• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/mtd/nand/diskonchip.c
3  *
4  * (C) 2003 Red Hat, Inc.
5  * (C) 2004 Dan Brown <dan_brown@ieee.org>
6  * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7  *
8  * Author: David Woodhouse <dwmw2@infradead.org>
9  * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10  * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11  *
12  * Error correction code lifted from the old docecc code
13  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14  * Copyright (C) 2000 Netgem S.A.
15  * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16  *
17  * Interface to generic NAND code for M-Systems DiskOnChip devices
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <asm/io.h>
28 
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
35 
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
39 #endif
40 
41 static unsigned long __initdata doc_locations[] = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else /*  CONFIG_MTD_DOCPROBE_HIGH */
50 	0xc8000, 0xca000, 0xcc000, 0xce000,
51 	0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 	0xd8000, 0xda000, 0xdc000, 0xde000,
53 	0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 	0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif /*  CONFIG_MTD_DOCPROBE_HIGH */
56 #endif
57 	0xffffffff };
58 
59 static struct mtd_info *doclist = NULL;
60 
61 struct doc_priv {
62 	void __iomem *virtadr;
63 	unsigned long physadr;
64 	u_char ChipID;
65 	u_char CDSNControl;
66 	int chips_per_floor;	/* The number of chips detected on each floor */
67 	int curfloor;
68 	int curchip;
69 	int mh0_page;
70 	int mh1_page;
71 	struct mtd_info *nextdoc;
72 };
73 
74 /* This is the syndrome computed by the HW ecc generator upon reading an empty
75    page, one with all 0xff for data and stored ecc code. */
76 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
77 
78 /* This is the ecc value computed by the HW ecc generator upon writing an empty
79    page, one with all 0xff for data. */
80 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
81 
82 #define INFTL_BBT_RESERVED_BLOCKS 4
83 
84 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
85 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
86 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
87 
88 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
89 			      unsigned int bitmask);
90 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
91 
92 static int debug = 0;
93 module_param(debug, int, 0);
94 
95 static int try_dword = 1;
96 module_param(try_dword, int, 0);
97 
98 static int no_ecc_failures = 0;
99 module_param(no_ecc_failures, int, 0);
100 
101 static int no_autopart = 0;
102 module_param(no_autopart, int, 0);
103 
104 static int show_firmware_partition = 0;
105 module_param(show_firmware_partition, int, 0);
106 
107 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
108 static int inftl_bbt_write = 1;
109 #else
110 static int inftl_bbt_write = 0;
111 #endif
112 module_param(inftl_bbt_write, int, 0);
113 
114 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
115 module_param(doc_config_location, ulong, 0);
116 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
117 
118 /* Sector size for HW ECC */
119 #define SECTOR_SIZE 512
120 /* The sector bytes are packed into NB_DATA 10 bit words */
121 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
122 /* Number of roots */
123 #define NROOTS 4
124 /* First consective root */
125 #define FCR 510
126 /* Number of symbols */
127 #define NN 1023
128 
129 /* the Reed Solomon control structure */
130 static struct rs_control *rs_decoder;
131 
132 /*
133  * The HW decoder in the DoC ASIC's provides us a error syndrome,
134  * which we must convert to a standard syndrome usable by the generic
135  * Reed-Solomon library code.
136  *
137  * Fabrice Bellard figured this out in the old docecc code. I added
138  * some comments, improved a minor bit and converted it to make use
139  * of the generic Reed-Solomon library. tglx
140  */
doc_ecc_decode(struct rs_control * rs,uint8_t * data,uint8_t * ecc)141 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
142 {
143 	int i, j, nerr, errpos[8];
144 	uint8_t parity;
145 	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
146 
147 	memset(syn, 0, sizeof(syn));
148 	/* Convert the ecc bytes into words */
149 	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
150 	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
151 	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
152 	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
153 	parity = ecc[1];
154 
155 	/* Initialize the syndrome buffer */
156 	for (i = 0; i < NROOTS; i++)
157 		s[i] = ds[0];
158 	/*
159 	 *  Evaluate
160 	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
161 	 *  where x = alpha^(FCR + i)
162 	 */
163 	for (j = 1; j < NROOTS; j++) {
164 		if (ds[j] == 0)
165 			continue;
166 		tmp = rs->index_of[ds[j]];
167 		for (i = 0; i < NROOTS; i++)
168 			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
169 	}
170 
171 	/* Calc syn[i] = s[i] / alpha^(v + i) */
172 	for (i = 0; i < NROOTS; i++) {
173 		if (s[i])
174 			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
175 	}
176 	/* Call the decoder library */
177 	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
178 
179 	/* Incorrectable errors ? */
180 	if (nerr < 0)
181 		return nerr;
182 
183 	/*
184 	 * Correct the errors. The bitpositions are a bit of magic,
185 	 * but they are given by the design of the de/encoder circuit
186 	 * in the DoC ASIC's.
187 	 */
188 	for (i = 0; i < nerr; i++) {
189 		int index, bitpos, pos = 1015 - errpos[i];
190 		uint8_t val;
191 		if (pos >= NB_DATA && pos < 1019)
192 			continue;
193 		if (pos < NB_DATA) {
194 			/* extract bit position (MSB first) */
195 			pos = 10 * (NB_DATA - 1 - pos) - 6;
196 			/* now correct the following 10 bits. At most two bytes
197 			   can be modified since pos is even */
198 			index = (pos >> 3) ^ 1;
199 			bitpos = pos & 7;
200 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
201 				val = (uint8_t) (errval[i] >> (2 + bitpos));
202 				parity ^= val;
203 				if (index < SECTOR_SIZE)
204 					data[index] ^= val;
205 			}
206 			index = ((pos >> 3) + 1) ^ 1;
207 			bitpos = (bitpos + 10) & 7;
208 			if (bitpos == 0)
209 				bitpos = 8;
210 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
211 				val = (uint8_t) (errval[i] << (8 - bitpos));
212 				parity ^= val;
213 				if (index < SECTOR_SIZE)
214 					data[index] ^= val;
215 			}
216 		}
217 	}
218 	/* If the parity is wrong, no rescue possible */
219 	return parity ? -EBADMSG : nerr;
220 }
221 
DoC_Delay(struct doc_priv * doc,unsigned short cycles)222 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
223 {
224 	volatile char dummy;
225 	int i;
226 
227 	for (i = 0; i < cycles; i++) {
228 		if (DoC_is_Millennium(doc))
