• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
3  *
4  * mtd nand driver for M-Systems DiskOnChip G4
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
12  * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13  * Should work on these as well.  Let me know!
14  *
15  * TODO:
16  *
17  *  Mechanism for management of password-protected areas
18  *
19  *  Hamming ecc when reading oob only
20  *
21  *  According to the M-Sys documentation, this device is also available in a
22  *  "dual-die" configuration having a 256MB capacity, but no mechanism for
23  *  detecting this variant is documented.  Currently this driver assumes 128MB
24  *  capacity.
25  *
26  *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
27  *  contain multiple G4s in a cascaded configuration, if any.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
40 #include <linux/io.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
47 
48 /*
49  * In "reliable mode" consecutive 2k pages are used in parallel (in some
50  * fashion) to store the same data.  The data can be read back from the
51  * even-numbered pages in the normal manner; odd-numbered pages will appear to
52  * contain junk.  Systems that boot from the docg4 typically write the secondary
53  * program loader (SPL) code in this mode.  The SPL is loaded by the initial
54  * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
55  * to the reset vector address).  This module parameter enables you to use this
56  * driver to write the SPL.  When in this mode, no more than 2k of data can be
57  * written at a time, because the addresses do not increment in the normal
58  * manner, and the starting offset must be within an even-numbered 2k region;
59  * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
60  * 0x1a00, ...  Reliable mode is a special case and should not be used unless
61  * you know what you're doing.
62  */
63 static bool reliable_mode;
64 module_param(reliable_mode, bool, 0);
65 MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
66 
67 /*
68  * You'll want to ignore badblocks if you're reading a partition that contains
69  * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
70  * it does not use mtd nand's method for marking bad blocks (using oob area).
71  * This will also skip the check of the "page written" flag.
72  */
73 static bool ignore_badblocks;
74 module_param(ignore_badblocks, bool, 0);
75 MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
76 
77 struct docg4_priv {
78 	struct mtd_info	*mtd;
79 	struct device *dev;
80 	void __iomem *virtadr;
81 	int status;
82 	struct {
83 		unsigned int command;
84 		int column;
85 		int page;
86 	} last_command;
87 	uint8_t oob_buf[16];
88 	uint8_t ecc_buf[7];
89 	int oob_page;
90 	struct bch_control *bch;
91 };
92 
93 /*
94  * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
95  * shared with other diskonchip devices (P3, G3 at least).
96  *
97  * Functions with names prefixed with docg4_ are mtd / nand interface functions
98  * (though they may also be called internally).  All others are internal.
99  */
100 
101 #define DOC_IOSPACE_DATA		0x0800
102 
103 /* register offsets */
104 #define DOC_CHIPID			0x1000
105 #define DOC_DEVICESELECT		0x100a
106 #define DOC_ASICMODE			0x100c
107 #define DOC_DATAEND			0x101e
108 #define DOC_NOP				0x103e
109 
110 #define DOC_FLASHSEQUENCE		0x1032
111 #define DOC_FLASHCOMMAND		0x1034
112 #define DOC_FLASHADDRESS		0x1036
113 #define DOC_FLASHCONTROL		0x1038
114 #define DOC_ECCCONF0			0x1040
115 #define DOC_ECCCONF1			0x1042
116 #define DOC_HAMMINGPARITY		0x1046
117 #define DOC_BCH_SYNDROM(idx)		(0x1048 + idx)
118 
119 #define DOC_ASICMODECONFIRM		0x1072
120 #define DOC_CHIPID_INV			0x1074
121 #define DOC_POWERMODE			0x107c
122 
123 #define DOCG4_MYSTERY_REG		0x1050
124 
125 /* apparently used only to write oob bytes 6 and 7 */
126 #define DOCG4_OOB_6_7			0x1052
127 
128 /* DOC_FLASHSEQUENCE register commands */
129 #define DOC_SEQ_RESET			0x00
130 #define DOCG4_SEQ_PAGE_READ		0x03
131 #define DOCG4_SEQ_FLUSH			0x29
132 #define DOCG4_SEQ_PAGEWRITE		0x16
133 #define DOCG4_SEQ_PAGEPROG		0x1e
134 #define DOCG4_SEQ_BLOCKERASE		0x24
135 #define DOCG4_SEQ_SETMODE		0x45
136 
137 /* DOC_FLASHCOMMAND register commands */
138 #define DOCG4_CMD_PAGE_READ             0x00
139 #define DOC_CMD_ERASECYCLE2		0xd0
140 #define DOCG4_CMD_FLUSH                 0x70
141 #define DOCG4_CMD_READ2                 0x30
142 #define DOC_CMD_PROG_BLOCK_ADDR		0x60
143 #define DOCG4_CMD_PAGEWRITE		0x80
144 #define DOC_CMD_PROG_CYCLE2		0x10
145 #define DOCG4_CMD_FAST_MODE		0xa3 /* functionality guessed */
146 #define DOC_CMD_RELIABLE_MODE		0x22
147 #define DOC_CMD_RESET			0xff
148 
149 /* DOC_POWERMODE register bits */
150 #define DOC_POWERDOWN_READY		0x80
151 
152 /* DOC_FLASHCONTROL register bits */
153 #define DOC_CTRL_CE			0x10
154 #define DOC_CTRL_UNKNOWN		0x40
155 #define DOC_CTRL_FLASHREADY		0x01
156 
157 /* DOC_ECCCONF0 register bits */
158 #define DOC_ECCCONF0_READ_MODE		0x8000
159 #define DOC_ECCCONF0_UNKNOWN		0x2000
160 #define DOC_ECCCONF0_ECC_ENABLE	        0x1000
161 #define DOC_ECCCONF0_DATA_BYTES_MASK	0x07ff
162 
163 /* DOC_ECCCONF1 register bits */
164 #define DOC_ECCCONF1_BCH_SYNDROM_ERR	0x80
165 #define DOC_ECCCONF1_ECC_ENABLE         0x07
166 #define DOC_ECCCONF1_PAGE_IS_WRITTEN	0x20
167 
168 /* DOC_ASICMODE register bits */
169 #define DOC_ASICMODE_RESET		0x00
170 #define DOC_ASICMODE_NORMAL		0x01
171 #define DOC_ASICMODE_POWERDOWN		0x02
172 #define DOC_ASICMODE_MDWREN		0x04
173 #define DOC_ASICMODE_BDETCT_RESET	0x08
174 #define DOC_ASICMODE_RSTIN_RESET	0x10
175 #define DOC_ASICMODE_RAM_WE		0x20
176 
177 /* good status values read after read/write/erase operations */
178 #define DOCG4_PROGSTATUS_GOOD          0x51
179 #define DOCG4_PROGSTATUS_GOOD_2        0xe0
180 
181 /*
182  * On read operations (page and oob-only), the first byte read from I/O reg is a
183  * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
184  * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
185  */
186 #define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
187 
188 /* anatomy of the device */
189 #define DOCG4_CHIP_SIZE        0x8000000
190 #define DOCG4_PAGE_SIZE        0x200
191 #define DOCG4_PAGES_PER_BLOCK  0x200
192 #define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
193 #define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
194 #define DOCG4_OOB_SIZE         0x10
195 #define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
196 #define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
197 #define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
198 
199 /* all but the last byte is included in ecc calculation */
200 #define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
201 
202 #define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
203 
204 /* expected values from the ID registers */
205 #define DOCG4_IDREG1_VALUE     0x0400
206 #define DOCG4_IDREG2_VALUE     0xfbff
207 
208 /* primitive polynomial used to build the Galois field used by hw ecc gen */
209 #define DOCG4_PRIMITIVE_POLY   0x4443
210 
211 #define DOCG4_M                14  /* Galois field is of order 2^14 */
212 #define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
213 
214 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
215 #define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
216 
217 /*
218  * Bytes 0, 1 are used as badblock marker.
