• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25 
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
47 
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
50     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
52     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #endif
58 
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
61 #endif
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64 #endif
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
67 #endif
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70 #endif
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE  50
73 #endif
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH  8
76 #endif
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS  0
79 #endif
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG        0
82 #endif
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG        0
85 #endif
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS  32
88 #endif
89 
90 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
91 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
92 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
93 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
94 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
95 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
96 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
97 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
98 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
99 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
100 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
101 static uint log            = CONFIG_NANDSIM_LOG;
102 static uint dbg            = CONFIG_NANDSIM_DBG;
103 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
104 static unsigned int parts_num;
105 static char *badblocks = NULL;
106 static char *weakblocks = NULL;
107 static char *weakpages = NULL;
108 static unsigned int bitflips = 0;
109 static char *gravepages = NULL;
110 static unsigned int overridesize = 0;
111 static char *cache_file = NULL;
112 static unsigned int bbt;
113 static unsigned int bch;
114 
115 module_param(first_id_byte,  uint, 0400);
116 module_param(second_id_byte, uint, 0400);
117 module_param(third_id_byte,  uint, 0400);
118 module_param(fourth_id_byte, uint, 0400);
119 module_param(access_delay,   uint, 0400);
120 module_param(programm_delay, uint, 0400);
121 module_param(erase_delay,    uint, 0400);
122 module_param(output_cycle,   uint, 0400);
123 module_param(input_cycle,    uint, 0400);
124 module_param(bus_width,      uint, 0400);
125 module_param(do_delays,      uint, 0400);
126 module_param(log,            uint, 0400);
127 module_param(dbg,            uint, 0400);
128 module_param_array(parts, ulong, &parts_num, 0400);
129 module_param(badblocks,      charp, 0400);
130 module_param(weakblocks,     charp, 0400);
131 module_param(weakpages,      charp, 0400);
132 module_param(bitflips,       uint, 0400);
133 module_param(gravepages,     charp, 0400);
134 module_param(overridesize,   uint, 0400);
135 module_param(cache_file,     charp, 0400);
136 module_param(bbt,	     uint, 0400);
137 module_param(bch,	     uint, 0400);
138 
139 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
142 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
144 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
146 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
147 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
148 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
149 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
150 MODULE_PARM_DESC(log,            "Perform logging if not zero");
151 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
152 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
153 /* Page and erase block positions for the following parameters are independent of any partitions */
154 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
155 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156 				 " separated by commas e.g. 113:2 means eb 113"
157 				 " can be erased only twice before failing");
158 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
159 				 " separated by commas e.g. 1401:2 means page 1401"
160 				 " can be written only twice before failing");
161 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
162 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
163 				 " separated by commas e.g. 1401:2 means page 1401"
164 				 " can be read only twice before failing");
165 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
166 				 "The size is specified in erase blocks and as the exponent of a power of two"
167 				 " e.g. 5 means a size of 32 erase blocks");
168 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
169 MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
170 MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
171 				 "be correctable in 512-byte blocks");
172 
173 /* The largest possible page size */
174 #define NS_LARGEST_PAGE_SIZE	4096
175 
176 /* The prefix for simulator output */
177 #define NS_OUTPUT_PREFIX "[nandsim]"
178 
179 /* Simulator's output macros (logging, debugging, warning, error) */
180 #define NS_LOG(args...) \
181 	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
182 #define NS_DBG(args...) \
183 	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
184 #define NS_WARN(args...) \
185 	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
186 #define NS_ERR(args...) \
187 	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
188 #define NS_INFO(args...) \
189 	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
190 
191 /* Busy-wait delay macros (microseconds, milliseconds) */
192 #define NS_UDELAY(us) \
193         do { if (do_delays) udelay(us); } while(0)
194 #define NS_MDELAY(us) \
195         do { if (do_delays) mdelay(us); } while(0)
196 
197 /* Is the nandsim structure initialized ? */
198 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
199 
200 /* Good operation completion status */
201 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
202 
203 /* Operation failed completion status */
204 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
205 
206 /* Calculate the page offset in flash RAM image by (row, column) address */
207 #define NS_RAW_OFFSET(ns) \
208 	(((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
209 
210 /* Calculate the OOB offset in flash RAM image by (row, column) address */
211 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
212 
213 /* After a command is input, the simulator goes to one of the following states */
214 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
215 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
216 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
217 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
218 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
219 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
220 #define STATE_CMD_STATUS       0x00000007 /* read status */
221 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
222 #define STATE_CMD_READID       0x0000000A /* read ID */
223 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
224 #define STATE_CMD_RESET        0x0000000C /* reset */
225 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
226 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
227 #define STATE_CMD_MASK         0x0000000F /* command states mask */
228 
229 /* After an address is input, the simulator goes to one of these states */
230 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
231 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
232 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
233 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
234 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
235 
236 /* During data input/output the simulator is in these states */
237 #define STATE_DATAIN           0x00000100 /* waiting for data input */
238 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
239 
240 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
241 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
242 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
243 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
244 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
245 
246 /* Previous operation is done, ready to accept new requests */
247 #define STATE_READY            0x00000000
248 
249 /* This state is used to mark that the next state isn't known yet */
250 #define STATE_UNKNOWN          0x10000000
251 
252 /* Simulator's actions bit masks */
253 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
254 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
255 #define ACTION_SECERASE  0x00300000 /* erase sector */
256 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
257 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
258 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
259 #define ACTION_MASK      0x00700000 /* action mask */
260 
261 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
262 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
263 
264 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
265 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
266 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
267 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
268 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
269 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
270 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
271 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
272 
273 /* Remove action bits from state */
274 #define NS_STATE(x) ((x) & ~ACTION_MASK)
275 
276 /*
277  * Maximum previous states which need to be saved. Currently saving is
278  * only needed for page program operation with preceded read command
279  * (which is only valid for 512-byte pages).
280  */
281 #define NS_MAX_PREVSTATES 1
282 
283 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
284 #define NS_MAX_HELD_PAGES 16
285 
286 struct nandsim_debug_info {
287 	struct dentry *dfs_root;
288 	struct dentry *dfs_wear_report;
289 };
290 
291 /*
292  * A union to represent flash memory contents and flash buffer.
293  */
294 union ns_mem {
295 	u_char *byte;    /* for byte access */
296 	uint16_t *word;  /* for 16-bit word access */
297 };
298 
299 /*
300  * The structure which describes all the internal simulator data.
301  */
302 struct nandsim {
303 	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
304 	unsigned int nbparts;
305 
306 	uint busw;              /* flash chip bus width (8 or 16) */
307 	u_char ids[4];          /* chip's ID bytes */
308 	uint32_t options;       /* chip's characteristic bits */
309 	uint32_t state;         /* current chip state */
310 	uint32_t nxstate;       /* next expected state */
311 
312 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
313 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
314 	uint16_t npstates;      /* number of previous states saved */
315 	uint16_t stateidx;      /* current state index */
316 
317 	/* The simulated NAND flash pages array */
318 	union ns_mem *pages;
319 
320 	/* Slab allocator for nand pages */
321 	struct kmem_cache *nand_pages_slab;
322 
323 	/* Internal buffer of page + OOB size bytes */
324 	union ns_mem buf;
325 
326 	/* NAND flash "geometry" */
327 	struct {
328 		uint64_t totsz;     /* total flash size, bytes */
329 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
330 		uint pgsz;          /* NAND flash page size, bytes */
331 		uint oobsz;         /* page OOB area size, bytes */
332 		uint64_t totszoob;  /* total flash size including OOB, bytes */
333 		uint pgszoob;       /* page size including OOB , bytes*/
334 		uint secszoob;      /* sector size including OOB, bytes */
335 		uint pgnum;         /* total number of pages */
336 		uint pgsec;         /* number of pages per sector */
337 		uint secshift;      /* bits number in sector size */
338 		uint pgshift;       /* bits number in page size */
339 		uint oobshift;      /* bits number in OOB size */
340 		uint pgaddrbytes;   /* bytes per page address */
341 		uint secaddrbytes;  /* bytes per sector address */
342 		uint idbytes;       /* the number ID bytes that this chip outputs */
343 	} geom;
344 
345 	/* NAND flash internal registers */
346 	struct {
347 		unsigned command; /* the command register */
348 		u_char   status;  /* the status register */
349 		uint     row;     /* the page number */
350 		uint     column;  /* the offset within page */
351 		uint     count;   /* internal counter */
352 		uint     num;     /* number of bytes which must be processed */
353 		uint     off;     /* fixed page offset */
354 	} regs;
355 
356 	/* NAND flash lines state */
357         struct {
358                 int ce;  /* chip Enable */
359                 int cle; /* command Latch Enable */
360                 int ale; /* address Latch Enable */
361                 int wp;  /* write Protect */
362         } lines;
363 
364 	/* Fields needed when using a cache file */
365 	struct file *cfile; /* Open file */
366 	unsigned char *pages_written; /* Which pages have been written */
367 	void *file_buf;
368 	struct page *held_pages[NS_MAX_HELD_PAGES];
369 	int held_cnt;
370 
371 	struct nandsim_debug_info dbg;
372 };
373 
374 /*
375  * Operations array. To perform any operation the simulator must pass
376  * through the correspondent states chain.