229 			dummy = ReadDOC(doc->virtadr, NOP);
230 		else if (DoC_is_MillenniumPlus(doc))
231 			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
232 		else
233 			dummy = ReadDOC(doc->virtadr, DOCStatus);
234 	}
235 
236 }
237 
238 #define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
239 
240 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
_DoC_WaitReady(struct doc_priv * doc)241 static int _DoC_WaitReady(struct doc_priv *doc)
242 {
243 	void __iomem *docptr = doc->virtadr;
244 	unsigned long timeo = jiffies + (HZ * 10);
245 
246 	if (debug)
247 		printk("_DoC_WaitReady...\n");
248 	/* Out-of-line routine to wait for chip response */
249 	if (DoC_is_MillenniumPlus(doc)) {
250 		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
251 			if (time_after(jiffies, timeo)) {
252 				printk("_DoC_WaitReady timed out.\n");
253 				return -EIO;
254 			}
255 			udelay(1);
256 			cond_resched();
257 		}
258 	} else {
259 		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
260 			if (time_after(jiffies, timeo)) {
261 				printk("_DoC_WaitReady timed out.\n");
262 				return -EIO;
263 			}
264 			udelay(1);
265 			cond_resched();
266 		}
267 	}
268 
269 	return 0;
270 }
271 
DoC_WaitReady(struct doc_priv * doc)272 static inline int DoC_WaitReady(struct doc_priv *doc)
273 {
274 	void __iomem *docptr = doc->virtadr;
275 	int ret = 0;
276 
277 	if (DoC_is_MillenniumPlus(doc)) {
278 		DoC_Delay(doc, 4);
279 
280 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
281 			/* Call the out-of-line routine to wait */
282 			ret = _DoC_WaitReady(doc);
283 	} else {
284 		DoC_Delay(doc, 4);
285 
286 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
287 			/* Call the out-of-line routine to wait */
288 			ret = _DoC_WaitReady(doc);
289 		DoC_Delay(doc, 2);
290 	}
291 
292 	if (debug)
293 		printk("DoC_WaitReady OK\n");
294 	return ret;
295 }
296 
doc2000_write_byte(struct mtd_info * mtd,u_char datum)297 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
298 {
299 	struct nand_chip *this = mtd->priv;
300 	struct doc_priv *doc = this->priv;
301 	void __iomem *docptr = doc->virtadr;
302 
303 	if (debug)
304 		printk("write_byte %02x\n", datum);
305 	WriteDOC(datum, docptr, CDSNSlowIO);
306 	WriteDOC(datum, docptr, 2k_CDSN_IO);
307 }
308 
doc2000_read_byte(struct mtd_info * mtd)309 static u_char doc2000_read_byte(struct mtd_info *mtd)
310 {
311 	struct nand_chip *this = mtd->priv;
312 	struct doc_priv *doc = this->priv;
313 	void __iomem *docptr = doc->virtadr;
314 	u_char ret;
315 
316 	ReadDOC(docptr, CDSNSlowIO);
317 	DoC_Delay(doc, 2);
318 	ret = ReadDOC(docptr, 2k_CDSN_IO);
319 	if (debug)
320 		printk("read_byte returns %02x\n", ret);
321 	return ret;
322 }
323 
doc2000_writebuf(struct mtd_info * mtd,const u_char * buf,int len)324 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
325 {
326 	struct nand_chip *this = mtd->priv;
327 	struct doc_priv *doc = this->priv;
328 	void __iomem *docptr = doc->virtadr;
329 	int i;
330 	if (debug)
331 		printk("writebuf of %d bytes: ", len);
332 	for (i = 0; i < len; i++) {
333 		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
334 		if (debug && i < 16)
335 			printk("%02x ", buf[i]);
336 	}
337 	if (debug)
338 		printk("\n");
339 }
340 
doc2000_readbuf(struct mtd_info * mtd,u_char * buf,int len)341 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
342 {
343 	struct nand_chip *this = mtd->priv;
344 	struct doc_priv *doc = this->priv;
345 	void __iomem *docptr = doc->virtadr;
346 	int i;
347 
348 	if (debug)
349 		printk("readbuf of %d bytes: ", len);
350 
351 	for (i = 0; i < len; i++) {
352 		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
353 	}
354 }
355 
doc2000_readbuf_dword(struct mtd_info * mtd,u_char * buf,int len)356 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
357 {
358 	struct nand_chip *this = mtd->priv;
359 	struct doc_priv *doc = this->priv;
360 	void __iomem *docptr = doc->virtadr;
361 	int i;
362 
363 	if (debug)
364 		printk("readbuf_dword of %d bytes: ", len);
365 
366 	if (unlikely((((unsigned long)buf) | len) & 3)) {
367 		for (i = 0; i < len; i++) {
368 			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
369 		}
370 	} else {
371 		for (i = 0; i < len; i += 4) {
372 			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
373 		}
374 	}
375 }
376 
doc200x_ident_chip(struct mtd_info * mtd,int nr)377 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
378 {
379 	struct nand_chip *this = mtd->priv;
380 	struct doc_priv *doc = this->priv;
381 	uint16_t ret;
382 
383 	doc200x_select_chip(mtd, nr);
384 	doc200x_hwcontrol(mtd, NAND_CMD_READID,
385 			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
386 	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
387 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
388 
389 	/* We can't use dev_ready here, but at least we wait for the
390 	 * command to complete
391 	 */
392 	udelay(50);
393 
394 	ret = this->read_byte(mtd) << 8;
395 	ret |= this->read_byte(mtd);
396 
397 	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
398 		/* First chip probe. See if we get same results by 32-bit access */
399 		union {
400 			uint32_t dword;
401 			uint8_t byte[4];
402 		} ident;
403 		void __iomem *docptr = doc->virtadr;
404 
405 		doc200x_hwcontrol(mtd, NAND_CMD_READID,
406 				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
407 		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
408 		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
409 				  NAND_NCE | NAND_CTRL_CHANGE);
410 
411 		udelay(50);
412 
413 		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
414 		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
415 			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
416 			this->read_buf = &doc2000_readbuf_dword;
417 		}
418 	}
419 
420 	return ret;
421 }
422 
doc2000_count_chips(struct mtd_info * mtd)423 static void __init doc2000_count_chips(struct mtd_info *mtd)
424 {
425 	struct nand_chip *this = mtd->priv;
426 	struct doc_priv *doc = this->priv;
427 	uint16_t mfrid;
428 	int i;
429 
430 	/* Max 4 chips per floor on DiskOnChip 2000 */
431 	doc->chips_per_floor = 4;
432 
433 	/* Find out what the first chip is */
434 	mfrid = doc200x_ident_chip(mtd, 0);
435 
436 	/* Find how many chips in each floor. */
437 	for (i = 1; i < 4; i++) {
438 		if (doc200x_ident_chip(mtd, i) != mfrid)
439 			break;
440 	}
441 	doc->chips_per_floor = i;
442 	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
443 }
444 
doc200x_wait(struct mtd_info * mtd,struct nand_chip * this)445 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
446 {
447 	struct doc_priv *doc = this->priv;
448 
449 	int status;
450 
451 	DoC_WaitReady(doc);
452 	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
453 	DoC_WaitReady(doc);
454 	status = (int)this->read_byte(mtd);
455 
456 	return status;