219  * Bytes 2 - 6 are available to the user.
220  * Byte 7 is hamming ecc for first 7 oob bytes only.
221  * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
222  * Byte 15 (the last) is used by the driver as a "page written" flag.
223  */
224 static struct nand_ecclayout docg4_oobinfo = {
225 	.eccbytes = 9,
226 	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
227 	.oobavail = 5,
228 	.oobfree = { {.offset = 2, .length = 5} }
229 };
230 
231 /*
232  * The device has a nop register which M-Sys claims is for the purpose of
233  * inserting precise delays.  But beware; at least some operations fail if the
234  * nop writes are replaced with a generic delay!
235  */
write_nop(void __iomem * docptr)236 static inline void write_nop(void __iomem *docptr)
237 {
238 	writew(0, docptr + DOC_NOP);
239 }
240 
docg4_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)241 static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
242 {
243 	int i;
244 	struct nand_chip *nand = mtd->priv;
245 	uint16_t *p = (uint16_t *) buf;
246 	len >>= 1;
247 
248 	for (i = 0; i < len; i++)
249 		p[i] = readw(nand->IO_ADDR_R);
250 }
251 
docg4_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)252 static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
253 {
254 	int i;
255 	struct nand_chip *nand = mtd->priv;
256 	uint16_t *p = (uint16_t *) buf;
257 	len >>= 1;
258 
259 	for (i = 0; i < len; i++)
260 		writew(p[i], nand->IO_ADDR_W);
261 }
262 
poll_status(struct docg4_priv * doc)263 static int poll_status(struct docg4_priv *doc)
264 {
265 	/*
266 	 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
267 	 * register.  Operations known to take a long time (e.g., block erase)
268 	 * should sleep for a while before calling this.
269 	 */
270 
271 	uint16_t flash_status;
272 	unsigned int timeo;
273 	void __iomem *docptr = doc->virtadr;
274 
275 	dev_dbg(doc->dev, "%s...\n", __func__);
276 
277 	/* hardware quirk requires reading twice initially */
278 	flash_status = readw(docptr + DOC_FLASHCONTROL);
279 
280 	timeo = 1000;
281 	do {
282 		cpu_relax();
283 		flash_status = readb(docptr + DOC_FLASHCONTROL);
284 	} while (!(flash_status & DOC_CTRL_FLASHREADY) && --timeo);
285 
286 
287 	if (!timeo) {
288 		dev_err(doc->dev, "%s: timed out!\n", __func__);
289 		return NAND_STATUS_FAIL;
290 	}
291 
292 	if (unlikely(timeo < 50))
293 		dev_warn(doc->dev, "%s: nearly timed out; %d remaining\n",
294 			 __func__, timeo);
295 
296 	return 0;
297 }
298 
299 
docg4_wait(struct mtd_info * mtd,struct nand_chip * nand)300 static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
301 {
302 
303 	struct docg4_priv *doc = nand->priv;
304 	int status = NAND_STATUS_WP;       /* inverse logic?? */
305 	dev_dbg(doc->dev, "%s...\n", __func__);
306 
307 	/* report any previously unreported error */
308 	if (doc->status) {
309 		status |= doc->status;
310 		doc->status = 0;
311 		return status;
312 	}
313 
314 	status |= poll_status(doc);
315 	return status;
316 }
317 
docg4_select_chip(struct mtd_info * mtd,int chip)318 static void docg4_select_chip(struct mtd_info *mtd, int chip)
319 {
320 	/*
321 	 * Select among multiple cascaded chips ("floors").  Multiple floors are
322 	 * not yet supported, so the only valid non-negative value is 0.
323 	 */
324 	struct nand_chip *nand = mtd->priv;
325 	struct docg4_priv *doc = nand->priv;
326 	void __iomem *docptr = doc->virtadr;
327 
328 	dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
329 
330 	if (chip < 0)
331 		return;		/* deselected */
332 
333 	if (chip > 0)
334 		dev_warn(doc->dev, "multiple floors currently unsupported\n");
335 
336 	writew(0, docptr + DOC_DEVICESELECT);
337 }
338 
reset(struct mtd_info * mtd)339 static void reset(struct mtd_info *mtd)
340 {
341 	/* full device reset */
342 
343 	struct nand_chip *nand = mtd->priv;
344 	struct docg4_priv *doc = nand->priv;
345 	void __iomem *docptr = doc->virtadr;
346 
347 	writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
348 	       docptr + DOC_ASICMODE);
349 	writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
350 	       docptr + DOC_ASICMODECONFIRM);
351 	write_nop(docptr);
352 
353 	writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
354 	       docptr + DOC_ASICMODE);
355 	writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
356 	       docptr + DOC_ASICMODECONFIRM);
357 
358 	writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
359 
360 	poll_status(doc);
361 }
362 
read_hw_ecc(void __iomem * docptr,uint8_t * ecc_buf)363 static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
364 {
365 	/* read the 7 hw-generated ecc bytes */
366 
367 	int i;
368 	for (i = 0; i < 7; i++) { /* hw quirk; read twice */
369 		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
370 		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
371 	}
372 }
373 
correct_data(struct mtd_info * mtd,uint8_t * buf,int page)374 static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
375 {
376 	/*
377 	 * Called after a page read when hardware reports bitflips.
