS__ECC_ERR) {
924 		/* read the ECC errors. we'll ignore them for now */
925 		uint32_t err_address = 0, err_correction_info = 0;
926 		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
927 		uint32_t err_correction_value = 0;
928 		denali_set_intr_modes(denali, false);
929 
930 		do {
931 			err_address = ioread32(denali->flash_reg +
932 						ECC_ERROR_ADDRESS);
933 			err_sector = ECC_SECTOR(err_address);
934 			err_byte = ECC_BYTE(err_address);
935 
936 			err_correction_info = ioread32(denali->flash_reg +
937 						ERR_CORRECTION_INFO);
938 			err_correction_value =
939 				ECC_CORRECTION_VALUE(err_correction_info);
940 			err_device = ECC_ERR_DEVICE(err_correction_info);
941 
942 			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
943 				/* If err_byte is larger than ECC_SECTOR_SIZE,
944 				 * means error happened in OOB, so we ignore
945 				 * it. It's no need for us to correct it
946 				 * err_device is represented the NAND error
947 				 * bits are happened in if there are more
948 				 * than one NAND connected.
949 				 * */
950 				if (err_byte < ECC_SECTOR_SIZE) {
951 					int offset;
952 					offset = (err_sector *
953 							ECC_SECTOR_SIZE +
954 							err_byte) *
955 							denali->devnum +
956 							err_device;
957 					/* correct the ECC error */
958 					buf[offset] ^= err_correction_value;
959 					denali->mtd.ecc_stats.corrected++;
960 					bitflips++;
961 				}
962 			} else {
963 				/* if the error is not correctable, need to
964 				 * look at the page to see if it is an erased
965 				 * page. if so, then it's not a real ECC error
966 				 * */
967 				check_erased_page = true;
968 			}
969 		} while (!ECC_LAST_ERR(err_correction_info));
970 		/* Once handle all ecc errors, controller will triger
971 		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
972 		 * for a while for this interrupt
973 		 * */
974 		while (!(read_interrupt_status(denali) &
975 				INTR_STATUS__ECC_TRANSACTION_DONE))
976 			cpu_relax();
977 		clear_interrupts(denali);
978 		denali_set_intr_modes(denali, true);
979 	}
980 	*max_bitflips = bitflips;
981 	return check_erased_page;
982 }
983 
984 /* programs the controller to either enable/disable DMA transfers */
denali_enable_dma(struct denali_nand_info * denali,bool en)985 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
986 {
987 	uint32_t reg_val = 0x0;
988 
989 	if (en)
990 		reg_val = DMA_ENABLE__FLAG;
991 
992 	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
993 	ioread32(denali->flash_reg + DMA_ENABLE);
994 }
995 
996 /* setups the HW to perform the data DMA */
denali_setup_dma(struct denali_nand_info * denali,int op)997 static void denali_setup_dma(struct denali_nand_info *denali, int op)
998 {
999 	uint32_t mode = 0x0;
1000 	const int page_count = 1;
1001 	dma_addr_t addr = denali->buf.dma_buf;
1002 
1003 	mode = MODE_10 | BANK(denali->flash_bank);
1004 
1005 	/* DMA is a four step process */
1006 
1007 	/* 1. setup transfer type and # of pages */
1008 	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1009 
1010 	/* 2. set memory high address bits 23:8 */
1011 	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1012 
1013 	/* 3. set memory low address bits 23:8 */
1014 	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1015 
1016 	/* 4.  interrupt when complete, burst len = 64 bytes*/
1017 	index_addr(denali, mode | 0x14000, 0x2400);
1018 }
1019 
1020 /* writes a page. user specifies type, and this function handles the
1021  * configuration details. */
write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,bool raw_xfer)1022 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1023 			const uint8_t *buf, bool raw_xfer)
1024 {
1025 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1026 
1027 	dma_addr_t addr = denali->buf.dma_buf;
1028 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1029 
1030 	uint32_t irq_status = 0;
1031 	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1032 						INTR_STATUS__PROGRAM_FAIL;
1033 
1034 	/* if it is a raw xfer, we want to disable ecc, and send
1035 	 * the spare area.