457 }
458 
doc2001_write_byte(struct mtd_info * mtd,u_char datum)459 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
460 {
461 	struct nand_chip *this = mtd->priv;
462 	struct doc_priv *doc = this->priv;
463 	void __iomem *docptr = doc->virtadr;
464 
465 	WriteDOC(datum, docptr, CDSNSlowIO);
466 	WriteDOC(datum, docptr, Mil_CDSN_IO);
467 	WriteDOC(datum, docptr, WritePipeTerm);
468 }
469 
doc2001_read_byte(struct mtd_info * mtd)470 static u_char doc2001_read_byte(struct mtd_info *mtd)
471 {
472 	struct nand_chip *this = mtd->priv;
473 	struct doc_priv *doc = this->priv;
474 	void __iomem *docptr = doc->virtadr;
475 
476 	//ReadDOC(docptr, CDSNSlowIO);
477 	/* 11.4.5 -- delay twice to allow extended length cycle */
478 	DoC_Delay(doc, 2);
479 	ReadDOC(docptr, ReadPipeInit);
480 	//return ReadDOC(docptr, Mil_CDSN_IO);
481 	return ReadDOC(docptr, LastDataRead);
482 }
483 
doc2001_writebuf(struct mtd_info * mtd,const u_char * buf,int len)484 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
485 {
486 	struct nand_chip *this = mtd->priv;
487 	struct doc_priv *doc = this->priv;
488 	void __iomem *docptr = doc->virtadr;
489 	int i;
490 
491 	for (i = 0; i < len; i++)
492 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
493 	/* Terminate write pipeline */
494 	WriteDOC(0x00, docptr, WritePipeTerm);
495 }
496 
doc2001_readbuf(struct mtd_info * mtd,u_char * buf,int len)497 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
498 {
499 	struct nand_chip *this = mtd->priv;
500 	struct doc_priv *doc = this->priv;
501 	void __iomem *docptr = doc->virtadr;
502 	int i;
503 
504 	/* Start read pipeline */
505 	ReadDOC(docptr, ReadPipeInit);
506 
507 	for (i = 0; i < len - 1; i++)
508 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
509 
510 	/* Terminate read pipeline */
511 	buf[i] = ReadDOC(docptr, LastDataRead);
512 }
513 
doc2001plus_read_byte(struct mtd_info * mtd)514 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
515 {
516 	struct nand_chip *this = mtd->priv;
517 	struct doc_priv *doc = this->priv;
518 	void __iomem *docptr = doc->virtadr;
519 	u_char ret;
520 
521 	ReadDOC(docptr, Mplus_ReadPipeInit);
522 	ReadDOC(docptr, Mplus_ReadPipeInit);
523 	ret = ReadDOC(docptr, Mplus_LastDataRead);
524 	if (debug)
525 		printk("read_byte returns %02x\n", ret);
526 	return ret;
527 }
528 
doc2001plus_writebuf(struct mtd_info * mtd,const u_char * buf,int len)529 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
530 {
531 	struct nand_chip *this = mtd->priv;
532 	struct doc_priv *doc = this->priv;
533 	void __iomem *docptr = doc->virtadr;
534 	int i;
535 
536 	if (debug)
537 		printk("writebuf of %d bytes: ", len);
538 	for (i = 0; i < len; i++) {
539 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
540 		if (debug && i < 16)
541 			printk("%02x ", buf[i]);
542 	}
543 	if (debug)
544 		printk("\n");
545 }
546 
doc2001plus_readbuf(struct mtd_info * mtd,u_char * buf,int len)547 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
548 {
549 	struct nand_chip *this = mtd->priv;
550 	struct doc_priv *doc = this->priv;
551 	void __iomem *docptr = doc->virtadr;
552 	int i;
553 
554 	if (debug)
555 		printk("readbuf of %d bytes: ", len);
556 
557 	/* Start read pipeline */
558 	ReadDOC(docptr, Mplus_ReadPipeInit);
559 	ReadDOC(docptr, Mplus_ReadPipeInit);
560 
561 	for (i = 0; i < len - 2; i++) {
562 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
563 		if (debug && i < 16)
564 			printk("%02x ", buf[i]);
565 	}
566 
567 	/* Terminate read pipeline */
568 	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
569 	if (debug && i < 16)
570 		printk("%02x ", buf[len - 2]);
571 	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
572 	if (debug && i < 16)
573 		printk("%02x ", buf[len - 1]);
574 	if (debug)
575 		printk("\n");
576 }
577 
doc2001plus_select_chip(struct mtd_info * mtd,int chip)578 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
579 {
580 	struct nand_chip *this = mtd->priv;
581 	struct doc_priv *doc = this->priv;
582 	void __iomem *docptr = doc->virtadr;
583 	int floor = 0;
584 
585 	if (debug)
586 		printk("select chip (%d)\n", chip);
587 
588 	if (chip == -1) {
589 		/* Disable flash internally */
590 		WriteDOC(0, docptr, Mplus_FlashSelect);
591 		return;
592 	}
593 
594 	floor = chip / doc->chips_per_floor;
595 	chip -= (floor * doc->chips_per_floor);
596 
597 	/* Assert ChipEnable and deassert WriteProtect */
598 	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
599 	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
600 
601 	doc->curchip = chip;
602 	doc->curfloor = floor;
603 }
604 
doc200x_select_chip(struct mtd_info * mtd,int chip)605 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
606 {
607 	struct nand_chip *this = mtd->priv;
608 	struct doc_priv *doc = this->priv;
609 	void __iomem *docptr = doc->virtadr;
610 	int floor = 0;
611 
612 	if (debug)
613 		printk("select chip (%d)\n", chip);
614 
615 	if (chip == -1)
616 		return;
617 
618 	floor = chip / doc->chips_per_floor;
619 	chip -= (floor * doc->chips_per_floor);
620 
621 	/* 11.4.4 -- deassert CE before changing chip */
622 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
623 
624 	WriteDOC(floor, docptr, FloorSelect);
625 	WriteDOC(chip, docptr, CDSNDeviceSelect);
626 
627 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
628 
629 	doc->curchip = chip;
630 	doc->curfloor = floor;
631 }
632 
633 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
634 
doc200x_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)635 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
636 			      unsigned int ctrl)
637 {
638 	struct nand_chip *this = mtd->priv;
639 	struct doc_priv *doc = this->priv;
640 	void __iomem *docptr = doc->virtadr;
641 
642 	if (ctrl & NAND_CTRL_CHANGE) {
643 		doc->CDSNControl &= ~CDSN_CTRL_MSK;
644 		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
645 		if (debug)
646 			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
647 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
648 		/* 11.4.3 -- 4 NOPs after CSDNControl write */
649 		DoC_Delay(doc, 4);
650 	}
651 	if (cmd != NAND_CMD_NONE) {
652 		if (DoC_is_2000(doc))
653 			doc2000_write_byte(mtd, cmd);
654 		else
655 			doc2001_write_byte(mtd, cmd);
656 	}
657 }
658 
doc2001plus_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)659 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
660 {
661 	struct nand_chip *this = mtd->priv;
662 	struct doc_priv *doc = this->priv;
663 	void __iomem *docptr = doc->virtadr;
664 
665 	/*
666 	 * Must terminate write pipeline before sending any commands
667 	 * to the device.
668 	 */
669 	if (command == NAND_CMD_PAGEPROG) {
670 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
671 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
672 	}
673 
674 	/*
675 	 * Write out the command to the device.