377  */
378 static struct nandsim_operations {
379 	uint32_t reqopts;  /* options which are required to perform the operation */
380 	uint32_t states[NS_OPER_STATES]; /* operation's states */
381 } ops[NS_OPER_NUM] = {
382 	/* Read page + OOB from the beginning */
383 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
384 			STATE_DATAOUT, STATE_READY}},
385 	/* Read page + OOB from the second half */
386 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
387 			STATE_DATAOUT, STATE_READY}},
388 	/* Read OOB */
389 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
390 			STATE_DATAOUT, STATE_READY}},
391 	/* Program page starting from the beginning */
392 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
393 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
394 	/* Program page starting from the beginning */
395 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
396 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
397 	/* Program page starting from the second half */
398 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
399 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
400 	/* Program OOB */
401 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
402 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
403 	/* Erase sector */
404 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
405 	/* Read status */
406 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
407 	/* Read ID */
408 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
409 	/* Large page devices read page */
410 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
411 			       STATE_DATAOUT, STATE_READY}},
412 	/* Large page devices random page read */
413 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
414 			       STATE_DATAOUT, STATE_READY}},
415 };
416 
417 struct weak_block {
418 	struct list_head list;
419 	unsigned int erase_block_no;
420 	unsigned int max_erases;
421 	unsigned int erases_done;
422 };
423 
424 static LIST_HEAD(weak_blocks);
425 
426 struct weak_page {
427 	struct list_head list;
428 	unsigned int page_no;
429 	unsigned int max_writes;
430 	unsigned int writes_done;
431 };
432 
433 static LIST_HEAD(weak_pages);
434 
435 struct grave_page {
436 	struct list_head list;
437 	unsigned int page_no;
438 	unsigned int max_reads;
439 	unsigned int reads_done;
440 };
441 
442 static LIST_HEAD(grave_pages);
443 
444 static unsigned long *erase_block_wear = NULL;
445 static unsigned int wear_eb_count = 0;
446 static unsigned long total_wear = 0;
447 
448 /* MTD structure for NAND controller */
449 static struct mtd_info *nsmtd;
450 
nandsim_debugfs_show(struct seq_file * m,void * private)451 static int nandsim_debugfs_show(struct seq_file *m, void *private)
452 {
453 	unsigned long wmin = -1, wmax = 0, avg;
454 	unsigned long deciles[10], decile_max[10], tot = 0;
455 	unsigned int i;
456 
457 	/* Calc wear stats */
458 	for (i = 0; i < wear_eb_count; ++i) {
459 		unsigned long wear = erase_block_wear[i];
460 		if (wear < wmin)
461 			wmin = wear;
462 		if (wear > wmax)
463 			wmax = wear;
464 		tot += wear;
465 	}
466 
467 	for (i = 0; i < 9; ++i) {
468 		deciles[i] = 0;
469 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
470 	}
471 	deciles[9] = 0;
472 	decile_max[9] = wmax;
473 	for (i = 0; i < wear_eb_count; ++i) {
474 		int d;
475 		unsigned long wear = erase_block_wear[i];
476 		for (d = 0; d < 10; ++d)
477 			if (wear <= decile_max[d]) {
478 				deciles[d] += 1;
479 				break;
480 			}
481 	}
482 	avg = tot / wear_eb_count;
483 
484 	/* Output wear report */
485 	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
486 	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
487 	seq_printf(m, "Average number of erases: %lu\n", avg);
488 	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
489 	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
490 	for (i = 0; i < 10; ++i) {
491 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
492 		if (from > decile_max[i])
493 			continue;
494 		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
495 			from,
496 			decile_max[i],
497 			deciles[i]);
498 	}
499 
500 	return 0;
501 }
502 
nandsim_debugfs_open(struct inode * inode,struct file * file)503 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
504 {
505 	return single_open(file, nandsim_debugfs_show, inode->i_private);
506 }
507 
508 static const struct file_operations dfs_fops = {
509 	.open		= nandsim_debugfs_open,
510 	.read		= seq_read,
511 	.llseek		= seq_lseek,
512 	.release	= single_release,
513 };
514 
515 /**
516  * nandsim_debugfs_create - initialize debugfs
517  * @dev: nandsim device description object
518  *
519  * This function creates all debugfs files for UBI device @ubi. Returns zero in
520  * case of success and a negative error code in case of failure.
521  */
nandsim_debugfs_create(struct nandsim * dev)522 static int nandsim_debugfs_create(struct nandsim *dev)
523 {
524 	struct nandsim_debug_info *dbg = &dev->dbg;
525 	struct dentry *dent;
526 	int err;
527 
528 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
529 		return 0;
530 
531 	dent = debugfs_create_dir("nandsim", NULL);
532 	if (IS_ERR_OR_NULL(dent)) {
533 		int err = dent ? -ENODEV : PTR_ERR(dent);
534 
535 		NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
536 			err);
537 		return err;
538 	}
539 	dbg->dfs_root = dent;
540 
541 	dent = debugfs_create_file("wear_report", S_IRUSR,
542 				   dbg->dfs_root, dev, &dfs_fops);
543 	if (IS_ERR_OR_NULL(dent))
544 		goto out_remove;
545 	dbg->dfs_wear_report = dent;
546 
547 	return 0;
548 
549 out_remove:
550 	debugfs_remove_recursive(dbg->dfs_root);
551 	err = dent ? PTR_ERR(dent) : -ENODEV;
552 	return err;
553 }
554 
555 /**
556  * nandsim_debugfs_remove - destroy all debugfs files
557  */
nandsim_debugfs_remove(struct nandsim * ns)558 static void nandsim_debugfs_remove(struct nandsim *ns)
559 {
560 	if (IS_ENABLED(CONFIG_DEBUG_FS))
561 		debugfs_remove_recursive(ns->dbg.dfs_root);
562 }
563 
564 /*
565  * Allocate array of page pointers, create slab allocation for an array
566  * and initialize the array by NULL pointers.
567  *
568  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
569  */
alloc_device(struct nandsim * ns)570 static int alloc_device(struct nandsim *ns)
571 {
572 	struct file *cfile;
573 	int i, err;
574 
575 	if (cache_file) {
576 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
577 		if (IS_ERR(cfile))
578 			return PTR_ERR(cfile);
579 		if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
580 			NS_ERR("alloc_device: cache file not readable\n");
581 			err = -EINVAL;
582 			goto err_close;
583 		}
584 		if (!cfile->f_op->write && !cfile->f_op->aio_write) {
585 			NS_ERR("alloc_device: cache file not writeable\n");
586 			err = -EINVAL;
587 			goto err_close;
588 		}
589 		ns->pages_written = vzalloc(ns->geom.pgnum);
590 		if (!ns->pages_written) {
591 			NS_ERR("alloc_device: unable to allocate pages written array\n");
592 			err = -ENOMEM;
593 			goto err_close;
594 		}
595 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
596 		if (!ns->file_buf) {
597 			NS_ERR("alloc_device: unable to allocate file buf\n");
598 			err = -ENOMEM;
599 			goto err_free;
600 		}
601 		ns->cfile = cfile;
602 		return 0;
603 	}
604 
605 	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
606 	if (!ns->pages) {
607 		NS_ERR("alloc_device: unable to allocate page array\n");
608 		return -ENOMEM;
609 	}
610 	for (i = 0; i < ns->geom.pgnum; i++) {
611 		ns->pages[i].byte = NULL;
612 	}
613 	ns->nand_pages_slab = kmem_cache_create("nandsim",
614 						ns->geom.pgszoob, 0, 0, NULL);
615 	if (!ns->nand_pages_slab) {
616 		NS_ERR("cache_create: unable to create kmem_cache\n");
617 		return -ENOMEM;
618 	}
619 
620 	return 0;
621 
622 err_free:
623 	vfree(ns->pages_written);
624 err_close:
625 	filp_close(cfile, NULL);
626 	return err;
627 }
628 
629 /*
630  * Free any allocated pages, and free the array of page pointers.
631  */
free_device(struct nandsim * ns)632 static void free_device(struct nandsim *ns)
633 {
634 	int i;
635 
636 	if (ns->cfile) {
637 		kfree(ns->file_buf);
638 		vfree(ns->pages_written);
639 		filp_close(ns->cfile, NULL);
640 		return;
641 	}
642 
643 	if (ns->pages) {
644 		for (i = 0; i < ns->geom.pgnum; i++) {
645 			if (ns->pages[i].byte)
646 				kmem_cache_free(ns->nand_pages_slab,
647 						ns->pages[i].byte);
648 		}
649 		kmem_cache_destroy(ns->nand_pages_slab);
650 		vfree(ns->pages);
651 	}
652 }
653 
get_partition_name(int i)654 static char *get_partition_name(int i)
655 {
656 	char buf[64];
657 	sprintf(buf, "NAND simulator partition %d", i);
658 	return kstrdup(buf, GFP_KERNEL);
659 }
660 
661 /*
662  * Initialize the nandsim structure.
663  *
664  * RETURNS: 0 if success, -ERRNO if failure.
