• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NXP LPC32XX NAND SLC driver
3  *
4  * Authors:
5  *    Kevin Wells <kevin.wells@nxp.com>
6  *    Roland Stigge <stigge@antcom.de>
7  *
8  * Copyright © 2011 NXP Semiconductors
9  * Copyright © 2012 Roland Stigge
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/nand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
31 #include <linux/io.h>
32 #include <linux/mm.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
37 #include <linux/of.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_slc.h>
41 
42 #define LPC32XX_MODNAME		"lpc32xx-nand"
43 
44 /**********************************************************************
45 * SLC NAND controller register offsets
46 **********************************************************************/
47 
48 #define SLC_DATA(x)		(x + 0x000)
49 #define SLC_ADDR(x)		(x + 0x004)
50 #define SLC_CMD(x)		(x + 0x008)
51 #define SLC_STOP(x)		(x + 0x00C)
52 #define SLC_CTRL(x)		(x + 0x010)
53 #define SLC_CFG(x)		(x + 0x014)
54 #define SLC_STAT(x)		(x + 0x018)
55 #define SLC_INT_STAT(x)		(x + 0x01C)
56 #define SLC_IEN(x)		(x + 0x020)
57 #define SLC_ISR(x)		(x + 0x024)
58 #define SLC_ICR(x)		(x + 0x028)
59 #define SLC_TAC(x)		(x + 0x02C)
60 #define SLC_TC(x)		(x + 0x030)
61 #define SLC_ECC(x)		(x + 0x034)
62 #define SLC_DMA_DATA(x)		(x + 0x038)
63 
64 /**********************************************************************
65 * slc_ctrl register definitions
66 **********************************************************************/
67 #define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
68 #define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
69 #define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */
70 
71 /**********************************************************************
72 * slc_cfg register definitions
73 **********************************************************************/
74 #define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
75 #define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
76 #define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
77 #define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
78 #define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
79 #define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */
80 
81 /**********************************************************************
82 * slc_stat register definitions
83 **********************************************************************/
84 #define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
85 #define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
86 #define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */
87 
88 /**********************************************************************
89 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90 **********************************************************************/
91 #define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
92 #define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */
93 
94 /**********************************************************************
95 * slc_tac register definitions
96 **********************************************************************/
97 /* Clock setting for RDY write sample wait time in 2*n clocks */
98 #define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
99 /* Write pulse width in clock cycles, 1 to 16 clocks */
100 #define SLCTAC_WWIDTH(n)	(((n) & 0xF) << 24)
101 /* Write hold time of control and data signals, 1 to 16 clocks */
102 #define SLCTAC_WHOLD(n)		(((n) & 0xF) << 20)
103 /* Write setup time of control and data signals, 1 to 16 clocks */
104 #define SLCTAC_WSETUP(n)	(((n) & 0xF) << 16)
105 /* Clock setting for RDY read sample wait time in 2*n clocks */
106 #define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
107 /* Read pulse width in clock cycles, 1 to 16 clocks */
108 #define SLCTAC_RWIDTH(n)	(((n) & 0xF) << 8)
109 /* Read hold time of control and data signals, 1 to 16 clocks */
110 #define SLCTAC_RHOLD(n)		(((n) & 0xF) << 4)
111 /* Read setup time of control and data signals, 1 to 16 clocks */
112 #define SLCTAC_RSETUP(n)	(((n) & 0xF) << 0)
113 
114 /**********************************************************************
115 * slc_ecc register definitions
116 **********************************************************************/
117 /* ECC line party fetch macro */
118 #define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
119 #define SLCECC_TO_COLPAR(n)	((n) & 0x3F)
120 
121 /*
122  * DMA requires storage space for the DMA local buffer and the hardware ECC
123  * storage area. The DMA local buffer is only used if DMA mapping fails
124  * during runtime.
125  */
126 #define LPC32XX_DMA_DATA_SIZE		4096
127 #define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)
128 
129 /* Number of bytes used for ECC stored in NAND per 256 bytes */
130 #define LPC32XX_SLC_DEV_ECC_BYTES	3
131 
132 /*
133  * If the NAND base clock frequency can't be fetched, this frequency will be
134  * used instead as the base. This rate is used to setup the timing registers
135  * used for NAND accesses.