1036 	 * !raw_xfer - enable ecc
1037 	 * raw_xfer - transfer spare
1038 	 */
1039 	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1040 
1041 	/* copy buffer into DMA buffer */
1042 	memcpy(denali->buf.buf, buf, mtd->writesize);
1043 
1044 	if (raw_xfer) {
1045 		/* transfer the data to the spare area */
1046 		memcpy(denali->buf.buf + mtd->writesize,
1047 			chip->oob_poi,
1048 			mtd->oobsize);
1049 	}
1050 
1051 	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1052 
1053 	clear_interrupts(denali);
1054 	denali_enable_dma(denali, true);
1055 
1056 	denali_setup_dma(denali, DENALI_WRITE);
1057 
1058 	/* wait for operation to complete */
1059 	irq_status = wait_for_irq(denali, irq_mask);
1060 
1061 	if (irq_status == 0) {
1062 		dev_err(denali->dev,
1063 				"timeout on write_page (type = %d)\n",
1064 				raw_xfer);
1065 		denali->status =
1066 			(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
1067 			NAND_STATUS_FAIL : PASS;
1068 	}
1069 
1070 	denali_enable_dma(denali, false);
1071 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1072 
1073 	return 0;
1074 }
1075 
1076 /* NAND core entry points */
1077 
1078 /* this is the callback that the NAND core calls to write a page. Since
1079  * writing a page with ECC or without is similar, all the work is done
1080  * by write_page above.
1081  * */
denali_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)1082 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1083 				const uint8_t *buf, int oob_required)
1084 {
1085 	/* for regular page writes, we let HW handle all the ECC
1086 	 * data written to the device. */
1087 	return write_page(mtd, chip, buf, false);
1088 }
1089 
1090 /* This is the callback that the NAND core calls to write a page without ECC.
1091  * raw access is similar to ECC page writes, so all the work is done in the
1092  * write_page() function above.
1093  */
denali_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)1094 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1095 					const uint8_t *buf, int oob_required)
1096 {
1097 	/* for raw page writes, we want to disable ECC and simply write
1098 	   whatever data is in the buffer. */
1099 	return write_page(mtd, chip, buf, true);
1100 }
1101 
denali_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1102 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1103 			    int page)
1104 {
1105 	return write_oob_data(mtd, chip->oob_poi, page);
1106 }
1107 
denali_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1108 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1109 			   int page)
1110 {
1111 	read_oob_data(mtd, chip->oob_poi, page);
1112 
1113 	return 0;
1114 }
1115 
denali_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1116 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1117 			    uint8_t *buf, int oob_required, int page)
1118 {
1119 	unsigned int max_bitflips;
1120 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1121 
1122 	dma_addr_t addr = denali->buf.dma_buf;
1123 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1124 
1125 	uint32_t irq_status = 0;
1126 	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1127 			    INTR_STATUS__ECC_ERR;
1128 	bool check_erased_page = false;
1129 
1130 	if (page != denali->page) {
1131 		dev_err(denali->dev, "IN %s: page %d is not"
1132 				" equal to denali->page %d, investigate!!",
1133 				__func__, page, denali->page);
1134 		BUG();
1135 	}
1136 
1137 	setup_ecc_for_xfer(denali, true, false);
1138 
1139 	denali_enable_dma(denali, true);
1140 	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1141 
1142 	clear_interrupts(denali);
1143 	denali_setup_dma(denali, DENALI_READ);
1144 
1145 	/* wait for operation to complete */
1146 	irq_status = wait_for_irq(denali, irq_mask);
1147 
1148 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1149 
1150 	memcpy(buf, denali->buf.buf, mtd->writesize);
1151 
1152 	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1153 	denali_enable_dma(denali, false);
1154 
1155 	if (check_erased_page) {
1156 		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1157 
1158 		/* check ECC failures that may have occurred on erased pages */
1159 		if (check_erased_page) {
1160 			if (!is_erased(buf, denali->mtd.writesize))
1161 				denali->mtd.ecc_stats.failed++;
1162 			if (!is_erased(buf, denali->mtd.oobsize))
1163 				denali->mtd.ecc_stats.failed++;