665  */
init_nandsim(struct mtd_info * mtd)666 static int init_nandsim(struct mtd_info *mtd)
667 {
668 	struct nand_chip *chip = mtd->priv;
669 	struct nandsim   *ns   = chip->priv;
670 	int i, ret = 0;
671 	uint64_t remains;
672 	uint64_t next_offset;
673 
674 	if (NS_IS_INITIALIZED(ns)) {
675 		NS_ERR("init_nandsim: nandsim is already initialized\n");
676 		return -EIO;
677 	}
678 
679 	/* Force mtd to not do delays */
680 	chip->chip_delay = 0;
681 
682 	/* Initialize the NAND flash parameters */
683 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
684 	ns->geom.totsz    = mtd->size;
685 	ns->geom.pgsz     = mtd->writesize;
686 	ns->geom.oobsz    = mtd->oobsize;
687 	ns->geom.secsz    = mtd->erasesize;
688 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
689 	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
690 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
691 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
692 	ns->geom.pgshift  = chip->page_shift;
693 	ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
694 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
695 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
696 	ns->options = 0;
697 
698 	if (ns->geom.pgsz == 512) {
699 		ns->options |= OPT_PAGE512;
700 		if (ns->busw == 8)
701 			ns->options |= OPT_PAGE512_8BIT;
702 	} else if (ns->geom.pgsz == 2048) {
703 		ns->options |= OPT_PAGE2048;
704 	} else if (ns->geom.pgsz == 4096) {
705 		ns->options |= OPT_PAGE4096;
706 	} else {
707 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
708 		return -EIO;
709 	}
710 
711 	if (ns->options & OPT_SMALLPAGE) {
712 		if (ns->geom.totsz <= (32 << 20)) {
713 			ns->geom.pgaddrbytes  = 3;
714 			ns->geom.secaddrbytes = 2;
715 		} else {
716 			ns->geom.pgaddrbytes  = 4;
717 			ns->geom.secaddrbytes = 3;
718 		}
719 	} else {
720 		if (ns->geom.totsz <= (128 << 20)) {
721 			ns->geom.pgaddrbytes  = 4;
722 			ns->geom.secaddrbytes = 2;
723 		} else {
724 			ns->geom.pgaddrbytes  = 5;
725 			ns->geom.secaddrbytes = 3;
726 		}
727 	}
728 
729 	/* Fill the partition_info structure */
730 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
731 		NS_ERR("too many partitions.\n");
732 		ret = -EINVAL;
733 		goto error;
734 	}
735 	remains = ns->geom.totsz;
736 	next_offset = 0;
737 	for (i = 0; i < parts_num; ++i) {
738 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
739 
740 		if (!part_sz || part_sz > remains) {
741 			NS_ERR("bad partition size.\n");
742 			ret = -EINVAL;
743 			goto error;
744 		}
745 		ns->partitions[i].name   = get_partition_name(i);
746 		ns->partitions[i].offset = next_offset;
747 		ns->partitions[i].size   = part_sz;
748 		next_offset += ns->partitions[i].size;
749 		remains -= ns->partitions[i].size;
750 	}
751 	ns->nbparts = parts_num;
752 	if (remains) {
753 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
754 			NS_ERR("too many partitions.\n");
755 			ret = -EINVAL;
756 			goto error;
757 		}
758 		ns->partitions[i].name   = get_partition_name(i);
759 		ns->partitions[i].offset = next_offset;
760 		ns->partitions[i].size   = remains;
761 		ns->nbparts += 1;
762 	}
763 
764 	/* Detect how many ID bytes the NAND chip outputs */
765 	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
766 		if (second_id_byte != nand_flash_ids[i].dev_id)
767 			continue;
768 	}
769 
770 	if (ns->busw == 16)
771 		NS_WARN("16-bit flashes support wasn't tested\n");
772 
773 	printk("flash size: %llu MiB\n",
774 			(unsigned long long)ns->geom.totsz >> 20);
775 	printk("page size: %u bytes\n",         ns->geom.pgsz);
776 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
777 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
778 	printk("pages number: %u\n",            ns->geom.pgnum);
779 	printk("pages per sector: %u\n",        ns->geom.pgsec);
780 	printk("bus width: %u\n",               ns->busw);
781 	printk("bits in sector size: %u\n",     ns->geom.secshift);
782 	printk("bits in page size: %u\n",       ns->geom.pgshift);
783 	printk("bits in OOB size: %u\n",	ns->geom.oobshift);
784 	printk("flash size with OOB: %llu KiB\n",
785 			(unsigned long long)ns->geom.totszoob >> 10);
786 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
787 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
788 	printk("options: %#x\n",                ns->options);
789 
790 	if ((ret = alloc_device(ns)) != 0)
791 		goto error;
792 
793 	/* Allocate / initialize the internal buffer */
794 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
795 	if (!ns->buf.byte) {
796 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
797 			ns->geom.pgszoob);
798 		ret = -ENOMEM;
799 		goto error;
800 	}
801 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
802 
803 	return 0;
804 
805 error:
806 	free_device(ns);
807 
808 	return ret;
809 }
810 
811 /*
812  * Free the nandsim structure.
813  */
free_nandsim(struct nandsim * ns)814 static void free_nandsim(struct nandsim *ns)
815 {
816 	kfree(ns->buf.byte);
817 	free_device(ns);
818 
819 	return;
820 }
821 
parse_badblocks(struct nandsim * ns,struct mtd_info * mtd)822 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
823 {
824 	char *w;
825 	int zero_ok;
826 	unsigned int erase_block_no;
827 	loff_t offset;
828 
829 	if (!badblocks)
830 		return 0;
831 	w = badblocks;
832 	do {
833 		zero_ok = (*w == '0' ? 1 : 0);
834 		erase_block_no = simple_strtoul(w, &w, 0);
835 		if (!zero_ok && !erase_block_no) {
836 			NS_ERR("invalid badblocks.\n");
837 			return -EINVAL;
838 		}
839 		offset = erase_block_no * ns->geom.secsz;
840 		if (mtd_block_markbad(mtd, offset)) {
841 			NS_ERR("invalid badblocks.\n");
842 			return -EINVAL;
843 		}
844 		if (*w == ',')
845 			w += 1;
846 	} while (*w);
847 	return 0;
848 }
849 
parse_weakblocks(void)850 static int parse_weakblocks(void)
851 {
852 	char *w;
853 	int zero_ok;
854 	unsigned int erase_block_no;
855 	unsigned int max_erases;
856 	struct weak_block *wb;
857 
858 	if (!weakblocks)
859 		return 0;
860 	w = weakblocks;
861 	do {
862 		zero_ok = (*w == '0' ? 1 : 0);
863 		erase_block_no = simple_strtoul(w, &w, 0);
864 		if (!zero_ok && !erase_block_no) {
865 			NS_ERR("invalid weakblocks.\n");
866 			return -EINVAL;
867 		}
868 		max_erases = 3;
869 		if (*w == ':') {
870 			w += 1;
871 			max_erases = simple_strtoul(w, &w, 0);
872 		}
873 		if (*w == ',')
874 			w += 1;
875 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
876 		if (!wb) {
877 			NS_ERR("unable to allocate memory.\n");
878 			return -ENOMEM;
879 		}
880 		wb->erase_block_no = erase_block_no;
881 		wb->max_erases = max_erases;
882 		list_add(&wb->list, &weak_blocks);
883 	} while (*w);
884 	return 0;
885 }
886 
erase_error(unsigned int erase_block_no)887 static int erase_error(unsigned int erase_block_no)
888 {
889 	struct weak_block *wb;
890 
891 	list_for_each_entry(wb, &weak_blocks, list)
892 		if (wb->erase_block_no == erase_block_no) {
893 			if (wb->erases_done >= wb->max_erases)
894 				return 1;
895 			wb->erases_done += 1;
896 			return 0;
897 		}
898 	return 0;
899 }
900 
parse_weakpages(void)901 static int parse_weakpages(void)
902 {
903 	char *w;
904 	int zero_ok;
905 	unsigned int page_no;
906 	unsigned int max_writes;
907 	struct weak_page *wp;
908 
909 	if (!weakpages)
910 		return 0;
911 	w = weakpages;
912 	do {
913 		zero_ok = (*w == '0' ? 1 : 0);
914 		page_no = simple_strtoul(w, &w, 0);
915 		if (!zero_ok && !page_no) {
916 			NS_ERR("invalid weakpagess.\n");
917 			return -EINVAL;
918 		}
919 		max_writes = 3;
920 		if (*w == ':') {
921 			w += 1;
922 			max_writes = simple_strtoul(w, &w, 0);
923 		}
924 		if (*w == ',')
925 			w += 1;
926 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