136  */
137 #define LPC32XX_DEF_BUS_RATE		133250000
138 
139 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
140 #define LPC32XX_DMA_TIMEOUT		100
141 
142 /*
143  * NAND ECC Layout for small page NAND devices
144  * Note: For large and huge page devices, the default layouts are used
145  */
146 static struct nand_ecclayout lpc32xx_nand_oob_16 = {
147 	.eccbytes = 6,
148 	.eccpos = {10, 11, 12, 13, 14, 15},
149 	.oobfree = {
150 		{ .offset = 0, .length = 4 },
151 		{ .offset = 6, .length = 4 },
152 	},
153 };
154 
155 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
156 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
157 
158 /*
159  * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
160  * Note: Large page devices used the default layout
161  */
162 static struct nand_bbt_descr bbt_smallpage_main_descr = {
163 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
164 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
165 	.offs =	0,
166 	.len = 4,
167 	.veroffs = 6,
168 	.maxblocks = 4,
169 	.pattern = bbt_pattern
170 };
171 
172 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
173 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
174 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
175 	.offs =	0,
176 	.len = 4,
177 	.veroffs = 6,
178 	.maxblocks = 4,
179 	.pattern = mirror_pattern
180 };
181 
182 /*
183  * NAND platform configuration structure
184  */
185 struct lpc32xx_nand_cfg_slc {
186 	uint32_t wdr_clks;
187 	uint32_t wwidth;
188 	uint32_t whold;
189 	uint32_t wsetup;
190 	uint32_t rdr_clks;
191 	uint32_t rwidth;
192 	uint32_t rhold;
193 	uint32_t rsetup;
194 	bool use_bbt;
195 	int wp_gpio;
196 	struct mtd_partition *parts;
197 	unsigned num_parts;
198 };
199 
200 struct lpc32xx_nand_host {
201 	struct nand_chip	nand_chip;
202 	struct lpc32xx_slc_platform_data *pdata;
203 	struct clk		*clk;
204 	struct mtd_info		mtd;
205 	void __iomem		*io_base;
206 	struct lpc32xx_nand_cfg_slc *ncfg;
207 
208 	struct completion	comp;
209 	struct dma_chan		*dma_chan;
210 	uint32_t		dma_buf_len;
211 	struct dma_slave_config	dma_slave_config;
212 	struct scatterlist	sgl;
213 
214 	/*
215 	 * DMA and CPU addresses of ECC work area and data buffer
216 	 */
217 	uint32_t		*ecc_buf;
218 	uint8_t			*data_buf;
219 	dma_addr_t		io_base_dma;
220 };
221 
lpc32xx_nand_setup(struct lpc32xx_nand_host * host)222 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
223 {
224 	uint32_t clkrate, tmp;
225 
226 	/* Reset SLC controller */
227 	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
228 	udelay(1000);
229 
230 	/* Basic setup */
231 	writel(0, SLC_CFG(host->io_base));
232 	writel(0, SLC_IEN(host->io_base));
233 	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
234 		SLC_ICR(host->io_base));
235 
236 	/* Get base clock for SLC block */
237 	clkrate = clk_get_rate(host->clk);
238 	if (clkrate == 0)
239 		clkrate = LPC32XX_DEF_BUS_RATE;
240 
241 	/* Compute clock setup values */
242 	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
243 		SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) |
244 		SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) |
245 		SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) |
246 		SLCTAC_RDR(host->ncfg->rdr_clks) |
247 		SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) |
248 		SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) |
249 		SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup));
250 	writel(tmp, SLC_TAC(host->io_base));
251 }
252 
253 /*
254  * Hardware specific access to control lines
255  */
lpc32xx_nand_cmd_ctrl(struct mtd_info * mtd,int cmd,unsigned int ctrl)256 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
257 	unsigned int ctrl)
258 {
259 	uint32_t tmp;
260 	struct nand_chip *chip = mtd->priv;
261 	struct lpc32xx_nand_host *host = chip->priv;
262 
263 	/* Does CE state need to be changed? */
264 	tmp = readl(SLC_CFG(host->io_base));
265 	if (ctrl & NAND_NCE)
266 		tmp |= SLCCFG_CE_LOW;
267 	else
268 		tmp &= ~SLCCFG_CE_LOW;
269 	writel(tmp, SLC_CFG(host->io_base));
270 
271 	if (cmd != NAND_CMD_NONE) {
272 		if (ctrl & NAND_CLE)
273 			writel(cmd, SLC_CMD(host->io_base));
274 		else
275 			writel(cmd, SLC_ADDR(host->io_base));
276 	}
277 }
278 
279 /*
280  * Read the Device Ready pin
281  */
lpc32xx_nand_device_ready(struct mtd_info * mtd)282 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