1164 		}
1165 	}
1166 	return max_bitflips;
1167 }
1168 
denali_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1169 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1170 				uint8_t *buf, int oob_required, int page)
1171 {
1172 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1173 
1174 	dma_addr_t addr = denali->buf.dma_buf;
1175 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1176 
1177 	uint32_t irq_status = 0;
1178 	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1179 
1180 	if (page != denali->page) {
1181 		dev_err(denali->dev, "IN %s: page %d is not"
1182 				" equal to denali->page %d, investigate!!",
1183 				__func__, page, denali->page);
1184 		BUG();
1185 	}
1186 
1187 	setup_ecc_for_xfer(denali, false, true);
1188 	denali_enable_dma(denali, true);
1189 
1190 	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1191 
1192 	clear_interrupts(denali);
1193 	denali_setup_dma(denali, DENALI_READ);
1194 
1195 	/* wait for operation to complete */
1196 	irq_status = wait_for_irq(denali, irq_mask);
1197 
1198 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1199 
1200 	denali_enable_dma(denali, false);
1201 
1202 	memcpy(buf, denali->buf.buf, mtd->writesize);
1203 	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1204 
1205 	return 0;
1206 }
1207 
denali_read_byte(struct mtd_info * mtd)1208 static uint8_t denali_read_byte(struct mtd_info *mtd)
1209 {
1210 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1211 	uint8_t result = 0xff;
1212 
1213 	if (denali->buf.head < denali->buf.tail)
1214 		result = denali->buf.buf[denali->buf.head++];
1215 
1216 	return result;
1217 }
1218 
denali_select_chip(struct mtd_info * mtd,int chip)1219 static void denali_select_chip(struct mtd_info *mtd, int chip)
1220 {
1221 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1222 
1223 	spin_lock_irq(&denali->irq_lock);
1224 	denali->flash_bank = chip;
1225 	spin_unlock_irq(&denali->irq_lock);
1226 }
1227 
denali_waitfunc(struct mtd_info * mtd,struct nand_chip * chip)1228 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1229 {
1230 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1231 	int status = denali->status;
1232 	denali->status = 0;
1233 
1234 	return status;
1235 }
1236 
denali_erase(struct mtd_info * mtd,int page)1237 static void denali_erase(struct mtd_info *mtd, int page)
1238 {
1239 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1240 
1241 	uint32_t cmd = 0x0, irq_status = 0;
1242 
1243 	/* clear interrupts */
1244 	clear_interrupts(denali);
1245 
1246 	/* setup page read request for access type */
1247 	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1248 	index_addr(denali, (uint32_t)cmd, 0x1);
1249 
1250 	/* wait for erase to complete or failure to occur */
1251 	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1252 					INTR_STATUS__ERASE_FAIL);
1253 
1254 	denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
1255 						NAND_STATUS_FAIL : PASS;
1256 }
1257 
denali_cmdfunc(struct mtd_info * mtd,unsigned int cmd,int col,int page)1258 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1259 			   int page)
1260 {
1261 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1262 	uint32_t addr, id;
1263 	int i;
1264 
1265 	switch (cmd) {
1266 	case NAND_CMD_PAGEPROG:
1267 		break;
1268 	case NAND_CMD_STATUS:
1269 		read_status(denali);
1270 		break;
1271 	case NAND_CMD_READID:
1272 	case NAND_CMD_PARAM:
1273 		reset_buf(denali);
1274 		/*sometimes ManufactureId read from register is not right
1275 		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1276 		 * So here we send READID cmd to NAND insteand
1277 		 * */
1278 		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1279 		index_addr(denali, (uint32_t)addr | 0, 0x90);
1280 		index_addr(denali, (uint32_t)addr | 1, 0);
1281 		for (i = 0; i < 5; i++) {
1282 			index_addr_read_data(denali,
1283 						(uint32_t)addr | 2,
1284 						&id);
1285 			write_byte_to_buf(denali, id);
1286 		}
1287 		break;
1288 	case NAND_CMD_READ0:
1289 	case NAND_CMD_SEQIN:
1290 		denali->page = page;
1291 		break;
1292 	case NAND_CMD_RESET:
1293 		reset_bank(denali);
1294 		break;
1295 	case NAND_CMD_READOOB:
1296 		/* TODO: Read OOB data */
1297 		break;
1298 	default:
1299 		pr_err(": unsupported command received 0x%x\n", cmd);
1300 		break;
1301 	}
1302 }
1303 
1304 /* stubs for ECC functions not used by the NAND core */