927 		if (!wp) {
928 			NS_ERR("unable to allocate memory.\n");
929 			return -ENOMEM;
930 		}
931 		wp->page_no = page_no;
932 		wp->max_writes = max_writes;
933 		list_add(&wp->list, &weak_pages);
934 	} while (*w);
935 	return 0;
936 }
937 
write_error(unsigned int page_no)938 static int write_error(unsigned int page_no)
939 {
940 	struct weak_page *wp;
941 
942 	list_for_each_entry(wp, &weak_pages, list)
943 		if (wp->page_no == page_no) {
944 			if (wp->writes_done >= wp->max_writes)
945 				return 1;
946 			wp->writes_done += 1;
947 			return 0;
948 		}
949 	return 0;
950 }
951 
parse_gravepages(void)952 static int parse_gravepages(void)
953 {
954 	char *g;
955 	int zero_ok;
956 	unsigned int page_no;
957 	unsigned int max_reads;
958 	struct grave_page *gp;
959 
960 	if (!gravepages)
961 		return 0;
962 	g = gravepages;
963 	do {
964 		zero_ok = (*g == '0' ? 1 : 0);
965 		page_no = simple_strtoul(g, &g, 0);
966 		if (!zero_ok && !page_no) {
967 			NS_ERR("invalid gravepagess.\n");
968 			return -EINVAL;
969 		}
970 		max_reads = 3;
971 		if (*g == ':') {
972 			g += 1;
973 			max_reads = simple_strtoul(g, &g, 0);
974 		}
975 		if (*g == ',')
976 			g += 1;
977 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
978 		if (!gp) {
979 			NS_ERR("unable to allocate memory.\n");
980 			return -ENOMEM;
981 		}
982 		gp->page_no = page_no;
983 		gp->max_reads = max_reads;
984 		list_add(&gp->list, &grave_pages);
985 	} while (*g);
986 	return 0;
987 }
988 
read_error(unsigned int page_no)989 static int read_error(unsigned int page_no)
990 {
991 	struct grave_page *gp;
992 
993 	list_for_each_entry(gp, &grave_pages, list)
994 		if (gp->page_no == page_no) {
995 			if (gp->reads_done >= gp->max_reads)
996 				return 1;
997 			gp->reads_done += 1;
998 			return 0;
999 		}
1000 	return 0;
1001 }
1002 
free_lists(void)1003 static void free_lists(void)
1004 {
1005 	struct list_head *pos, *n;
1006 	list_for_each_safe(pos, n, &weak_blocks) {
1007 		list_del(pos);
1008 		kfree(list_entry(pos, struct weak_block, list));
1009 	}
1010 	list_for_each_safe(pos, n, &weak_pages) {
1011 		list_del(pos);
1012 		kfree(list_entry(pos, struct weak_page, list));
1013 	}
1014 	list_for_each_safe(pos, n, &grave_pages) {
1015 		list_del(pos);
1016 		kfree(list_entry(pos, struct grave_page, list));
1017 	}
1018 	kfree(erase_block_wear);
1019 }
1020 
setup_wear_reporting(struct mtd_info * mtd)1021 static int setup_wear_reporting(struct mtd_info *mtd)
1022 {
1023 	size_t mem;
1024 
1025 	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1026 	mem = wear_eb_count * sizeof(unsigned long);
1027 	if (mem / sizeof(unsigned long) != wear_eb_count) {
1028 		NS_ERR("Too many erase blocks for wear reporting\n");
1029 		return -ENOMEM;
1030 	}
1031 	erase_block_wear = kzalloc(mem, GFP_KERNEL);
1032 	if (!erase_block_wear) {
1033 		NS_ERR("Too many erase blocks for wear reporting\n");
1034 		return -ENOMEM;
1035 	}
1036 	return 0;
1037 }
1038 
update_wear(unsigned int erase_block_no)1039 static void update_wear(unsigned int erase_block_no)
1040 {
1041 	if (!erase_block_wear)
1042 		return;
1043 	total_wear += 1;
1044 	/*
1045 	 * TODO: Notify this through a debugfs entry,
1046 	 * instead of showing an error message.
1047 	 */
1048 	if (total_wear == 0)
1049 		NS_ERR("Erase counter total overflow\n");
1050 	erase_block_wear[erase_block_no] += 1;
1051 	if (erase_block_wear[erase_block_no] == 0)
1052 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1053 }
1054 
1055 /*
1056  * Returns the string representation of 'state' state.
1057  */
get_state_name(uint32_t state)1058 static char *get_state_name(uint32_t state)
1059 {
1060 	switch (NS_STATE(state)) {
1061 		case STATE_CMD_READ0:
1062 			return "STATE_CMD_READ0";
1063 		case STATE_CMD_READ1:
1064 			return "STATE_CMD_READ1";
1065 		case STATE_CMD_PAGEPROG:
1066 			return "STATE_CMD_PAGEPROG";
1067 		case STATE_CMD_READOOB:
1068 			return "STATE_CMD_READOOB";
1069 		case STATE_CMD_READSTART:
1070 			return "STATE_CMD_READSTART";
1071 		case STATE_CMD_ERASE1:
1072 			return "STATE_CMD_ERASE1";
1073 		case STATE_CMD_STATUS:
1074 			return "STATE_CMD_STATUS";
1075 		case STATE_CMD_SEQIN:
1076 			return "STATE_CMD_SEQIN";
1077 		case STATE_CMD_READID:
1078 			return "STATE_CMD_READID";
1079 		case STATE_CMD_ERASE2:
1080 			return "STATE_CMD_ERASE2";
1081 		case STATE_CMD_RESET:
1082 			return "STATE_CMD_RESET";
1083 		case STATE_CMD_RNDOUT:
1084 			return "STATE_CMD_RNDOUT";
1085 		case STATE_CMD_RNDOUTSTART:
1086 			return "STATE_CMD_RNDOUTSTART";
1087 		case STATE_ADDR_PAGE:
1088 			return "STATE_ADDR_PAGE";
1089 		case STATE_ADDR_SEC:
1090 			return "STATE_ADDR_SEC";
1091 		case STATE_ADDR_ZERO:
1092 			return "STATE_ADDR_ZERO";
1093 		case STATE_ADDR_COLUMN:
1094 			return "STATE_ADDR_COLUMN";
1095 		case STATE_DATAIN:
1096 			return "STATE_DATAIN";
1097 		case STATE_DATAOUT:
1098 			return "STATE_DATAOUT";
1099 		case STATE_DATAOUT_ID:
1100 			return "STATE_DATAOUT_ID";
1101 		case STATE_DATAOUT_STATUS:
1102 			return "STATE_DATAOUT_STATUS";
1103 		case STATE_DATAOUT_STATUS_M:
1104 			return "STATE_DATAOUT_STATUS_M";
1105 		case STATE_READY:
1106 			return "STATE_READY";
1107 		case STATE_UNKNOWN:
1108 			return "STATE_UNKNOWN";
1109 	}
1110 
1111 	NS_ERR("get_state_name: unknown state, BUG\n");
1112 	return NULL;
1113 }
1114 
1115 /*
1116  * Check if command is valid.
1117  *
1118  * RETURNS: 1 if wrong command, 0 if right.
1119  */
check_command(int cmd)1120 static int check_command(int cmd)
1121 {
1122 	switch (cmd) {
1123 
1124 	case NAND_CMD_READ0:
1125 	case NAND_CMD_READ1:
1126 	case NAND_CMD_READSTART:
1127 	case NAND_CMD_PAGEPROG:
1128 	case NAND_CMD_READOOB:
1129 	case NAND_CMD_ERASE1:
1130 	case NAND_CMD_STATUS:
1131 	case NAND_CMD_SEQIN:
1132 	case NAND_CMD_READID:
1133 	case NAND_CMD_ERASE2:
1134 	case NAND_CMD_RESET:
1135 	case NAND_CMD_RNDOUT:
1136 	case NAND_CMD_RNDOUTSTART:
1137 		return 0;
1138 
1139 	default:
1140 		return 1;
1141 	}
1142 }
1143 
1144 /*
1145  * Returns state after command is accepted by command number.
1146  */
get_state_by_command(unsigned command)1147 static uint32_t get_state_by_command(unsigned command)
1148 {
1149 	switch (command) {
1150 		case NAND_CMD_READ0:
1151 			return STATE_CMD_READ0;
1152 		case NAND_CMD_READ1:
1153 			return STATE_CMD_READ1;
1154 		case NAND_CMD_PAGEPROG:
1155 			return STATE_CMD_PAGEPROG;
1156 		case NAND_CMD_READSTART:
1157 			return STATE_CMD_READSTART;
1158 		case NAND_CMD_READOOB:
1159 			return STATE_CMD_READOOB;
1160 		case NAND_CMD_ERASE1:
1161 			return STATE_CMD_ERASE1;
1162 		case NAND_CMD_STATUS:
1163 			return STATE_CMD_STATUS;
1164 		case NAND_CMD_SEQIN:
1165 			return STATE_CMD_SEQIN;
1166 		case NAND_CMD_READID:
1167 			return STATE_CMD_READID;
1168 		case NAND_CMD_ERASE2:
1169 			return STATE_CMD_ERASE2;
1170 		case NAND_CMD_RESET:
1171 			return STATE_CMD_RESET;
1172 		case NAND_CMD_RNDOUT:
1173 			return STATE_CMD_RNDOUT;
1174 		case NAND_CMD_RNDOUTSTART:
1175 			return STATE_CMD_RNDOUTSTART;
1176 	}
1177 
1178 	NS_ERR("get_state_by_command: unknown command, BUG\n");
1179 	return 0;
1180 }
1181 
1182 /*
1183  * Move an address byte to the correspondent internal register.
1184  */
accept_addr_byte(struct nandsim * ns,u_char bt)1185 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1186 {
1187 	uint byte = (uint)bt;
1188 
1189 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1190 		ns->regs.column |= (byte << 8 * ns->regs.count);
1191 	else {
1192 		ns->regs.row |= (byte << 8 * (ns->regs.count -
1193 						ns->geom.pgaddrbytes +
1194 						ns->geom.secaddrbytes));
1195 	}
1196 
1197 	return;
1198 }
1199 
1200 /*
1201  * Switch to STATE_READY state.