283 {
284 	struct nand_chip *chip = mtd->priv;
285 	struct lpc32xx_nand_host *host = chip->priv;
286 	int rdy = 0;
287 
288 	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
289 		rdy = 1;
290 
291 	return rdy;
292 }
293 
294 /*
295  * Enable NAND write protect
296  */
lpc32xx_wp_enable(struct lpc32xx_nand_host * host)297 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
298 {
299 	if (gpio_is_valid(host->ncfg->wp_gpio))
300 		gpio_set_value(host->ncfg->wp_gpio, 0);
301 }
302 
303 /*
304  * Disable NAND write protect
305  */
lpc32xx_wp_disable(struct lpc32xx_nand_host * host)306 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
307 {
308 	if (gpio_is_valid(host->ncfg->wp_gpio))
309 		gpio_set_value(host->ncfg->wp_gpio, 1);
310 }
311 
312 /*
313  * Prepares SLC for transfers with H/W ECC enabled
314  */
lpc32xx_nand_ecc_enable(struct mtd_info * mtd,int mode)315 static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
316 {
317 	/* Hardware ECC is enabled automatically in hardware as needed */
318 }
319 
320 /*
321  * Calculates the ECC for the data
322  */
lpc32xx_nand_ecc_calculate(struct mtd_info * mtd,const unsigned char * buf,unsigned char * code)323 static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
324 				      const unsigned char *buf,
325 				      unsigned char *code)
326 {
327 	/*
328 	 * ECC is calculated automatically in hardware during syndrome read
329 	 * and write operations, so it doesn't need to be calculated here.
330 	 */
331 	return 0;
332 }
333 
334 /*
335  * Read a single byte from NAND device
336  */
lpc32xx_nand_read_byte(struct mtd_info * mtd)337 static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
338 {
339 	struct nand_chip *chip = mtd->priv;
340 	struct lpc32xx_nand_host *host = chip->priv;
341 
342 	return (uint8_t)readl(SLC_DATA(host->io_base));
343 }
344 
345 /*
346  * Simple device read without ECC
347  */
lpc32xx_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)348 static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
349 {
350 	struct nand_chip *chip = mtd->priv;
351 	struct lpc32xx_nand_host *host = chip->priv;
352 
353 	/* Direct device read with no ECC */
354 	while (len-- > 0)
355 		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
356 }
357 
358 /*
359  * Simple device write without ECC
360  */
lpc32xx_nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)361 static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
362 {
363 	struct nand_chip *chip = mtd->priv;
364 	struct lpc32xx_nand_host *host = chip->priv;
365 
366 	/* Direct device write with no ECC */
367 	while (len-- > 0)
368 		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
369 }
370 
371 /*
372  * Read the OOB data from the device without ECC using FIFO method
373  */
lpc32xx_nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)374 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
375 					  struct nand_chip *chip, int page)
376 {
377 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
378 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
379 
380 	return 0;
381 }
382 
383 /*
384  * Write the OOB data to the device without ECC using FIFO method
385  */
lpc32xx_nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)386 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
387 	struct nand_chip *chip, int page)
388 {
389 	int status;
390 
391 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
392 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
393 
394 	/* Send command to program the OOB data */
395 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
396 
397 	status = chip->waitfunc(mtd, chip);
398 
399 	return status & NAND_STATUS_FAIL ? -EIO : 0;
400 }
401 
402 /*
403  * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
404  */
lpc32xx_slc_ecc_copy(uint8_t * spare,const uint32_t * ecc,int count)405 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
406 {
407 	int i;
408 
409 	for (i = 0; i < (count * 3); i += 3) {
410 		uint32_t ce = ecc[i / 3];
411 		ce = ~(ce << 2) & 0xFFFFFF;
412 		spare[i + 2] = (uint8_t)(ce & 0xFF);
413 		ce >>= 8;
414 		spare[i + 1] = (uint8_t)(ce & 0xFF);
415 		ce >>= 8;
416 		spare[i] = (uint8_t)(ce & 0xFF);
417 	}
418 }
419 
lpc32xx_dma_complete_func(void * completion)420 static void lpc32xx_dma_complete_func(void *completion)
421 {
422 	complete(completion);