denali_ecc_calculate(struct mtd_info * mtd,const uint8_t * data,uint8_t * ecc_code)1305 static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1306 				uint8_t *ecc_code)
1307 {
1308 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1309 	dev_err(denali->dev,
1310 			"denali_ecc_calculate called unexpectedly\n");
1311 	BUG();
1312 	return -EIO;
1313 }
1314 
denali_ecc_correct(struct mtd_info * mtd,uint8_t * data,uint8_t * read_ecc,uint8_t * calc_ecc)1315 static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1316 				uint8_t *read_ecc, uint8_t *calc_ecc)
1317 {
1318 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1319 	dev_err(denali->dev,
1320 			"denali_ecc_correct called unexpectedly\n");
1321 	BUG();
1322 	return -EIO;
1323 }
1324 
denali_ecc_hwctl(struct mtd_info * mtd,int mode)1325 static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1326 {
1327 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1328 	dev_err(denali->dev,
1329 			"denali_ecc_hwctl called unexpectedly\n");
1330 	BUG();
1331 }
1332 /* end NAND core entry points */
1333 
1334 /* Initialization code to bring the device up to a known good state */
denali_hw_init(struct denali_nand_info * denali)1335 static void denali_hw_init(struct denali_nand_info *denali)
1336 {
1337 	/* tell driver how many bit controller will skip before
1338 	 * writing ECC code in OOB, this register may be already
1339 	 * set by firmware. So we read this value out.
1340 	 * if this value is 0, just let it be.
1341 	 * */
1342 	denali->bbtskipbytes = ioread32(denali->flash_reg +
1343 						SPARE_AREA_SKIP_BYTES);
1344 	detect_max_banks(denali);
1345 	denali_nand_reset(denali);
1346 	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1347 	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1348 			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1349 
1350 	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1351 
1352 	/* Should set value for these registers when init */
1353 	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1354 	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1355 	denali_nand_timing_set(denali);
1356 	denali_irq_init(denali);
1357 }
1358 
1359 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1360  * but denali controller in MRST only support 15bit and 8bit ECC
1361  * correction
1362  * */
1363 #define ECC_8BITS	14
1364 static struct nand_ecclayout nand_8bit_oob = {
1365 	.eccbytes = 14,
1366 };
1367 
1368 #define ECC_15BITS	26
1369 static struct nand_ecclayout nand_15bit_oob = {
1370 	.eccbytes = 26,
1371 };
1372 
1373 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1374 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1375 
1376 static struct nand_bbt_descr bbt_main_descr = {
1377 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1378 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1379 	.offs =	8,
1380 	.len = 4,
1381 	.veroffs = 12,
1382 	.maxblocks = 4,
1383 	.pattern = bbt_pattern,
1384 };
1385 
1386 static struct nand_bbt_descr bbt_mirror_descr = {
1387 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1388 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1389 	.offs =	8,
1390 	.len = 4,
1391 	.veroffs = 12,
1392 	.maxblocks = 4,
1393 	.pattern = mirror_pattern,
1394 };
1395 
1396 /* initialize driver data structures */
denali_drv_init(struct denali_nand_info * denali)1397 void denali_drv_init(struct denali_nand_info *denali)
1398 {
1399 	denali->idx = 0;
1400 
1401 	/* setup interrupt handler */
1402 	/* the completion object will be used to notify
1403 	 * the callee that the interrupt is done */
1404 	init_completion(&denali->complete);
1405 
1406 	/* the spinlock will be used to synchronize the ISR
1407 	 * with any element that might be access shared
1408 	 * data (interrupt status) */
1409 	spin_lock_init(&denali->irq_lock);
1410 
1411 	/* indicate that MTD has not selected a valid bank yet */
1412 	denali->flash_bank = CHIP_SELECT_INVALID;
1413 
1414 	/* initialize our irq_status variable to indicate no interrupts */
1415 	denali->irq_status = 0;
1416 }
1417 
denali_init(struct denali_nand_info * denali)1418 int denali_init(struct denali_nand_info *denali)
1419 {
1420 	int ret;
1421 
1422 	if (denali->platform == INTEL_CE4100) {
1423 		/* Due to a silicon limitation, we can only support
1424 		 * ONFI timing mode 1 and below.