676 	 */
677 	if (command == NAND_CMD_SEQIN) {
678 		int readcmd;
679 
680 		if (column >= mtd->writesize) {
681 			/* OOB area */
682 			column -= mtd->writesize;
683 			readcmd = NAND_CMD_READOOB;
684 		} else if (column < 256) {
685 			/* First 256 bytes --> READ0 */
686 			readcmd = NAND_CMD_READ0;
687 		} else {
688 			column -= 256;
689 			readcmd = NAND_CMD_READ1;
690 		}
691 		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
692 	}
693 	WriteDOC(command, docptr, Mplus_FlashCmd);
694 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
695 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
696 
697 	if (column != -1 || page_addr != -1) {
698 		/* Serially input address */
699 		if (column != -1) {
700 			/* Adjust columns for 16 bit buswidth */
701 			if (this->options & NAND_BUSWIDTH_16)
702 				column >>= 1;
703 			WriteDOC(column, docptr, Mplus_FlashAddress);
704 		}
705 		if (page_addr != -1) {
706 			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
707 			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
708 			/* One more address cycle for higher density devices */
709 			if (this->chipsize & 0x0c000000) {
710 				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
711 				printk("high density\n");
712 			}
713 		}
714 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
715 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
716 		/* deassert ALE */
717 		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
718 		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
719 			WriteDOC(0, docptr, Mplus_FlashControl);
720 	}
721 
722 	/*
723 	 * program and erase have their own busy handlers
724 	 * status and sequential in needs no delay
725 	 */
726 	switch (command) {
727 
728 	case NAND_CMD_PAGEPROG:
729 	case NAND_CMD_ERASE1:
730 	case NAND_CMD_ERASE2:
731 	case NAND_CMD_SEQIN:
732 	case NAND_CMD_STATUS:
733 		return;
734 
735 	case NAND_CMD_RESET:
736 		if (this->dev_ready)
737 			break;
738 		udelay(this->chip_delay);
739 		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
740 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
741 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
742 		while (!(this->read_byte(mtd) & 0x40)) ;
743 		return;
744 
745 		/* This applies to read commands */
746 	default:
747 		/*
748 		 * If we don't have access to the busy pin, we apply the given
749 		 * command delay
750 		 */
751 		if (!this->dev_ready) {
752 			udelay(this->chip_delay);
753 			return;
754 		}
755 	}
756 
757 	/* Apply this short delay always to ensure that we do wait tWB in
758 	 * any case on any machine. */
759 	ndelay(100);
760 	/* wait until command is processed */
761 	while (!this->dev_ready(mtd)) ;
762 }
763 
doc200x_dev_ready(struct mtd_info * mtd)764 static int doc200x_dev_ready(struct mtd_info *mtd)
765 {
766 	struct nand_chip *this = mtd->priv;
767 	struct doc_priv *doc = this->priv;
768 	void __iomem *docptr = doc->virtadr;
769 
770 	if (DoC_is_MillenniumPlus(doc)) {
771 		/* 11.4.2 -- must NOP four times before checking FR/B# */
772 		DoC_Delay(doc, 4);
773 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
774 			if (debug)
775 				printk("not ready\n");
776 			return 0;
777 		}
778 		if (debug)
779 			printk("was ready\n");
780 		return 1;
781 	} else {
782 		/* 11.4.2 -- must NOP four times before checking FR/B# */
783 		DoC_Delay(doc, 4);
784 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
785 			if (debug)
786 				printk("not ready\n");
787 			return 0;
788 		}
789 		/* 11.4.2 -- Must NOP twice if it's ready */
790 		DoC_Delay(doc, 2);
791 		if (debug)
792 			printk("was ready\n");
793 		return 1;
794 	}
795 }
796 
doc200x_block_bad(struct mtd_info * mtd,loff_t ofs,int getchip)797 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
798 {
799 	/* This is our last resort if we couldn't find or create a BBT.  Just
800 	   pretend all blocks are good. */
801 	return 0;
802 }
803 
doc200x_enable_hwecc(struct mtd_info * mtd,int mode)804 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
805 {
806 	struct nand_chip *this = mtd->priv;
807 	struct doc_priv *doc = this->priv;
808 	void __iomem *docptr = doc->virtadr;
809 
810 	/* Prime the ECC engine */
811 	switch (mode) {
812 	case NAND_ECC_READ:
813 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
814 		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
815 		break;
816 	case NAND_ECC_WRITE:
817 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
818 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
819 		break;
820 	}
821 }
822 
doc2001plus_enable_hwecc(struct mtd_info * mtd,int mode)823 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
824 {
825 	struct nand_chip *this = mtd->priv;
826 	struct doc_priv *doc = this->priv;
827 	void __iomem *docptr = doc->virtadr;
828 
829 	/* Prime the ECC engine */
830 	switch (mode) {
831 	case NAND_ECC_READ:
832 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
833 		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
834 		break;
835 	case NAND_ECC_WRITE:
836 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
837 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
838 		break;
839 	}
840 }
841 
842 /* This code is only called on write */
doc200x_calculate_ecc(struct mtd_info * mtd,const u_char * dat,unsigned char * ecc_code)843 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
844 {
845 	struct nand_chip *this = mtd->priv;
846 	struct doc_priv *doc = this->priv;
847 	void __iomem *docptr = doc->virtadr;
848 	int i;
849 	int emptymatch = 1;
850 
851 	/* flush the pipeline */
852 	if (DoC_is_2000(doc)) {
853 		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
854 		WriteDOC(0, docptr, 2k_CDSN_IO);
855 		WriteDOC(0, docptr, 2k_CDSN_IO);
856 		WriteDOC(0, docptr, 2k_CDSN_IO);
857 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
858 	} else if (DoC_is_MillenniumPlus(doc)) {
859 		WriteDOC(0, docptr, Mplus_NOP);
860 		WriteDOC(0, docptr, Mplus_NOP);
861 		WriteDOC(0, docptr, Mplus_NOP);
862 	} else {
863 		WriteDOC(0, docptr, NOP);
864 		WriteDOC(0, docptr, NOP);
865 		WriteDOC(0, docptr, NOP);
866 	}
867 
868 	for (i = 0; i < 6; i++) {
869 		if (DoC_is_MillenniumPlus(doc))
870 			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
871 		else
872 			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
873 		if (ecc_code[i] != empty_write_ecc[i])
874 			emptymatch = 0;
875 	}
876 	if (DoC_is_MillenniumPlus(doc))
877 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
878 	else
879 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
880 #if 0
881 	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
882 	if (emptymatch) {
883 		/* Note: this somewhat expensive test should not be triggered
884 		   often.  It could be optimized away by examining the data in
885 		   the writebuf routine, and remembering the result. */
886 		for (i = 0; i < 512; i++) {
887 			if (dat[i] == 0xff)
888 				continue;
889 			emptymatch = 0;
890 			break;
891 		}
892 	}
893 	/* If emptymatch still =1, we do have an all-0xff data buffer.