423 }
424 
lpc32xx_xmit_dma(struct mtd_info * mtd,dma_addr_t dma,void * mem,int len,enum dma_transfer_direction dir)425 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
426 			    void *mem, int len, enum dma_transfer_direction dir)
427 {
428 	struct nand_chip *chip = mtd->priv;
429 	struct lpc32xx_nand_host *host = chip->priv;
430 	struct dma_async_tx_descriptor *desc;
431 	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
432 	int res;
433 
434 	host->dma_slave_config.direction = dir;
435 	host->dma_slave_config.src_addr = dma;
436 	host->dma_slave_config.dst_addr = dma;
437 	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
438 	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
439 	host->dma_slave_config.src_maxburst = 4;
440 	host->dma_slave_config.dst_maxburst = 4;
441 	/* DMA controller does flow control: */
442 	host->dma_slave_config.device_fc = false;
443 	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
444 		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
445 		return -ENXIO;
446 	}
447 
448 	sg_init_one(&host->sgl, mem, len);
449 
450 	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
451 			 DMA_BIDIRECTIONAL);
452 	if (res != 1) {
453 		dev_err(mtd->dev.parent, "Failed to map sg list\n");
454 		return -ENXIO;
455 	}
456 	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
457 				       flags);
458 	if (!desc) {
459 		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
460 		goto out1;
461 	}
462 
463 	init_completion(&host->comp);
464 	desc->callback = lpc32xx_dma_complete_func;
465 	desc->callback_param = &host->comp;
466 
467 	dmaengine_submit(desc);
468 	dma_async_issue_pending(host->dma_chan);
469 
470 	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
471 
472 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
473 		     DMA_BIDIRECTIONAL);
474 
475 	return 0;
476 out1:
477 	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
478 		     DMA_BIDIRECTIONAL);
479 	return -ENXIO;
480 }
481 
482 /*
483  * DMA read/write transfers with ECC support
484  */
lpc32xx_xfer(struct mtd_info * mtd,uint8_t * buf,int eccsubpages,int read)485 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
486 			int read)
487 {
488 	struct nand_chip *chip = mtd->priv;
489 	struct lpc32xx_nand_host *host = chip->priv;
490 	int i, status = 0;
491 	unsigned long timeout;
492 	int res;
493 	enum dma_transfer_direction dir =
494 		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
495 	uint8_t *dma_buf;
496 	bool dma_mapped;
497 
498 	if ((void *)buf <= high_memory) {
499 		dma_buf = buf;
500 		dma_mapped = true;
501 	} else {
502 		dma_buf = host->data_buf;
503 		dma_mapped = false;
504 		if (!read)
505 			memcpy(host->data_buf, buf, mtd->writesize);
506 	}
507 
508 	if (read) {
509 		writel(readl(SLC_CFG(host->io_base)) |
510 		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
511 		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
512 	} else {
513 		writel((readl(SLC_CFG(host->io_base)) |
514 			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
515 		       ~SLCCFG_DMA_DIR,
516 			SLC_CFG(host->io_base));
517 	}
518 
519 	/* Clear initial ECC */
520 	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
521 
522 	/* Transfer size is data area only */
523 	writel(mtd->writesize, SLC_TC(host->io_base));
524 
525 	/* Start transfer in the NAND controller */
526 	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
527 	       SLC_CTRL(host->io_base));
528 
529 	for (i = 0; i < chip->ecc.steps; i++) {
530 		/* Data */
531 		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
532 				       dma_buf + i * chip->ecc.size,
533 				       mtd->writesize / chip->ecc.steps, dir);
534 		if (res)
535 			return res;
536 
537 		/* Always _read_ ECC */
538 		if (i == chip->ecc.steps - 1)
539 			break;
540 		if (!read) /* ECC availability delayed on write */
541 			udelay(10);
542 		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
543 				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
544 		if (res)
545 			return res;
546 	}
547 
548 	/*
549 	 * According to NXP, the DMA can be finished here, but the NAND
550 	 * controller may still have buffered data. After porting to using the
551 	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
552 	 * appears to be always true, according to tests. Keeping the check for
553 	 * safety reasons for now.