378 	 * Up to four bitflips can be corrected.
379 	 */
380 
381 	struct nand_chip *nand = mtd->priv;
382 	struct docg4_priv *doc = nand->priv;
383 	void __iomem *docptr = doc->virtadr;
384 	int i, numerrs, errpos[4];
385 	const uint8_t blank_read_hwecc[8] = {
386 		0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
387 
388 	read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
389 
390 	/* check if read error is due to a blank page */
391 	if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
392 		return 0;	/* yes */
393 
394 	/* skip additional check of "written flag" if ignore_badblocks */
395 	if (ignore_badblocks == false) {
396 
397 		/*
398 		 * If the hw ecc bytes are not those of a blank page, there's
399 		 * still a chance that the page is blank, but was read with
400 		 * errors.  Check the "written flag" in last oob byte, which
401 		 * is set to zero when a page is written.  If more than half
402 		 * the bits are set, assume a blank page.  Unfortunately, the
403 		 * bit flips(s) are not reported in stats.
404 		 */
405 
406 		if (nand->oob_poi[15]) {
407 			int bit, numsetbits = 0;
408 			unsigned long written_flag = nand->oob_poi[15];
409 			for_each_set_bit(bit, &written_flag, 8)
410 				numsetbits++;
411 			if (numsetbits > 4) { /* assume blank */
412 				dev_warn(doc->dev,
413 					 "error(s) in blank page "
414 					 "at offset %08x\n",
415 					 page * DOCG4_PAGE_SIZE);
416 				return 0;
417 			}
418 		}
419 	}
420 
421 	/*
422 	 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
423 	 * algorithm is used to decode this.  However the hw operates on page
424 	 * data in a bit order that is the reverse of that of the bch alg,
425 	 * requiring that the bits be reversed on the result.  Thanks to Ivan
426 	 * Djelic for his analysis!
427 	 */
428 	for (i = 0; i < 7; i++)
429 		doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
430 
431 	numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
432 			     doc->ecc_buf, NULL, errpos);
433 
434 	if (numerrs == -EBADMSG) {
435 		dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
436 			 page * DOCG4_PAGE_SIZE);
437 		return -EBADMSG;
438 	}
439 
440 	BUG_ON(numerrs < 0);	/* -EINVAL, or anything other than -EBADMSG */
441 
442 	/* undo last step in BCH alg (modulo mirroring not needed) */
443 	for (i = 0; i < numerrs; i++)
444 		errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
445 
446 	/* fix the errors */
447 	for (i = 0; i < numerrs; i++) {
448 
449 		/* ignore if error within oob ecc bytes */
450 		if (errpos[i] > DOCG4_USERDATA_LEN * 8)
451 			continue;
452 
453 		/* if error within oob area preceeding ecc bytes... */
454 		if (errpos[i] > DOCG4_PAGE_SIZE * 8)
455 			change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
456 				   (unsigned long *)nand->oob_poi);
457 
458 		else    /* error in page data */
459 			change_bit(errpos[i], (unsigned long *)buf);
460 	}
461 
462 	dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
463 		   numerrs, page * DOCG4_PAGE_SIZE);
464 
465 	return numerrs;
466 }
467 
docg4_read_byte(struct mtd_info * mtd)468 static uint8_t docg4_read_byte(struct mtd_info *mtd)
469 {
470 	struct nand_chip *nand = mtd->priv;
471 	struct docg4_priv *doc = nand->priv;
472 
473 	dev_dbg(doc->dev, "%s\n", __func__);
474 
475 	if (doc->last_command.command == NAND_CMD_STATUS) {
476 		int status;
477 
478 		/*
479 		 * Previous nand command was status request, so nand
480 		 * infrastructure code expects to read the status here.  If an
481 		 * error occurred in a previous operation, report it.
482 		 */
483 		doc->last_command.command = 0;
484 
485 		if (doc->status) {
486 			status = doc->status;
487 			doc->status = 0;
488 		}
489 
490 		/* why is NAND_STATUS_WP inverse logic?? */
491 		else
492 			status = NAND_STATUS_WP | NAND_STATUS_READY;
493 
494 		return status;
495 	}
496 
497 	dev_warn(doc->dev, "unexpectd call to read_byte()\n");
498 
499 	return 0;
500 }
501 
write_addr(struct docg4_priv * doc,uint32_t docg4_addr)502 static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
503 {
504 	/* write the four address bytes packed in docg4_addr to the device */
505 
506 	void __iomem *docptr = doc->virtadr;
507 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
508 	docg4_addr >>= 8;
509 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
510 	docg4_addr >>= 8;
511 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
512 	docg4_addr >>= 8;
513 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
514 }
515 
read_progstatus(struct docg4_priv * doc)516 static int read_progstatus(struct docg4_priv *doc)
517 {
518 	/*
519 	 * This apparently checks the status of programming.  Done after an
520 	 * erasure, and after page data is written.  On error, the status is
521 	 * saved, to be later retrieved by the nand infrastructure code.
522 	 */
523 	void __iomem *docptr = doc->virtadr;
524 
525 	/* status is read from the I/O reg */
526 	uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
527 	uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
528 	uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
529 
530 	dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
531 	      __func__, status1, status2, status3);
532 
533 	if (status1 != DOCG4_PROGSTATUS_GOOD
534 	    || status2 != DOCG4_PROGSTATUS_GOOD_2
535 	    || status3 != DOCG4_PROGSTATUS_GOOD_2) {
536 		doc->status = NAND_STATUS_FAIL;
537 		dev_warn(doc->dev, "read_progstatus failed: "
538 			 "%02x, %02x, %02x\n", status1, status2, status3);
539 		return -EIO;
540 	}
541 	return 0;
542 }
543 
pageprog(struct mtd_info * mtd)544 static int pageprog(struct mtd_info *mtd)
545 {
546 	/*
547 	 * Final step in writing a page.  Writes the contents of its
548 	 * internal buffer out to the flash array, or some such.