1202  */
switch_to_ready_state(struct nandsim * ns,u_char status)1203 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1204 {
1205 	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1206 
1207 	ns->state       = STATE_READY;
1208 	ns->nxstate     = STATE_UNKNOWN;
1209 	ns->op          = NULL;
1210 	ns->npstates    = 0;
1211 	ns->stateidx    = 0;
1212 	ns->regs.num    = 0;
1213 	ns->regs.count  = 0;
1214 	ns->regs.off    = 0;
1215 	ns->regs.row    = 0;
1216 	ns->regs.column = 0;
1217 	ns->regs.status = status;
1218 }
1219 
1220 /*
1221  * If the operation isn't known yet, try to find it in the global array
1222  * of supported operations.
1223  *
1224  * Operation can be unknown because of the following.
1225  *   1. New command was accepted and this is the first call to find the
1226  *      correspondent states chain. In this case ns->npstates = 0;
1227  *   2. There are several operations which begin with the same command(s)
1228  *      (for example program from the second half and read from the
1229  *      second half operations both begin with the READ1 command). In this
1230  *      case the ns->pstates[] array contains previous states.
1231  *
1232  * Thus, the function tries to find operation containing the following
1233  * states (if the 'flag' parameter is 0):
1234  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1235  *
1236  * If (one and only one) matching operation is found, it is accepted (
1237  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1238  * zeroed).
1239  *
1240  * If there are several matches, the current state is pushed to the
1241  * ns->pstates.
1242  *
1243  * The operation can be unknown only while commands are input to the chip.
1244  * As soon as address command is accepted, the operation must be known.
1245  * In such situation the function is called with 'flag' != 0, and the
1246  * operation is searched using the following pattern:
1247  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1248  *
1249  * It is supposed that this pattern must either match one operation or
1250  * none. There can't be ambiguity in that case.
1251  *
1252  * If no matches found, the function does the following:
1253  *   1. if there are saved states present, try to ignore them and search
1254  *      again only using the last command. If nothing was found, switch
1255  *      to the STATE_READY state.
1256  *   2. if there are no saved states, switch to the STATE_READY state.
1257  *
1258  * RETURNS: -2 - no matched operations found.
1259  *          -1 - several matches.
1260  *           0 - operation is found.
1261  */
find_operation(struct nandsim * ns,uint32_t flag)1262 static int find_operation(struct nandsim *ns, uint32_t flag)
1263 {
1264 	int opsfound = 0;
1265 	int i, j, idx = 0;
1266 
1267 	for (i = 0; i < NS_OPER_NUM; i++) {
1268 
1269 		int found = 1;
1270 
1271 		if (!(ns->options & ops[i].reqopts))
1272 			/* Ignore operations we can't perform */
1273 			continue;
1274 
1275 		if (flag) {
1276 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1277 				continue;
1278 		} else {
1279 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1280 				continue;
1281 		}
1282 
1283 		for (j = 0; j < ns->npstates; j++)
1284 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1285 				&& (ns->options & ops[idx].reqopts)) {
1286 				found = 0;
1287 				break;
1288 			}
1289 
1290 		if (found) {
1291 			idx = i;
1292 			opsfound += 1;
1293 		}
1294 	}
1295 
1296 	if (opsfound == 1) {
1297 		/* Exact match */
1298 		ns->op = &ops[idx].states[0];
1299 		if (flag) {
1300 			/*
1301 			 * In this case the find_operation function was
1302 			 * called when address has just began input. But it isn't
1303 			 * yet fully input and the current state must
1304 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1305 			 * state must be the next state (ns->nxstate).
1306 			 */
1307 			ns->stateidx = ns->npstates - 1;
1308 		} else {
1309 			ns->stateidx = ns->npstates;
1310 		}
1311 		ns->npstates = 0;
1312 		ns->state = ns->op[ns->stateidx];
1313 		ns->nxstate = ns->op[ns->stateidx + 1];
1314 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1315 				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1316 		return 0;
1317 	}
1318 
1319 	if (opsfound == 0) {
1320 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1321 		if (ns->npstates != 0) {
1322 			NS_DBG("find_operation: no operation found, try again with state %s\n",
1323 					get_state_name(ns->state));
1324 			ns->npstates = 0;
1325 			return find_operation(ns, 0);
1326 
1327 		}
1328 		NS_DBG("find_operation: no operations found\n");
1329 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1330 		return -2;
1331 	}
1332 
1333 	if (flag) {
1334 		/* This shouldn't happen */
1335 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1336 		return -2;
1337 	}
1338 
1339 	NS_DBG("find_operation: there is still ambiguity\n");
1340 
1341 	ns->pstates[ns->npstates++] = ns->state;
1342 
1343 	return -1;
1344 }
1345 
put_pages(struct nandsim * ns)1346 static void put_pages(struct nandsim *ns)
1347 {
1348 	int i;
1349 
1350 	for (i = 0; i < ns->held_cnt; i++)
1351 		page_cache_release(ns->held_pages[i]);
1352 }
1353 
1354 /* Get page cache pages in advance to provide NOFS memory allocation */
get_pages(struct nandsim * ns,struct file * file,size_t count,loff_t pos)1355 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1356 {
1357 	pgoff_t index, start_index, end_index;
1358 	struct page *page;
1359 	struct address_space *mapping = file->f_mapping;
1360 
1361 	start_index = pos >> PAGE_CACHE_SHIFT;
1362 	end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1363 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1364 		return -EINVAL;
1365 	ns->held_cnt = 0;
1366 	for (index = start_index; index <= end_index; index++) {
1367 		page = find_get_page(mapping, index);
1368 		if (page == NULL) {
1369 			page = find_or_create_page(mapping, index, GFP_NOFS);
1370 			if (page == NULL) {
1371 				write_inode_now(mapping->host, 1);
1372 				page = find_or_create_page(mapping, index, GFP_NOFS);
1373 			}
1374 			if (page == NULL) {
1375 				put_pages(ns);
1376 				return -ENOMEM;
1377 			}
1378 			unlock_page(page);
1379 		}
1380 		ns->held_pages[ns->held_cnt++] = page;
1381 	}
1382 	return 0;
1383 }
1384 
set_memalloc(void)1385 static int set_memalloc(void)
1386 {
1387 	if (current->flags & PF_MEMALLOC)
1388 		return 0;
1389 	current->flags |= PF_MEMALLOC;
1390 	return 1;
1391 }
1392 
clear_memalloc(int memalloc)1393 static void clear_memalloc(int memalloc)
1394 {
1395 	if (memalloc)
1396 		current->flags &= ~PF_MEMALLOC;
1397 }
1398 
read_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t pos)1399 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1400 {
1401 	ssize_t tx;
1402 	int err, memalloc;
1403 
1404 	err = get_pages(ns, file, count, pos);
1405 	if (err)
1406 		return err;
1407 	memalloc = set_memalloc();
1408 	tx = kernel_read(file, pos, buf, count);
1409 	clear_memalloc(memalloc);
1410 	put_pages(ns);
1411 	return tx;
1412 }
1413 
write_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t pos)1414 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1415 {
1416 	ssize_t tx;
1417 	int err, memalloc;
1418 
1419 	err = get_pages(ns, file, count, pos);
1420 	if (err)
1421 		return err;
1422 	memalloc = set_memalloc();
1423 	tx = kernel_write(file, buf, count, pos);
1424 	clear_memalloc(memalloc);
1425 	put_pages(ns);
1426 	return tx;
1427 }
1428 
1429 /*
1430  * Returns a pointer to the current page.
1431  */
NS_GET_PAGE(struct nandsim * ns)1432 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1433 {
1434 	return &(ns->pages[ns->regs.row]);
1435 }
1436 
1437 /*
1438  * Retuns a pointer to the current byte, within the current page.
1439  */
NS_PAGE_BYTE_OFF(struct nandsim * ns)1440 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1441 {
1442 	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1443 }
1444 
do_read_error(struct nandsim * ns,int num)1445 int do_read_error(struct nandsim *ns, int num)
1446 {
1447 	unsigned int page_no = ns->regs.row;
1448 
1449 	if (read_error(page_no)) {
1450 		prandom_bytes(ns->buf.byte, num);
1451 		NS_WARN("simulating read error in page %u\n", page_no);
1452 		return 1;
1453 	}
1454 	return 0;
1455 }
1456 
do_bit_flips(struct nandsim * ns,int num)1457 void do_bit_flips(struct nandsim *ns, int num)
1458 {
1459 	if (bitflips && prandom_u32() < (1 << 22)) {
1460 		int flips = 1;
1461 		if (bitflips > 1)
1462 			flips = (prandom_u32() % (int) bitflips) + 1;
1463 		while (flips--) {
1464 			int pos = prandom_u32() % (num * 8);
1465 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1466 			NS_WARN("read_page: flipping bit %d in page %d "
1467 				"reading from %d ecc: corrected=%u failed=%u\n",
1468 				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1469 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1470 		}
1471 	}
1472 }
1473 
1474 /*
1475  * Fill the NAND buffer with data read from the specified page.