554 	 */
555 	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
556 		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
557 		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
558 		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
559 		       time_before(jiffies, timeout))
560 			cpu_relax();
561 		if (!time_before(jiffies, timeout)) {
562 			dev_err(mtd->dev.parent, "FIFO held data too long\n");
563 			status = -EIO;
564 		}
565 	}
566 
567 	/* Read last calculated ECC value */
568 	if (!read)
569 		udelay(10);
570 	host->ecc_buf[chip->ecc.steps - 1] =
571 		readl(SLC_ECC(host->io_base));
572 
573 	/* Flush DMA */
574 	dmaengine_terminate_all(host->dma_chan);
575 
576 	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
577 	    readl(SLC_TC(host->io_base))) {
578 		/* Something is left in the FIFO, something is wrong */
579 		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
580 		status = -EIO;
581 	}
582 
583 	/* Stop DMA & HW ECC */
584 	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
585 	       SLC_CTRL(host->io_base));
586 	writel(readl(SLC_CFG(host->io_base)) &
587 	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
588 		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
589 
590 	if (!dma_mapped && read)
591 		memcpy(buf, host->data_buf, mtd->writesize);
592 
593 	return status;
594 }
595 
596 /*
597  * Read the data and OOB data from the device, use ECC correction with the
598  * data, disable ECC for the OOB data
599  */
lpc32xx_nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)600 static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
601 					   struct nand_chip *chip, uint8_t *buf,
602 					   int oob_required, int page)
603 {
604 	struct lpc32xx_nand_host *host = chip->priv;
605 	int stat, i, status;
606 	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
607 
608 	/* Issue read command */
609 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
610 
611 	/* Read data and oob, calculate ECC */
612 	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
613 
614 	/* Get OOB data */
615 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
616 
617 	/* Convert to stored ECC format */
618 	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
619 
620 	/* Pointer to ECC data retrieved from NAND spare area */
621 	oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
622 
623 	for (i = 0; i < chip->ecc.steps; i++) {
624 		stat = chip->ecc.correct(mtd, buf, oobecc,
625 					 &tmpecc[i * chip->ecc.bytes]);
626 		if (stat < 0)
627 			mtd->ecc_stats.failed++;
628 		else
629 			mtd->ecc_stats.corrected += stat;
630 
631 		buf += chip->ecc.size;
632 		oobecc += chip->ecc.bytes;
633 	}
634 
635 	return status;
636 }
637 
638 /*
639  * Read the data and OOB data from the device, no ECC correction with the
640  * data or OOB data
641  */
lpc32xx_nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)642 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
643 					       struct nand_chip *chip,
644 					       uint8_t *buf, int oob_required,
645 					       int page)
646 {
647 	/* Issue read command */
648 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
649 
650 	/* Raw reads can just use the FIFO interface */
651 	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
652 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
653 
654 	return 0;
655 }
656 
657 /*
658  * Write the data and OOB data to the device, use ECC with the data,
659  * disable ECC for the OOB data
660  */
lpc32xx_nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)661 static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
662 					    struct nand_chip *chip,
663 					    const uint8_t *buf, int oob_required)
664 {
665 	struct lpc32xx_nand_host *host = chip->priv;
666 	uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
667 	int error;
668 
669 	/* Write data, calculate ECC on outbound data */
670 	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