549 	 */
550 
551 	struct nand_chip *nand = mtd->priv;
552 	struct docg4_priv *doc = nand->priv;
553 	void __iomem *docptr = doc->virtadr;
554 	int retval = 0;
555 
556 	dev_dbg(doc->dev, "docg4: %s\n", __func__);
557 
558 	writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
559 	writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
560 	write_nop(docptr);
561 	write_nop(docptr);
562 
563 	/* Just busy-wait; usleep_range() slows things down noticeably. */
564 	poll_status(doc);
565 
566 	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
567 	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
568 	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
569 	write_nop(docptr);
570 	write_nop(docptr);
571 	write_nop(docptr);
572 	write_nop(docptr);
573 	write_nop(docptr);
574 
575 	retval = read_progstatus(doc);
576 	writew(0, docptr + DOC_DATAEND);
577 	write_nop(docptr);
578 	poll_status(doc);
579 	write_nop(docptr);
580 
581 	return retval;
582 }
583 
sequence_reset(struct mtd_info * mtd)584 static void sequence_reset(struct mtd_info *mtd)
585 {
586 	/* common starting sequence for all operations */
587 
588 	struct nand_chip *nand = mtd->priv;
589 	struct docg4_priv *doc = nand->priv;
590 	void __iomem *docptr = doc->virtadr;
591 
592 	writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
593 	writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
594 	writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
595 	write_nop(docptr);
596 	write_nop(docptr);
597 	poll_status(doc);
598 	write_nop(docptr);
599 }
600 
read_page_prologue(struct mtd_info * mtd,uint32_t docg4_addr)601 static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
602 {
603 	/* first step in reading a page */
604 
605 	struct nand_chip *nand = mtd->priv;
606 	struct docg4_priv *doc = nand->priv;
607 	void __iomem *docptr = doc->virtadr;
608 
609 	dev_dbg(doc->dev,
610 	      "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
611 
612 	sequence_reset(mtd);
613 
614 	writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
615 	writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
616 	write_nop(docptr);
617 
618 	write_addr(doc, docg4_addr);
619 
620 	write_nop(docptr);
621 	writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
622 	write_nop(docptr);
623 	write_nop(docptr);
624 
625 	poll_status(doc);
626 }
627 
write_page_prologue(struct mtd_info * mtd,uint32_t docg4_addr)628 static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
629 {
630 	/* first step in writing a page */
631 
632 	struct nand_chip *nand = mtd->priv;
633 	struct docg4_priv *doc = nand->priv;
634 	void __iomem *docptr = doc->virtadr;
635 
636 	dev_dbg(doc->dev,
637 	      "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
638 	sequence_reset(mtd);
639 
640 	if (unlikely(reliable_mode)) {
641 		writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
642 		writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
643 		writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
644 		write_nop(docptr);
645 	}
646 
647 	writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
648 	writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
649 	write_nop(docptr);
650 	write_addr(doc, docg4_addr);
651 	write_nop(docptr);
652 	write_nop(docptr);
653 	poll_status(doc);
654 }
655 
mtd_to_docg4_address(int page,int column)656 static uint32_t mtd_to_docg4_address(int page, int column)
657 {
658 	/*
659 	 * Convert mtd address to format used by the device, 32 bit packed.
660 	 *
661 	 * Some notes on G4 addressing... The M-Sys documentation on this device
662 	 * claims that pages are 2K in length, and indeed, the format of the
663 	 * address used by the device reflects that.  But within each page are
664 	 * four 512 byte "sub-pages", each with its own oob data that is
665 	 * read/written immediately after the 512 bytes of page data.  This oob
666 	 * data contains the ecc bytes for the preceeding 512 bytes.
667 	 *
668 	 * Rather than tell the mtd nand infrastructure that page size is 2k,
669 	 * with four sub-pages each, we engage in a little subterfuge and tell
670 	 * the infrastructure code that pages are 512 bytes in size.  This is
671 	 * done because during the course of reverse-engineering the device, I
672 	 * never observed an instance where an entire 2K "page" was read or
673 	 * written as a unit.  Each "sub-page" is always addressed individually,
674 	 * its data read/written, and ecc handled before the next "sub-page" is
675 	 * addressed.
676 	 *
677 	 * This requires us to convert addresses passed by the mtd nand
678 	 * infrastructure code to those used by the device.
679 	 *
680 	 * The address that is written to the device consists of four bytes: the
681 	 * first two are the 2k page number, and the second is the index into
682 	 * the page.  The index is in terms of 16-bit half-words and includes
683 	 * the preceeding oob data, so e.g., the index into the second
684 	 * "sub-page" is 0x108, and the full device address of the start of mtd
685 	 * page 0x201 is 0x00800108.
686 	 */
687 	int g4_page = page / 4;	                      /* device's 2K page */
688 	int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
689 	return (g4_page << 16) | g4_index;	      /* pack */
690 }
691 
docg4_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)692 static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
693 			  int page_addr)
694 {
695 	/* handle standard nand commands */
696 
697 	struct nand_chip *nand = mtd->priv;
698 	struct docg4_priv *doc = nand->priv;
699 	uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
700 
701 	dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
702 	      __func__, command, page_addr, column);
703 
704 	/*
705 	 * Save the command and its arguments.  This enables emulation of
706 	 * standard flash devices, and also some optimizations.