1425 		 */
1426 		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1427 			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1428 			return -EINVAL;
1429 		}
1430 	}
1431 
1432 	/* Is 32-bit DMA supported? */
1433 	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1434 	if (ret) {
1435 		pr_err("Spectra: no usable DMA configuration\n");
1436 		return ret;
1437 	}
1438 	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1439 					     DENALI_BUF_SIZE,
1440 					     DMA_BIDIRECTIONAL);
1441 
1442 	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1443 		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1444 		return -EIO;
1445 	}
1446 	denali->mtd.dev.parent = denali->dev;
1447 	denali_hw_init(denali);
1448 	denali_drv_init(denali);
1449 
1450 	/* denali_isr register is done after all the hardware
1451 	 * initilization is finished*/
1452 	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1453 			DENALI_NAND_NAME, denali)) {
1454 		pr_err("Spectra: Unable to allocate IRQ\n");
1455 		return -ENODEV;
1456 	}
1457 
1458 	/* now that our ISR is registered, we can enable interrupts */
1459 	denali_set_intr_modes(denali, true);
1460 	denali->mtd.name = "denali-nand";
1461 	denali->mtd.owner = THIS_MODULE;
1462 	denali->mtd.priv = &denali->nand;
1463 
1464 	/* register the driver with the NAND core subsystem */
1465 	denali->nand.select_chip = denali_select_chip;
1466 	denali->nand.cmdfunc = denali_cmdfunc;
1467 	denali->nand.read_byte = denali_read_byte;
1468 	denali->nand.waitfunc = denali_waitfunc;
1469 
1470 	/* scan for NAND devices attached to the controller
1471 	 * this is the first stage in a two step process to register
1472 	 * with the nand subsystem */
1473 	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1474 		ret = -ENXIO;
1475 		goto failed_req_irq;
1476 	}
1477 
1478 	/* MTD supported page sizes vary by kernel. We validate our
1479 	 * kernel supports the device here.
1480 	 */
1481 	if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1482 		ret = -ENODEV;
1483 		pr_err("Spectra: device size not supported by this version of MTD.");
1484 		goto failed_req_irq;
1485 	}
1486 
1487 	/* support for multi nand
1488 	 * MTD known nothing about multi nand,
1489 	 * so we should tell it the real pagesize
1490 	 * and anything necessery
1491 	 */
1492 	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1493 	denali->nand.chipsize <<= (denali->devnum - 1);
1494 	denali->nand.page_shift += (denali->devnum - 1);
1495 	denali->nand.pagemask = (denali->nand.chipsize >>
1496 						denali->nand.page_shift) - 1;
1497 	denali->nand.bbt_erase_shift += (denali->devnum - 1);
1498 	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1499 	denali->nand.chip_shift += (denali->devnum - 1);
1500 	denali->mtd.writesize <<= (denali->devnum - 1);
1501 	denali->mtd.oobsize <<= (denali->devnum - 1);
1502 	denali->mtd.erasesize <<= (denali->devnum - 1);
1503 	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1504 	denali->bbtskipbytes *= denali->devnum;
1505 
1506 	/* second stage of the NAND scan
1507 	 * this stage requires information regarding ECC and
1508 	 * bad block management. */
1509 
1510 	/* Bad block management */
1511 	denali->nand.bbt_td = &bbt_main_descr;
1512 	denali->nand.bbt_md = &bbt_mirror_descr;
1513 
1514 	/* skip the scan for now until we have OOB read and write support */
1515 	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1516 	denali->nand.options |= NAND_SKIP_BBTSCAN;
1517 	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1518 
1519 	/* Denali Controller only support 15bit and 8bit ECC in MRST,
1520 	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1521 	 * SLC if possible.