671 	if (error)
672 		return error;
673 
674 	/*
675 	 * The calculated ECC needs some manual work done to it before
676 	 * committing it to NAND. Process the calculated ECC and place
677 	 * the resultant values directly into the OOB buffer. */
678 	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
679 
680 	/* Write ECC data to device */
681 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
682 	return 0;
683 }
684 
685 /*
686  * Write the data and OOB data to the device, no ECC correction with the
687  * data or OOB data
688  */
lpc32xx_nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)689 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
690 						struct nand_chip *chip,
691 						const uint8_t *buf,
692 						int oob_required)
693 {
694 	/* Raw writes can just use the FIFO interface */
695 	chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
696 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
697 	return 0;
698 }
699 
lpc32xx_nand_dma_setup(struct lpc32xx_nand_host * host)700 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
701 {
702 	struct mtd_info *mtd = &host->mtd;
703 	dma_cap_mask_t mask;
704 
705 	if (!host->pdata || !host->pdata->dma_filter) {
706 		dev_err(mtd->dev.parent, "no DMA platform data\n");
707 		return -ENOENT;
708 	}
709 
710 	dma_cap_zero(mask);
711 	dma_cap_set(DMA_SLAVE, mask);
712 	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
713 					     "nand-slc");
714 	if (!host->dma_chan) {
715 		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
716 		return -EBUSY;
717 	}
718 
719 	return 0;
720 }
721 
lpc32xx_parse_dt(struct device * dev)722 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
723 {
724 	struct lpc32xx_nand_cfg_slc *ncfg;
725 	struct device_node *np = dev->of_node;
726 
727 	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
728 	if (!ncfg) {
729 		dev_err(dev, "could not allocate memory for NAND config\n");
730 		return NULL;
731 	}
732 
733 	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
734 	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
735 	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
736 	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
737 	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
738 	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
739 	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
740 	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
741 
742 	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
743 	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
744 	    !ncfg->rhold || !ncfg->rsetup) {
745 		dev_err(dev, "chip parameters not specified correctly\n");
746 		return NULL;
747 	}
748 
749 	ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
750 	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
751 
752 	return ncfg;
753 }
754 
755 /*
756  * Probe for NAND controller
757  */
lpc32xx_nand_probe(struct platform_device * pdev)758 static int lpc32xx_nand_probe(struct platform_device *pdev)
759 {
760 	struct lpc32xx_nand_host *host;
761 	struct mtd_info *mtd;
762 	struct nand_chip *chip;
763 	struct resource *rc;
764 	struct mtd_part_parser_data ppdata = {};
765 	int res;
766 
767 	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
768 	if (rc == NULL) {
769 		dev_err(&pdev->dev, "No memory resource found for device\n");
770 		return -EBUSY;
771 	}
772 
773 	/* Allocate memory for the device structure (and zero it) */
774 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
775 	if (!host) {
776 		dev_err(&pdev->dev, "failed to allocate device structure\n");
777 		return -ENOMEM;
778 	}
779 	host->io_base_dma = rc->start;
780 
781 	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
782 	if (IS_ERR(host->io_base))
783 		return PTR_ERR(host->io_base);
784 
785 	if (pdev->dev.of_node)
786 		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
787 	if (!host->ncfg) {
788 		dev_err(&pdev->dev,
789 			"Missing or bad NAND config from device tree\n");