707 	 */
708 	doc->last_command.command = command;
709 	doc->last_command.column = column;
710 	doc->last_command.page = page_addr;
711 
712 	switch (command) {
713 
714 	case NAND_CMD_RESET:
715 		reset(mtd);
716 		break;
717 
718 	case NAND_CMD_READ0:
719 		read_page_prologue(mtd, g4_addr);
720 		break;
721 
722 	case NAND_CMD_STATUS:
723 		/* next call to read_byte() will expect a status */
724 		break;
725 
726 	case NAND_CMD_SEQIN:
727 		if (unlikely(reliable_mode)) {
728 			uint16_t g4_page = g4_addr >> 16;
729 
730 			/* writes to odd-numbered 2k pages are invalid */
731 			if (g4_page & 0x01)
732 				dev_warn(doc->dev,
733 					 "invalid reliable mode address\n");
734 		}
735 
736 		write_page_prologue(mtd, g4_addr);
737 
738 		/* hack for deferred write of oob bytes */
739 		if (doc->oob_page == page_addr)
740 			memcpy(nand->oob_poi, doc->oob_buf, 16);
741 		break;
742 
743 	case NAND_CMD_PAGEPROG:
744 		pageprog(mtd);
745 		break;
746 
747 	/* we don't expect these, based on review of nand_base.c */
748 	case NAND_CMD_READOOB:
749 	case NAND_CMD_READID:
750 	case NAND_CMD_ERASE1:
751 	case NAND_CMD_ERASE2:
752 		dev_warn(doc->dev, "docg4_command: "
753 			 "unexpected nand command 0x%x\n", command);
754 		break;
755 
756 	}
757 }
758 
read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int page,bool use_ecc)759 static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
760 		     uint8_t *buf, int page, bool use_ecc)
761 {
762 	struct docg4_priv *doc = nand->priv;
763 	void __iomem *docptr = doc->virtadr;
764 	uint16_t status, edc_err, *buf16;
765 	int bits_corrected = 0;
766 
767 	dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
768 
769 	writew(DOC_ECCCONF0_READ_MODE |
770 	       DOC_ECCCONF0_ECC_ENABLE |
771 	       DOC_ECCCONF0_UNKNOWN |
772 	       DOCG4_BCH_SIZE,
773 	       docptr + DOC_ECCCONF0);
774 	write_nop(docptr);
775 	write_nop(docptr);
776 	write_nop(docptr);
777 	write_nop(docptr);
778 	write_nop(docptr);
779 
780 	/* the 1st byte from the I/O reg is a status; the rest is page data */
781 	status = readw(docptr + DOC_IOSPACE_DATA);
782 	if (status & DOCG4_READ_ERROR) {
783 		dev_err(doc->dev,
784 			"docg4_read_page: bad status: 0x%02x\n", status);
785 		writew(0, docptr + DOC_DATAEND);
786 		return -EIO;
787 	}
788 
789 	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
790 
791 	docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
792 
793 	/* this device always reads oob after page data */
794 	/* first 14 oob bytes read from I/O reg */
795 	docg4_read_buf(mtd, nand->oob_poi, 14);
796 
797 	/* last 2 read from another reg */
798 	buf16 = (uint16_t *)(nand->oob_poi + 14);
799 	*buf16 = readw(docptr + DOCG4_MYSTERY_REG);
800 
801 	write_nop(docptr);
802 
803 	if (likely(use_ecc == true)) {
804 
805 		/* read the register that tells us if bitflip(s) detected  */
806 		edc_err = readw(docptr + DOC_ECCCONF1);
807 		edc_err = readw(docptr + DOC_ECCCONF1);
808 		dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
809 
810 		/* If bitflips are reported, attempt to correct with ecc */
811 		if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
812 			bits_corrected = correct_data(mtd, buf, page);
813 			if (bits_corrected == -EBADMSG)
814 				mtd->ecc_stats.failed++;
815 			else
816 				mtd->ecc_stats.corrected += bits_corrected;
817 		}
818 	}
819 
820 	writew(0, docptr + DOC_DATAEND);
821 	if (bits_corrected == -EBADMSG)	  /* uncorrectable errors */
822 		return 0;
823 	return bits_corrected;
824 }
825 
826 
docg4_read_page_raw(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int oob_required,int page)827 static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
828 			       uint8_t *buf, int oob_required, int page)
829 {
830 	return read_page(mtd, nand, buf, page, false);
831 }
832 
docg4_read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int oob_required,int page)833 static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
834 			   uint8_t *buf, int oob_required, int page)
835 {
836 	return read_page(mtd, nand, buf, page, true);
837 }
838 
docg4_read_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)839 static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
840 			  int page)
841 {
842 	struct docg4_priv *doc = nand->priv;
843 	void __iomem *docptr = doc->virtadr;
844 	uint16_t status;
845 
846 	dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
847 
848 	docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
849 
850 	writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
851 	write_nop(docptr);
852 	write_nop(docptr);
853 	write_nop(docptr);
854 	write_nop(docptr);
855 	write_nop(docptr);
856 
857 	/* the 1st byte from the I/O reg is a status; the rest is oob data */
858 	status = readw(docptr + DOC_IOSPACE_DATA);
859 	if (status & DOCG4_READ_ERROR) {
860 		dev_warn(doc->dev,
861 			 "docg4_read_oob failed: status = 0x%02x\n", status);
862 		return -EIO;
863 	}
864 
865 	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
866 
867 	docg4_read_buf(mtd, nand->oob_poi, 16);
868 
869 	write_nop(docptr);
870 	write_nop(docptr);
871 	write_nop(docptr);
872 	writew(0, docptr + DOC_DATAEND);
873 	write_nop(docptr);
874 
875 	return 0;
876 }
877 
docg4_erase_block(struct mtd_info * mtd,int page)878 static void docg4_erase_block(struct mtd_info *mtd, int page)
879 {
880 	struct nand_chip *nand = mtd->priv;
881 	struct docg4_priv *doc = nand->priv;
882 	void __iomem *docptr = doc->virtadr;
883 	uint16_t g4_page;
884 
885 	dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
886 
887 	sequence_reset(mtd);
888 
889 	writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
890 	writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
891 	write_nop(docptr);
892 
893 	/* only 2 bytes of address are written to specify erase block */
894 	g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
895 	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
896 	g4_page >>= 8;
897 	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
898 	write_nop(docptr);
899 
900 	/* start the erasure */
901 	writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
902 	write_nop(docptr);
903 	write_nop(docptr);
904 
905 	usleep_range(500, 1000); /* erasure is long; take a snooze */
906 	poll_status(doc);
907 	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
908 	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
909 	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