894 	   Return all-0xff ecc value instead of the computed one, so
895 	   it'll look just like a freshly-erased page. */
896 	if (emptymatch)
897 		memset(ecc_code, 0xff, 6);
898 #endif
899 	return 0;
900 }
901 
doc200x_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * isnull)902 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
903 				u_char *read_ecc, u_char *isnull)
904 {
905 	int i, ret = 0;
906 	struct nand_chip *this = mtd->priv;
907 	struct doc_priv *doc = this->priv;
908 	void __iomem *docptr = doc->virtadr;
909 	uint8_t calc_ecc[6];
910 	volatile u_char dummy;
911 	int emptymatch = 1;
912 
913 	/* flush the pipeline */
914 	if (DoC_is_2000(doc)) {
915 		dummy = ReadDOC(docptr, 2k_ECCStatus);
916 		dummy = ReadDOC(docptr, 2k_ECCStatus);
917 		dummy = ReadDOC(docptr, 2k_ECCStatus);
918 	} else if (DoC_is_MillenniumPlus(doc)) {
919 		dummy = ReadDOC(docptr, Mplus_ECCConf);
920 		dummy = ReadDOC(docptr, Mplus_ECCConf);
921 		dummy = ReadDOC(docptr, Mplus_ECCConf);
922 	} else {
923 		dummy = ReadDOC(docptr, ECCConf);
924 		dummy = ReadDOC(docptr, ECCConf);
925 		dummy = ReadDOC(docptr, ECCConf);
926 	}
927 
928 	/* Error occurred ? */
929 	if (dummy & 0x80) {
930 		for (i = 0; i < 6; i++) {
931 			if (DoC_is_MillenniumPlus(doc))
932 				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
933 			else
934 				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
935 			if (calc_ecc[i] != empty_read_syndrome[i])
936 				emptymatch = 0;
937 		}
938 		/* If emptymatch=1, the read syndrome is consistent with an
939 		   all-0xff data and stored ecc block.  Check the stored ecc. */
940 		if (emptymatch) {
941 			for (i = 0; i < 6; i++) {
942 				if (read_ecc[i] == 0xff)
943 					continue;
944 				emptymatch = 0;
945 				break;
946 			}
947 		}
948 		/* If emptymatch still =1, check the data block. */
949 		if (emptymatch) {
950 			/* Note: this somewhat expensive test should not be triggered
951 			   often.  It could be optimized away by examining the data in
952 			   the readbuf routine, and remembering the result. */
953 			for (i = 0; i < 512; i++) {
954 				if (dat[i] == 0xff)
955 					continue;
956 				emptymatch = 0;
957 				break;
958 			}
959 		}
960 		/* If emptymatch still =1, this is almost certainly a freshly-
961 		   erased block, in which case the ECC will not come out right.
962 		   We'll suppress the error and tell the caller everything's
963 		   OK.  Because it is. */
964 		if (!emptymatch)
965 			ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
966 		if (ret > 0)
967 			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
968 	}
969 	if (DoC_is_MillenniumPlus(doc))
970 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
971 	else
972 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
973 	if (no_ecc_failures && mtd_is_eccerr(ret)) {
974 		printk(KERN_ERR "suppressing ECC failure\n");
975 		ret = 0;
976 	}
977 	return ret;
978 }
979 
980 //u_char mydatabuf[528];
981 
982 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
983  * attempt to retain compatibility.  It used to read:
984  * 	.oobfree = { {8, 8} }
985  * Since that leaves two bytes unusable, it was changed.  But the following
986  * scheme might affect existing jffs2 installs by moving the cleanmarker:
987  * 	.oobfree = { {6, 10} }
988  * jffs2 seems to handle the above gracefully, but the current scheme seems
989  * safer.  The only problem with it is that any code that parses oobfree must
990  * be able to handle out-of-order segments.
991  */
992 static struct nand_ecclayout doc200x_oobinfo = {
993 	.eccbytes = 6,
994 	.eccpos = {0, 1, 2, 3, 4, 5},
995 	.oobfree = {{8, 8}, {6, 2}}
996 };
997 
998 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
999    On successful return, buf will contain a copy of the media header for
1000    further processing.  id is the string to scan for, and will presumably be
1001    either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1002    header.  The page #s of the found media headers are placed in mh0_page and
1003    mh1_page in the DOC private structure. */
find_media_headers(struct mtd_info * mtd,u_char * buf,const char * id,int findmirror)1004 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1005 {
1006 	struct nand_chip *this = mtd->priv;
1007 	struct doc_priv *doc = this->priv;
1008 	unsigned offs;
1009 	int ret;
1010 	size_t retlen;
1011 
1012 	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1013 		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1014 		if (retlen != mtd->writesize)
1015 			continue;
1016 		if (ret) {
1017 			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1018 		}
1019 		if (memcmp(buf, id, 6))
1020 			continue;
1021 		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1022 		if (doc->mh0_page == -1) {
1023 			doc->mh0_page = offs >> this->page_shift;
1024 			if (!findmirror)
1025 				return 1;
1026 			continue;
1027 		}
1028 		doc->mh1_page = offs >> this->page_shift;
1029 		return 2;
1030 	}
1031 	if (doc->mh0_page == -1) {
1032 		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1033 		return 0;
1034 	}
1035 	/* Only one mediaheader was found.  We want buf to contain a
1036 	   mediaheader on return, so we'll have to re-read the one we found. */
1037 	offs = doc->mh0_page << this->page_shift;
1038 	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1039 	if (retlen != mtd->writesize) {
1040 		/* Insanity.  Give up. */
1041 		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1042 		return 0;
1043 	}
1044 	return 1;
1045 }
1046 
nftl_partscan(struct mtd_info * mtd,struct mtd_partition * parts)1047 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1048 {
1049 	struct nand_chip *this = mtd->priv;
1050 	struct doc_priv *doc = this->priv;
1051 	int ret = 0;
1052 	u_char *buf;
1053 	struct NFTLMediaHeader *mh;
1054 	const unsigned psize = 1 << this->page_shift;
1055 	int numparts = 0;
1056 	unsigned blocks, maxblocks;
1057 	int offs, numheaders;
1058 
1059 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1060 	if (!buf) {
1061 		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1062 		return 0;
1063 	}
1064 	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1065 		goto out;
1066 	mh = (struct NFTLMediaHeader *)buf;
1067 
1068 	le16_to_cpus(&mh->NumEraseUnits);
1069 	le16_to_cpus(&mh->FirstPhysicalEUN);
1070 	le32_to_cpus(&mh->FormattedSize);
1071 
1072 	printk(KERN_INFO "    DataOrgID        = %s\n"
1073 			 "    NumEraseUnits    = %d\n"
1074 			 "    FirstPhysicalEUN = %d\n"
1075 			 "    FormattedSize    = %d\n"
1076 			 "    UnitSizeFactor   = %d\n",
1077 		mh->DataOrgID, mh->NumEraseUnits,
1078 		mh->FirstPhysicalEUN, mh->FormattedSize,
1079 		mh->UnitSizeFactor);
1080 
1081 	blocks = mtd->size >> this->phys_erase_shift;
1082 	maxblocks = min(32768U, mtd->erasesize - psize);
1083 
1084 	if (mh->UnitSizeFactor == 0x00) {
1085 		/* Auto-determine UnitSizeFactor.  The constraints are:
1086 		   - There can be at most 32768 virtual blocks.
1087 		   - There can be at most (virtual block size - page size)
1088 		   virtual blocks (because MediaHeader+BBT must fit in 1).
1089 		 */
1090 		mh->UnitSizeFactor = 0xff;
1091 		while (blocks > maxblocks) {
1092 			blocks >>= 1;
1093 			maxblocks = min(32768U, (maxblocks << 1) + psize);
1094 			mh->UnitSizeFactor--;
1095 		}
1096 		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1097 	}
1098 
1099 	/* NOTE: The lines below modify internal variables of the NAND and MTD
1100 	   layers; variables with have already been configured by nand_scan.