1476  */
read_page(struct nandsim * ns,int num)1477 static void read_page(struct nandsim *ns, int num)
1478 {
1479 	union ns_mem *mypage;
1480 
1481 	if (ns->cfile) {
1482 		if (!ns->pages_written[ns->regs.row]) {
1483 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1484 			memset(ns->buf.byte, 0xFF, num);
1485 		} else {
1486 			loff_t pos;
1487 			ssize_t tx;
1488 
1489 			NS_DBG("read_page: page %d written, reading from %d\n",
1490 				ns->regs.row, ns->regs.column + ns->regs.off);
1491 			if (do_read_error(ns, num))
1492 				return;
1493 			pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1494 			tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1495 			if (tx != num) {
1496 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1497 				return;
1498 			}
1499 			do_bit_flips(ns, num);
1500 		}
1501 		return;
1502 	}
1503 
1504 	mypage = NS_GET_PAGE(ns);
1505 	if (mypage->byte == NULL) {
1506 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1507 		memset(ns->buf.byte, 0xFF, num);
1508 	} else {
1509 		NS_DBG("read_page: page %d allocated, reading from %d\n",
1510 			ns->regs.row, ns->regs.column + ns->regs.off);
1511 		if (do_read_error(ns, num))
1512 			return;
1513 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1514 		do_bit_flips(ns, num);
1515 	}
1516 }
1517 
1518 /*
1519  * Erase all pages in the specified sector.
1520  */
erase_sector(struct nandsim * ns)1521 static void erase_sector(struct nandsim *ns)
1522 {
1523 	union ns_mem *mypage;
1524 	int i;
1525 
1526 	if (ns->cfile) {
1527 		for (i = 0; i < ns->geom.pgsec; i++)
1528 			if (ns->pages_written[ns->regs.row + i]) {
1529 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1530 				ns->pages_written[ns->regs.row + i] = 0;
1531 			}
1532 		return;
1533 	}
1534 
1535 	mypage = NS_GET_PAGE(ns);
1536 	for (i = 0; i < ns->geom.pgsec; i++) {
1537 		if (mypage->byte != NULL) {
1538 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1539 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1540 			mypage->byte = NULL;
1541 		}
1542 		mypage++;
1543 	}
1544 }
1545 
1546 /*
1547  * Program the specified page with the contents from the NAND buffer.
1548  */
prog_page(struct nandsim * ns,int num)1549 static int prog_page(struct nandsim *ns, int num)
1550 {
1551 	int i;
1552 	union ns_mem *mypage;
1553 	u_char *pg_off;
1554 
1555 	if (ns->cfile) {
1556 		loff_t off;
1557 		ssize_t tx;
1558 		int all;
1559 
1560 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1561 		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1562 		off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1563 		if (!ns->pages_written[ns->regs.row]) {
1564 			all = 1;
1565 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1566 		} else {
1567 			all = 0;
1568 			tx = read_file(ns, ns->cfile, pg_off, num, off);
1569 			if (tx != num) {
1570 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1571 				return -1;
1572 			}
1573 		}
1574 		for (i = 0; i < num; i++)
1575 			pg_off[i] &= ns->buf.byte[i];
1576 		if (all) {
1577 			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1578 			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1579 			if (tx != ns->geom.pgszoob) {
1580 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1581 				return -1;
1582 			}
1583 			ns->pages_written[ns->regs.row] = 1;
1584 		} else {
1585 			tx = write_file(ns, ns->cfile, pg_off, num, off);
1586 			if (tx != num) {
1587 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1588 				return -1;
1589 			}
1590 		}
1591 		return 0;
1592 	}
1593 
1594 	mypage = NS_GET_PAGE(ns);
1595 	if (mypage->byte == NULL) {
1596 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1597 		/*
1598 		 * We allocate memory with GFP_NOFS because a flash FS may
1599 		 * utilize this. If it is holding an FS lock, then gets here,
1600 		 * then kernel memory alloc runs writeback which goes to the FS
1601 		 * again and deadlocks. This was seen in practice.
1602 		 */
1603 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1604 		if (mypage->byte == NULL) {
1605 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1606 			return -1;
1607 		}
1608 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1609 	}
1610 
1611 	pg_off = NS_PAGE_BYTE_OFF(ns);
1612 	for (i = 0; i < num; i++)
1613 		pg_off[i] &= ns->buf.byte[i];
1614 
1615 	return 0;
1616 }
1617 
1618 /*
1619  * If state has any action bit, perform this action.
1620  *
1621  * RETURNS: 0 if success, -1 if error.
1622  */
do_state_action(struct nandsim * ns,uint32_t action)1623 static int do_state_action(struct nandsim *ns, uint32_t action)
1624 {
1625 	int num;
1626 	int busdiv = ns->busw == 8 ? 1 : 2;
1627 	unsigned int erase_block_no, page_no;
1628 
1629 	action &= ACTION_MASK;
1630 
1631 	/* Check that page address input is correct */
1632 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1633 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1634 		return -1;
1635 	}
1636 
1637 	switch (action) {
1638 
1639 	case ACTION_CPY:
1640 		/*
1641 		 * Copy page data to the internal buffer.
1642 		 */
1643 
1644 		/* Column shouldn't be very large */
1645 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1646 			NS_ERR("do_state_action: column number is too large\n");
1647 			break;
1648 		}
1649 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1650 		read_page(ns, num);
1651 
1652 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1653 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1654 
1655 		if (ns->regs.off == 0)
1656 			NS_LOG("read page %d\n", ns->regs.row);
1657 		else if (ns->regs.off < ns->geom.pgsz)
1658 			NS_LOG("read page %d (second half)\n", ns->regs.row);
1659 		else
1660 			NS_LOG("read OOB of page %d\n", ns->regs.row);
1661 
1662 		NS_UDELAY(access_delay);
1663 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1664 
1665 		break;
1666 
1667 	case ACTION_SECERASE:
1668 		/*
1669 		 * Erase sector.
1670 		 */
1671 
1672 		if (ns->lines.wp) {
1673 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1674 			return -1;
1675 		}
1676 
1677 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1678 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1679 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1680 			return -1;
1681 		}
1682 
1683 		ns->regs.row = (ns->regs.row <<
1684 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1685 		ns->regs.column = 0;
1686 
1687 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1688 
1689 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1690 				ns->regs.row, NS_RAW_OFFSET(ns));
1691 		NS_LOG("erase sector %u\n", erase_block_no);
1692 
1693 		erase_sector(ns);
1694 
1695 		NS_MDELAY(erase_delay);
1696 
1697 		if (erase_block_wear)
1698 			update_wear(erase_block_no);
1699 
1700 		if (erase_error(erase_block_no)) {
1701 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1702 			return -1;
1703 		}
1704 
1705 		break;
1706 
1707 	case ACTION_PRGPAGE:
1708 		/*
1709 		 * Program page - move internal buffer data to the page.
1710 		 */
1711 
1712 		if (ns->lines.wp) {
1713 			NS_WARN("do_state_action: device is write-protected, programm\n");
1714 			return -1;
1715 		}
1716 
1717 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1718 		if (num != ns->regs.count) {
1719 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1720 					ns->regs.count, num);
1721 			return -1;
1722 		}
1723 
1724 		if (prog_page(ns, num) == -1)
1725 			return -1;
1726 
1727 		page_no = ns->regs.row;
1728 
1729 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1730 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1731 		NS_LOG("programm page %d\n", ns->regs.row);
1732 
1733 		NS_UDELAY(programm_delay);
1734 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1735 
1736 		if (write_error(page_no)) {
1737 			NS_WARN("simulating write failure in page %u\n", page_no);
1738 			return -1;
1739 		}
1740 
1741 		break;
1742 
1743 	case ACTION_ZEROOFF:
1744 		NS_DBG("do_state_action: set internal offset to 0\n");
1745 		ns->regs.off = 0;
1746 		break;
1747 
1748 	case ACTION_HALFOFF:
1749 		if (!(ns->options & OPT_PAGE512_8BIT)) {
1750 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1751 				"byte page size 8x chips\n");
1752 			return -1;
1753 		}
1754 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1755 		ns->regs.off = ns->geom.pgsz/2;
1756 		break;
1757 
1758 	case ACTION_OOBOFF:
1759 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1760 		ns->regs.off = ns->geom.pgsz;
1761 		break;
1762 
1763 	default:
1764 		NS_DBG("do_state_action: BUG! unknown action\n");
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 /*
1771  * Switch simulator's state.
1772  */
switch_state(struct nandsim * ns)1773 static void switch_state(struct nandsim *ns)
1774 {
1775 	if (ns->op) {
1776 		/*
1777 		 * The current operation have already been identified.
1778 		 * Just follow the states chain.
1779 		 */
1780 
1781 		ns->stateidx += 1;
1782 		ns->state = ns->nxstate;
1783 		ns->nxstate = ns->op[ns->stateidx + 1];
1784 
1785 		NS_DBG("switch_state: operation is known, switch to the next state, "
1786 			"state: %s, nxstate: %s\n",
1787 			get_state_name(ns->state), get_state_name(ns->nxstate));
1788 
1789 		/* See, whether we need to do some action */
1790 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1791 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1792 			return;
1793 		}
1794 
1795 	} else {
1796 		/*
1797 		 * We don't yet know which operation we perform.
1798 		 * Try to identify it.
1799 		 */
1800 
1801 		/*
1802 		 *  The only event causing the switch_state function to
1803 		 *  be called with yet unknown operation is new command.