910 	write_nop(docptr);
911 	write_nop(docptr);
912 	write_nop(docptr);
913 	write_nop(docptr);
914 	write_nop(docptr);
915 
916 	read_progstatus(doc);
917 
918 	writew(0, docptr + DOC_DATAEND);
919 	write_nop(docptr);
920 	poll_status(doc);
921 	write_nop(docptr);
922 }
923 
write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,bool use_ecc)924 static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
925 		       const uint8_t *buf, bool use_ecc)
926 {
927 	struct docg4_priv *doc = nand->priv;
928 	void __iomem *docptr = doc->virtadr;
929 	uint8_t ecc_buf[8];
930 
931 	dev_dbg(doc->dev, "%s...\n", __func__);
932 
933 	writew(DOC_ECCCONF0_ECC_ENABLE |
934 	       DOC_ECCCONF0_UNKNOWN |
935 	       DOCG4_BCH_SIZE,
936 	       docptr + DOC_ECCCONF0);
937 	write_nop(docptr);
938 
939 	/* write the page data */
940 	docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
941 
942 	/* oob bytes 0 through 5 are written to I/O reg */
943 	docg4_write_buf16(mtd, nand->oob_poi, 6);
944 
945 	/* oob byte 6 written to a separate reg */
946 	writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
947 
948 	write_nop(docptr);
949 	write_nop(docptr);
950 
951 	/* write hw-generated ecc bytes to oob */
952 	if (likely(use_ecc == true)) {
953 		/* oob byte 7 is hamming code */
954 		uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
955 		hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
956 		writew(hamming, docptr + DOCG4_OOB_6_7);
957 		write_nop(docptr);
958 
959 		/* read the 7 bch bytes from ecc regs */
960 		read_hw_ecc(docptr, ecc_buf);
961 		ecc_buf[7] = 0;         /* clear the "page written" flag */
962 	}
963 
964 	/* write user-supplied bytes to oob */
965 	else {
966 		writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
967 		write_nop(docptr);
968 		memcpy(ecc_buf, &nand->oob_poi[8], 8);
969 	}
970 
971 	docg4_write_buf16(mtd, ecc_buf, 8);
972 	write_nop(docptr);
973 	write_nop(docptr);
974 	writew(0, docptr + DOC_DATAEND);
975 	write_nop(docptr);
976 
977 	return 0;
978 }
979 
docg4_write_page_raw(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,int oob_required)980 static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
981 				 const uint8_t *buf, int oob_required)
982 {
983 	return write_page(mtd, nand, buf, false);
984 }
985 
docg4_write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,int oob_required)986 static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
987 			     const uint8_t *buf, int oob_required)
988 {
989 	return write_page(mtd, nand, buf, true);
990 }
991 
docg4_write_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)992 static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
993 			   int page)
994 {
995 	/*
996 	 * Writing oob-only is not really supported, because MLC nand must write
997 	 * oob bytes at the same time as page data.  Nonetheless, we save the
998 	 * oob buffer contents here, and then write it along with the page data
999 	 * if the same page is subsequently written.  This allows user space
1000 	 * utilities that write the oob data prior to the page data to work
1001 	 * (e.g., nandwrite).  The disdvantage is that, if the intention was to
1002 	 * write oob only, the operation is quietly ignored.  Also, oob can get
1003 	 * corrupted if two concurrent processes are running nandwrite.
1004 	 */
1005 
1006 	/* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1007 	struct docg4_priv *doc = nand->priv;
1008 	doc->oob_page = page;
1009 	memcpy(doc->oob_buf, nand->oob_poi, 16);
1010 	return 0;
1011 }
1012 
read_factory_bbt(struct mtd_info * mtd)1013 static int __init read_factory_bbt(struct mtd_info *mtd)
1014 {
1015 	/*
1016 	 * The device contains a read-only factory bad block table.  Read it and
1017 	 * update the memory-based bbt accordingly.
1018 	 */
1019 
1020 	struct nand_chip *nand = mtd->priv;
1021 	struct docg4_priv *doc = nand->priv;
1022 	uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1023 	uint8_t *buf;
1024 	int i, block;
1025 	__u32 eccfailed_stats = mtd->ecc_stats.failed;
1026 
1027 	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1028 	if (buf == NULL)
1029 		return -ENOMEM;
1030 
1031 	read_page_prologue(mtd, g4_addr);
1032 	docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1033 
1034 	/*
1035 	 * If no memory-based bbt was created, exit.  This will happen if module
1036 	 * parameter ignore_badblocks is set.  Then why even call this function?
1037 	 * For an unknown reason, block erase always fails if it's the first
1038 	 * operation after device power-up.  The above read ensures it never is.
1039 	 * Ugly, I know.
1040 	 */
1041 	if (nand->bbt == NULL)  /* no memory-based bbt */
1042 		goto exit;
1043 
1044 	if (mtd->ecc_stats.failed > eccfailed_stats) {
1045 		/*
1046 		 * Whoops, an ecc failure ocurred reading the factory bbt.
1047 		 * It is stored redundantly, so we get another chance.
1048 		 */
1049 		eccfailed_stats = mtd->ecc_stats.failed;
1050 		docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1051 		if (mtd->ecc_stats.failed > eccfailed_stats) {
1052 			dev_warn(doc->dev,
1053 				 "The factory bbt could not be read!\n");
1054 			goto exit;
1055 		}
1056 	}
1057 
1058 	/*
1059 	 * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1060 	 * simple: one bit per block, block numbers increase left to right (msb
1061 	 * to lsb).  Bit clear means bad block.
1062 	 */
1063 	for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1064 		int bitnum;
1065 		unsigned long bits = ~buf[i];
1066 		for_each_set_bit(bitnum, &bits, 8) {
1067 			int badblock = block + 7 - bitnum;
1068 			nand->bbt[badblock / 4] |=
1069 				0x03 << ((badblock % 4) * 2);
1070 			mtd->ecc_stats.badblocks++;
1071 			dev_notice(doc->dev, "factory-marked bad block: %d\n",
1072 				   badblock);
1073 		}
1074 	}
1075  exit:
1076 	kfree(buf);
1077 	return 0;
1078 }
1079 
docg4_block_markbad(struct mtd_info * mtd,loff_t ofs)1080 static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1081 {
1082 	/*
1083 	 * Mark a block as bad.  Bad blocks are marked in the oob area of the
1084 	 * first page of the block.  The default scan_bbt() in the nand
1085 	 * infrastructure code works fine for building the memory-based bbt
1086 	 * during initialization, as does the nand infrastructure function that
1087 	 * checks if a block is bad by reading the bbt.  This function replaces
1088 	 * the nand default because writes to oob-only are not supported.