1101 	   Unfortunately, we didn't know before this point what these values
1102 	   should be.  Thus, this code is somewhat dependent on the exact
1103 	   implementation of the NAND layer.  */
1104 	if (mh->UnitSizeFactor != 0xff) {
1105 		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1106 		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1107 		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1108 		blocks = mtd->size >> this->bbt_erase_shift;
1109 		maxblocks = min(32768U, mtd->erasesize - psize);
1110 	}
1111 
1112 	if (blocks > maxblocks) {
1113 		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1114 		goto out;
1115 	}
1116 
1117 	/* Skip past the media headers. */
1118 	offs = max(doc->mh0_page, doc->mh1_page);
1119 	offs <<= this->page_shift;
1120 	offs += mtd->erasesize;
1121 
1122 	if (show_firmware_partition == 1) {
1123 		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1124 		parts[0].offset = 0;
1125 		parts[0].size = offs;
1126 		numparts = 1;
1127 	}
1128 
1129 	parts[numparts].name = " DiskOnChip BDTL partition";
1130 	parts[numparts].offset = offs;
1131 	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1132 
1133 	offs += parts[numparts].size;
1134 	numparts++;
1135 
1136 	if (offs < mtd->size) {
1137 		parts[numparts].name = " DiskOnChip Remainder partition";
1138 		parts[numparts].offset = offs;
1139 		parts[numparts].size = mtd->size - offs;
1140 		numparts++;
1141 	}
1142 
1143 	ret = numparts;
1144  out:
1145 	kfree(buf);
1146 	return ret;
1147 }
1148 
1149 /* This is a stripped-down copy of the code in inftlmount.c */
inftl_partscan(struct mtd_info * mtd,struct mtd_partition * parts)1150 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1151 {
1152 	struct nand_chip *this = mtd->priv;
1153 	struct doc_priv *doc = this->priv;
1154 	int ret = 0;
1155 	u_char *buf;
1156 	struct INFTLMediaHeader *mh;
1157 	struct INFTLPartition *ip;
1158 	int numparts = 0;
1159 	int blocks;
1160 	int vshift, lastvunit = 0;
1161 	int i;
1162 	int end = mtd->size;
1163 
1164 	if (inftl_bbt_write)
1165 		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1166 
1167 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1168 	if (!buf) {
1169 		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1170 		return 0;
1171 	}
1172 
1173 	if (!find_media_headers(mtd, buf, "BNAND", 0))
1174 		goto out;
1175 	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1176 	mh = (struct INFTLMediaHeader *)buf;
1177 
1178 	le32_to_cpus(&mh->NoOfBootImageBlocks);
1179 	le32_to_cpus(&mh->NoOfBinaryPartitions);
1180 	le32_to_cpus(&mh->NoOfBDTLPartitions);
1181 	le32_to_cpus(&mh->BlockMultiplierBits);
1182 	le32_to_cpus(&mh->FormatFlags);
1183 	le32_to_cpus(&mh->PercentUsed);
1184 
1185 	printk(KERN_INFO "    bootRecordID          = %s\n"
1186 			 "    NoOfBootImageBlocks   = %d\n"
1187 			 "    NoOfBinaryPartitions  = %d\n"
1188 			 "    NoOfBDTLPartitions    = %d\n"
1189 			 "    BlockMultiplerBits    = %d\n"
1190 			 "    FormatFlgs            = %d\n"
1191 			 "    OsakVersion           = %d.%d.%d.%d\n"
1192 			 "    PercentUsed           = %d\n",
1193 		mh->bootRecordID, mh->NoOfBootImageBlocks,
1194 		mh->NoOfBinaryPartitions,
1195 		mh->NoOfBDTLPartitions,
1196 		mh->BlockMultiplierBits, mh->FormatFlags,
1197 		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1198 		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1199 		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1200 		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1201 		mh->PercentUsed);
1202 
1203 	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1204 
1205 	blocks = mtd->size >> vshift;
1206 	if (blocks > 32768) {
1207 		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1208 		goto out;
1209 	}
1210 
1211 	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1212 	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1213 		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1214 		goto out;
1215 	}
1216 
1217 	/* Scan the partitions */
1218 	for (i = 0; (i < 4); i++) {
1219 		ip = &(mh->Partitions[i]);
1220 		le32_to_cpus(&ip->virtualUnits);
1221 		le32_to_cpus(&ip->firstUnit);
1222 		le32_to_cpus(&ip->lastUnit);
1223 		le32_to_cpus(&ip->flags);
1224 		le32_to_cpus(&ip->spareUnits);
1225 		le32_to_cpus(&ip->Reserved0);
1226 
1227 		printk(KERN_INFO	"    PARTITION[%d] ->\n"
1228 			"        virtualUnits    = %d\n"
1229 			"        firstUnit       = %d\n"
1230 			"        lastUnit        = %d\n"
1231 			"        flags           = 0x%x\n"
1232 			"        spareUnits      = %d\n",
1233 			i, ip->virtualUnits, ip->firstUnit,
1234 			ip->lastUnit, ip->flags,
1235 			ip->spareUnits);
1236 
1237 		if ((show_firmware_partition == 1) &&
1238 		    (i == 0) && (ip->firstUnit > 0)) {
1239 			parts[0].name = " DiskOnChip IPL / Media Header partition";
1240 			parts[0].offset = 0;
1241 			parts[0].size = mtd->erasesize * ip->firstUnit;
1242 			numparts = 1;
1243 		}
1244 
1245 		if (ip->flags & INFTL_BINARY)
1246 			parts[numparts].name = " DiskOnChip BDK partition";
1247 		else
1248 			parts[numparts].name = " DiskOnChip BDTL partition";
1249 		parts[numparts].offset = ip->firstUnit << vshift;
1250 		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1251 		numparts++;
1252 		if (ip->lastUnit > lastvunit)
1253 			lastvunit = ip->lastUnit;
1254 		if (ip->flags & INFTL_LAST)
1255 			break;
1256 	}
1257 	lastvunit++;
1258 	if ((lastvunit << vshift) < end) {
1259 		parts[numparts].name = " DiskOnChip Remainder partition";
1260 		parts[numparts].offset = lastvunit << vshift;
1261 		parts[numparts].size = end - parts[numparts].offset;
1262 		numparts++;
1263 	}
1264 	ret = numparts;
1265  out:
1266 	kfree(buf);
1267 	return ret;
1268 }
1269 
nftl_scan_bbt(struct mtd_info * mtd)1270 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1271 {
1272 	int ret, numparts;
1273 	struct nand_chip *this = mtd->priv;
1274 	struct doc_priv *doc = this->priv;
1275 	struct mtd_partition parts[2];
1276 
1277 	memset((char *)parts, 0, sizeof(parts));
1278 	/* On NFTL, we have to find the media headers before we can read the
1279 	   BBTs, since they're stored in the media header eraseblocks. */
1280 	numparts = nftl_partscan(mtd, parts);
1281 	if (!numparts)
1282 		return -EIO;