1804 		 */
1805 		ns->state = get_state_by_command(ns->regs.command);
1806 
1807 		NS_DBG("switch_state: operation is unknown, try to find it\n");
1808 
1809 		if (find_operation(ns, 0) != 0)
1810 			return;
1811 
1812 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1813 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1814 			return;
1815 		}
1816 	}
1817 
1818 	/* For 16x devices column means the page offset in words */
1819 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1820 		NS_DBG("switch_state: double the column number for 16x device\n");
1821 		ns->regs.column <<= 1;
1822 	}
1823 
1824 	if (NS_STATE(ns->nxstate) == STATE_READY) {
1825 		/*
1826 		 * The current state is the last. Return to STATE_READY
1827 		 */
1828 
1829 		u_char status = NS_STATUS_OK(ns);
1830 
1831 		/* In case of data states, see if all bytes were input/output */
1832 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1833 			&& ns->regs.count != ns->regs.num) {
1834 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1835 					ns->regs.num - ns->regs.count);
1836 			status = NS_STATUS_FAILED(ns);
1837 		}
1838 
1839 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1840 
1841 		switch_to_ready_state(ns, status);
1842 
1843 		return;
1844 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1845 		/*
1846 		 * If the next state is data input/output, switch to it now
1847 		 */
1848 
1849 		ns->state      = ns->nxstate;
1850 		ns->nxstate    = ns->op[++ns->stateidx + 1];
1851 		ns->regs.num   = ns->regs.count = 0;
1852 
1853 		NS_DBG("switch_state: the next state is data I/O, switch, "
1854 			"state: %s, nxstate: %s\n",
1855 			get_state_name(ns->state), get_state_name(ns->nxstate));
1856 
1857 		/*
1858 		 * Set the internal register to the count of bytes which
1859 		 * are expected to be input or output
1860 		 */
1861 		switch (NS_STATE(ns->state)) {
1862 			case STATE_DATAIN:
1863 			case STATE_DATAOUT:
1864 				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1865 				break;
1866 
1867 			case STATE_DATAOUT_ID:
1868 				ns->regs.num = ns->geom.idbytes;
1869 				break;
1870 
1871 			case STATE_DATAOUT_STATUS:
1872 			case STATE_DATAOUT_STATUS_M:
1873 				ns->regs.count = ns->regs.num = 0;
1874 				break;
1875 
1876 			default:
1877 				NS_ERR("switch_state: BUG! unknown data state\n");
1878 		}
1879 
1880 	} else if (ns->nxstate & STATE_ADDR_MASK) {
1881 		/*
1882 		 * If the next state is address input, set the internal
1883 		 * register to the number of expected address bytes
1884 		 */
1885 
1886 		ns->regs.count = 0;
1887 
1888 		switch (NS_STATE(ns->nxstate)) {
1889 			case STATE_ADDR_PAGE:
1890 				ns->regs.num = ns->geom.pgaddrbytes;
1891 
1892 				break;
1893 			case STATE_ADDR_SEC:
1894 				ns->regs.num = ns->geom.secaddrbytes;
1895 				break;
1896 
1897 			case STATE_ADDR_ZERO:
1898 				ns->regs.num = 1;
1899 				break;
1900 
1901 			case STATE_ADDR_COLUMN:
1902 				/* Column address is always 2 bytes */
1903 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1904 				break;
1905 
1906 			default:
1907 				NS_ERR("switch_state: BUG! unknown address state\n");
1908 		}
1909 	} else {
1910 		/*
1911 		 * Just reset internal counters.
1912 		 */
1913 
1914 		ns->regs.num = 0;
1915 		ns->regs.count = 0;
1916 	}
1917 }
1918 
ns_nand_read_byte(struct mtd_info * mtd)1919 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1920 {
1921 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1922 	u_char outb = 0x00;
1923 
1924 	/* Sanity and correctness checks */
1925 	if (!ns->lines.ce) {
1926 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1927 		return outb;
1928 	}
1929 	if (ns->lines.ale || ns->lines.cle) {
1930 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1931 		return outb;
1932 	}
1933 	if (!(ns->state & STATE_DATAOUT_MASK)) {
1934 		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1935 			"return %#x\n", get_state_name(ns->state), (uint)outb);
1936 		return outb;
1937 	}
1938 
1939 	/* Status register may be read as many times as it is wanted */
1940 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1941 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1942 		return ns->regs.status;
1943 	}
1944 
1945 	/* Check if there is any data in the internal buffer which may be read */
1946 	if (ns->regs.count == ns->regs.num) {
1947 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1948 		return outb;
1949 	}
1950 
1951 	switch (NS_STATE(ns->state)) {
1952 		case STATE_DATAOUT:
1953 			if (ns->busw == 8) {
1954 				outb = ns->buf.byte[ns->regs.count];
1955 				ns->regs.count += 1;
1956 			} else {
1957 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1958 				ns->regs.count += 2;
1959 			}
1960 			break;
1961 		case STATE_DATAOUT_ID:
1962 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1963 			outb = ns->ids[ns->regs.count];
1964 			ns->regs.count += 1;
1965 			break;
1966 		default:
1967 			BUG();
1968 	}
1969 
1970 	if (ns->regs.count == ns->regs.num) {
1971 		NS_DBG("read_byte: all bytes were read\n");
1972 
1973 		if (NS_STATE(ns->nxstate) == STATE_READY)
1974 			switch_state(ns);
1975 	}
1976 
1977 	return outb;
1978 }
1979 
ns_nand_write_byte(struct mtd_info * mtd,u_char byte)1980 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1981 {
1982 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1983 
1984 	/* Sanity and correctness checks */
1985 	if (!ns->lines.ce) {
1986 		NS_ERR("write_byte: chip is disabled, ignore write\n");
1987 		return;
1988 	}
1989 	if (ns->lines.ale && ns->lines.cle) {
1990 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1991 		return;
1992 	}
1993 
1994 	if (ns->lines.cle == 1) {
1995 		/*
1996 		 * The byte written is a command.
1997 		 */
1998 
1999 		if (byte == NAND_CMD_RESET) {
2000 			NS_LOG("reset chip\n");
2001 			switch_to_ready_state(ns, NS_STATUS_OK(ns));
2002 			return;
2003 		}
2004 
2005 		/* Check that the command byte is correct */
2006 		if (check_command(byte)) {
2007 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
2008 			return;
2009 		}
2010 
2011 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2012 			|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
2013 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
2014 			int row = ns->regs.row;
2015 
2016 			switch_state(ns);
2017 			if (byte == NAND_CMD_RNDOUT)
2018 				ns->regs.row = row;
2019 		}
2020 
2021 		/* Check if chip is expecting command */
2022 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2023 			/* Do not warn if only 2 id bytes are read */
2024 			if (!(ns->regs.command == NAND_CMD_READID &&
2025 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2026 				/*
2027 				 * We are in situation when something else (not command)
2028 				 * was expected but command was input. In this case ignore
2029 				 * previous command(s)/state(s) and accept the last one.
2030 				 */
2031 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2032 					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2033 			}
2034 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2035 		}
2036 
2037 		NS_DBG("command byte corresponding to %s state accepted\n",
2038 			get_state_name(get_state_by_command(byte)));
2039 		ns->regs.command = byte;
2040 		switch_state(ns);
2041 
2042 	} else if (ns->lines.ale == 1) {
2043 		/*
2044 		 * The byte written is an address.
2045 		 */
2046 
2047 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2048 
2049 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2050 
2051 			if (find_operation(ns, 1) < 0)
2052 				return;
2053 
2054 			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2055 				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2056 				return;
2057 			}
2058 
2059 			ns->regs.count = 0;
2060 			switch (NS_STATE(ns->nxstate)) {
2061 				case STATE_ADDR_PAGE:
2062 					ns->regs.num = ns->geom.pgaddrbytes;
2063 					break;
2064 				case STATE_ADDR_SEC:
2065 					ns->regs.num = ns->geom.secaddrbytes;
2066 					break;
2067 				case STATE_ADDR_ZERO:
2068 					ns->regs.num = 1;
2069 					break;
2070 				default:
2071 					BUG();
2072 			}
2073 		}
2074 
2075 		/* Check that chip is expecting address */
2076 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2077 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2078 				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2079 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2080 			return;
2081 		}
2082 
2083 		/* Check if this is expected byte */
2084 		if (ns->regs.count == ns->regs.num) {
2085 			NS_ERR("write_byte: no more address bytes expected\n");
2086 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2087 			return;
2088 		}
2089 
2090 		accept_addr_byte(ns, byte);
2091 
2092 		ns->regs.count += 1;
2093 
2094 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2095 				(uint)byte, ns->regs.count, ns->regs.num);
2096 
2097 		if (ns->regs.count == ns->regs.num) {
2098 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2099 			switch_state(ns);
2100 		}
2101 
2102 	} else {
2103 		/*
2104 		 * The byte written is an input data.