1089 	 */
1090 
1091 	int ret, i;
1092 	uint8_t *buf;
1093 	struct nand_chip *nand = mtd->priv;
1094 	struct docg4_priv *doc = nand->priv;
1095 	struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1096 	int block = (int)(ofs >> nand->bbt_erase_shift);
1097 	int page = (int)(ofs >> nand->page_shift);
1098 	uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1099 
1100 	dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1101 
1102 	if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1103 		dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1104 			 __func__, ofs);
1105 
1106 	/* allocate blank buffer for page data */
1107 	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1108 	if (buf == NULL)
1109 		return -ENOMEM;
1110 
1111 	/* update bbt in memory */
1112 	nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2);
1113 
1114 	/* write bit-wise negation of pattern to oob buffer */
1115 	memset(nand->oob_poi, 0xff, mtd->oobsize);
1116 	for (i = 0; i < bbtd->len; i++)
1117 		nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1118 
1119 	/* write first page of block */
1120 	write_page_prologue(mtd, g4_addr);
1121 	docg4_write_page(mtd, nand, buf, 1);
1122 	ret = pageprog(mtd);
1123 	if (!ret)
1124 		mtd->ecc_stats.badblocks++;
1125 
1126 	kfree(buf);
1127 
1128 	return ret;
1129 }
1130 
docg4_block_neverbad(struct mtd_info * mtd,loff_t ofs,int getchip)1131 static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1132 {
1133 	/* only called when module_param ignore_badblocks is set */
1134 	return 0;
1135 }
1136 
docg4_suspend(struct platform_device * pdev,pm_message_t state)1137 static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1138 {
1139 	/*
1140 	 * Put the device into "deep power-down" mode.  Note that CE# must be
1141 	 * deasserted for this to take effect.  The xscale, e.g., can be
1142 	 * configured to float this signal when the processor enters power-down,
1143 	 * and a suitable pull-up ensures its deassertion.
1144 	 */
1145 
1146 	int i;
1147 	uint8_t pwr_down;
1148 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1149 	void __iomem *docptr = doc->virtadr;
1150 
1151 	dev_dbg(doc->dev, "%s...\n", __func__);
1152 
1153 	/* poll the register that tells us we're ready to go to sleep */
1154 	for (i = 0; i < 10; i++) {
1155 		pwr_down = readb(docptr + DOC_POWERMODE);
1156 		if (pwr_down & DOC_POWERDOWN_READY)
1157 			break;
1158 		usleep_range(1000, 4000);
1159 	}
1160 
1161 	if (pwr_down & DOC_POWERDOWN_READY) {
1162 		dev_err(doc->dev, "suspend failed; "
1163 			"timeout polling DOC_POWERDOWN_READY\n");
1164 		return -EIO;
1165 	}
1166 
1167 	writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1168 	       docptr + DOC_ASICMODE);
1169 	writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1170 	       docptr + DOC_ASICMODECONFIRM);
1171 
1172 	write_nop(docptr);
1173 
1174 	return 0;
1175 }
1176 
docg4_resume(struct platform_device * pdev)1177 static int docg4_resume(struct platform_device *pdev)
1178 {
1179 
1180 	/*
1181 	 * Exit power-down.  Twelve consecutive reads of the address below
1182 	 * accomplishes this, assuming CE# has been asserted.
1183 	 */
1184 
1185 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1186 	void __iomem *docptr = doc->virtadr;
1187 	int i;
1188 
1189 	dev_dbg(doc->dev, "%s...\n", __func__);
1190 
1191 	for (i = 0; i < 12; i++)
1192 		readb(docptr + 0x1fff);
1193 
1194 	return 0;
1195 }
1196 
init_mtd_structs(struct mtd_info * mtd)1197 static void __init init_mtd_structs(struct mtd_info *mtd)
1198 {
1199 	/* initialize mtd and nand data structures */
1200 
1201 	/*
1202 	 * Note that some of the following initializations are not usually
1203 	 * required within a nand driver because they are performed by the nand
1204 	 * infrastructure code as part of nand_scan().  In this case they need
1205 	 * to be initialized here because we skip call to nand_scan_ident() (the
1206 	 * first half of nand_scan()).  The call to nand_scan_ident() is skipped
1207 	 * because for this device the chip id is not read in the manner of a
1208 	 * standard nand device.  Unfortunately, nand_scan_ident() does other
1209 	 * things as well, such as call nand_set_defaults().
1210 	 */
1211 
1212 	struct nand_chip *nand = mtd->priv;
1213 	struct docg4_priv *doc = nand->priv;
1214 
1215 	mtd->size = DOCG4_CHIP_SIZE;
1216 	mtd->name = "Msys_Diskonchip_G4";
1217 	mtd->writesize = DOCG4_PAGE_SIZE;
1218 	mtd->erasesize = DOCG4_BLOCK_SIZE;
1219 	mtd->oobsize = DOCG4_OOB_SIZE;
1220 	nand->chipsize = DOCG4_CHIP_SIZE;
1221 	nand->chip_shift = DOCG4_CHIP_SHIFT;
1222 	nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1223 	nand->chip_delay = 20;
1224 	nand->page_shift = DOCG4_PAGE_SHIFT;
1225 	nand->pagemask = 0x3ffff;
1226 	nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1227 	nand->badblockbits = 8;
1228 	nand->ecc.layout = &docg4_oobinfo;
1229 	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1230 	nand->ecc.size = DOCG4_PAGE_SIZE;
1231 	nand->ecc.prepad = 8;
1232 	nand->ecc.bytes	= 8;
1233 	nand->ecc.strength = DOCG4_T;
1234 	nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1235 	nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1236 	nand->controller = &nand->hwcontrol;
1237 	spin_lock_init(&nand->controller->lock);
1238 	init_waitqueue_head(&nand->controller->wq);
1239 
1240 	/* methods */
1241 	nand->cmdfunc = docg4_command;
1242 	nand->waitfunc = docg4_wait;
1243 	nand->select_chip = docg4_select_chip;
1244 	nand->read_byte = docg4_read_byte;
1245 	nand->block_markbad = docg4_block_markbad;
1246 	nand->read_buf = docg4_read_buf;
1247 	nand->write_buf = docg4_write_buf16;
1248 	nand->scan_bbt = nand_default_bbt;
1249 	nand->erase_cmd = docg4_erase_block;
1250 	nand->ecc.read_page = docg4_read_page;
1251 	nand->ecc.write_page = docg4_write_page;
1252 	nand->ecc.read_page_raw = docg4_read_page_raw;
1253 	nand->ecc.write_page_raw = docg4_write_page_raw;
1254 	nand->ecc.read_oob = docg4_read_oob;
1255 	nand->ecc.write_oob = docg4_write_oob;
1256 
1257 	/*
1258 	 * The way the nand infrastructure code is written, a memory-based bbt
1259 	 * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1260 	 * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1261 	 * scan and define a dummy block_bad() which always returns 0.