790 		return -ENOENT;
791 	}
792 	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
793 		return -EPROBE_DEFER;
794 	if (gpio_is_valid(host->ncfg->wp_gpio) &&
795 			gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
796 		dev_err(&pdev->dev, "GPIO not available\n");
797 		return -EBUSY;
798 	}
799 	lpc32xx_wp_disable(host);
800 
801 	host->pdata = pdev->dev.platform_data;
802 
803 	mtd = &host->mtd;
804 	chip = &host->nand_chip;
805 	chip->priv = host;
806 	mtd->priv = chip;
807 	mtd->owner = THIS_MODULE;
808 	mtd->dev.parent = &pdev->dev;
809 
810 	/* Get NAND clock */
811 	host->clk = clk_get(&pdev->dev, NULL);
812 	if (IS_ERR(host->clk)) {
813 		dev_err(&pdev->dev, "Clock failure\n");
814 		res = -ENOENT;
815 		goto err_exit1;
816 	}
817 	clk_enable(host->clk);
818 
819 	/* Set NAND IO addresses and command/ready functions */
820 	chip->IO_ADDR_R = SLC_DATA(host->io_base);
821 	chip->IO_ADDR_W = SLC_DATA(host->io_base);
822 	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
823 	chip->dev_ready = lpc32xx_nand_device_ready;
824 	chip->chip_delay = 20; /* 20us command delay time */
825 
826 	/* Init NAND controller */
827 	lpc32xx_nand_setup(host);
828 
829 	platform_set_drvdata(pdev, host);
830 
831 	/* NAND callbacks for LPC32xx SLC hardware */
832 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
833 	chip->read_byte = lpc32xx_nand_read_byte;
834 	chip->read_buf = lpc32xx_nand_read_buf;
835 	chip->write_buf = lpc32xx_nand_write_buf;
836 	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
837 	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
838 	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
839 	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
840 	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
841 	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
842 	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
843 	chip->ecc.correct = nand_correct_data;
844 	chip->ecc.strength = 1;
845 	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
846 
847 	/* bitflip_threshold's default is defined as ecc_strength anyway.
848 	 * Unfortunately, it is set only later at add_mtd_device(). Meanwhile
849 	 * being 0, it causes bad block table scanning errors in
850 	 * nand_scan_tail(), so preparing it here already. */
851 	mtd->bitflip_threshold = chip->ecc.strength;
852 
853 	/*
854 	 * Allocate a large enough buffer for a single huge page plus
855 	 * extra space for the spare area and ECC storage area
856 	 */
857 	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
858 	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
859 				      GFP_KERNEL);
860 	if (host->data_buf == NULL) {
861 		dev_err(&pdev->dev, "Error allocating memory\n");
862 		res = -ENOMEM;
863 		goto err_exit2;
864 	}
865 
866 	res = lpc32xx_nand_dma_setup(host);
867 	if (res) {
868 		res = -EIO;
869 		goto err_exit2;
870 	}
871 
872 	/* Find NAND device */
873 	if (nand_scan_ident(mtd, 1, NULL)) {
874 		res = -ENXIO;
875 		goto err_exit3;
876 	}
877 
878 	/* OOB and ECC CPU and DMA work areas */
879 	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
880 
881 	/*
882 	 * Small page FLASH has a unique OOB layout, but large and huge
883 	 * page FLASH use the standard layout. Small page FLASH uses a
884 	 * custom BBT marker layout.
885 	 */
886 	if (mtd->writesize <= 512)
887 		chip->ecc.layout = &lpc32xx_nand_oob_16;
888 
889 	/* These sizes remain the same regardless of page size */
890 	chip->ecc.size = 256;
891 	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
892 	chip->ecc.prepad = chip->ecc.postpad = 0;
893 
894 	/* Avoid extra scan if using BBT, setup BBT support */
895 	if (host->ncfg->use_bbt) {
896 		chip->options |= NAND_SKIP_BBTSCAN;
897 		chip->bbt_options |= NAND_BBT_USE_FLASH;
898 
899 		/*
900 		 * Use a custom BBT marker setup for small page FLASH that
901 		 * won't interfere with the ECC layout. Large and huge page
902 		 * FLASH use the standard layout.