2105 		 */
2106 
2107 		/* Check that chip is expecting data input */
2108 		if (!(ns->state & STATE_DATAIN_MASK)) {
2109 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2110 				"switch to %s\n", (uint)byte,
2111 				get_state_name(ns->state), get_state_name(STATE_READY));
2112 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2113 			return;
2114 		}
2115 
2116 		/* Check if this is expected byte */
2117 		if (ns->regs.count == ns->regs.num) {
2118 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2119 					ns->regs.num);
2120 			return;
2121 		}
2122 
2123 		if (ns->busw == 8) {
2124 			ns->buf.byte[ns->regs.count] = byte;
2125 			ns->regs.count += 1;
2126 		} else {
2127 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2128 			ns->regs.count += 2;
2129 		}
2130 	}
2131 
2132 	return;
2133 }
2134 
ns_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int bitmask)2135 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2136 {
2137 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2138 
2139 	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2140 	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2141 	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2142 
2143 	if (cmd != NAND_CMD_NONE)
2144 		ns_nand_write_byte(mtd, cmd);
2145 }
2146 
ns_device_ready(struct mtd_info * mtd)2147 static int ns_device_ready(struct mtd_info *mtd)
2148 {
2149 	NS_DBG("device_ready\n");
2150 	return 1;
2151 }
2152 
ns_nand_read_word(struct mtd_info * mtd)2153 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2154 {
2155 	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2156 
2157 	NS_DBG("read_word\n");
2158 
2159 	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2160 }
2161 
ns_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)2162 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2163 {
2164 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2165 
2166 	/* Check that chip is expecting data input */
2167 	if (!(ns->state & STATE_DATAIN_MASK)) {
2168 		NS_ERR("write_buf: data input isn't expected, state is %s, "
2169 			"switch to STATE_READY\n", get_state_name(ns->state));
2170 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2171 		return;
2172 	}
2173 
2174 	/* Check if these are expected bytes */
2175 	if (ns->regs.count + len > ns->regs.num) {
2176 		NS_ERR("write_buf: too many input bytes\n");
2177 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2178 		return;
2179 	}
2180 
2181 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2182 	ns->regs.count += len;
2183 
2184 	if (ns->regs.count == ns->regs.num) {
2185 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2186 	}
2187 }
2188 
ns_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)2189 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2190 {
2191 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2192 
2193 	/* Sanity and correctness checks */
2194 	if (!ns->lines.ce) {
2195 		NS_ERR("read_buf: chip is disabled\n");
2196 		return;
2197 	}
2198 	if (ns->lines.ale || ns->lines.cle) {
2199 		NS_ERR("read_buf: ALE or CLE pin is high\n");
2200 		return;
2201 	}
2202 	if (!(ns->state & STATE_DATAOUT_MASK)) {
2203 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2204 			get_state_name(ns->state));
2205 		return;
2206 	}
2207 
2208 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2209 		int i;
2210 
2211 		for (i = 0; i < len; i++)
2212 			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2213 
2214 		return;
2215 	}
2216 
2217 	/* Check if these are expected bytes */
2218 	if (ns->regs.count + len > ns->regs.num) {
2219 		NS_ERR("read_buf: too many bytes to read\n");
2220 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2221 		return;
2222 	}
2223 
2224 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2225 	ns->regs.count += len;
2226 
2227 	if (ns->regs.count == ns->regs.num) {
2228 		if (NS_STATE(ns->nxstate) == STATE_READY)
2229 			switch_state(ns);
2230 	}
2231 
2232 	return;
2233 }
2234 
2235 /*
2236  * Module initialization function
2237  */
ns_init_module(void)2238 static int __init ns_init_module(void)
2239 {
2240 	struct nand_chip *chip;
2241 	struct nandsim *nand;
2242 	int retval = -ENOMEM, i;
2243 
2244 	if (bus_width != 8 && bus_width != 16) {
2245 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2246 		return -EINVAL;
2247 	}
2248 
2249 	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2250 	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2251 				+ sizeof(struct nandsim), GFP_KERNEL);
2252 	if (!nsmtd) {
2253 		NS_ERR("unable to allocate core structures.\n");
2254 		return -ENOMEM;
2255 	}
2256 	chip        = (struct nand_chip *)(nsmtd + 1);
2257         nsmtd->priv = (void *)chip;
2258 	nand        = (struct nandsim *)(chip + 1);
2259 	chip->priv  = (void *)nand;
2260 
2261 	/*
2262 	 * Register simulator's callbacks.
2263 	 */
2264 	chip->cmd_ctrl	 = ns_hwcontrol;
2265 	chip->read_byte  = ns_nand_read_byte;
2266 	chip->dev_ready  = ns_device_ready;
2267 	chip->write_buf  = ns_nand_write_buf;
2268 	chip->read_buf   = ns_nand_read_buf;
2269 	chip->read_word  = ns_nand_read_word;
2270 	chip->ecc.mode   = NAND_ECC_SOFT;
2271 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2272 	/* and 'badblocks' parameters to work */
2273 	chip->options   |= NAND_SKIP_BBTSCAN;
2274 
2275 	switch (bbt) {
2276 	case 2:
2277 		 chip->bbt_options |= NAND_BBT_NO_OOB;
2278 	case 1:
2279 		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2280 	case 0:
2281 		break;
2282 	default:
2283 		NS_ERR("bbt has to be 0..2\n");
2284 		retval = -EINVAL;
2285 		goto error;
2286 	}
2287 	/*
2288 	 * Perform minimum nandsim structure initialization to handle
2289 	 * the initial ID read command correctly
2290 	 */
2291 	if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2292 		nand->geom.idbytes = 4;
2293 	else
2294 		nand->geom.idbytes = 2;
2295 	nand->regs.status = NS_STATUS_OK(nand);
2296 	nand->nxstate = STATE_UNKNOWN;
2297 	nand->options |= OPT_PAGE512; /* temporary value */
2298 	nand->ids[0] = first_id_byte;
2299 	nand->ids[1] = second_id_byte;
2300 	nand->ids[2] = third_id_byte;
2301 	nand->ids[3] = fourth_id_byte;
2302 	if (bus_width == 16) {
2303 		nand->busw = 16;
2304 		chip->options |= NAND_BUSWIDTH_16;
2305 	}
2306 
2307 	nsmtd->owner = THIS_MODULE;
2308 
2309 	if ((retval = parse_weakblocks()) != 0)
2310 		goto error;
2311 
2312 	if ((retval = parse_weakpages()) != 0)
2313 		goto error;
2314 
2315 	if ((retval = parse_gravepages()) != 0)
2316 		goto error;
2317 
2318 	retval = nand_scan_ident(nsmtd, 1, NULL);
2319 	if (retval) {
2320 		NS_ERR("cannot scan NAND Simulator device\n");
2321 		if (retval > 0)
2322 			retval = -ENXIO;
2323 		goto error;
2324 	}
2325 
2326 	if (bch) {
2327 		unsigned int eccsteps, eccbytes;
2328 		if (!mtd_nand_has_bch()) {
2329 			NS_ERR("BCH ECC support is disabled\n");
2330 			retval = -EINVAL;
2331 			goto error;
2332 		}
2333 		/* use 512-byte ecc blocks */
2334 		eccsteps = nsmtd->writesize/512;
2335 		eccbytes = (bch*13+7)/8;
2336 		/* do not bother supporting small page devices */
2337 		if ((nsmtd->oobsize < 64) || !eccsteps) {
2338 			NS_ERR("bch not available on small page devices\n");
2339 			retval = -EINVAL;
2340 			goto error;
2341 		}
2342 		if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2343 			NS_ERR("invalid bch value %u\n", bch);
2344 			retval = -EINVAL;
2345 			goto error;
2346 		}
2347 		chip->ecc.mode = NAND_ECC_SOFT_BCH;
2348 		chip->ecc.size = 512;
2349 		chip->ecc.bytes = eccbytes;
2350 		NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2351 	}
2352 
2353 	retval = nand_scan_tail(nsmtd);
2354 	if (retval) {
2355 		NS_ERR("can't register NAND Simulator\n");
2356 		if (retval > 0)
2357 			retval = -ENXIO;
2358 		goto error;
2359 	}
2360 
2361 	if (overridesize) {
2362 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2363 		if (new_size >> overridesize != nsmtd->erasesize) {
2364 			NS_ERR("overridesize is too big\n");
2365 			retval = -EINVAL;
2366 			goto err_exit;
2367 		}
2368 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2369 		nsmtd->size = new_size;
2370 		chip->chipsize = new_size;
2371 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2372 		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2373 	}
2374 
2375 	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2376 		goto err_exit;
2377 
2378 	if ((retval = nandsim_debugfs_create(nand)) != 0)
2379 		goto err_exit;
2380 
2381 	if ((retval = init_nandsim(nsmtd)) != 0)
2382 		goto err_exit;
2383 
2384 	if ((retval = nand_default_bbt(nsmtd)) != 0)
2385 		goto err_exit;
2386 
2387 	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2388 		goto err_exit;
2389 
2390 	/* Register NAND partitions */
2391 	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2392 				     nand->nbparts);
2393 	if (retval != 0)
2394 		goto err_exit;
2395 
2396         return 0;
2397 
2398 err_exit:
2399 	free_nandsim(nand);
2400 	nand_release(nsmtd);
2401 	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2402 		kfree(nand->partitions[i].name);
2403 error:
2404 	kfree(nsmtd);
2405 	free_lists();
2406 
2407 	return retval;
2408 }
2409 
2410 module_init(ns_init_module);
2411 
2412 /*
2413  * Module clean-up function
2414  */
ns_cleanup_module(void)2415 static void __exit ns_cleanup_module(void)
2416 {
2417 	struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2418 	int i;
2419 
2420 	nandsim_debugfs_remove(ns);
2421 	free_nandsim(ns);    /* Free nandsim private resources */
2422 	nand_release(nsmtd); /* Unregister driver */
2423 	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2424 		kfree(ns->partitions[i].name);
2425 	kfree(nsmtd);        /* Free other structures */
2426 	free_lists();
2427 }
2428 
2429 module_exit(ns_cleanup_module);
2430 
2431 MODULE_LICENSE ("GPL");
2432 MODULE_AUTHOR ("Artem B. Bityuckiy");
2433 MODULE_DESCRIPTION ("The NAND flash simulator");
2434