1283 	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1284 				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1285 				NAND_BBT_VERSION;
1286 	this->bbt_td->veroffs = 7;
1287 	this->bbt_td->pages[0] = doc->mh0_page + 1;
1288 	if (doc->mh1_page != -1) {
1289 		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1290 					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1291 					NAND_BBT_VERSION;
1292 		this->bbt_md->veroffs = 7;
1293 		this->bbt_md->pages[0] = doc->mh1_page + 1;
1294 	} else {
1295 		this->bbt_md = NULL;
1296 	}
1297 
1298 	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1299 	   At least as nand_bbt.c is currently written. */
1300 	if ((ret = nand_scan_bbt(mtd, NULL)))
1301 		return ret;
1302 	mtd_device_register(mtd, NULL, 0);
1303 	if (!no_autopart)
1304 		mtd_device_register(mtd, parts, numparts);
1305 	return 0;
1306 }
1307 
inftl_scan_bbt(struct mtd_info * mtd)1308 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1309 {
1310 	int ret, numparts;
1311 	struct nand_chip *this = mtd->priv;
1312 	struct doc_priv *doc = this->priv;
1313 	struct mtd_partition parts[5];
1314 
1315 	if (this->numchips > doc->chips_per_floor) {
1316 		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1317 		return -EIO;
1318 	}
1319 
1320 	if (DoC_is_MillenniumPlus(doc)) {
1321 		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1322 		if (inftl_bbt_write)
1323 			this->bbt_td->options |= NAND_BBT_WRITE;
1324 		this->bbt_td->pages[0] = 2;
1325 		this->bbt_md = NULL;
1326 	} else {
1327 		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1328 		if (inftl_bbt_write)
1329 			this->bbt_td->options |= NAND_BBT_WRITE;
1330 		this->bbt_td->offs = 8;
1331 		this->bbt_td->len = 8;
1332 		this->bbt_td->veroffs = 7;
1333 		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1334 		this->bbt_td->reserved_block_code = 0x01;
1335 		this->bbt_td->pattern = "MSYS_BBT";
1336 
1337 		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1338 		if (inftl_bbt_write)
1339 			this->bbt_md->options |= NAND_BBT_WRITE;
1340 		this->bbt_md->offs = 8;
1341 		this->bbt_md->len = 8;
1342 		this->bbt_md->veroffs = 7;
1343 		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1344 		this->bbt_md->reserved_block_code = 0x01;
1345 		this->bbt_md->pattern = "TBB_SYSM";
1346 	}
1347 
1348 	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1349 	   At least as nand_bbt.c is currently written. */
1350 	if ((ret = nand_scan_bbt(mtd, NULL)))
1351 		return ret;
1352 	memset((char *)parts, 0, sizeof(parts));
1353 	numparts = inftl_partscan(mtd, parts);
1354 	/* At least for now, require the INFTL Media Header.  We could probably
1355 	   do without it for non-INFTL use, since all it gives us is
1356 	   autopartitioning, but I want to give it more thought. */
1357 	if (!numparts)
1358 		return -EIO;
1359 	mtd_device_register(mtd, NULL, 0);
1360 	if (!no_autopart)
1361 		mtd_device_register(mtd, parts, numparts);
1362 	return 0;
1363 }
1364 
doc2000_init(struct mtd_info * mtd)1365 static inline int __init doc2000_init(struct mtd_info *mtd)
1366 {
1367 	struct nand_chip *this = mtd->priv;
1368 	struct doc_priv *doc = this->priv;
1369 
1370 	this->read_byte = doc2000_read_byte;
1371 	this->write_buf = doc2000_writebuf;
1372 	this->read_buf = doc2000_readbuf;
1373 	this->scan_bbt = nftl_scan_bbt;
1374 
1375 	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1376 	doc2000_count_chips(mtd);
1377 	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1378 	return (4 * doc->chips_per_floor);
1379 }
1380 
doc2001_init(struct mtd_info * mtd)1381 static inline int __init doc2001_init(struct mtd_info *mtd)
1382 {
1383 	struct nand_chip *this = mtd->priv;
1384 	struct doc_priv *doc = this->priv;
1385 
1386 	this->read_byte = doc2001_read_byte;
1387 	this->write_buf = doc2001_writebuf;
1388 	this->read_buf = doc2001_readbuf;
1389 
1390 	ReadDOC(doc->virtadr, ChipID);
1391 	ReadDOC(doc->virtadr, ChipID);
1392 	ReadDOC(doc->virtadr, ChipID);
1393 	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1394 		/* It's not a Millennium; it's one of the newer
1395 		   DiskOnChip 2000 units with a similar ASIC.
1396 		   Treat it like a Millennium, except that it
1397 		   can have multiple chips. */
1398 		doc2000_count_chips(mtd);
1399 		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1400 		this->scan_bbt = inftl_scan_bbt;
1401 		return (4 * doc->chips_per_floor);
1402 	} else {
1403 		/* Bog-standard Millennium */
1404 		doc->chips_per_floor = 1;
1405 		mtd->name = "DiskOnChip Millennium";
1406 		this->scan_bbt = nftl_scan_bbt;
1407 		return 1;
1408 	}
1409 }
1410 
doc2001plus_init(struct mtd_info * mtd)1411 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1412 {
1413 	struct nand_chip *this = mtd->priv;
1414 	struct doc_priv *doc = this->priv;
1415 
1416 	this->read_byte = doc2001plus_read_byte;
1417 	this->write_buf = doc2001plus_writebuf;
1418 	this->read_buf = doc2001plus_readbuf;
1419 	this->scan_bbt = inftl_scan_bbt;
1420 	this->cmd_ctrl = NULL;
1421 	this->select_chip = doc2001plus_select_chip;
1422 	this->cmdfunc = doc2001plus_command;
1423 	this->ecc.hwctl = doc2001plus_enable_hwecc;
1424 
1425 	doc->chips_per_floor = 1;
1426 	mtd->name = "DiskOnChip Millennium Plus";
1427 
1428 	return 1;
1429 }
1430 
doc_probe(unsigned long physadr)1431 static int __init doc_probe(unsigned long physadr)
1432 {
1433 	unsigned char ChipID;
1434 	struct mtd_info *mtd;
1435 	struct nand_chip *nand;
1436 	struct doc_priv *doc;
1437 	void __iomem *virtadr;
1438 	unsigned char save_control;
1439 	unsigned char tmp, tmpb, tmpc;
1440 	int reg, len, numchips;
1441 	int ret = 0;
1442 
1443 	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1444 	if (!virtadr) {
1445 		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1446 		return -EIO;
1447 	}
1448 
1449 	/* It's not possible to cleanly detect the DiskOnChip - the
1450 	 * bootup procedure will put the device into reset mode, and
1451 	 * it's not possible to talk to it without actually writing
1452 	 * to the DOCControl register. So we store the current contents
1453 	 * of the DOCControl register's location, in case we later decide
1454 	 * that it's not a DiskOnChip, and want to put it back how we
1455 	 * found it.