903 		 */
904 		if (mtd->writesize <= 512) {
905 			chip->bbt_td = &bbt_smallpage_main_descr;
906 			chip->bbt_md = &bbt_smallpage_mirror_descr;
907 		}
908 	}
909 
910 	/*
911 	 * Fills out all the uninitialized function pointers with the defaults
912 	 */
913 	if (nand_scan_tail(mtd)) {
914 		res = -ENXIO;
915 		goto err_exit3;
916 	}
917 
918 	/* Standard layout in FLASH for bad block tables */
919 	if (host->ncfg->use_bbt) {
920 		if (nand_default_bbt(mtd) < 0)
921 			dev_err(&pdev->dev,
922 			       "Error initializing default bad block tables\n");
923 	}
924 
925 	mtd->name = "nxp_lpc3220_slc";
926 	ppdata.of_node = pdev->dev.of_node;
927 	res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
928 					host->ncfg->num_parts);
929 	if (!res)
930 		return res;
931 
932 	nand_release(mtd);
933 
934 err_exit3:
935 	dma_release_channel(host->dma_chan);
936 err_exit2:
937 	clk_disable(host->clk);
938 	clk_put(host->clk);
939 	platform_set_drvdata(pdev, NULL);
940 err_exit1:
941 	lpc32xx_wp_enable(host);
942 	gpio_free(host->ncfg->wp_gpio);
943 
944 	return res;
945 }
946 
947 /*
948  * Remove NAND device.
949  */
lpc32xx_nand_remove(struct platform_device * pdev)950 static int lpc32xx_nand_remove(struct platform_device *pdev)
951 {
952 	uint32_t tmp;
953 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
954 	struct mtd_info *mtd = &host->mtd;
955 
956 	nand_release(mtd);
957 	dma_release_channel(host->dma_chan);
958 
959 	/* Force CE high */
960 	tmp = readl(SLC_CTRL(host->io_base));
961 	tmp &= ~SLCCFG_CE_LOW;
962 	writel(tmp, SLC_CTRL(host->io_base));
963 
964 	clk_disable(host->clk);
965 	clk_put(host->clk);
966 	platform_set_drvdata(pdev, NULL);
967 	lpc32xx_wp_enable(host);
968 	gpio_free(host->ncfg->wp_gpio);
969 
970 	return 0;
971 }
972 
973 #ifdef CONFIG_PM
lpc32xx_nand_resume(struct platform_device * pdev)974 static int lpc32xx_nand_resume(struct platform_device *pdev)
975 {
976 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
977 
978 	/* Re-enable NAND clock */
979 	clk_enable(host->clk);
980 
981 	/* Fresh init of NAND controller */
982 	lpc32xx_nand_setup(host);
983 
984 	/* Disable write protect */
985 	lpc32xx_wp_disable(host);
986 
987 	return 0;
988 }
989 
lpc32xx_nand_suspend(struct platform_device * pdev,pm_message_t pm)990 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
991 {
992 	uint32_t tmp;
993 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
994 
995 	/* Force CE high */
996 	tmp = readl(SLC_CTRL(host->io_base));
997 	tmp &= ~SLCCFG_CE_LOW;
998 	writel(tmp, SLC_CTRL(host->io_base));
999 
1000 	/* Enable write protect for safety */
1001 	lpc32xx_wp_enable(host);
1002 
1003 	/* Disable clock */
1004 	clk_disable(host->clk);
1005 
1006 	return 0;
1007 }
1008 
1009 #else
1010 #define lpc32xx_nand_resume NULL
1011 #define lpc32xx_nand_suspend NULL
1012 #endif
1013 
1014 static const struct of_device_id lpc32xx_nand_match[] = {
1015 	{ .compatible = "nxp,lpc3220-slc" },
1016 	{ /* sentinel */ },
1017 };
1018 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1019 
1020 static struct platform_driver lpc32xx_nand_driver = {
1021 	.probe		= lpc32xx_nand_probe,
1022 	.remove		= lpc32xx_nand_remove,
1023 	.resume		= lpc32xx_nand_resume,
1024 	.suspend	= lpc32xx_nand_suspend,
1025 	.driver		= {
1026 		.name	= LPC32XX_MODNAME,
1027 		.owner	= THIS_MODULE,
1028 		.of_match_table = of_match_ptr(lpc32xx_nand_match),
1029 	},
1030 };
1031 
1032 module_platform_driver(lpc32xx_nand_driver);
1033 
1034 MODULE_LICENSE("GPL");
1035 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1036 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1037 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1038