1262 	 */
1263 	if (ignore_badblocks) {
1264 		nand->options |= NAND_SKIP_BBTSCAN;
1265 		nand->block_bad	= docg4_block_neverbad;
1266 	}
1267 
1268 }
1269 
read_id_reg(struct mtd_info * mtd)1270 static int __init read_id_reg(struct mtd_info *mtd)
1271 {
1272 	struct nand_chip *nand = mtd->priv;
1273 	struct docg4_priv *doc = nand->priv;
1274 	void __iomem *docptr = doc->virtadr;
1275 	uint16_t id1, id2;
1276 
1277 	/* check for presence of g4 chip by reading id registers */
1278 	id1 = readw(docptr + DOC_CHIPID);
1279 	id1 = readw(docptr + DOCG4_MYSTERY_REG);
1280 	id2 = readw(docptr + DOC_CHIPID_INV);
1281 	id2 = readw(docptr + DOCG4_MYSTERY_REG);
1282 
1283 	if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1284 		dev_info(doc->dev,
1285 			 "NAND device: 128MiB Diskonchip G4 detected\n");
1286 		return 0;
1287 	}
1288 
1289 	return -ENODEV;
1290 }
1291 
1292 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1293 
probe_docg4(struct platform_device * pdev)1294 static int __init probe_docg4(struct platform_device *pdev)
1295 {
1296 	struct mtd_info *mtd;
1297 	struct nand_chip *nand;
1298 	void __iomem *virtadr;
1299 	struct docg4_priv *doc;
1300 	int len, retval;
1301 	struct resource *r;
1302 	struct device *dev = &pdev->dev;
1303 
1304 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1305 	if (r == NULL) {
1306 		dev_err(dev, "no io memory resource defined!\n");
1307 		return -ENODEV;
1308 	}
1309 
1310 	virtadr = ioremap(r->start, resource_size(r));
1311 	if (!virtadr) {
1312 		dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1313 		return -EIO;
1314 	}
1315 
1316 	len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1317 		sizeof(struct docg4_priv);
1318 	mtd = kzalloc(len, GFP_KERNEL);
1319 	if (mtd == NULL) {
1320 		retval = -ENOMEM;
1321 		goto fail;
1322 	}
1323 	nand = (struct nand_chip *) (mtd + 1);
1324 	doc = (struct docg4_priv *) (nand + 1);
1325 	mtd->priv = nand;
1326 	nand->priv = doc;
1327 	mtd->owner = THIS_MODULE;
1328 	doc->virtadr = virtadr;
1329 	doc->dev = dev;
1330 
1331 	init_mtd_structs(mtd);
1332 
1333 	/* initialize kernel bch algorithm */
1334 	doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1335 	if (doc->bch == NULL) {
1336 		retval = -EINVAL;
1337 		goto fail;
1338 	}
1339 
1340 	platform_set_drvdata(pdev, doc);
1341 
1342 	reset(mtd);
1343 	retval = read_id_reg(mtd);
1344 	if (retval == -ENODEV) {
1345 		dev_warn(dev, "No diskonchip G4 device found.\n");
1346 		goto fail;
1347 	}
1348 
1349 	retval = nand_scan_tail(mtd);
1350 	if (retval)
1351 		goto fail;
1352 
1353 	retval = read_factory_bbt(mtd);
1354 	if (retval)
1355 		goto fail;
1356 
1357 	retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1358 	if (retval)
1359 		goto fail;
1360 
1361 	doc->mtd = mtd;
1362 	return 0;
1363 
1364  fail:
1365 	iounmap(virtadr);
1366 	if (mtd) {
1367 		/* re-declarations avoid compiler warning */
1368 		struct nand_chip *nand = mtd->priv;
1369 		struct docg4_priv *doc = nand->priv;
1370 		nand_release(mtd); /* deletes partitions and mtd devices */
1371 		platform_set_drvdata(pdev, NULL);
1372 		free_bch(doc->bch);
1373 		kfree(mtd);
1374 	}
1375 
1376 	return retval;
1377 }
1378 
cleanup_docg4(struct platform_device * pdev)1379 static int __exit cleanup_docg4(struct platform_device *pdev)
1380 {
1381 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1382 	nand_release(doc->mtd);
1383 	platform_set_drvdata(pdev, NULL);
1384 	free_bch(doc->bch);
1385 	kfree(doc->mtd);
1386 	iounmap(doc->virtadr);
1387 	return 0;
1388 }
1389 
1390 static struct platform_driver docg4_driver = {
1391 	.driver		= {
1392 		.name	= "docg4",
1393 		.owner	= THIS_MODULE,
1394 	},
1395 	.suspend	= docg4_suspend,
1396 	.resume		= docg4_resume,
1397 	.remove		= __exit_p(cleanup_docg4),
1398 };
1399 
1400 module_platform_driver_probe(docg4_driver, probe_docg4);
1401 
1402 MODULE_LICENSE("GPL");
1403 MODULE_AUTHOR("Mike Dunn");
1404 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
1405