1456 	 */
1457 	save_control = ReadDOC(virtadr, DOCControl);
1458 
1459 	/* Reset the DiskOnChip ASIC */
1460 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1461 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1462 
1463 	/* Enable the DiskOnChip ASIC */
1464 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1465 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1466 
1467 	ChipID = ReadDOC(virtadr, ChipID);
1468 
1469 	switch (ChipID) {
1470 	case DOC_ChipID_Doc2k:
1471 		reg = DoC_2k_ECCStatus;
1472 		break;
1473 	case DOC_ChipID_DocMil:
1474 		reg = DoC_ECCConf;
1475 		break;
1476 	case DOC_ChipID_DocMilPlus16:
1477 	case DOC_ChipID_DocMilPlus32:
1478 	case 0:
1479 		/* Possible Millennium Plus, need to do more checks */
1480 		/* Possibly release from power down mode */
1481 		for (tmp = 0; (tmp < 4); tmp++)
1482 			ReadDOC(virtadr, Mplus_Power);
1483 
1484 		/* Reset the Millennium Plus ASIC */
1485 		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1486 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1487 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1488 
1489 		mdelay(1);
1490 		/* Enable the Millennium Plus ASIC */
1491 		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1492 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1493 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1494 		mdelay(1);
1495 
1496 		ChipID = ReadDOC(virtadr, ChipID);
1497 
1498 		switch (ChipID) {
1499 		case DOC_ChipID_DocMilPlus16:
1500 			reg = DoC_Mplus_Toggle;
1501 			break;
1502 		case DOC_ChipID_DocMilPlus32:
1503 			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1504 		default:
1505 			ret = -ENODEV;
1506 			goto notfound;
1507 		}
1508 		break;
1509 
1510 	default:
1511 		ret = -ENODEV;
1512 		goto notfound;
1513 	}
1514 	/* Check the TOGGLE bit in the ECC register */
1515 	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1516 	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1517 	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1518 	if ((tmp == tmpb) || (tmp != tmpc)) {
1519 		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1520 		ret = -ENODEV;
1521 		goto notfound;
1522 	}
1523 
1524 	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1525 		unsigned char oldval;
1526 		unsigned char newval;
1527 		nand = mtd->priv;
1528 		doc = nand->priv;
1529 		/* Use the alias resolution register to determine if this is
1530 		   in fact the same DOC aliased to a new address.  If writes
1531 		   to one chip's alias resolution register change the value on
1532 		   the other chip, they're the same chip. */
1533 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1534 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1535 			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1536 		} else {
1537 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1538 			newval = ReadDOC(virtadr, AliasResolution);
1539 		}
1540 		if (oldval != newval)
1541 			continue;
1542 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1543 			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1544 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1545 			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1546 		} else {
1547 			WriteDOC(~newval, virtadr, AliasResolution);
1548 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1549 			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1550 		}
1551 		newval = ~newval;
1552 		if (oldval == newval) {
1553 			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1554 			goto notfound;
1555 		}
1556 	}
1557 
1558 	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1559 
1560 	len = sizeof(struct mtd_info) +
1561 	    sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1562 	mtd = kzalloc(len, GFP_KERNEL);
1563 	if (!mtd) {
1564 		printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1565 		ret = -ENOMEM;
1566 		goto fail;
1567 	}
1568 
1569 	nand			= (struct nand_chip *) (mtd + 1);
1570 	doc			= (struct doc_priv *) (nand + 1);
1571 	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1572 	nand->bbt_md		= nand->bbt_td + 1;
1573 
1574 	mtd->priv		= nand;
1575 	mtd->owner		= THIS_MODULE;
1576 
1577 	nand->priv		= doc;
1578 	nand->select_chip	= doc200x_select_chip;
1579 	nand->cmd_ctrl		= doc200x_hwcontrol;
1580 	nand->dev_ready		= doc200x_dev_ready;
1581 	nand->waitfunc		= doc200x_wait;
1582 	nand->block_bad		= doc200x_block_bad;
1583 	nand->ecc.hwctl		= doc200x_enable_hwecc;
1584 	nand->ecc.calculate	= doc200x_calculate_ecc;
1585 	nand->ecc.correct	= doc200x_correct_data;
1586 
1587 	nand->ecc.layout	= &doc200x_oobinfo;
1588 	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1589 	nand->ecc.size		= 512;
1590 	nand->ecc.bytes		= 6;
1591 	nand->ecc.strength	= 2;
1592 	nand->bbt_options	= NAND_BBT_USE_FLASH;
1593 
1594 	doc->physadr		= physadr;
1595 	doc->virtadr		= virtadr;
1596 	doc->ChipID		= ChipID;
1597 	doc->curfloor		= -1;
1598 	doc->curchip		= -1;
1599 	doc->mh0_page		= -1;
1600 	doc->mh1_page		= -1;
1601 	doc->nextdoc		= doclist;
1602 
1603 	if (ChipID == DOC_ChipID_Doc2k)
1604 		numchips = doc2000_init(mtd);
1605 	else if (ChipID == DOC_ChipID_DocMilPlus16)
1606 		numchips = doc2001plus_init(mtd);
1607 	else
1608 		numchips = doc2001_init(mtd);
1609 
1610 	if ((ret = nand_scan(mtd, numchips))) {
1611 		/* DBB note: i believe nand_release is necessary here, as
1612 		   buffers may have been allocated in nand_base.  Check with
1613 		   Thomas. FIX ME! */
1614 		/* nand_release will call mtd_device_unregister, but we
1615 		   haven't yet added it.  This is handled without incident by
1616 		   mtd_device_unregister, as far as I can tell. */
1617 		nand_release(mtd);
1618 		kfree(mtd);
1619 		goto fail;
1620 	}
1621 
1622 	/* Success! */
1623 	doclist = mtd;
1624 	return 0;
1625 
1626  notfound:
1627 	/* Put back the contents of the DOCControl register, in case it's not
1628 	   actually a DiskOnChip.  */
1629 	WriteDOC(save_control, virtadr, DOCControl);
1630  fail:
1631 	iounmap(virtadr);
1632 	return ret;
1633 }
1634 
release_nanddoc(void)1635 static void release_nanddoc(void)
1636 {
1637 	struct mtd_info *mtd, *nextmtd;
1638 	struct nand_chip *nand;
1639 	struct doc_priv *doc;
1640 
1641 	for (mtd = doclist; mtd; mtd = nextmtd) {
1642 		nand = mtd->priv;
1643 		doc = nand->priv;
1644 
1645 		nextmtd = doc->nextdoc;
1646 		nand_release(mtd);
1647 		iounmap(doc->virtadr);
1648 		kfree(mtd);
1649 	}
1650 }
1651 
init_nanddoc(void)1652 static int __init init_nanddoc(void)
1653 {
1654 	int i, ret = 0;
1655 
1656 	/* We could create the decoder on demand, if memory is a concern.
1657 	 * This way we have it handy, if an error happens
1658 	 *
1659 	 * Symbolsize is 10 (bits)
1660 	 * Primitve polynomial is x^10+x^3+1
1661 	 * first consecutive root is 510
1662 	 * primitve element to generate roots = 1
1663 	 * generator polinomial degree = 4
1664 	 */
1665 	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1666 	if (!rs_decoder) {
1667 		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1668 		return -ENOMEM;
1669 	}
1670 
1671 	if (doc_config_location) {
1672 		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1673 		ret = doc_probe(doc_config_location);
1674 		if (ret < 0)
1675 			goto outerr;
1676 	} else {
1677 		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1678 			doc_probe(doc_locations[i]);
1679 		}
1680 	}
1681 	/* No banner message any more. Print a message if no DiskOnChip
1682 	   found, so the user knows we at least tried. */
1683 	if (!doclist) {
1684 		printk(KERN_INFO "No valid DiskOnChip devices found\n");
1685 		ret = -ENODEV;
1686 		goto outerr;
1687 	}
1688 	return 0;
1689  outerr:
1690 	free_rs(rs_decoder);
1691 	return ret;
1692 }
1693 
cleanup_nanddoc(void)1694 static void __exit cleanup_nanddoc(void)
1695 {
1696 	/* Cleanup the nand/DoC resources */
1697 	release_nanddoc();
1698 
1699 	/* Free the reed solomon resources */
1700 	if (rs_decoder) {
1701 		free_rs(rs_decoder);
1702 	}
1703 }
1704 
1705 module_init(init_nanddoc);
1706 module_exit(cleanup_nanddoc);
1707 
1708 MODULE_LICENSE("GPL");
1709 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1710 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1711