1522 	 * */
1523 	if (denali->nand.cellinfo & 0xc &&
1524 			(denali->mtd.oobsize > (denali->bbtskipbytes +
1525 			ECC_15BITS * (denali->mtd.writesize /
1526 			ECC_SECTOR_SIZE)))) {
1527 		/* if MLC OOB size is large enough, use 15bit ECC*/
1528 		denali->nand.ecc.strength = 15;
1529 		denali->nand.ecc.layout = &nand_15bit_oob;
1530 		denali->nand.ecc.bytes = ECC_15BITS;
1531 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1532 	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1533 			ECC_8BITS * (denali->mtd.writesize /
1534 			ECC_SECTOR_SIZE))) {
1535 		pr_err("Your NAND chip OOB is not large enough to \
1536 				contain 8bit ECC correction codes");
1537 		goto failed_req_irq;
1538 	} else {
1539 		denali->nand.ecc.strength = 8;
1540 		denali->nand.ecc.layout = &nand_8bit_oob;
1541 		denali->nand.ecc.bytes = ECC_8BITS;
1542 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1543 	}
1544 
1545 	denali->nand.ecc.bytes *= denali->devnum;
1546 	denali->nand.ecc.strength *= denali->devnum;
1547 	denali->nand.ecc.layout->eccbytes *=
1548 		denali->mtd.writesize / ECC_SECTOR_SIZE;
1549 	denali->nand.ecc.layout->oobfree[0].offset =
1550 		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1551 	denali->nand.ecc.layout->oobfree[0].length =
1552 		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1553 		denali->bbtskipbytes;
1554 
1555 	/* Let driver know the total blocks number and
1556 	 * how many blocks contained by each nand chip.
1557 	 * blksperchip will help driver to know how many
1558 	 * blocks is taken by FW.
1559 	 * */
1560 	denali->totalblks = denali->mtd.size >>
1561 				denali->nand.phys_erase_shift;
1562 	denali->blksperchip = denali->totalblks / denali->nand.numchips;
1563 
1564 	/* These functions are required by the NAND core framework, otherwise,
1565 	 * the NAND core will assert. However, we don't need them, so we'll stub
1566 	 * them out. */
1567 	denali->nand.ecc.calculate = denali_ecc_calculate;
1568 	denali->nand.ecc.correct = denali_ecc_correct;
1569 	denali->nand.ecc.hwctl = denali_ecc_hwctl;
1570 
1571 	/* override the default read operations */
1572 	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1573 	denali->nand.ecc.read_page = denali_read_page;
1574 	denali->nand.ecc.read_page_raw = denali_read_page_raw;
1575 	denali->nand.ecc.write_page = denali_write_page;
1576 	denali->nand.ecc.write_page_raw = denali_write_page_raw;
1577 	denali->nand.ecc.read_oob = denali_read_oob;
1578 	denali->nand.ecc.write_oob = denali_write_oob;
1579 	denali->nand.erase_cmd = denali_erase;
1580 
1581 	if (nand_scan_tail(&denali->mtd)) {
1582 		ret = -ENXIO;
1583 		goto failed_req_irq;
1584 	}
1585 
1586 	ret = mtd_device_register(&denali->mtd, NULL, 0);
1587 	if (ret) {
1588 		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1589 				ret);
1590 		goto failed_req_irq;
1591 	}
1592 	return 0;
1593 
1594 failed_req_irq:
1595 	denali_irq_cleanup(denali->irq, denali);
1596 
1597 	return ret;
1598 }
1599 EXPORT_SYMBOL(denali_init);
1600 
1601 /* driver exit point */
denali_remove(struct denali_nand_info * denali)1602 void denali_remove(struct denali_nand_info *denali)
1603 {
1604 	denali_irq_cleanup(denali->irq, denali);
1605 	dma_unmap_single(denali->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1606 			DMA_BIDIRECTIONAL);
1607 }
1608 EXPORT_SYMBOL(denali_remove);
1609